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Development of an Exchange-Correlation Functional with Uncertainty
Quantification Capabilities for Density Functional Theory

Manuel Aldegunde, James R. Kermode, Nicholas Zabaras∗

Warwick Centre for Predictive Modelling, University of Warwick
Coventry CV4 7AL, United Kingdom

Abstract

This paper presents the development of a new exchange-correlation functional from the point of view of machine
learning. Using atomization energies of solids and small molecules, we train a linear model for the exchange en-
hancement factor using a Bayesian approach which allows for the quantification of uncertainties in the predictions.
A relevance vector machine is used to automatically select the most relevant terms of the model. We then test this
model on atomization energies and also on bulk properties. The average model provides a mean absolute error of only
0.116 eV for the test points of the G2/97 set but a larger 0.314 eV for the test solids. In terms of bulk properties,
the prediction for transition metals and monovalent semiconductors has a very low test error. However, as expected,
predictions for types of materials not represented in the training set such as ionic solids show much larger errors.
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1. Introduction

In the last several decades, density-functional theory (DFT) has become the most widespread framework to study
materials from a fully quantum-mechanical perspective due to the favorable trade-off between accuracy and computa-
tional cost it provides. Even though the theory in principle is exact, its application calls for the use of approximations,
some because of computational reasons, such as the Born-Oppenheimer approximation, and some because the exact
term is not known, as is the case with the exchange-correlation (XC) energy. Even though the accuracy of the different
approximations has been tested in many fields, the error that they lead to when DFT is applied to new systems remains
a concern, which limits the predictive power for new systems.

Recently, several works have been published which try to address this problem from different points of view. K.
W. Jacobsen et al. have applied the concepts of sloppy models [1] to DFT [2, 3, 4, 5, 6]. These are models in which a
part of the model parameters, the sloppy parameters, are largely unimportant for the model predictions, so that they
can only be determined with large uncertainty. In this framework, they start with a modelMwhich depends on a set of
parameters, θ. To find the probability of a given parameter set, θ, given the model,M, and a database of experimental
data,D, a Boltzmann distribution is assumed for a cost function C(θ), which can be, for example, a least squares cost
function with [2] or without [4, 6] regularisation:

P(θ | M,D) ∼ exp(−C(θ)/T ), (1)

where T is an “effective temperature” which determines the spread of the ensemble and therefore the error estimation.
This distribution of the parameters θ is then used to generate ensembles of XC enhancement factors that can be used

∗Corresponding author
Email addresses: M.A.Aldegunde-Rodriguez@warwick.ac.uk (Manuel Aldegunde), J.R.Kermode@warwick.ac.uk (James R.

Kermode), nzabaras@gmail.com (Nicholas Zabaras)
URL: http://www2.warwick.ac.uk/wcpm/, http://www.zabaras.com (Nicholas Zabaras)

Preprint submitted to Journal of Computational Physics January 10, 2016



to estimate errors in different quantities. This model was used to train a meta-generalized gradient approximation
(meta-GGA) exchange-correlation functional, mBEEF, using experimental data for bulk solids (lattice constant and
cohesive energies), molecules (formation energies and molecular reaction energies) and surfaces (chemisorption on
solid surfaces) [4, 6].

Also recently, K. Lejaeghere et al. have studied errors in DFT simulations from a different perspective [7]. Instead
of trying to construct a new functional, they analyse the errors for a give XC functional in terms of a linear regression
model between experimental and calculated data. The least-squares estimate of the slope β is taken as a measure
of systematic errors, and the error ε gives the residual error bar. The scatter in DFT results comes from the ability
of the XC functional to represent some materials better than others. They carry out this study on the ground-state
elemental crystals at 0 K up to Rn. In this case, the prediction of the properties for a new compound not included in
the set is done by applying the correction for systematic deviation and adding the residual error, xpred = βxDFT ± ε,
where xpred is the corrected prediction for the magnitude x, β represents the systematic deviation, xDFT the magnitude
obtained from the DFT simulation and ε the residual error which models the inability of the DFT model to reproduce
the experiment exactly.

In this work, we present the development of a new meta-GGA exchange-correlation functional with uncertainty
quantification capabilities from the point of view of machine learning extending on the work of Wellendorff et al. [6].
We use a Bayesian approach for the determination of the regression coefficients with a relevance vector machine.
Unlike the sloppy model approach using regularised least squares in [6], the use of a relevance vector machine auto-
matically selects the most relevant terms and drops the rest, which avoids the possibly very large number of terms in
the linear model and helps avoid overfitting.

In Section 2, we present the basics of DFT and the formulation of a linear model for the exchange energy func-
tional. Next, in Section 3, we detail the Bayesian linear regression framework used to obtain the coefficients of the
model as random variables. We also discuss how from these parameters we can get a predictive distribution for the
modelled function and also the use of a relevance vector machine to allow for automatic model determination. The
actual training of the model using atomization energies is presented in Section 4, which describes in more detail how
to set up all necessary data from DFT simulations. We also include a description of how it is possible to use some
indirect measurements to extend the available data set for training as well as a description of the training set we used.
Numerical results testing the proposed framework are presented in Section 5 for atomization energies of molecules
and solids. Even though the training data consists of energies, we can also use the framework to propagate uncer-
tainties to other derived quantities such as bulk properties. Section 6 describes an example of this process using an
equation of state, which inserts an extra layer of uncertainty. Then, numerical examples of propagation of uncertainty
are shown for two bulk properties of solids, equilibrium lattice constants and bulk moduli, and for the band gap of
Si. Finally, we end up summarizing the main contributions of this work as well as the numerical results and how they
compare to other available XC functionals.

2. Density Functional Theory

DFT approximates the ground state energy of a material system with charge density n [8, 9]. It does so by
minimizing the energy functional EDFT [n] for a given system. This functional is given by [10]:

EDFT [n] =

∫
n(r)v(r) dr + T0[n] + U[n] + Exc[n]

=Eb[n] + Exc[n] = Eb[n] + Ex[n] + Ec[n], (2)

where r is the position in real space, v(r) is an external potential, T0[n] is the non-interacting kinetic energy, U[n] the
classical electron-electron repulsion energy and Exc[n] is the XC energy functional, which is not known exactly. Eb[n]
groups all the contributions not coming from exchange and correlation. Exc[n] has two components, the exchange
energy Ex[n] and the correlation energy Ec[n] [10].

By grouping the terms of the external potential, the electron-electron interaction energy, and the exchange-
correlation energy, Kohn and Sham [11] introduced a self-consistent scheme to obtain the ground state energy using
an equivalent non-interacting system with an effective potential. The solution of this system can be found by solving
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the Schrödinger equation for non-interacting particles [9]:[
−

1
2
∇2 + ve f f (r)

]
ψi(r) = εiψi(r), (3)

where − 1
2∇

2 is the kinetic energy operator, ψi(r) are the Kohn-Sham orbitals, εi are the Kohn-Sham orbital energies
and ve f f (r) is an effective potential composed by the external potential, the electron-electron interaction and the XC
potential [9, 10]:

ve f f (r) = v(r) +

∫
n(r′)
|r − r′|

dr′ + vxc(r). (4)

The XC correlation potential is related to the XC energy through a functional derivative with respect to the density,
vxc(r) = δExc[n]

δn(r) [9]. The Kohn-Sham orbitals can be used to obtain the electron density of the system [9],

n(r) =
∑

i

|ψi(r)|2. (5)

Since the effective potential is itself a functional of the density, Eqs. (3)-(5) need to be solved self-consistently, i.e.,
they have to be iterated until convergence.

2.1. Exchange-Correlation energy
Even though this formulation of the problem is favorable for numerical computation, there still remains the ques-

tion of approximating the XC energy and potential since, as we noted before, it is unknown in general.
In [12], J. P. Perdew et al. introduced a hierarchy of approximations called “Jacob’s ladder”. If we write the XC

energy as

Exc[n] =

∫
nεxc(n; r) dr, (6)

where the product nεxc is an XC energy density and εxc is an XC energy per electron, we can see the ladder as increas-
ingly complex approximations for εxc. At the lowest level, the local density approximation (LDA), εxc depends only
on n(r), the density at the position where the energy is evaluated. A second level includes as well the density gradient,
∇n(r), and it is called the generalized gradient approximation (GGA). Since it also includes derivative information
this type of approximation is called semi-local. Two of the most widely used GGA functionals are the Perdew-Burke-
Ernzerhof (PBE) functional [13] and a revision to improve results for solids which modifies two of its parameters,
PBEsol [14]. The third level of the hierarchy is the meta-generalized gradient approximation (meta-GGA), which
adds dependence on the Kohn-Sham orbitals. Since the Kohn-Sham orbitals are in general non-local functionals of
the electron density, meta-GGA approximations are also non-local. However, since meta-GGA functionals are con-
structed to be local in the orbitals, which are readily available from the solution of the eigenvalue problem, they retain
much of the computational efficiency of the GGA [12]. Popular functionals in this category include the Tao-Perdew-
Staroverov-Scuseria (TPSS) functional [15], mBEEF [6], or the “Made Simple” (MS0) functional [16]. Higher levels
of the hierarchy include ingredients such as the exact expression for the exchange energy,

Ex[n] = −
1
2

∑
i

∫
ψ∗i (r)ψi(r′)
|r − r′|

drdr′. (7)

Hybrid functionals, which combine this exact exchange with semi-local functionals are especially popular in chem-
istry, and some of the most widely used are the Becke-3-Lee-Yang-Parr (B3LYP) [17], PBE0 [18] and M06 [19].

