
http://wrap.warwick.ac.uk

Original citation:
Sinanan, S. K. and Holt, D. F.. (2016) Algorithms for polycyclic-by-finite groups. Journal
of Symbolic Computation. doi: 10.1016/j.jsc.2016.02.008

Permanent WRAP url:
http://wrap.warwick.ac.uk/77143/

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher’s statement:
© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/42618883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/77143/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:publications@warwick.ac.uk

Algorithms for Polycyclic-by-Finite GroupsI

S.K. Sinananb,˚, D.F. Holta

aMathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
bDepartment of Mathematics and Statistics, University of The West Indies, Saint

Augustine, Trinidad and Tobago

Abstract

A set of fundamental algorithms for computing with polycyclic-by-finite groups
is presented.

Polycyclic-by-finite groups arise naturally in a number of contexts; for ex-
ample, as automorphism groups of large finite soluble groups, as quotients of
finitely presented groups, and as extensions of modules by groups. No existing
mode of representation is suitable for these groups, since they will typically not
have a convenient faithful permutation representation.

A mixed mode is used to represent elements of such a group, utilising either
a power-conjugate presentation or a polycyclic presentation for the elements of
the normal subgroup, and a permutation representation for the elements of the
quotient.

Keywords: polycyclic, polycyclic-by-finite, permutation, finitely presented,
magma

1. Introduction

A group is polycyclic-by-finite if it has a normal polycyclic subgroup of fi-
nite index. That is, if it has a normal subgroup of finite index that admits a
subnormal series with cyclic factors.

By a well-known theorem of P. Hall, every polycyclic-by-finite group is
finitely presented — and in fact, polycyclic-by-finite groups form the largest
known section-closed class of finitely presented groups. It is this fact that makes

IThis research was supported by the University of Warwick Postgraduate Research Schol-
arship, and the University of Warwick Chancellor’s International Scholarship, which are, in
turn, funded partly by the Engineering and Physical Sciences Research Council of the United
Kingdom (EPSRC).

˚Corresponding author
Email addresses: Shavak.Sinanan@sta.uwi.edu (S.K. Sinanan),

D.F.Holt@warwick.ac.uk (D.F. Holt)
URL: https://sta.uwi.edu/fst/dms/Shavak_Sinanan.asp (S.K. Sinanan),

http://homepages.warwick.ac.uk/~mareg/ (D.F. Holt)

Preprint submitted to Journal of Symbolic Computation February 8, 2016

polycyclic-by-finite groups natural objects of study from the algorithmic stand-
point.

The algorithmic decision theory of polycyclic-by-finite groups has been in-
vestigated in the theoretical context by Baumslag et al. (1991). However, from
the computational standpoint, the algorithms presented by Baumslag et al.
(1991) are not applicable, nor were they intended to be. In contrast, this paper
explores the computational properties of polycyclic-by-finite groups from a prac-
tical perspective, detailing algorithms which lend themselves easily to computer
implementation.

Specifically, the work presented in this paper aims to:

(a) Define a computationally effective representation for polycyclic-by-finite
groups.

(b) Develop a set of implementable algorithms to perform fundamental compu-
tations such as element multiplication and subgroup construction, within
the class of polycyclic-by-finite groups.

(c) Use the fundamental algorithms developed to design methods that perform
more advanced computations such as the construction of centralisers and
conjugacy testing, within the class of polycyclic-by-finite groups.

The algorithms presented here are targeted primarily at finite non-solvable
groups with a large solvable (and hence, in this case, polycyclic) normal sub-
group, as such groups often do not have a convenient permutation representa-
tion. Groups of this type arise naturally in many applications, such as automor-
phism groups of large finite solvable groups, as quotients of finitely presented
groups, and as extensions of modules by groups.

The theory developed is by no means limited to the finite case. Apart
from a few natural exceptions (such as computing Sylow subgroups), all of the
algorithms apply equally to infinite polycyclic-by-finite groups.

Whilst there may be many different decompositions of a given polycyclic-
by-finite group as an extension of a polycyclic group by a finite group, the
algorithms presented in this paper are most useful for those decompositions
in which the finite quotient admits a faithful permutation representation of
manageable degree (ă 106). Thus, it will hereinafter be assumed that the
polycyclic-by-finite groups in question can be so decomposed.

Much of what is presented in the sequel requires familiarity with the already
existing efficient algorithms for computing with finite permutation groups, and
with polycyclic groups. The standard references for computation with permu-
tation groups are (Sims, 1970, 1971), and (Seress, 2003). The notation used in
this paper is consistent with the latter.

Polycyclic groups form a broad class of finitely presented groups in which
extensive computation is possible. In the finite case, solvability is equivalent to
polycyclicity, and the literature on algorithms for computing with finite solvable
groups is extensive. See (Laue et al., 1984; Mecky and Neubüser, 1989; Glasby
and Slattery, 1990). Computing with infinite polycyclic groups is more cutting-
edge; for excellent accounts, see (Sims, 1994, ch. 9), (Eick, 2001), and (Holt
et al., 2005, ch. 8). The notation used in this paper is consistent with the latter.

2

Let E be a polycyclic-by-finite group, and suppose that there is a black-box
representation of E on the computer. Let N Ĳ E be polycyclic, and assume
that G “ E{N admits a faithful permutation representation of manageable
degree. Concretely, the central goal of the theory is to set up machinery so that
elements of E can be manipulated by performing operations only within N and
G, without appealing to the existing representation of E.

On the other hand, although the algorithms described here are designed for
situations where one is unable to perform arithmetic in E, there may neverthe-
less be instances in which it would be efficient to be able to do this; and similar
methods to those presented here may be applied to such groups. This happens,
for example, in dealing with some types of large matrix groups over finite fields
as described in (Hulpke, 2013).

2. Multiplication

This section contains a detailed description of a mode by which elements of
a given polycyclic-by-finite group may be represented on the computer, and a
strategy for multiplication of elements represented in this manner.

Fix a transversal L of N in E with 1E P L and, for e P E, denote by e the
unique element of eN XL. An element e P E can of course be written uniquely
as a product e “ e ¨ n, where n P N .

Note. For ease of notation, in what follows, the element e P L will be identified
with the element eN of the quotient G; the context will be made explicit in
cases where it is not clear.

Expressing group elements in this manner is a logical approach as one would
naturally wish to utilise the well-developed algorithms available for the classes of
permutation groups and polycyclic groups, thereby fully exploiting the structure
of the group in question.

In what follows it is assumed that the normal subgroup N of E is defined
by a polycyclic presentation, although the methods described can be extended
to different representations of N .

2.1. Bases and Strong Generating Sets

The definitions given in (Seress, 2003, ch. 4) for a base and a strong gener-
ating set may be extended to fit the context of polycyclic-by-finite groups.