Because of the non-locality of this last family of functionals, the computations are much more demanding, so in
this work we restrict ourselves to the meta-GGA approximation.

2.2. Exchange energy in meta-GGA
At the meta-GGA level of approximation, the XC functional can be written as [20]

Exc[n] =

∫
n(r)εxc [n(r),∇n(r), τ(r)] dr, (8)
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where τ(r) = 2
∑′

i
1
2 |∇ψi(r)|2 is the kinetic energy density. The summation

∑′

i runs only over the occupied Kohn-Sham
orbitals ψi(r).

To specify the exchange energy contribution, it is common to introduce the exchange enhancement factor, F x(n,∇n, τ),
which contains all the contributions to nonlocality through its dependence on the gradient of the electron density ∇n
and the kinetic energy density τ. Using it, the exchange energy functional can be written as [20, 21, 22]

Ex[n] =

∫
nεx(n,∇n, τ) dr =

∫
nεx

UEG(n)F x(n,∇n, τ) dr, (9)

where εx(n) is the exchange energy per particle of the system and εx
UEG(n) = −3(3π2n)1/3/(4π) is the exchange energy

per particle of a uniform electron gas.
Furthermore, the dependence on the density gradient and the kinetic energy density is usually transformed into

the dimensionless parameters s, the reduced density gradient, and α, the dimensionless deviation from a single orbital
shape [20, 23]:

s =
|∇n|

2(3π2)1/3n4/3 ; α =
τ − τW

τUEG , (10)

where τW = |∇n| /8n and τUEG = 3
10 (3π2)2/3n5/3 are the Weizsäcker and uniform electron gas kinetic energy densities,

respectively. Using these parameters, the exchange energy functional can be written as [22, 24]

Ex[n] =

∫
nεx

UEG(n)F x(s, α) dr. (11)

2.3. Linear model for the exchange energy
To specify a DFT approximation, we have to provide two models for the exchange and correlation functionals,

Ex[n; ξx] and Ec[n; ξc], where ξx and ξc are two sets of parameters which determine the XC model [10], and can be
determined either empirically, fitting them to experimental data [6], or from theoretical considerations [22]. Putting
these parameters explicitly, the DFT energy functional is then

EDFT [n; ξx, ξc] = Eb[n] + Ex[n; ξx] + Ec[n; ξc]. (12)

Following the previous studies in [2, 4], we will focus on the exchange contribution only, taking the correlation
energy term from other functionals. In particular, we will compare the use of the correlation terms from the XC
functionals PBE, PBEsol, MS0 and TPSS.

To specify our exchange energy model, we will use the exchange enhancement factor, whose functional form is
not known [24]. In this work, we follow [4] and represent it as a linear model in a set of basis functions φi(s, α),

F x(s, α) =
∑

i

ξx
i φi(s, α) = (ξx)Tφ(s, α), (13)

where we have introduced a vector notation for the linear model coefficients ξx = {ξx
i } and basis functions φ(s, α) =

{φi(s, α)}.
Also following [4], we use a truncated Legendre polynomial expansion on rational transformations of the param-

eters s and α:

F x(s, α) =

Ms∑
i

Mα∑
j

ξx
i jPi(ts(s))P j(tα(α)), (14)

where Pi(x) is the Legendre polynomial of order i on x, Ms and Mα are the orders of the expansion for s and α,
respectively, and ξx

i j is the enhancement factor linear model coefficient for orders i, j. The transformations on s and α
are defined as

ts(s) =
2s2

q + s2 − 1, (15)
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and

tα(α) =
(1 − α2)3

1 + α3 + α6 , (16)

where the parameter q in Eq. (15) is q = κ/µGE , with κ = 0.804 and µGE = (10/81). These parameters are used in the
PBEsol exchange functional [14], which is the basis for this transformation. In fact, ts(s) is the PBEsol enhancement
factor scaled to the interval [−1, 1) for s ≥ 0 [6]. On the other hand, tα(α) is the α dependence of the MS0 exchange
enhancement factor [16], which is confined to the interval (−1, 1] for α ≥ 0.

Using this linear model for the enhancement factor, we can write our model exchange energy as

Ex[n; ξx] =

∫
nεx

UEG(n)
M∑

i=1

ξx
i φi(s, α) dr

=

M∑
i=1

ξx
i

∫
nεx

UEG(n)φi(s, α) dr =

M−1∑
i=0

ξx
i Ex[n; êi] = (ξx)T Ex[n; ê], (17)

where M = Ms × Mα and Ex[n; êi] is the exchange energy obtained using the unit vector êi as coefficient vector in
Eq. (13), i.e., φi(s, α) as the enhancement factor. Ex[n; ê] = {Ex[n; êi]} is the vector notation for the exchange energy
functionals obtained this way. From now on, we will drop the superscript x in the parameters since they will be the
only ones we use, ξ ≡ ξx.

The exchange energy can be seen as a linear model where the basis functions are given by exchange energies with
φi(s, α) as the enhancement factor.

Remark 1. In this work, we will construct a surrogate model for the exchange energy functional, Ex[n], given by
Eq. (17), where the coefficients are random variables whose distribution will be determined by the regression process
described in Section 3. The randomness of the model will account both for model error and the limited data (epistemic
uncertainty) that are used to compute the distribution of ξ.

Remark 2. In the context of DFT, energy and all other quantities of interest are functionals of the electron density. In
particular, the exchange-correlation energy is a functional of the electron density. However, the specification of a new
system on which we want to make predictions is usually obtained as a configuration of atoms in space. Therefore, to
calculate its electron density a self-consistent solution of Eqs. (3)-(5) is required.

This means that in order to make predictions our surrogate model still has the cost of a self-consistent simulation
as an electron density is needed to use it. This is unlike a typical regression problem where, given an input, the
surrogate model would give a prediction for the output bypassing the need to run the full model and thus having a
higher computational efficiency.

Remark 3. From Eq. (17), we can see that to obtain the exchange energy for a system s with electron density n,
Ex[n; ξx], we need to evaluate each of the exchange functional basis, Ex[n; êi], for the same value of the density,
n. For the training of the system, one needs to evaluate the basis functionals for the density of the training material
systems. We assume here that the change in the charge density obtained performing self-consistent calculations with
different XC functionals is small, which is in general a good approximation due to the variational principle [2] and
has also been shown numerically [25]. This means that, as long as the density is obtained self-consistently, the XC
functional chosen to calculate it is of secondary importance in the evaluation of the basis functions in Eq. (17). Under
this assumption to carry out the training of the model, we can obtain the density for every system of interest running
a self-consistent simulation with a common functional. If we denote the density of the training system s as n∗s, we can
then calculate Ex[n∗s; êi] (values of the basis functions in the training charge densities), using the PBE functional as a
common functional, i.e., n∗s will be the self-consistent density obtained using the PBE XC functional for all training
systems s.

3. Bayesian Linear Regression

To use the linear model of Eq. (13) for predictions, we will use a Bayesian linear regression model [26, 27].
The advantage of using a Bayesian framework is that the regression coefficients will be treated as random variables
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instead of point quantities as with, for example, classical least squares regression. The Bayesian model will allow us
to quantify the uncertainty in predicted values for unseen material systems, as long as these test systems are relevant
to the materials used in the training of the model.

In what follows, we use the following notation for the probability distributions that will arise in the description of
the model:

• N(x | µ,S) is a Gaussian distribution on x with mean µ and covariance S,

• G(x | α, β) is a Gamma distribution on x with parameters α and β,

• St(x | µ,Λ, ν) is a Student t-distribution on x with parameters µ, Λ and ν.

Formally, the procedure involves assuming that a set of experimental or numerically generated data t are avail-
able representing noisy observations of Ex[ni] for various densities ni. The linear model for the underlying process
generating the data is of the form:

Ex[n; ξ] =

M∑
i=1

ξiEx[n; êi], (18)

where ξi are the M parameters of the model and Ex[n; êi] are the basis functions. The first aim of Bayesian linear
regression is to compute a probability distribution for the parameters ξ = {ξi} of the linear model given the observed
data, i.e., p(ξ | t).

Remark 4. In this work, the model parameters ξ only appear on the exchange energy term, so that the full model for
the energy is

E[n; ξ] = Eb[n] + Ec[n] +

M∑
i=1

ξiEx[n; êi]. (19)

We have chosen to transform the experimental data subtracting the energy contributions Eb[n] and Ec[n] obtained
from simulations. For every training system, we run a self-consistent simulation and subtract these energy terms from
the experimentally observed energies. From now on, we will refer to these energies which are obtained using both
experimental and simulated data simply as the energy training data set.

We will assume that the observed data t follow on average our model exchange functional, ξT Ex[n; ê], and have an
additional error term ε. This quantity represents the model accuracy as it provides a measure of the deviation between
our model and the experimental results. Therefore, for a single observation ti,

ti = ξT Ex[ni; ê] + εi, (20)

where εi is an error term. Under the assumption of Gaussian error with the same precision for all data points, β =

1/v = 1/σ2, where v is the variance and σ the standard deviation, the probability of getting a particular value for the
observation for a material system with charge density ni will follow a Gaussian distribution with mean ξT Ex[ni; ê]:

ti ∼ N(t | ξT Ex[ni; ê], β−1). (21)

The likelihood function L gives a measure of how likely it is to obtain the observed data t given the assumed model.
In our case it will be

L(t | n, ξ, β) =

N∏
i=1

N(ti | ξT Ex[ni; ê], β−1), (22)

where N is the number of experimental data, n = {ni} are the densities of the input system, ξ are the coefficients of the
linear model and β is the noise precision.

In a Bayesian framework, we can also specify any prior knowledge about the unknown parameters, ξ and β in
our case. One option to facilitate the tractability of the resulting equations is the use of conjugate priors. With this
selection the posterior probability distribution of the parameters will belong to the same family as the prior probability
distribution [26]. For our model this means using the following priors:
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• Prior on ξ: p(ξ | β,m0,S0) = N(ξ | m0, β
−1S0)

• Prior on β: p(β | a0, b0) = G(β | a0, b0)

m0, S0, a0 and b0 are parameters which define the distribution over the model parameters and are called hyperparam-
eters [26]. Section 3.2 will explain how they are determined from the data.

With the chosen priors for each model parameter, the joint prior probability distribution over our model parameters
becomes

p(ξ, β) = p(ξ | β)p(β) = N(ξ | m0, β
−1S0)G(β | a0, b0). (23)

Given the likelihood and the prior, we can obtain the posterior probability distribution of the parameters given the
data using Bayes’ theorem [26]:

p(ξ, β | t) =
L(t | n, ξ,β)p(ξ, β)∫
L(t | n, ξ,β)p(ξ, β) dξ dβ

= N(ξ | mN , β
−1SN)G(β | aN , bN). (24)

Details on how to arrive at Eq. (24) can be found in Appendix A. The parameters of the posterior distribution are:

S−1
N = S−1

0 +ΦTΦ, (25)

mN = SN

[
S−1

0 m0 +ΦT t
]
, (26)

aN = a0 + N/2, (27)

bN = b0 +
1
2

(
mT

0 S−1
0 m0 −mT

NS−1
N mN + tT t

)
. (28)

Finally, we have introduced the design matrix Φ defined as:

Φ =


Ex[n∗1; ê0] · · · Ex[n∗1; êM−1]
Ex[n∗2; ê0] · · · Ex[n∗2; êM−1]

...
. . .

...
Ex[n∗N ; ê0] · · · Ex[n∗N ; êM−1]

 =


Ex[n∗1; ê]T

Ex[n∗2; ê]T

...
Ex[n∗N ; ê]T

 , (29)

where n∗i , i = 1 . . .N are the self-consistent densities using the PBE XC functional for each of the N material systems
used in the training set of our linear regression problem.

Remark 5. Further theoretical constraints on the XC energy such as the Lieb-Oxford bound [10], which gives a
theoretical upper bound for the exchange enhancement factor, can be imposed through the prior, even though the
resulting posterior would require numerical methods such as Markov Chain Monte Carlo for sampling.

3.1. Predictive distribution

Once we have a distribution for the model parameters, we can calculate the probability distribution of the output
of our model, t̃, given an input system with density ñ. This is called the predictive distribution and it is computed by
averaging the likelihood of t̃ given ñ over all sets of the parameters defined by the posterior p(ξ, β | t),

p(t̃ | ñ, t) =

∫
p(t̃ | ñ, ξ, β)p(ξ, β | t) dξ dβ

=

∫
N(t̃ | ξT Ex[ñ; ê], β−1)N(ξ | mN , β

−1SN)G(β | aN , bN) dξ dβ

= St(t̃ | µ, λ, ν). (30)
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Therefore, for the assumptions we used, the resulting predictive distribution is a Student t-distribution St(t̃ | µ, λ, ν)
with the parameters

µ = Ex[ñ; ê]T mN , (31)

λ =
aN

bN

(
1 + Ex[ñ; ê]T SNEx[ñ; ê]

)−1
, (32)

ν = 2aN . (33)

Details of these standard derivations can be found in Appendix B.
The mean, variance and mode of this distribution are [26]:

E[t̃] = µ; ν > 1, (34)

cov[t̃] =
ν

ν − 2
λ−1 =

bN

aN − 1

(
1 + Ex[ñ; ê]T SNEx[ñ; ê]

)
; ν > 2, (35)

mode[t̃] = µ, (36)

We can see that the variance of the prediction depends on each new data point. Also, from Eq. (35) we can see that
bN/(aN − 1) acts as a lower bound to the variance in the prediction for any single new structure and cannot be
lowered further even in the limit of an infinite number of training data points.

Remark 6. Equation (30) gives a predictive distribution on t̃ given the density of the system, ñ, by averaging over all
parameters ξ and β. However, as noted in Remark 2, the density of the system has to be calculated self-consistently
to be used as an input to the XC functional. For each value of ξ in the integration we would have a different self-
consistent density ñ and therefore the integral would be analytically intractable. One way to overcome this difficulty
would be using a Monte Carlo procedure as outlined in Algorithm 1.

Algorithm 1 Monte Carlo approximation for the distribution p(t̃).
1: Given p(ξ, β), Eq. (24).
2: for i = 0, 1, . . . ,Nsamples do
3: Draw sample of ξ and β from p(ξ, β), ξi, βi.
4: Calculate the self-consistent density ñi using Ex[n; ξi], Eq. (17).
5: Sample t̃i from Eq. (21), using ñi and βi.
6: end for
7: Approximate the distribution of t̃, p(t̃), using the sampled values {t̃i}.

However, this method would require as many self-consistent simulations as samples of t̃ are needed. Therefore, we
use the approximation described in Remark 3 and consider that the electron density of the system is equal for all XC
functionals obtained by sampling the random variable ξ. This assumption allows the use of the predictive distribution
given by Eq. (30) using one single self-consistent simulation of the electron density ñ.

The predictive distribution can be readily extended to the case of several predictions. In this case, we obtain a
multidimensional Student t-distribution where the different predictions are correlated,

p(t̃ | ñ, t) =

∫
p(t̃ | ñ, ξ, β)p(ξ, β | t) dξ dβ = St(t̃ | µ,Λ, ν), (37)

where the mean and covariance are now given as

E[t̃] = Φ̃mN , (38)

cov[t̃] =
bN

aN − 1

(
I + Φ̃SNΦ̃

T )
. (39)
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Φ̃ is analogous to the design matrix, but each row has the basis functions evaluated at one of the points where the
predictions are made instead of at one of the training points. This shows that the errors in energy differences are
not just the addition of the errors in each calculation, but they will be smaller for positively correlated variables
and larger for negatively correlated variables. We can also see that the covariance in Eq. (39) has two terms whose
relative importance will depend on the particular training and test sets. The first term in the covariance originates
from the likelihood function, and since we assumed uncorrelated model error, it is a diagonal matrix. The second
term contains the covariance between model coefficients and carries all the correlations.

3.2. Hyperparameters: Evidence approximation

In a Bayesian context, our initial beliefs on the model parameters ξ and β are encoded in the prior distributions,
Eq. (23). The more we know about the parameters, the more informative the prior distribution can be. However,
when we do not have any strong indication on the precise values, the prior will be more uninformative. For
example, we may encode our belief that the parameters ξ are more likely to be close to zero with a Gaussian prior
distribution centered at the origin, but we may not know exactly how close they should be to zero. In this case, we
would like to leave the covariance of the prior distribution as an unknown parameter and learn its value from the
data.