View G as a permutation group of degree d and denote by Ω the set of
points on which G acts. Given an element en P E and a point ω P Ω one
may unambiguously speak of the action of en on ω, with obvious meaning, viz.
ωen “ ωe; regarding e as an element of G.

The fundamental algorithms for orbit computation can be applied without
modification in the case of this permutation action. Specifically, it is possible,
using the methods described in (Seress, 2003, ch. 4), to compute the orbit of
a point ω P Ω under a set X Ď E of elements along with a Schreier vector
encoding a transversal of the stabiliser xXyω in xXy.

3

A sequence B “ pγ1, . . . , γkq of elements belonging to Ω is called a base for
E if every element of E that fixes B pointwise belongs to N . The sequence B
defines a stabiliser subgroup chain

E “ Er1s ě Er2s ě ¨ ¨ ¨ ě Erks ě Erk`1s “ N (2.1)

where Eris “ Epγ1,...,γi´1q (i ą 1) is the pointwise stabiliser of tγ1, . . . , γi´1u.

The base B is called non-redundant if Eri`1s ă Eris for all i “ 1, . . . , k. The

orbits γi
Eris are called the basic orbits or fundamental orbits of E (relative to

B). The subgroup Eris is called the i-th basic stabiliser relative to B. A strong
generating set for E relative to B is a generating set T for E with the property
that

xT X Erisy “ Eris (2.2)

for i “ 1, . . . , k ` 1.
One has

|G| “
k
ź

i“1

rEris{N : Eri`1s{N s.

By the Third Isomorphism Theorem and the Orbit–Stabiliser Theorem, one

obtains rEris{N : Eri`1s{N s “ |γE
ris

i | ď d for i “ 1, . . . , k. Moreover, if B is
non-redundant, then rEris{N : Eri`1s{N s ě 2 for each i. These inequalities,
combined with the expression for |G| above, yield

log2 |G|

log2 d
ď |B| ď log2 |G|. (2.3)

2.2. The Normal Form

A base and strong generating set data structure for the permutation group G
combined with a power-conjugate or polycyclic presentation for N automatically
induce a normal form for elements of E. The existence of a normal form for
group elements allows one to devise a multiplication strategy which is suitable
for computer implementation.

Let S “ tx1, . . . , xmu be a strong generating set relative to a base B “

pβ1, . . . , βlq for G, and assume that S is non-redundant. Denote by S´1 the set

tx´1
1 , . . . , x´1

m u. For technical reasons, the transversal L is constructed so that,

for each x P S which is not self-inverse in G, one has x´1 = x´1.
For each i, denote the i-th basic stabiliser relative to B by Gris, and denote

the i-th basic orbit relative to B by ∆i “ tδi,1, . . . , δi,diu, where δi,1 “ βi.
Let Ui be a right transversal of Gri`1s in Gris; then each element of G can be
represented uniquely as a product of transversal elements ul ¨ ul´1 ¨ ¨ ¨u1 where
ui P Ui.

Additionally, let Si “ S X Gris “ txi,1, . . . , xi,siu and denote by S´1
i the

set tx´1
i,1 , . . . , x

´1
i,si
u. In what follows, one assumes that there is a data structure

that encodes elements of the basic stabilisers as words over S Y S´1 (such as

4

a Schreier vector — see (Seress, 2003)), and that this data structure remains
unchanged throughout the operation of the method.

An element e P E may be expressed as ul ¨ ul´1 ¨ ¨ ¨u1 ¨ n1 where ui P Ui.
Consider multiplying the elements e and x ¨n2 (where x P SYS´1 and n2 P N):

ul ¨ ul´1 ¨ ¨ ¨u1 ¨ n1 ¨ x ¨ n2 “ ul ¨ ul´1 ¨ ¨ ¨u1 ¨ x ¨ n
x
1 ¨ n2.

In this setup, the multiplication algorithm should possess the following func-
tionality:

(i) Conjugate elements of N by elements x P S Y S´1.
(ii) Rewrite an expression of the form ul ¨ ul´1 ¨ ¨ ¨u1 ¨ x as u1l ¨ u

1
l´1 ¨ ¨ ¨u

1
1 ¨ n

where u1i P Ui and n P N .

Utilising the existing representation of N , items (i) and (ii) are sufficient
to formulate a strategy by which arbitrary elements of E may be multiplied
without appealing to the existing representation of E. The details of how this
is accomplished are given in Subsections 2.3–2.4.

2.3. The Shifting Method

Fix i and j, and let u P Ui be the permutation taking βi to δi,j P ∆i. Take
x P Si, and let h, h1 be the permutations in Ui which map βi to βu¨xi “ δxi,j ,

βu¨x
´1

i “ δx
´1

i,j respectively. Then, in the group E, one has

u ¨ x “ y1 y2 ¨ ¨ ¨ yk ¨ h ¨ n, (2.4a)

u ¨ x´1 “ z1 z2 ¨ ¨ ¨ zk1 ¨ h1 ¨ n
1, (2.4b)

for some n, n1 P N , and where y1, . . . , yk, z1, . . . , zk1 P Si`1 Y S
´1
i`1.

The elements n and n1 are called the heads of u relative to x and x´1

respectively while the words y1 y2 ¨ ¨ ¨ yk and z1 z2 ¨ ¨ ¨ zk1 are called the tails of u
relative to x and x´1 respectively. Equations (2.4) are called the shift equations.
Note that there are Opd|B||S|q shift equations.

The shift equations suggest a scheme by which elements of E may be mul-
tiplied. Assume that the tails can be computed consistently for each pair u, x,
and u, x´1 of the shift equations. Furthermore, assume that the conjugates of
elements of N by elements of S Y S´1 can be calculated without appealing to
the existing representation of E.

Let e1 “ e1n1 and e2 “ e2n2 be two elements of E in normal form. Using the
methods available for permutation groups, the algorithm begins by writing e1 as
ul ul´1 ¨ ¨ ¨u1, where ui P Ui for each i, and expresses e2 as a word over SYS´1,
say w “ q1 q2 ¨ ¨ ¨ qσ where qj P S Y S´1 for each j. (Note that the existing
methods available for permutation groups allow one to do this consistently.)