The hyperparameters, m0, S0, a0 and b0 in our model, can be determined, for example, using the evidence
approximation, which aims to maximize the marginal likelihood of the training data. The likelihood of our data,
given in Eq. (22), is proportional to the probability of having obtained the data given our model, including all of its
parameters. Since we have a probability for our model parameters as a function of the hyperparameters only, we
can integrate the likelihood over the model parameters and obtain a function, the marginal likelihood, which gives
the probability of obtaining the data as a function of the hyperparameters only. By maximizing this function with
respect to the hyperparameters, we maximize the probability that our model reproduces the training data. In our
case, the marginal likelihood can be written as

p(t | m0,S0, a0, b0) =

∫
p(t | ξ, β)p(ξ, β | m0,S0, a0, b0) dξ dβ.

This is equivalent to maximizing the log of the marginal likelihood (evidence function),

E(m0,S0, a0, b0) = log p(t | m0,S0, a0, b0),

E(m0,S0,a0, b0) =
1
2

log
|SN |

|S0|
−

N
2

log(2π)+

log
Γ(aN)
Γ(a0)

+ a0 log(b0) − aN log(bN). (40)

Using m0 = 0 and S−1
0 = αI, we only have three hyperparameters and we can easily find the maximum of the evidence

function.
However, in this paper, we have chosen to use a relevance vector machine (RVM) [28, 26]. In this case, S−1

0 =

diag(α0, . . . , αM−1) and m0 = 0. This means that we have M + 1 hyperparameters. The process tends to produce a
sparsification of the regression coefficients, i.e., some of them will become very close to zero [26] and only the most
relevant will be kept. This is used for automatic relevance determination of the different basis functions. Therefore,
unlike previous empirical approaches where the functional dependence was fixed [2, 3], using this prior provides
the flexibility for automatic parameter and model selection, which reduces the risk of overfitting present when the
number of basis functions is high. We update the parameters in an iterative way by looking at the maximum of the
evidence function for the current posterior covariance SN and mean mN . Details of the derivation of the equations to
find the maximum are in Appendix C. The αi are updated sequentially until all are converged using Eq. (C.6) [28, 26]
and then a0 and b0 are updated simultaneously using a Newton method. In the numerical implementation of the
pruning of the model basis functions, we consider a maximum value of αmax = 1013 as an approximation to the limit
α→ ∞. These two updates are repeated until convergence is achieved. This process is detailed in Algorithm 2.
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Algorithm 2 Hyperparameter optimization.
1: S−1

0 = diag(α0, . . . , αM−1), m0 = 0.
2: Select convergence criterion for the inner and outer iterations: θinner, θouter

3: Select numerical threshold αmax to detect α→ ∞
4: Initialize αi from random numbers r ∈ (0, 1010).
5: repeat
6: repeat
7: for all i = 0, 1, . . . ,M − 1 do
8: Update αi as αnew

i = 1
[SN ]ii+

aN
bN

[mN ]2
i
, Eq. (C.6).

9: Update SN , mN using Eqs. (25) and (26).
10: end for
11: until ∆αi < θinner or αi > αmax

12: Update a0, b0 with a Newton iteration using Eqs. (C.7) and (C.8).
13: Update SN , mN using Eqs. (25) and (26).
14: until ∆α,∆a0,∆b0 < θouter

3.3. Sparsity in the relevance vector machine
We can understand better the reason for the sparsification in the RVM if we look at the marginal likelihood as

a distribution over the observed data,

p(t | m0,S0, a0, b0) =

∫
p(t | ξ, β)p(ξ, β | m0,S0, a0, b0) dξ dβ. (41)

This integral is equivalent to that in Eq. (37) and the result is therefore

p(t | m0,S0, a0, b0) = St(t | µ0,Λ0, ν0). (42)

Since m0 = 0 and S−1
0 = diag(α0, . . . , αM−1), the mean and covariance are now

E[t] = 0, (43)

cov[t] =
b0

a0 − 1

(
I +Φdiag(α−1

i )ΦT
)
. (44)

Eq. (42) for the marginal likelihood is in the space of the training data, i.e., it gives the probability of a given
observation for each of the training points given the hyperparameters. We see that the covariance of the marginal
likelihood has two components, the first one is isotropic and depends only on the level of model noise (through
a0, b0) and the second one is anisotropic and depends also on the rest of the hyperparameters {αi} and the design
matrix. The objective of the evidence approximation is to maximize the marginal likelihood at a given training data
t. Since the marginal likelihood is an unimodal distribution centered at the origin, its maximization at the training
data t will happen when the covariance is aligned with them.

As an example, we consider the case of only two training points. In this case, the covariance is

cov[t] =
b0

a0 − 1
I +

M−1∑
i=0

b0

(a0 − 1)αi

(
Ex[n1; êi]2 Ex[n1; êi]Ex[n2; êi]

Ex[n2; êi]Ex[n1; êi] Ex[n2; êi]2

)
. (45)

If a covariance matrix associated to a basis function is poorly aligned with the experimental observation vector t,
then any finite α value will lower the value of the density at t. This is illustrated in Fig. 1, which shows the marginal
likelihood using a simple case with only one basis function, and two observations [28, 26]. The two training data
are generated from a function f = sin(x) + ε with ε ∼ N(x | 0, 1) at points π/2 and π. The single basis function
of the model is fb = cos(2x). In this case, any finite value of α will lower the marginal probability at t with respect
to the case where the covariance includes only the noise. Therefore, the maximization process will prune out the
contribution of the basis function by taking α to∞. More details on this behavior can be found in [28, 26].
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Figure 1: Marginal likelihood function, Eq. (42), for two observation (t1, t2). The training data t are shown in the picture as a black circle. We also
show an equiprobability line of the marginal likelihood at a Mahalanobis distance of 1.5 from the origin using the covariance from Eq. (45) with
b0/(a0 − 1) chosen to maximize the marginal likelihood at t. Left: only noise is contributing to the covariance matrix (α → ∞). The marginal
likelihood at t in this case is 0.033. Right: the covariance matrix includes a finite α = 0.2. The contrition arising from the noise term is shown as a
dashed green circle. The marginal likelihood at t for this value of alpha is reduced to 0.015. Also shown is the basis vector (cos(π), cos(2π)), which
is not aligned with the data t for our choice of basis function.

As an example of this process, Fig. 2 shows a plot of the magnitude of the regression coefficients using S−1
0 =

diag(α0, . . . , αM−1) for a maximum order of the model M = Ms × Mα = 10 × 10 = 100. We can see that when we
use the RVM most of the coefficients go to zero (within computer accuracy) showing that the corresponding basis
functions have negligible relevance in the model.

4. Exchange Model Training

Since the value of the exchange energy is not a quantity that can be measured, we have to use other quantities
for which experimental data are available. As the model is linear for the exchange energy, it is natural to choose
the energy of different materials as the training data. One such energy available for a wide range of materials is the
atomization energy (cohesive energy), which is the energy required for the total separation of all the atoms in the
system.

Therefore, the atomization energy per atom of a system M = AnA BnB . . . is defined as the sum of the energies of
the individual atoms minus the energy of the system divided by the number of atoms in the system:

Eat =
1

Na

∑
I

nI EI − EM

 , (46)

where Na =
∑

nI is the number of atoms in the supercell and I runs over all the species of atoms, A, B,. . . EI is the
energy of the isolated atom I and EM is the energy of the system M.

Using the decomposition of the energy defined in Eq. (2), we can write the atomization energy Eat as:

Eat =
1

Na

∑
I

nI(Eb
I + Ex

I + Ec
I ) − (Eb

M + Ex
M + Ec

M)

 (47)

= Eb
at + Ex

at + Ec
at,

where we have defined the partial atomization energies Eα
at = 1

Na

(∑
I nI Eα

I − Eα
M

)
, α = b, x, c. The components Eb

at
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Figure 2: Magnitude of the coefficients obtained using a RVM for the determination of the hyperparameters. The parameters which go to zero have
been plotted with a smaller symbol to highlight the sparsity of the model.

and Ec
at are fixed in our model, and, using Eq. (17), Ex

at can be written as

Ex
at = ξT 1

Na

∑
I

nIEx[ni; ê] − Ex[nM; ê]

 , (48)

where ni is the electron density of the isolated atom I and nM is the electron density of the system M.
To obtain the parameters of the posterior distribution, Eqs. (25)-(28), we need the training data vector t with

experimental data and the design matrix Φ. We build the design matrix in Eq. (29) as

Φ =


1

Na
(
∑

I∈s1
nIEx[ni; ê] − Ex[ns1 ; ê])T

1
Na

(
∑

I∈s2
nIEx[ni; ê] − Ex[ns2 ; ê])T

...
1

Na
(
∑

I∈sN
nIEx[ni; ê] − Ex[nsN ; ê])T

 , (49)

where si are the systems in the training data set.

Remark 7. To calculate the design matrix Eq. (49), one needs to run a self-consistent simulation to obtain the electron
density for (i) every system of the training data and (ii) every isolated atom which is part of any material system in the
training set.