The algorithm then proceeds to rearrange the terms of the product by con-
jugating the element n1 by the word w, as illustrated in Equation (2.5):

e1 ¨ e2 “ pul ul´1 ¨ ¨ ¨u1q ¨ n1 ¨ pq1 q2 ¨ ¨ ¨ qσq ¨ n2

“ ul ul´1 ¨ ¨ ¨u2 u1 ¨ q1 q2 ¨ ¨ ¨ qσ ¨ n
w
1 n2. (2.5)

5

The under-bracketed segment of Equation (2.5) can be recognised as the left-
hand side of a shift equation, say u1 ¨ q1 “ y1 y2 ¨ ¨ ¨ yκ ¨ h1 ¨ n3 for some n3 P N ,
h1 P U1, and where yj P S2 Y S´1

2 for each j. Via direct substitution, this
equation can be used to shift the transversal element q1 past u1. The algorithm
executes this shifting procedure as illustrated in Equation (2.6).

e1 ¨ e2 “ ul ul´1 ¨ ¨ ¨u2 u1 ¨ q1
loomoon

replace by y1 y2¨¨¨yκ¨h1¨n3

q2 ¨ ¨ ¨ qσ ¨ n
w
1 n2

“ ul ul´1 ¨ ¨ ¨u2 ¨ y1 y2 ¨ ¨ ¨ yκ ¨ h1 ¨ q2 q3 ¨ ¨ ¨ qσ ¨ n
q1
´1w

3 nw1 n2

(2.6)

The under-bracketed segment of the product in Equation (2.6) can again be
recognised as the left-hand side of a shift equation. The algorithm repeats the
procedure above to shift q2 past h1.

Remark 2.1. Each time a shift is made, the word over S Y S´1 immediately to
the left of the sequence of normal subgroup elements in the expression for the
product is reduced by exactly one symbol.

The algorithm continues iterating through the word w, shifting at every step,
arriving at an expression of the form ul ul´1 ¨ ¨ ¨u2 ¨ y1 y2 ¨ ¨ ¨ yζ ¨ u11 ¨ n

1 for the

product, where u11 P U1, n1 P N .
At this stage, the algorithm has decreased the sequence of transversal ele-

ments ui on the right-hand side of Equation (2.5) by one term, thus reducing
the problem to a smaller case. The algorithm restarts its inner loop to process
the word y1 y2 ¨ ¨ ¨ yζ by, as before, recognising u2 ¨ y1 as the left-hand side of a
shift equation.

Remark 2.2. Each time a word over S Y S´1 is processed fully as described
above, the leftmost sequence of transversal elements ui in the expression for the
product is decreased by exactly one term.

Remark 2.3. Whenever a shift is made at level i (with respect to the base and
strong generating set hierarchy), the elements of SYS´1 that are placed to the
left of the new element, hi (where hi P Ui), belong to Si`1YS

´1
i`1. In particular,

since Sl`1 “ H, no non-trivial elements of S Y S´1 are placed to the left of an
element of Ul.

The word-processing procedure is repeated for each ui, after which a series
of conjugations of elements of the normal subgroup is performed. This yields
an expression of the form u1l u

1
l´1 ¨ ¨ ¨u

1
1 ¨ n

2 for the product, where n2 P N , and

u1i P Ui for each i.

Remark 2.4. The shift equations (2.4), together with the conjugation equations
nx = xnx for x P SYS´1 and generators n of N , and the relations in the poly-
cyclic presentation of N together constitute a confluent terminating rewriting
system for the group E.

6

2.4. The Multiplication Algorithm

The multiplication algorithm relies directly on a precomputed set of data to
facilitate its execution. More specifically, the following data is computed (using
the existing representation of E) on initialisation and held in memory.

(i) The tail of each shift equation. This computation takes place entirely
within the permutation group. Assuming (henceforth) that a Schreier
vector data structure is used, the storage required is Op|S|pd|B|q2q, where
d is the degree of the permutation group G.

(ii) The head of each shift equation. This computation uses the existing rep-
resentation of E and requires Opdr|B||S|q storage, where r is the length
of the polycyclic sequence used to define N .

(iii) For each polycyclic generator a of N , and each y P SYS´1, the conjugate
ay. The memory requirement here is Opr2|S|q.

The multiplication method is presented in Algorithm 1. The notation em-
ployed thus far is used in the pseudocode, and the method assumes that the tails
of the shift equations are stored as arrays of strong generators. The method also
assumes the existence of a function Length which, when supplied with an ar-
ray (or a sequence), returns the number of non-null entries of that array (or
sequence).

Theorem 2.5. The multiplication algorithm terminates with the correct value
for the desired product.

Proof. Termination is guaranteed by Remarks 2.1–2.3, while Equations (2.5)
and (2.6) imply correctness.

The running time of Multiply is determined by the number of times that
Lines 13–19 are executed. To estimate this number, an upper bound for
Length(rightword) will be established (for each of the l iterations of the outer
loop).

The rate of growth of rightword is investigated as follows. Initially, rightword
has length at most d|B|. Each shift made in the inner loop of the algorithm
appends a tail of length at most d|B| to the variable leftword. This operation
is performed in Line 15. Since a shift is made for each element of rightword,
it follows that, at the end of the first iteration of the outer loop, leftword has
length ď pd|B|q2; and so, in the second iteration of the outer loop, rightword
has length ď pd|B|q2. Repeating this argument shows that rightword has length
ď pd|B|qi in the i-th iteration of the outer loop. Thus, in a run of Multiply,

Lines 13–19 are executed ď
|B|
ř

i“1

pd|B|qi P O
`

pd|B|q|B|˘ times.

The most expensive computations within Lines 13–19 occur in Line 16 and
in Line 18. Line 16 consists of an application of a straightforward iterative
procedure to compute the conjugate of an element of N by an element of S Y
S´1 using the precomputed data set. Therefore, in a single run, Multiply
performs O

`

pd|B|q|B|˘ such conjugations. Line 18 is a standard Schreier vector

7

Algorithm 1 Element multiplication

1: function Multiply(e1n1, e2n2)
2: if e2 is trivial then
3: return e1n1n2
4: Write e1 in normal form ul ul´1 ¨ ¨ ¨u1 where ui P Ui for each i
5: Write e2 as a word w “ q1 q2 ¨ ¨ ¨ qt where qi P S Y S

´1 for each i
6: rightword Ð [q1, q2, . . . , qt], leftword Ð []
7: n11 Ð n1
8: for iÐ 2 to l do
9: n1i Ð 1N

10: for iÐ 1 to l do
11: u1i Ð ui
12: for j Ð 1 to Length(rightword) do
13: Retrieve from memory the tail array, tailword, and head, nσ, of
14: the shift equation corresponding to the pair u1i, rightword[j]
15: leftword Ð leftword cat tailword
16: Find the conjugate nγ of n1i by rightword[j] Ź Use the data set
17: n1i Ð nσ ¨ nγ

18: Find h P Ui which maps β
u1i
i to the image of β

u1i
i under rightword[j]

19: u1i Ð h

20: rightword Ð leftword
21: leftword Ð []

22: e˚ Ð 1G, n˚ Ð 1N , iÐ l
23: while i ą 0 do

24: n˚ Ð n
u1i
˚ ¨ n

1
i, e˚ Ð e˚ ¨ u1i Ź Use the data set

25: iÐ i´ 1

26: n˚ Ð n˚ ¨ n2
27: return e˚n˚ Ź Regard e˚ now as an element of L

8

computation in G which requires Opdq multiplications in the finite quotient G;
for a proof of this, (see Seress, 2003, ch. 4). Thus, a run of Multiply requires
O
`

dpd|B|q|B|˘ multiplications in G.
In light of the exponential growth of the words through which Multiply

must iterate, small-base representations for the quotient group are desirable for
satisfactory performance of the multiplication algorithm.