As explained in Remark 4, the observed data t are the experimental atomization energies minus the self-consistently
calculated model part not dependent on the parameters ξ, i.e.

t =


Eexp

at (s1) − Eb
at[n1] − Ec

at[n1]
Eexp

at (s2) − Eb
at[n2] − Ec

at[n2]
...

Eexp
at (sN) − Eb

at[n2] − Ec
at[n2]

 . (50)
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Remark 8. To evaluate the exchange energy basis functionals for a system s, Ex[ns; ê], one needs its electron density,
ns. Unlike the usual situation, where we know both the experimental data at a given input point where the basis are
evaluated, in our problem we do not know the electron density a priori. Both the energy and the electron density are
obtained simultaneously from a self-consistent simulation of the system. This fact, together with the high dimension-
ality of the electron density field, poses problems in the application of active learning approaches for choosing the
training data set.

4.1. Indirect measurements

It is possible to add other information to the training of energies indirectly to increase the size of the training set.
As an example, we have included information of the experimental bulk properties for cubic materials, the equilibrium
volume (V0), equilibrium bulk modulus (B0) and its pressure derivative (B1). Using their experimental values within
an equation of state (EOS), we can obtain information on the variation of the energy with the volume. One such EOS
is the Stabilized Jellium Equation of State (SJEOS) [29], which has the form

E(V) = a + b
V1/3

0

V1/3 + c
V2/3

0

V2/3 + d
V0

V
= γTφ(V), (51)

where V is the volume of the unit cell, γ is the vector of coefficients, γ = (a, bV1/3
0 , cV2/3

0 , dV0), and φ(V) the vector of
basis functions, φ(V) = (1, 1

V1/3 ,
1

V2/3 ,
1
V ). The coefficients of the equation are related to the equilibrium cohesive energy

(E0), equilibrium volume, bulk modulus and first derivative of bulk modulus through the following equation [29],
1 1 1 1
3 2 1 0
18 10 4 0

108 50 16 0

γ =


−E0

0
9V0B0

27V0B0B1

 . (52)

By isotropically straining the unit cell of a solid, we can vary its volume V . Therefore, for every value of strain,
we can obtain an energy difference with respect to the equilibrium value V0, E(V) − E(V0). Adding this energy
increment obtained for a set of five strains in the range [0.95, 1.05] to the cohesive energy at equilibrium, we obtain
five training points for each material (including the relaxed configuration) corresponding to cohesive energies of
strained configurations.

Remark 9. Even though the errors in the energies obtained from the different sources, solids, molecules and
indirect measurements will be different from each other, we have not considered it in the results presented in this
work and for simplicity the same (unknown) noise is assumed for all energy data sets. This assumption can easily be
relaxed using the evidence approximation.

4.2. Training sets

To train the model, we used atomization energies of 13 cubic elemental solids from a data set of 20 cubic elemental
solids (EL20) and a subset of 120 molecules from the G2/97 dataset [30]. Following the classification in Ref. [7],
we have 5 solids from alkali and alkaline earth metals (K, Ca, Rb, Sr and Ba), 9 non-magnetic transition metals (V,
Cu, Mo, Rh, Pd, Ag, Ta, W and Au), 5 high-coordination p block compounds (diamond, Al, Si, Ge and Sn) and 1
magnetic material (Fe). Even though in a fully Bayesian setting we would use all the available data for the model
training, we have kept a small set aside for test purposes, 2 elements from each category with more than 2 elements
(K, Ca, V, Cu, C and Al) and Fe. All simulations are carried out using the projector augmented-wave (PAW) method
as implemented in GPAW [31, 32, 33] using plane-wave basis. An energy cut-off of 800 eV was used throughout. For
solids, Brilloin zone integrations were done on a 16× 16× 16 Monkhorst-Pack k-mesh [34]. Real-space relaxation of
molecules in the G2/97 dataset was done using a maximum force of 0.05 eV/Å on each atom [4].

In the problem of training, we are looking for a XC energy functional that is able to predict the energies
of new materials using the information contained in the training set. We are using an XC functional with a
chosen functional form to predict energies of new data points. However, unless we know the underlying generating
function for the XC energy given the density, our predictions far from the training configurations will be more

13



0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29

Model error standard deviation [eV/atom]

0

10

20

30

40

50

60

70

80

90

P
ro

b
a
b

ili
ty

Mean: 2.5895e-01 eV/atom
Std. Dev.: 4.9e-03 eV/atom

Figure 3: Distribution of the standard deviation characterizing the likelihood function and which represents the error of the model we assume for
the exchange model (meta-GGA). Its mean and standard deviation are also shown.

uncertain. This means that our functional is not expected to give reliable estimations for the exchange energy in
materials very different from those included in the training data set. For example, if we have not used any magnetic
material in our training set, we cannot expect our model to give accurate results for a new magnetic material. An
advantage of our model including uncertainty quantification is that ideally it would give a large uncertainty for
those points and this information could be used as an indicator of where we cannot have confidence in the obtained
result and therefore need new training points. However, as commented in Remark 8, the way in which the input
density is calculated self-consistency makes this active learning approach difficult and will not be treated further
in this work.

5. Prediction of Atomization Energies

The optimization of the hyperparameters was done as outlined in Algorithm 2 using convergence thresholds
θinner = 10−5% and θouter = 10−4%. After training the model, we obtain a posterior distribution on the linear model
parameters according to Eq. (24),

p(ξ, β | t) = N(ξ | mN , β
−1SN)G(β | aN , bN). (53)

The distribution of β = 1/σ2, the precision of the Gaussian distribution assumed in Eq. (21), gives us an estimation
of the model error for the fitted quantity, atomization energies in this case, and the larger it is the smaller the discrep-
ancy between the model and the experimental values. This error is related to the model itself and will not vanish
asymptotically as we increase the data set. It is more common to report this error as the standard deviation σ instead
of as the precision β. Since β is given by a Gamma distribution, G(β | aN , bN), then σ2 follows an inverse Gamma
distribution [35], IG(σ2 | aN , bN). Therefore, σ is given by 2σIG(σ2 | aN , bN) [36]. Fig. 3 shows this distribution of
the standard deviation σ. The training gives us a value peaked at 0.16 eV for the model error of the cohesive energy.
This value is smaller than the previously reported one of 0.31 eV in [7].

The training process also provided us with a distribution for the exchange enhancement factor linear model coef-
ficients. Fig. 4 shows the resulting average enhancement factor, ξ = mN , as a function of the reduced density gradient
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Figure 4: Exchange enhancement factors for the model developed in this work, and a series of other GGA (PBE, PBEsol) and meta-GGA (mBEEF,
MS0, MVS and TPSS) functionals. The shaded regions correspond to one and two standard deviations around the average model. The left panel
shows the projection on s for α = 1 and the right panel the projection on α for s = 0.

s for a fixed value of α = 1 and as a function of the reduced kinetic energy density α for s = 1. We also include the
confidence intervals from coming from the distribution of parameters in Eq. (24), and other GGA (PBE and PBEsol)
and meta-GGA (mBEEF, MS0, MVS [22] and TPSS) functionals.

Remark 10. The flat section around α = 1 in the functional developed in this work, mBEEF and MS0 comes from
the common α dependence, Eq. (16), in all of them. This property is also shared by the TPSS functional. The use of
an α dependence term without zero slope at α = 1 could allow for more flexibility in the s dependence as shown in
[22] for the “Made Very Simple” (MVS) functional.

5.1. Numerical results

The training process provided us with a predictive distribution for the exchange contribution to the atomization
energy of any system outside the training set. For any new system with electron density ñ, the predictive distribution
is

p(Ẽx | ñ, t) = St(Ẽx | µ, λ, ν), (54)

with the parameters defined in Eqs. (31)-(33). These equations show that to obtain the parameters of the predictive
distribution for the new system, we need the basis exchange energy vector Ex[ñ; ê]. As we did for the training of the
model, we run the simulation self-consistently using the PBE functional and construct the vector Ex[ñ; ê] using the
resulting density. This is then used to calculate the parameters of the Student t-distribution of the exchange energy
from Eqs. (31)-(33).