2.5. Applications

There are several immediate applications of the multiplication procedure.

(i) Given g P G, compute the representative of g in L in normal form. The
way that this is done depends on the data structure used to represent the
transversals in G; if a Schreier vector is used, then the representative is
found by multiplying through the sequence in S Y S´1 encoding g.

(ii) Given e “ en1 written in normal form, compute e´1 in normal form. To
do this, first use the method in (i) to compute the representative of e´1

(regarded as an element of G) in L, say e´1n2. Then en1 ¨ e´1n2 “ n3 for
some n3 P N which can be computed using Multiply. Therefore, one has
e´1 “ pe´1n2q ¨ n

´1
3 . Assuming that Schreier vectors are used to encode

transversal elements, finding the inverse of an element in E requires Opdq
multiplications.

(iii) Compute the order of e “ en. First utilise the existing methods for per-
mutation groups to compute the order of e regarded as an element of G.
Then use Multiply to raise en to this power. This yields an element of
N whose order can be computed using the existing methods for polycyclic
groups; the order of en is of course the product of the two numbers.

3. Transfer to the Category of Polycyclic Groups

Outlined in this brief section is a method that computes a consistent power-
conjugate (or polycyclic) presentation for a polycyclic-by-finite group E that is
in fact polycyclic. For the sake of clarity, it will be assumed in the following
discussion that E is finite, and a power-conjugate presentation for E will be
constructed; a similar procedure may be employed in the infinite case.

Continuing with the notation from previous sections, if E is polycyclic, then
the quotient G “ E{N is polycyclic and one may use the already available
methods for permutation groups to compute a power-conjugate presentation
for G (see Seress, 2003, ch. 7). A consistent polycyclic or power-conjugate
presentation for E may be found by “glueing together” the presentations for G
and N as described below.

Let N and G have consistent power-conjugate presentations

xa1, . . . , ar | a
pj
j “ wj,j for 1 ď j ď r, aaij “ wi,j for 1 ď i ă j ď ry,

and

xb1, . . . , bs | bj
qj
“ vj,j for 1 ď j ď s, bj

bi
“ vi,j for 1 ď i ă j ď sy,

9

respectively, where

(i) pj , qj are the least primes such that a
pj
j P xaj`1, . . . , ary for j ă r and

bj
qj
P xbj`1, . . . , bsy for j ă s, and aprr , bs

qs
are the identity elements in

N , G respectively, and

(ii) wi,j , vi,j are words in the generator sets tai`1, . . . , aru, tbi`1, . . . , bsu re-
spectively.

A power-conjugate presentation for E can be constructed on the set of gener-
ators tb1, . . . , bs, a1, . . . , aru as follows. First, regard the elements bj as elements
of E (the normal form of each of these elements may be obtained using the pro-
cedure outlined in Subsection 2.5); one has bj

qj
“ vj,jn

1 for some n1 P N . The
power-conjugate presentation for N may be used to express n1 as a word in the
required form over its polycyclic generators. Power relations with left-hand-side
a
pj
j remain unchanged in the new presentation.

Conjugate relations are derived in a similar manner; the multiplication algo-
rithm is partly utilised to conjugate the elements aj according to the hierarchy
induced by G and N . The presentation so obtained is a consistent power-
conjugate presentation for E.

4. The Extended Schreier–Sims Algorithm

The class of polycyclic-by-finite groups is of course closed under the forma-
tion of subgroups, and so, it is theoretically possible to represent subgroups
using the scheme described in Section 2.

Using the notation of 2, the problem of representing subgroups may be for-
mulated more concretely as follows. Given a set of generators, written in normal
form relative to G and N , of a subgroup H ď E it is required to compute the
following information relating to H:

(i) The normal polycyclic subgroup NH “ H XN of H.

(ii) A base BH and strong generating set T relative to BH , for the quotient
GH “ H{NH – HN{N .

(iii) Elements of E representing images of T in a transversal LH of NH in H.

(iv) Conjugates of each polycyclic generator of NH by the images of T in LH .

(v) Data corresponding to Equations (2.4) in the context of H.

Items (iv) and (v) are calculated in a manner similar to that of the parent
group.

The difficulty lies in computing (i) and (iii). The approach taken is to ex-
tend the well-known Schreier–Sims method described in (Seress, 2003, ch. 4),
to efficiently compute the segments of data described in (i), (ii), and (iii) si-
multaneously. Given a set of elements of E that generate a subgroup H ď E
the extended Schreier–Sims algorithm aims to compute the intersection H XN ,
together with a base for the quotient HN{N and a set of elements of E (or more
precisely HN) whose images in HN{N define a strong generating set relative
to the computed base.

10

In the language of the definitions made in Subsection 2.1, the chief objective
of the Extended Schreier–Sims method may be stated more simply: given a set
of generators of a subgroup H ď E the method attempts to compute a base
and a strong generating set for H.

4.1. The Sifting Procedure

Before turning to the problem of how a base and a strong generating set for
a subgroup of a polycyclic-by-finite group are computed, it will be assumed for
the moment that these are given, and a version of the sifting (see Seress, 2003,
ch. 4) procedure for polycyclic-by-finite groups will be introduced.

Let SH be a strong generating set for the subgroup H of E, with associated

base BH “ pγ1, . . . , γkq. Assume that the basic orbits Θi “ γi
Hris have been

calculated and that Schreier vectors encoding right transversals Ri of Hri`1s in
Hris exist for each i, with elements of Ri represented as products over SHXH

ris.
The sifting algorithm operates as follows. Given en P E and j P t1, . . . , ku,

the algorithm attempts to find the coset representative y1n
1
1 P Rj such that

γenj “ γ
y1n

1
1

j , and (if j ă k) computes e2n2 “ en ¨ py1n
1
1q
´1 P Hrj`1s if a coset

representative is found. If no such coset representative exists, then en takes γj
out of the orbit Θj , and the algorithm breaks and returns the siftee en along
with an integer indicating the point at which the break occurred (in this case
j). Otherwise, the algorithm continues and attempts find y2n

1
2 P Rj`1 such

that γe2n2
j`1 “ γ

y2n
1
2

2 and then computes e3n3 “ e2n2 ¨ py2n
1
2q
´1 if possible. The

algorithm attempts to perform k ´ j ` 1 iterations of this type, immediately
breaking if, at any stage, the base point is taken out of orbit, in which case the
siftee and an integer indicating the stage is returned. If the algorithm is able
to perform all iterations successfully, then it returns the siftee and the integer
k ` 1.