Remark 11. In the training of the model, we used the self-consistent PBE densities, i.e., the densities obtained
solving Eqs. (3)-(5) with the PBE XC energy functional to evaluate the basis functions (Remark 3). As a posteriori
check that this is a reasonable approximation, we compare for a few systems the DFT energy using our XC func-
tional with two different densities: the self-consistent density obtained using the PBE XC functional as described
above, and the self-consistent density obtained with our trained model. In the first case we run a self-consistent
DFT simulation using the PBE functional and keep the resulting density, nPBE . This density is then fixed and used
to obtain the average prediction of our model running a non self-consistent DFT simulation using Eq. (31) with
ñ = nPBE as the exchange energy functional. We will denote this energy as Ensc−PBE . In the second case, we run a

15



K Ca V Cu C Al Fe-FM
0

1

2

3

4

5

6

7

8

9

C
o
h
e
si

v
e
 E

n
e
rg

y
 [

e
V

]

Figure 5: Box-plot of the cohesive energies of the elements in the test set. The red squares represent the experimental cohesive energies.

self-consistent DFT simulation using our average model XC energy, i.e., Eq. (18) with ξ given by Eq. (26). We will
denote this energy as Esc. We found that the absolute difference between Ensc−PBE and Esc was below 1 meV, which
is lower than the typical energy resolution in DFT applications.

To evaluate the quality of the average predictions and compare it to other values found in the literature, we use the
mean absolute error (MAE) and the mean absolute relative error (MARE). For a set of calculated data xcalc = {xcalc

i }

and the corresponding set of experimental data xexp = {xexp
i }, the MAE and MARE of the calculations are defined as:

MAE =
1
N

N∑
i=1

|xcalc
i − xexp

i |, (55)

MARE =
1
N

N∑
i=1

∣∣∣∣∣∣ xcalc
i − xexp

i

xexp
i

∣∣∣∣∣∣ . (56)

Figure 5 shows a box-plot of the distributions of cohesive energies of the elements in the EL20 test set together
with the experimental values. Except for Fe, all experimental points fall within the confidence interval given by our
model. Fe is a magnetic material, which is a family not represented in our training set and therefore we can expect
that the results for it will not be predictive. Also, we must bear in mind that for some magnetic elements the thermal
extrapolations to 0 K used on the experimental data are no longer valid [7].

Remark 12. As discussed on Section 3.1, the predictions from the model are correlated. As an example of this
effect, we calculate the uncertainty in the difference between the cohesive energies of K and Ca. The predicted
values for both materials are 1.015 ± 0.165 and 1.945 ± 0.166 eV, respectively. The cohesive energy difference
ignoring correlations, i.e., just subtracting the two random variables as obtained from Eq. (30), is 0.930 ± 0.234
eV, whereas if we include correlations, i.e., subtracting the two correlated variables as obtained from Eq. (37), it is
0.930 ± 0.232 eV. In this case, the difference is very small since the model error, which we assumed uncorrelated,
dominates over the variability of the coefficients.
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XC functional Error G2/97-test G2/97 EL20-test EL20

This work MAE 0.116 0.103 0.243 0.0975
MARE 3.27 1.46 8.56 5.62

PBE MAE 0.703 0.238
MARE 5.09 6.88

Table 1: Mean absolute error (in eV) and mean absolute relative error (in %) of the predictions of atomization energies using the average model for
the training sets containing molecules (G2/97) and solids (EL20).

C functional Error G2/97-test G2/97 EL20-test EL20

PBE MAE 0.116 0.103 0.243 0.0975
MARE 3.27 1.46 8.56 5.62

PBEsol MAE 0.116 0.108 0.204 0.172
MARE 2.91 1.55 6.12 4.98

vPBE MAE 0.110 0.107 0.226 0.184
MARE 2.72 1.41 6.45 5.17

TPSS MAE 0.108 0.104 0.227 0.190
MARE 2.68 1.42 6.85 5.53

Table 2: Mean absolute error (in eV) and mean absolute relative error (in %) of the predictions of atomization energies using the average model
with different correlation functionals.

Table 1 summarizes the MAE and MARE of the atomization energies of the elements in the EL20 and G2/97
data sets and compares them to the ones obtained with the PBE functional. The MAE for the G2/97 data set goes
down from 0.703 to 0.103 eV, which was partly expected as the PBE functional does not work particularly well with
molecules [4, 22]. Furthermore, our results are better than those of BEEF-vdW (0.16 eV, GGA with van de Waals
corrections), TPSS (0.28 eV) or the hybrid functionals B3LYP (0.14 eV) and PBE0 (0.21 eV) [4]. On the other hand,
the performance in our solids data set shows very similar results for both functionals.

To further study the predictive capabilities of the functional, we tested it on 37 molecules from the G3-3 subset of
the G3/99 data set [37]. The MAE and MARE were found to be 0.0608 eV and 0.11%, respectively. Even though it
is only half of the complete G3-3 set, the MAE is less than half of the best reported in Ref. [4] for the whole data set,
including LDA, GGA, meta-GGA and hybrid exchange correlation functionals.

5.2. Impact of different correlation functionals

Since the correlation part of the functional is not trained, we tried four different ones to see the impact on the
results: Ec

PBE , Ec
PBEsol, Ec

vPBE [16, 22] and Ec
T PS S . Table 2 shows a comparison of the errors using the three correla-

tions. Even though the coefficients selected by the RVM are different, as shown in Fig. 6, the error in the predictions
is similar. The vPBE correlation seems to give the best results for the molecules in the test set whereas PBEsol is the
best for the test set of solids, even though both of them are outperformed by the PBE correlation if training solids are
also included.

6. Propagation of Uncertainty to Derived Quantities

6.1. Lattice constant and bulk modulus of cubic materials

For cubic materials, where the volume depends on only one parameter, we can easily obtain the equilibrium lattice
constant and bulk modulus from a fit of computed energies at different volumes to an EOS. We use again the SJEOS
as defined in Eq. (51),

E(V) = a + b
V1/3

0

V1/3 + c
V2/3

0

V2/3 + d
V0

V
= γTφ(V). (57)

The regression coefficients are related to the equilibrium energy (E0), equilibrium volume (V0), bulk modulus (B0)
and first derivative of bulk modulus (B1) through Eq. (52).
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Figure 6: Magnitude of the coefficients obtained using a RVM for the determination of the hyperparameters using the PBEsol (left) and vPBE
(right) correlation functionals.

To obtain their values with their associated uncertainty we proceed as follows. For each material, we run a self-
consistent simulation for a set of different strains (5 points from 95% to 105% of the experimental volume) using our
XC functional defined in Eq. (17) with the average values for the coefficients as defined in Eq. (26). We draw samples
from the distribution in Eq. (24), and run simulations non self-consistently using the density from the self-consistent
simulations. For each sample coefficients, we fit the resulting energies to the SJEOS.

Once again we use Bayesian linear regression for the process, but this time we take the error in the observed
quantity (the DFT energy in this case) as given. This is related to the energy accuracy, e.g., from convergence in mesh
spacing, k-points, energy cut-off, etc., and adds an extra source of uncertainty. If we assume it to be Gaussian, for
each sample of XC functional coefficients the likelihood is [26]:

L(E | V,γ, β) =
∏

n

N(En | γ
Tφ(Vn), δ−1) = N(E | γTφ, δ−1I), (58)

where δ represents the noise in the data.
Using a Gaussian as a prior for the regression coefficients, p(γ) = N(γ | m0,S0), the posterior for the coefficients

is again a Gaussian [26],
p(γ | E) = N(γ | mN ,SN), (59)

where now the mean and covariance of the posterior distribution over the parameters γ are given by [26]:

mN = SN

{
S−1

0 + δΦT E
}
, (60)

SN = S−1
0 + δΦTΦ. (61)

Using a Monte Carlo method once more, we sample the regression coefficients and invert Eq. (52) to obtain E0, V0,
B0 and B1. Keeping the values for every sample, we obtain a distribution for these quantities with combined sources
of uncertainty: model inaccuracy, limited data and numerical accuracy. This procedure is illustrated in Algorithm 3:
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Algorithm 3 Calculation of uncertainty for V0 and B0.
1: Input: system s with unit cell defined by three vectors x1, x2, x3.
2: Input: Nmax

1 , Nmax
2 , the maximum number of iterations for Monte Carlo sampling.

3: for 5 strains 0.95 ≤ σi ≤ 1.05 do
4: Strain the unit cell of the system s by σi: xα → σixα, α = 1, 2, 3.
5: Self-consistent simulation of the strained system using ξ = mN .
6: Keep the self-consistent electron density n∗i = n(σi).
7: end for
8: N1 = 0
9: repeat

10: Sample ξN1
, βN1 from Eq. (24).

11: Non self-consistent simulation using ξN1
, βN1 using a fixed density n∗i .

12: N2 = 0
13: repeat
14: Sample γN2

from Eq. (59).
15: Calculate V0, B0 inverting Eq. (52).
16: until N2 = Nmax

2
17: N1 = N1 + 1
18: until N1 = Nmax

1
19: Collect statistics on calculated V0, B0.