Remark 4.1. The element en P E belongs to H if and only if k´ j`1 iterations
are performed by the sifting procedure, and the siftee returned belongs to HXN .
Thus, the sifting algorithm has reduced membership testing in H to membership
testing in H X N , which can be accomplished using the available methods for
polycyclic groups (see Holt et al., 2005, sec. 8.3).

The sifting procedure is presented in Algorithm 2. The function operates as
described above, taking as input an element en of a polycyclic-by-finite group
E, a base BH for a subgroup H ď E, the sequence Θ “ pΘ1, . . . ,Θkq of basic
orbits, a sequence R “ pR1, . . . , Rkq where Ri is a transversal of Hri`1s in Hris,
together with an integer j.

11

Algorithm 2 Sifting

1: function Sift(en, BH , Θ, R, j)
2: k Ð Length(BH)
3: esns Ð en
4: for iÐ j to k do Ź esns fixes base points γ1, . . . , γi´1

5: ω Ð γesnsi

6: if ω R Θi then
7: return esns, i

8: Find the coset representative yin
1
i P Ri such that γ

yin
1
i

i “ ω
9: esns Ð esns ¨ pyin

1
iq
´1

10: return esns, k ` 1

Assuming that the transversals are encoded as Schreier vectors, Sift requires
Opdkq multiplications in E, where k is the length of the input base.

4.2. Extending the Schreier–Sims Algorithm

The operation of the extended Schreier–Sims algorithm is based on the fol-
lowing lemma, whose proof is a straightforward induction on the base length.

Lemma 4.2. Let E be a polycyclic-by-finite group, H ď E and let N Ÿ E be
polycyclic of finite index in E. Assume that there is a known permutation rep-
resentation for the quotient G “ E{N , and that the elements of E are expressed
in normal form relative to G and N . Denote the set on which G acts by Ω and
let tγ1, . . . , γku Ď Ω. For each i in t1, . . . , k ` 1u, let SH,i Ď Hpγ1,...,γi´1q such
that xSH,iy ě xSH,i`1y holds for i ď k. If H “ xSH,1y, SH,k`1 Ď H XN , and

xSH,iyγi “ xSH,i`1y (4.1)

holds for each i, then BH “ pγ1, . . . , γkq is a base for H and SH “
Ťk`1
i“1 SH,i

is a strong generating set for H relative to BH .

Given a set X of generators for a subgroup H ď E the extended Schreier–
Sims algorithm constructs a base and strong generating set in the following way.
A data structure containing a list BH “ pγ1, . . . , γkq of already known elements
of a non-redundant base is maintained, along with an approximation SH,i for a
generator set of the stabiliser Hpγ1,...,γi´1q for each i P t1, . . . , k`1u. Throughout
execution, the SH,i satisfy the property that, for all i, xSH,iy ě xSH,i`1y, and
SH,k`1 Ď H X N . The data structure is said to be up-to-date below level j if
Equation (4.1) holds for each i in the range j ă i ď k.

In the case where the data structure is up-to-date below level j, a transversal
Rj of xSH,jyγj in xSH,jy is computed. Then a check is made to determine

whether Equation (4.1) is satisfied for i “ j. This can be done by sifting the
Schreier generators (see Seress, 2003, ch. 4) obtained from Rj and SH,j in the
group xSH,j`1y. By Remark 4.1, membership testing is possible in the group,

xSH,j`1y, since Lemma 4.2 implies that
Ťk`1
i“j`1 SH,i is a strong generating set

12

for xSH,j`1y relative to the base pγj`1, . . . , γkq. If all Schreier generators are
in xSH,j`1y then the data structure is up-to-date below level j ´ 1. Otherwise
there exists a non-trivial siftee esns which takes some base point, say γt, out of
orbit. If t “ k` 1 and es ‰ 1G, then a new base point γk`1 is appended to BH
from supppesnsq and the set SH,k`2 is initialised with the contents of SH,k`1.
The siftee esns is added to the sets SH,j`1, . . . , SH,t, and the data structure is
now up-to-date below level minpt, |BH |q.

The algorithm initialises BH to contain a sequence of points γ1, . . . , γk in Ω
such that each point is moved by at least one generator in X with non-trivial
first component, and sets SH,i to XXxXypγ1,...,γi´1q

for i “ 1, . . . , k`1. At that
moment, the data structure is up-to-date below level k; the algorithm terminates
when the data structure becomes up-to-date above level 0.

A simplified version of the extended Schreier–Sims method is presented in
Algorithm 3. The function takes as input a set X of elements of a polycyclic-by-
finite group E and operates as described above to compute a base and strong
generating set for H “ xXy.

The notation employed thus far is used in the pseudocode, and
SuperSchreierSims also assumes the existence of a procedure Append which,
when supplied with an array (or sequence) and an element, appends the element
to the end of the array (or sequence).

The normal subgroup H XN of H can be computed easily from the strong
generating set SH returned by SuperSchreierSims as it is generated by the
elements in SH with trivial first component.

Theorem 4.3. The extended Schreier–Sims method terminates, returning a
correct base and strong generating set.

Proof. This is immediate from Lemma 4.2 and the discussion following it.

The dominant computations in SuperSchreierSims are the multiplications
in E using the normal form for elements, and these multiplications occur in
Lines 18, 20, 21, and 25. Lines 18, 20, and 21 each require Opdq multiplications;
and, with an application of (2.3), one sees that Line 25 requires Opd log |G|q
multiplications.

In practice, when a new loop is commenced in Line 16 only Schreier genera-
tors which have not been previously checked are constructed (Lines 18, 20, and
21) and sifted (Line 25). Therefore, the lines in question are executed exactly
once for each Schreier generator.

After initialisation in Lines 3–11, each Ri has size at most d, and each SH,i
has size at most |X|. By (2.3), the number of Schreier generators before any
sift operations are performed is Opd|X| log |G|q.