6.2. Prediction of bulk properties

To test the bulk properties we use the SL20 test set [34] since there are available data for other XC functional to
compare the performance [34, 22]. It consists of 13 elemental solids (Li, Na, Ca, Sr, Ba, Al, Cu, Rh, Pd, Ag, C, Si,
Ge) and binary I-VII (LiF, LiCl, NaF, NaCl), II-VI (MgO), III-V (GaAs) and IV-IV (SiC) compounds. Note that 7 of
the elemental solids in the set were used in the training of the model.

Figure 7(a) shows a box-plot of the calculated lattice constants for the elements in the set. Among the elemental
solids, we see that the predictive error bars are largest for the group II elements (Ca, Sr, Ba), which together with Li
have the largest absolute errors. Among the compounds, LiF has the largest error, but bearing in mind that no ionic
solids were included in the training set the predictions are remarkably good, especially when poor results have been
reported before with other functionals for this family of elements [38, 34].

The MAE and MARE of the predicted average lattice constants are 0.072 Å and 1.60%, respectively. The MAE
is worse than other solid oriented density functionals such as PBEsol (0.036 Å) [22] and comparable to chemistry
oriented semi-local functionals such as M06-L, which has a MAE of 0.071 Å, but without Ca, Sr and Ba [38, 16],
which contribute importantly to the error with our functional. The mean signed error (MSE) we obtain is −0.0081 Å,
which implies on average an underestimation of the lattice constants similar to the PBEsol functional but opposite to
other meta-GGA functionals such as TPSS [34].

Figure 7(b) shows a box-plot of the predicted bulk modulus for the materials in the SL20 test set. The MAE and
MARE of the predicted average bulk moduli are 9.71 GPa and 13.07%, respectively. These values are similar to those
for other functionals such as, e.g., PBE (10.5 GPa) or TPSS (7.942 GPa) [34]. The MSE of 5.19 GPa, means that on
average there is an overestimation of the bulk moduli the same as the PBE functional but opposite to the PBEsol or
TPSS functionals [34].

6.2.1. Impact of the simulation convergence error
As described in Section 6, we can add an extra level of noise to the fitting to account for some level of uncertainty

in the calculated energies. Even though it does not affect the average value of the calculated properties, a higher noise
will increase the uncertainty and decrease the confidence in its value. Figure 8 shows the calculations of the lattice
constants and bulk moduli after setting a numerical error of 10 meV, which reflects, for example, our confidence in the
convergence of the simulation. There is a clear widening of the error bars, especially in the results for the elements
with higher absolute errors, group I and II elements for the lattice constants and bulk moduli for the transition metals.
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Figure 7: Box-plot of the (a) equilibrium lattice constants and (b) equilibrium bulk moduli of the elements in the SL20 test set [34]. Experimental
lattice constants are corrected to static-lattice values subtracting the zero-point anharmonic expansion (ZPAE) and experimental bulk moduli are
corrected for the zero-point phonon effects (ZPPE).
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Figure 8: Same as Fig. 7 but with an added numerical noise of 10 meV to the regression problem to calculate the SJEOS parameters.
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The widening of the error bars for the materials with high error is a proof of the ability of the proposed functional to
predict the uncertainty in its predictions.

6.3. Prediction of the energy band gap of Si

As a further example of uncertainty propagation we show the calculation of the energy band gap for a semicon-
ductor, Si. Kohn-Sham DFT cannot reproduce the band gap of materials properly as a consequence of the lack of a
discontinuity in the XC energy functional with the number of electrons [39]. This can be overcome with the intro-
duction of energy dependent XC potential [39]. An equivalent to this energy dependent XC potential can be achieved
using many-body perturbation theory (MBPT), which provides a different approach to obtain the band gap. Its first
order approximation, Hedin’s GW approximation [40] is already a more accurate approach to tackle the band gap
problem. In this framework, XC effects are included in the energy dependent self-energy, which is a convolution
of the Green’s function G and a dynamically screened Coulomb interaction W. The obtained energies correspond to
quasiparticles (QP) describing the screened electrons and in this case the valence band maximum and conduction band
minimum can be interpreted directly as the ionization potential and electron affinity in photoemission experiments and
therefore can be used to calculate the experimentally measured band gap [41].

One further approximation which has been successful in calculating the band-gaps for small gap semiconductors
is the G0W0 approximation [42, 41], which calculates the GW QP energies perturbatively on top of the one-particle
Kohn-Sham (KS) orbitals and orbital energies. Therefore, in this approximations, the QP energy spectrum is directly
linked to the DFT starting point. The eigenvalues obtained as perturbations to the Kohn-Sham (KS) orbital energies
are

εGW
nk = εKS

nk +
〈
ψKS

nk | Σ − Vxc | ψ
KS
nk

〉
, (62)

where εnk and ψnk are the orbital energies and orbitals for band n and wave vector k, Σ is the self-energy from the
G0W0 approximation and Vxc the exchange correlation energy from DFT. All calculations are done as implemented in
GPAW [43]. Since the correction depends on the KS orbitals and the XC potential, the results will depend on which XC
functional is used as the initial approximation, and we will use this a measure of uncertainty for the G0W0/meta−GGA
approximation to the band structure. For each realization of our XC functional we obtain self-consistently the orbitals
and their energies on a 12 × 12 × 12 Monkhorst-Pack mesh and from them the G0W0 eigenvalues using Eq. (62). We
estimate the band gap as the distance between the maximum of the highest occupied band and the minimum of the
lowest unoccupied band. The variability in the band gap computed this way is shown in Fig. 9 together with the band
gaps obtained directly from DFT. We can see that both approaches have a similar absolute value of the uncertainty in
the band gap, even though the values obtained with the G0W0 approximation are, as expected, much more accurate.

7. Summary and Conclusions

We have presented a new approach based on machine learning using a Bayesian framework to obtain an exchange-
correlation energy functional. In this way, the coefficients of the functional are not point estimates, but random
variables, so that the resulting exchange-correlation functional is also a random variable, even though the model
exchange energy basis are fixed. Imposing certain assumptions in the training process, we obtained an analytical
expression for the distribution function of the model parameters. Having a random variable instead of a point estimate
allows for the quantification of uncertainty in the simulation results. Uncertainties in the predictions will include
limited data uncertainty, i.e., uncertainty in the training process due to the availability of limited training data, and
model uncertainty, i.e., uncertainty due to the inability of the proposed model to reproduce the experimental data.
Limited data uncertainty could in principle be reduced asymptotically to zero as the number of training data increases.
However, our model uncertainty would not vanish in the limit of infinite basis functions as the framework we are using
(meta-GGA XC functional) is intrinsically limited.

Whereas previous approaches using empirical models for the XC energy, i.e., models which fit their coefficients to
experimental data, have used a fixed functional dependence, which limits the number of basis functions as they lend
themselves to overfitting, we use a relevance vector machine. This means that during the training process there is an
automatic model selection trough the sparsification of the model coefficients, which reduces the risk of overfitting.

The training of the linear model has been done using atomization energies to keep the linearity between the trained
quantity and the exchange enhancement factor model coefficients. We have tested this model on atomization energies
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Figure 9: Histograms of the band gap of Si using KS-DFT (grey) and the G0W0 approximation (red) with our XC functional. Gaussian fits are
also shown as a guide to the eye. The black vertical line corresponds to the experimental value, the red vertical line to the G0W0 band gap with the
average XC functional and the grey vertical line the KS band gap with the average XC functional.
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and also on bulk properties. The average model has shown very good performance for molecule atomization energies,
with a mean absolute error of only 0.116 eV for the test points of the G2/97 set (28 out of the 148 points), which is
better than hybrid functionals such as B3LYP or PBE0. The error for solids using the SL20 data set has been found
to be larger, 0.243 eV, but comparable to the performance of the PBE functional. In terms of bulk properties, the
prediction of lattice constants for transition metals and semiconductors has a very low error. However, as expected
from the limitations of the method, predictions for types of materials poorly or not represented in the train set such
as group I and II elements or ionic solids show larger errors and an increase in the training data will be necessary to
improve the prediction capabilities for other types of materials. Finally, we also showed the propagation of uncertainty
in the model coefficients to the band gap of Si. Since Kohn-Sham DFT is not appropriate for band gap calculations,
we used the G0W0 quasi-particle approximation which allowed a good agreement between our average model and the
experimental value.
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Appendix A. Derivation of the posterior distribution over the parameters

The starting point of the calculation is the definition of the posterior parameter distribution in Eq. (24),

p(ξ, β | t) =
L(t | n, ξ,β)p(ξ, β)∫
L(t | n, ξ,β)p(ξ, β) dξ dβ

. (A.1)

Using Eqs. (22) and (23), the expression for the posterior is

p(ξ, β | t) ∝
N∏

n=1

N(tn | ξT Ex[nn; ê], β−1)N(ξ | m0, β
−1S0)G(β | a0, b0). (A.2)

Taking the logarithm of this equation, we obtain the following

log p(ξ, β | t) =C0 +

N∑
n=1

logN(tn | ξT Ex[nn; ê], β−1)