Observe that although the sets Ri and SH,i change during the operation of
the algorithm, they are always only augmented, and therefore, elements of Ri
and SH,i are be combined to form a Schreier generator only once. Fix i and
set K “ xSH,iy; every time the set SH,i is augmented, the group KN{N ď G
increases. Therefore, the set SH,i can change at most log2 |G| times during the
algorithm. Combining this with the bound |Ri| ď d and (2.3), it follows that the

13

Algorithm 3 The extended Schreier–Sims algorithm

1: function SuperSchreierSims(X)
2: BH Ð pq, k Ð 0
3: for en P X do
4: if e ‰ 1G and γeni “ γi @ i P t1, . . . , ku then Ź en fixes all points

in BH
5: Find γk`1 P Ω with γenk`1 ‰ γk`1

6: Append(BH , γk`1)
7: k Ð k ` 1

8: for iÐ 1 to k do
9: SH,i Ð ten P X | γenj “ γj @ j P t1, . . . , i´ 1uu

10: Hris Ð xSH,iy, Θi Ð γH
ris

i ,
11: Compute a stabiliser transversal Ri in Hris corresponding to Θi

12: Θ Ð pΘ1, . . . ,Θkq, RÐ pR1, . . . , Rkq
13: SH,k`1 Ð ten P X | e “ 1Gu
14: NH Ð xSH,k`1y Ź This subgroup is generated in N
15: iÐ k
16: while i ě 1 do
17: for θ P Θi do
18: Find the coset representative en P Ri such that γeni “ θ
19: for xnx P SH,i do

20: Find the coset representative e1n1 P Ri such that γe
1n1

i “ θxnx

21: enÐ en ¨ xnx ¨ pe1n
1q´1

22: if en “ 1 then
23: continue xnx
24: uptodate Ð true
25: en, j Ð Sift(en, BH , Θ, R, i` 1)
26: if e ‰ 1G then
27: uptodate Ð false
28: if j ą k then
29: Find γk`1 P Ω with γenk`1 ‰ γk`1

30: Append(BH , γk`1) Ź Extend base
31: k Ð k ` 1
32: SH,k`1 Ð SH,k Ź Maintain inclusion

33: else if n R NH then
34: uptodate Ð false
35: SH,k Ð SH,k Y tenu, NH Ð xNH , ny
36: j Ð k

37: if not uptodate then
38: for tÐ i` 1 to j do

39: SH,t Ð SH,t Y tenu, H
rts Ð xSH,ty, Θt Ð γH

rts

t ,
40: Compute a stabiliser transversal Rt in Hrts

41: corresponding to Θt

14

42: Θ Ð pΘ1, . . . ,Θkq, RÐ pR1, . . . , Rkq
43: iÐ j ` 1
44: break θ
45: iÐ i´ 1

46: return BH ,
Ťk`1
i“1 SH,i

total number of Schreier generators throughout the operation of the algorithm
is Opd|X| log |G| ` d log2

|G|q.
It follows from the discussion above that the modified Schreier–Sims method

requires Oppd log |G|q2p|X| ` log |G|qq multiplications in E.

4.3. Modifications

In this subsection, two useful modifications of the extended Schreier–Sims
procedure are briefly discussed.

The first modification concerns the manner in which H X N is computed.
Consider Lines 17–21 of SuperSchreierSims. If x “ 1G, then θxnx “ θ
whence e1n1 “ en and the multiplication of elements in Line 21 is reduced to
the conjugation en ¨ nx ¨ penq

´1 of a generator in N by an element of H. The
algorithm proceeds to sift this conjugate down to level k ` 1, adding it to the
generator set of H XN .

One may modify SuperSchreierSims so that strong generators with trivial
first component are not added at every level. Instead, generators of this type
are kept in a separate set and a normal closure computation is performed after
the structure becomes up-to-date below level 0. This normal closure is of course
the subgroup H XN .

Eliminating strong generators with trivial first component from the data
structure has the obvious advantage of speeding up both the orbit computations
and the membership checks at each level. From a theoretical perspective, the
time complexity of this version of the extended Schreier–Sims method is no
different from the first version. However, in practice, methods used to compute
normal closures often terminate rapidly, and so this version may offer a slight
advantage in efficiency.

The second modification has to do with the computation of the base of
the subgroup. Both versions of the extended Schreier–Sims method attempt
to compute a new base. Situations may arise where one wishes to use the
base of the parent group in the representation of the subgroup. Only a minor
adjustment is needed: initialise BH to B at the beginning of the algorithm.

As indicated in the discussion immediately following Theorem 2.5, smaller
bases are preferable in relation to the performance of Multiply. Taking this
into consideration, it may be prudent in most instances to opt for a possible re-
duction in base size, unless the application specifically requires that the original
base be retained.

15

4.4. Applications

Following from the discussions above, one is now able to compute the data
which enables subgroups of a given polycyclic-by-finite group to be represented
as in Section 2. Using this data, one may write simple iterative procedures
which construct derived and lower central series. For a review of how these
standard functions are implemented, see Holt et al. (2005, Sec. 3.3).

In the subsections below, two straightforward yet useful applications of the
methods of this section are given. The methods presented heavily exploit the
polycyclic-by-finite structure of the group in question. The natural map E Ñ G
is denoted by ρ.

4.4.1. The Solvable Radical

The solvable radical of E, denoted by O8pEq, is defined as the largest solv-
able normal subgroup of E. It follows from the definition of the solvable radical
that N ď O8pEq.

Thus, finding O8pEq amounts to computing O8pGq, and then finding the
preimage under ρ of O8pGq. One may utilise the existing methods for permu-
tation groups (see Seress, 2003, ch. 6) to execute the former, while the latter
task is accomplished using the methods of this section.

4.4.2. Sylow Subgroups

In this subsection, it is assumed that E is finite. Let p be a prime dividing
|E| and let Hp be a Sylow p-subgroup of G. Observe that a Sylow p-subgroup
of the preimage Hp “ ρ´1pHpq is a Sylow p-subgroup of E.

Thus, one may compute a Sylow p-subgroup of E as follows. First, find a
Sylow p-subgroup Hp of G. This is done using the available methods for permu-
tation groups (see Holt et al., 2005, ch. 4). Then, using a method similar to that
of Subsection 4.4.1, generate Hp “ ρ´1pHpq as a subgroup of E. This group is
finite and solvable, and so, one may produce a consistent power-conjugate pre-
sentation defining it using the method of Subsection 3. The existing methods
for computing Sylow subgroups in finite solvable groups represented by power-
conjugate presentations are now applicable (see Seress, 2003, ch. 7). Finally,
the isomorphism from the subgroup defined by the power-conjugate presenta-
tion can be used to map a generating set for a Sylow p-subgroup back into
E.

By similar methods, it is also possible to design an algorithm which, when
given two Sylow p-subgroups of E, returns an element which conjugates one
Sylow subgroup to the other. The first step is to find, using the available
functions for permutation groups (see Holt et al., 2005, ch. 4), an element g P G
which conjugates ρpP1q to ρpP2q in G. Using the data set, one then computes
an element en P E corresponding to g. It follows then that P en1 is a Sylow
p-subgroup of the group ρ´1pρpP2qq “ P2N , which contains P2 as a Sylow p-
subgroup.

The group P2N is finite and solvable, and so may be represented by a con-
sistent power-conjugate presentation. Using the available methods for finite

16

solvable groups (see Seress, 2003, ch. 7), one may find a conjugating element

y P P2N such that P en¨y1 “ P2, as required.

5. Centralisers and Conjugacy

The material presented in this section utilises the machinery developed thus
far to perform some advanced structural calculations within polycyclic-by-finite
groups. Specifically, the problem of computing centralisers and testing element
conjugacy is addressed.

5.1. The Centre

The approach to computing the centre of a given polycyclic-by-finite group
E is as follows:

1. Find a normal abelian subgroup A of E that contains ZpEq.

2. For each member x of a generating set X for E, compute the matrix Mx

that specifies the conjugation action of that generator on elements of A
(written as vectors).

3. Construct a matrix whose null space is equal to the subspace corresponding
to ZpEq in A.

4. Map a set of vectors generating ZpEq in A back into E.

The following lemma furnishes one with a feasible choice for the normal
abelian subgroup; its proof is straightforward.

Lemma 5.1. Let G be a group with solvable radical S. Then ZpGq Ĳ ZpSq Ĳ
G.

Let S be the solvable radical of E. Then by Lemma 5.1, ZpEq is contained
in the normal abelian subgroup ZpSq.

The solvable radical S can be computed as a subgroup of E using the method
described in Subsection 4.4.1, after which it is rewritten as a polycyclic group
by the procedure given in Subsection 3. The available functions for polycyclic
groups may then be utilised to compute the centre ZpSq of S as an abelian
group; see (Holt et al., 2005, ch. 8) for the finite case and (Eick, 2001) for the
infinite case.

Write ZpSq as an abelian group A with invariant factor decomposition Zm1
ˆ

¨ ¨ ¨ ˆ Zmt ˆ Zk where mi � mi`1 for each i. Writing the elements of A as row
vectors, let a1, . . . ,at`k be the standard basis for A relative to its invariant
factor decomposition. Let x P X. Regarding matrices as acting on the right,
the i-th row of the matrix Mx over Z, defining conjugation in A by x is given
by aix expressed as a row vector, where E acts on A by conjugation.

The element aix is found by first mapping ai into the group E, and then
using the multiplication algorithm to perform the conjugation. The result is
mapped back into A and written as a row vector.

17

An element z P A lies in ZpEq if and only if, for each x P X, zMx “ z. A
matrix whose null space corresponds to the set of all such z is constructed as
follows. Let D be the tˆ pt` kq matrix over Z,

¨

˚

˚

˚

˝

m1 0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0
0 m2 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0
...

...
. . .

... 0 ¨ ¨ ¨ 0
0 0 ¨ ¨ ¨ mt 0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‚

.

Let X “ tx1, . . . , xqu and let Tx “Mx´I for each x P X, where I is the identity
pt` kq ˆ pt` kq matrix. Form the following matrix Q over Z

¨

˚

˚

˚

˚

˚

˝

Tx1
Tx2

¨ ¨ ¨ Txq
D

D
. . .

D

˛

‹

‹

‹

‹

‹

‚

,

where blank spaces indicate zero entries.

Proposition 5.2. If a vector z P A lies in ZpEq, then there exists a vector
pz1 | vq P Ztpq`1q`k in the null space of Q, where z1 denotes the vector z viewed
as a vector in Zt`k. Conversely, the first t` k entries of any vector in the null
space of Q define a vector belonging to ZpEq.

Proof. Suppose that z P A lies in ZpEq. Then for each xi P X, zTxi “ 0,
equality being in the abelian group A – Zm1

ˆ ¨ ¨ ¨ ˆ Zmt ˆ Zk. Denote by z1

the vector z viewed as a vector in Zt`k, zTxi “ 0 is equivalent to z1Txi “ ´viD
for some vi P Zt. Hence, the vector pz1 | v1 | ¨ ¨ ¨ | vqq belongs to kerpQq.

Conversely, let v P kerpQq and partition v into segments, the first of length
t ` k, and the rest each of length t: py | v1 | ¨ ¨ ¨ | vqq. Then yTxi “ ´viD for
each i, which, as above, is equivalent to zTxi “ 0 in A, where z denotes the
vector y viewed as a vector in Zm1

ˆ ¨ ¨ ¨ˆZmt ˆZk; whence z lies in ZpEq.

Thus, the image of ZpEq in A, can be recovered from a generating set of
kerpQq. Mapping this image back into E completes the computation.

Assuming that the normal abelian subgroup containing the centre is given (or
has been computed), the running time of the rest of the computations outlined
is dominated by the calculation of the null space. The fastest known algorithms
to perform such computations use p-adic expansions, and were introduced by
Dixon (1982). They require Opc4plog2 rq

2q time for an r ˆ c matrix. For recent
developments in this area, see (Haramoto and Matsumoto, 2009). It is worth
noting here that, if k “ 0 and mi “ m for each i and some m P N, then the
computation can be performed entirely in Zm, offering a significant improvement
in efficiency. For a practical account of computations of this type, the reader is
referred to (Holt et al., 2005, ch. 7).

18

5.2. Centralisers and Conjugacy

In this section the problems of centraliser computation and element con-
jugacy testing are briefly discussed. In what follows it is assumed that E is
finite.

The normal subgroup N Ĳ E is solvable and finite, and hence possesses
a normal elementary abelian series: N “ N1 İ ¨ ¨ ¨ İ Nt İ Nt`1 “ 1. Let
e P E, and denote by CE{Nipeq the centraliser of eNi in E{Ni. The algorithm
begins by computing a set of generators (in normal form) for the preimage
of CE{N peq in E. This is accomplished by utilising the procedure for preimage
calculation described in Subsection 2.5 along with the already available methods
for permutation groups described in (Seress, 2003) and (Holt et al., 2005, ch. 4).

The algorithm continues by lifting through the normal elementary abelian se-
ries of N , successively computing preimages in E of the centralisers CE{Nipeq, as
described in (Mecky and Neubüser, 1989) and (Holt et al., 2005, sec. 8.8). More
concretely, assume that a set of generators for the preimage, C, of CE{Nipeq
in E have been computed. The group C acts on the elementary abelian layer
Ni{Ni`1, and the lifting step is essentially reduced to a vector stabiliser com-
putation. Testing for element conjugacy is done in much the same way, except
that the algorithm computes both the orbit and the stabiliser at each stage.

The method described here is similar in theory to the method which involves
a single orbit-stabiliser computation, but the induction method computes rela-
tively small orbits of vectors instead of one relatively large orbit of elements in a
polycyclic-by-finite group. Thus, the induction method is usually more efficient
than the single orbit-stabiliser application.