+ logN(ξ | m0, β
−1S0) + logG(β | a0, b0), (A.3)

where C0 is a constant.
We can calculate these terms using the definitions of the Gaussian and Gamma distributions,

N(x | µ,S) =
1

(2π)D/2|S|1/2
exp

{
−

1
2

(x − µ)T S−1(x − µ)
}
, (A.4)

G(x | a, b) =
baxa−1e−bx

Γ(a)
, (A.5)

where D is the dimensionality of the Gaussian distribution and Γ(a) is the gamma function evaluated at a.
Introducing the above equations back into Eq. (A.3) leads to the following:

log p(ξ, β | t) =C0 +
N
2

(log β − log 2π) +

N∑
n=1

{
ξT Ex[nn; ê] − tn

}2

+
M
2

(log β − log 2π) −
1
2

log |S0| −
β

2
(ξ −m0)T S−1

0 (ξ −m0)

+ (a0 − 1) log β − b0β + a0 log b0 − log Γ(a0). (A.6)
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Grouping all the terms dependent on ξ,

log p(ξ, β | t) = C1(β, a0, b0) +

N∑
n=1

{
ξT Ex[nn; ê] − tn

}2
−
β

2
(ξ −m0)T S−1

0 (ξ −m0)

= C1(β, a0, b0) −
β

2
(Φξ − t)T (Φξ − t) −

β

2
(ξ −m0)T S−1

0 (ξ −m0), (A.7)

where we have introduced the design matrix Φ defined in Eq. (29), and a function C1(β, a0, b0) which does not depend
on ξ. We can observe that the dependence is quadratic and we can complete the square, which yields

log p(ξ, β | t) = −
β

2
ξT

(
ΦT Φ + S−1

0

)
ξ + ξT

(
βS−1

0 m0 + βΦT t
)

+
β

2

(
tT t + mT

0 S−1
0 m0

)
+ C1(β, a0, b0). (A.8)

The first two terms plus the term M
2 log β in C1(β, a0, b0) define, up to a constant, the logarithm of a Gaussian distri-

bution with covariance matrix
β−1SN = β−1

(
S−1

0 + ΦT Φ
)−1

, (A.9)

and mean
mN = SN

(
S−1

0 m0 + ΦT t
)
, (A.10)

log p(ξ,β | t) = −
β

2
(ξ −mN)T S−1

N (ξ −mN)

−
β

2

(
tT t + mT

0 S−1
0 m0 −mT

NS−1
N mN

)
+ C1(β, a0, b0). (A.11)

Turning our attention to the last two terms in Eq. (A.11) minus the term M
2 log β leads to the following:

C1(β, a0, b0) +
β

2

(
tT t + mT

0 S−1
0 m0 −mT

NS−1
N mN

)
−

M
2

log β

= C0 +
N
2

(log β − log 2π) −
M
2

log 2π −
1
2

log |S0|

+
β

2

(
tT t + mT

0 S−1
0 m0 −mT

NS−1
N mN

)
+ (a0 − 1) log β − b0β + a0 log b0 − log Γ(a0)

= C2 +

(
a0 +

N
2
− 1

)
log β −

[
b0 +

1
2

(
mT

0 S−1
0 m0 −mT

NS−1
N mN + tT t

)]
β, (A.12)

where C2 is a constant. The last two terms define, up to a constant, the logarithm of a Gamma distribution with
parameters

aN = a0 +
N
2
, (A.13)

bN = b0 +
1
2

(
mT

0 S−1
0 m0 −mT

NS−1
N mN + tT t

)
. (A.14)

Putting these two terms together, we obtain the following expression for the logarithm of the posterior distribution:

log p(ξ, β | t) =C3 + logN(ξ | mN , β
−1SN) + logG(β | aN , bN). (A.15)

Taking the exponential in Eq. (A.15) and adjusting for normalization of the posterior probability,

p(ξ, β | t) = N(ξ | mN , β
−1SN)G(β | aN , bN), (A.16)

with SN , mN , aN and bN defined in Eqs. (A.9), (A.10), (A.13) and (A.14), respectively.
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Appendix B. Derivation of the predictive distribution

To obtain the predictive distribution, one needs to calculate the integral

p(t̃ | ñ, t) =

∫
p(t̃ | ñ, ξ, β)p(ξ, β | t) dξ dβ

=

∫
N(t̃ | ξT Ex[ñ; ê], β−1)N(ξ | mN , β

−1SN)G(β | aN , bN) dξ dβ

=

∫
N(t̃ | ξT Ex[ñ; ê], β−1)N(ξ | mN , β

−1SN) dξG(β | aN , bN) dβ. (B.1)

We first perform the integral on ξ,∫
N(t̃ | ξT Ex[ñ; ê], β−1)N(ξ | mN , β

−1SN) dξ. (B.2)

After some algebra, it can be shown [26] that the result is another Gaussian distribution on t̃,

N
(
t̃ | mT

NEx[ñ; ê], β−1
(
1 + Ex[ñ; ê]T SNEx[ñ; ê]

))
. (B.3)

Substituting Eq. (B.3) in Eq. (B.1) leads to the following:

p(t̃ | x̃, t) =

∫
N(t̃ | ξT Ex[ñ; ê], β−1)N(ξ | mN , β

−1SN) dξG(β | aN , bN) dβ

=

∫
N

(
t̃ | mT

NEx[ñ; ê], β−1
(
1 + Ex[ñ; ê]T SNEx[ñ; ê]

))
G(β | aN , bN) dβ. (B.4)

The result of this integral is a Student t-distribution [26], defined as

St(t̃ | µ, λ, ν) =
Γ(1/2 + ν/2)

Γ(ν/2)
λ1/2

(πν)1/2

[
1 +

λ(t̃ − µ)2

ν

]−1/2−ν/2

, (B.5)

with

µ = mT
NEx[ñ; ê], (B.6)

λ =
aN

bN

(
1 + Ex[ñ; ê]T SNEx[ñ; ê]

)−1
, (B.7)

ν = 2aN . (B.8)

Appendix C. Derivation of the evidence function

The marginal likelihoodLM can be computed by the integration over the model parameters of the likelihood times
the prior:

LM(t | m0,S0, a0, b0) =

∫
L(t | ξ, β)p(ξ, β | m0,S0, a0, b0) dξ dβ. (C.1)

The expression inside the integral is proportional to the posterior distribution over the parameters ξ and β:∫
L(t | ξ, β)p(ξ, β | m0,S0, a0, b0) dξ dβ

=

∫ √
1

(2π)N

|SN |

|S0|

ba0
0

Γ(a0)
Γ(aN)
baN

N
N(ξ | mN , β

−1SN)G(β | aN , bN) dξ dβ

=

√
1

(2π)N

|SN |

|S0|

ba0
0

Γ(a0)
Γ(aN)
baN

N
. (C.2)
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Taking the logarithm of this function, we obtain the evidence function as shown in Eq. (40),

E(m0,S0,a0, b0) = logLM(t | m0,S0, a0, b0)

=
1
2

log
|SN |

|S0|
−

N
2

log(2π) + log
Γ(aN)
Γ(a0)

+ a0 log(b0) − aN log(bN). (C.3)

To find a maximum of the evidence function, we also need the derivatives with respect to all of its parameters, m0,
S0, a0 and b0. For the relevance vector machine, we assumed S−1

0 = diag(α0, . . . , αM−1) and m0 = 0. In this case, we
need derivatives with respect to αi, a0 and b0. Using Jacobi’s formula for the derivative of a determinant [44] and the
definitions of aN and bN in Eqs. (A.13) and (A.14), we obtain

∂

∂αi
E(m0,S0, a0, b0) =

1
2

[
1
αi
− (SN)ii −

aN

bN
(mN)2

i

]
, (C.4)

where (SN)ii and (mN)i are the i-th entries of the diagonal of SN and mN , respectively. Therefore, the stationary point
α∗i in the direction αi satisfies

1
α∗i

= (SN)ii +
aN

bN
(mN)2

i . (C.5)

Since SN , mN and bN are functions of α∗i , this equation has to be solved iteratively. One option is an iteration using
the following update:

1
αt+1

i

=
(
St

N

)
ii

+
aN

bt
N

(
mt

N

)2

i
, (C.6)

where αt
i is the value of αi at iteration t + 1 and St

N , mt
N and bt

N are evaluated at αt
i.

The derivative with respect to a0 is

∂

∂a0
E(m0,S0, a0, b0) = ψ(aN) − ψ(a0) + log

b0

bN
, (C.7)

where ψ(x) is the digamma function evaluated at x [45]. Finally, the derivative with respect to b0 is

∂

∂b0
E(m0,S0, a0, b0) =

a0

b0
−

aN

bN
. (C.8)
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