6. Implementation and Examples

The suite of algorithms described in the paper have been implemented using
the Magma Computational Algebra System. Table 1 gives running times for a
sample of test groups.

The format of Table 1 is as follows. The first column gives the Atlas
notation of the group. The largest prime q dividing the order of the group (when
the group is finite) is given in the second column. The remaining columns give
the running times (in milliseconds, averaged over 100 runs, randomised where
applicable) to perform the indicated computation.

The first four examples in Table 1 are extensions of modules by their groups;
these groups are constructed with the help of the natively implemented coho-
mology functions in Magma. The last two examples in Table 1 are quotients of
finitely presented groups, each of which map onto A5.

The first entry of Table 1 is a non-split extension of the irreducible module
pZ{11Zq3 by PSLp2, 11q. It has relatively small order (878460) and has minimal
degree of permutation representation 132.

The second and third entries of Table 1 are non-split extensions of per-
mutation modules by their groups: Z7 by PSLp2, 7q – PSLp3, 2q, and Z10 by
A6 – PSLp2, 9q.

19

The fourth entry of Table 1 is a non-split extension of the irreducible module
pZ{2Zq10 by M12. It has order 216 ¨33 ¨5 ¨11 and minimal degree of permutation
representation 264.

The fifth entry of Table 1 is a non-split extension of an extra special group
of order 29 by O`8 p2q. It has order 221 ¨ 35 ¨ 52 ¨ 7, and the authors have obtained
a permutation representation of this group having degree 34560.

The last two entries of Table 1 are finitely presented groups, each of which
map onto A5. The penultimate entry is a quotient of the Heineken group,

H “ xa, b, c | ra, ra, bss “ c, rb, rb, css “ a, rc, rc, ass “ by.

The quotient has order 226 ¨ 3 ¨ 5, and the authors conjecture that the minimal
degree of a permutation representation of this group is 138240.

The final entry is a quotient of the group having presentation

xa, b, c | a2, b3, pabq5, abcb´1ac´1b´1c´1bc´1y.

The quotient has order 22 ¨ 3 ¨ 5 ¨ 1355. The minimal degree of a permutation
representation of this group is unknown, but the authors believe that it is too
large to be computationally useful.

Benchmark running times are not available, as there is no existing standard
method in Magma to perform most of the computations listed, and, in the case
of the last two groups of Table 1, it is not possible to natively construct the
extension.

The tests were performed on a system with the following specifications:
16GB memory, 2.90GHz quad-core processor, Linux kernel version 3.16.0, Magma
V2.21-7.

Table 1: Sample running times

Group Information Average running time (milliseconds)

Atlas Notation q x ¨ y x´1 Syl2 Sylq Z

113¨L2p11q 11 1.1 2.3 278.8 567.2 12.1

Z7¨L3p2q - 0.8 1.5 - - 32.6

Z10¨A6 - 1.8 2.4 - - 53.9

210¨M12 11 28.4 33.4 48868.7 33120.1 148.5

21`8¨O`8 p2q 7 164.8 115.5 66722.7 56815.8 24.8

224 ¨A5 5 0.7 1.1 367.4 284.7 51.0

1355 ¨A5 13 0.9 1.6 626.3 121.2 1519.9

20

7. Conclusion

The running times of Table 1 are encouraging. Since the computations
described involve large numbers of executions of individual group operations,
such as mulitplication and conjugation, it is possible that the Magma interpreter
is causing a significant overhead, and that running times could be significantly
improved by a native implementation.

One expects that, after optimised implementation, the data structure and
algorithms described in this paper would become a suitable option for computa-
tion with polycyclic-by-finite groups for which there is no available permutation
or matrix representation, but whose finite quotient is relatively small and easily
represented as a permutation group.

8. Acknowledgements

The authors would like to thank Colva Roney-Dougal for her helpful sug-
gestions. We would also like to recognise David Howden whose work on au-
tomorphism groups has helped in the construction of some of the motivating
examples.

9. Bibliography

Baumslag, G., Cannonito, F. B., Robinson, D. J. S., Segal, D., 1991. The Al-
gorithmic Theory of Polycyclic-by-Finite Groups. Journal of Algebra 142,
118–149.

Dixon, J. D., 1982. Exact solution of linear equations using p-adic expansion.
Numerische Mathematik 40, 137–141.

Eick, B., 2001. Algorithms for Polycyclic Groups. Habilitationsschrift, Univer-
sität Kassel.

Glasby, S. P., Slattery, M. C., 1990. Computing intersections and normalizers
in soluble groups. J. Symbolic Comput. 9, 637–51.

Haramoto, H., Matsumoto, M., 2009. A p-adic algorithm for computing the in-
verse of integer matrices. Journal of Computational and Applied Mathematics
225, 320–322.

Holt, D. F., Eick, B., O’Brien, E. A., 2005. Handbook of Computational Group
Theory. Discrete Mathematics and its Applications. Chapman & Hall/CRC.

Hulpke, A., 2013. Computing conjugacy classes of elements in matrix groups.
Journal of Algebra 387, 268–286.

Laue, R., Neubüser, J., Schoenwaelder, U., 1984. Algorithms for finite soluble
groups and the SOGOS system. In: Atkinson, M. D. (Ed.), Computational
Group Theory. Academic Press, pp. 105–35.

21

Mecky, M., Neubüser, J., 1989. Some remarks on the computation of conjugacy
classes of soluble groups. Bull. Australian Math. Soc. 40, 281–92.

Seress, Á., 2003. Permutation Group Algorithms. Vol. 152 of Cambridge Tracts
in Mathematics. Cambridge University Press.

Sims, C. C., 1970. Computational methods in the study of permutation groups.
In: Leech, J. (Ed.), Computational Problems in Abstract Algebra. Pergamon
Press, Oxford, pp. 169–183.

Sims, C. C., 1971. Computation with permutation groups. In: Proc. Second
Symposium on Symbolic and Algebraic Manipulation. ACM Press, New York,
pp. 23–28.

Sims, C. C., 1994. Computation with finitely presented groups. Vol. 48 of Ency-
clopedia of Mathematics and its Applications. Cambridge University Press.

22

	Introduction
	Multiplication
	Bases and Strong Generating Sets
	The Normal Form
	The Shifting Method
	The Multiplication Algorithm
	Applications

	Transfer to the Category of Polycyclic Groups
	The Extended Schreier–Sims Algorithm
	The Sifting Procedure
	Extending the Schreier–Sims Algorithm
	Modifications
	Applications
	The Solvable Radical
	Sylow Subgroups

	Centralisers and Conjugacy
	The Centre
	Centralisers and Conjugacy

	Implementation and Examples
	Conclusion
	Acknowledgements
	Bibliography

