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ABSTRACT: Why do some individuals survive after exposure to chemicals
while others die? Either, the tolerance threshold is distributed among the
individuals in a population, and its exceedance leads to certain death, or all
individuals share the same threshold above which death occurs stochastically.
The previously published General Unified Threshold model of Survival
(GUTS) established a mathematical relationship between the two
assumptions. According to this model stochastic death would result in
systematically faster compensation and damage repair mechanisms than
individual tolerance. Thus, we face a circular conclusion dilemma because
inference about the death mechanism is inherently linked to the speed of
damage recovery. We provide empirical evidence that the stochastic death
model consistently infers much faster toxicodynamic recovery than the
individual tolerance model. Survival data can be explained by either, slower
damage recovery and a wider individual tolerance distribution, or faster
damage recovery paired with a narrow tolerance distribution. The toxicodynamic model parameters exhibited meaningful
patterns in chemical space, which is why we suggest toxicodynamic model parameters as novel phenotypic anchors for in vitro to
in vivo toxicity extrapolation. GUTS appears to be a promising refinement of traditional survival curve analysis and dose response
models.

■ INTRODUCTION

Why Do Not All Individuals Die at the Same Dose?
The sigmoidal shape of concentration−response curves raises
the question: why do not all individuals in the tested population
die at the same concentration or time? Either, the tolerance
threshold is distributed among the individuals in a population,
and its exceedance leads to certain death, or all individuals share
the same threshold above which death occurs stochastically.1,2

Recent theoretical advances have established a mathematical
relationship between the two assumptions and resulted in the
General Unified Threshold model of Survival (GUTS).3 Both
assumptions lead to the typically observed sigmoidal concen-
tration−response curves, but the time course of mortality
differs markedly. More importantly, stochastic death would
result in systematically faster compensation and damage repair
mechanisms than individual tolerance. Thus, we face a circular
conclusion dilemma because inference about the death
mechanism is inherently linked to the speed of damage
recovery. Two complementary assumptions describe the limit
cases of what is, probably, a mix of both in reality: (i) the tested
individuals share a common tolerance threshold and when that
is exceeded they die at random (stochastic death), or (ii) each
individual has its own tolerance threshold above which it dies
immediately, and the tolerances of many individuals follow a

statistical distribution in the tested population (individual
tolerance)3 (Figure 1A).
Mathematical models of both assumptions have been unified

in GUTS; however, inference about the prevalent nature of
death in a given set of mortality or survival data is impossible
without considering the rate of toxicodynamic recovery. The
classic example from Newman & McCloskey2 illustrates the
challenge: Consider the hypothetical example of 100 fish
exposed to a pulse of toxicant that kills half of them. The
surviving fish are transferred to clean water for a duration that is
long enough to allow full recovery and then they are exposed to
the exact same pulse of toxicant again. How many fish will
survive the second pulse? The answer depends: Stochastic
death (SD) would predict that 25 fish survive, whereas
assuming an individual tolerance (IT) distribution predicts
that all 50 fish survive the second pulse (Figure 1A). Crucially,
this thought experiment requires full organism recovery
between the pulses otherwise carry-over toxicity could cause
25 fish to die also under the assumption of IT. The experiment
with the two pulses might seem like a good test for carry-over
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toxicity and organism recovery, but the only unambiguous
outcome would be the observation of all 50 fish surviving the
second pulse, which can be rationalized by IT. All other
outcomes can be explained by different combinations of the
nature of death and organism recovery (Figure 1B). This is the
“death dilemma”. A constant exposure to a toxicant or other
stressor will also lead to different outcomes: any exposure that
kills at least one individual will eventually kill the whole
population when assuming SD, whereas the assumption of IT
will result in mortality leveling off at toxicokinetic and
toxicodynamic steady-state (Figure 1C, aka: incipient lethal
level4).
How to Study Toxicodynamic Recovery? Toxicody-

namic recovery is a result of cellular and physiological
compensating mechanisms and repair in an organism’s stress
response to the chemical insult. However, when we quantify
toxicodynamic recovery in a model, the above considerations
imply slower organism recovery in the case of IT, and faster
recovery in the case of SD (Figure 1). Thus, when analyzing
survival data we face the dilemma of having to infer the
stochastic or deterministic nature of death and at the same time
quantifying the speed of toxicodynamic recovery. This
entanglement requires explicit representation of recovery and
assumptions about death in the toxicodynamic model.

The Toxicodynamic Clustering Hypothesis. In 2007 we
hypothesized that “compounds with the same mode of action
cluster together in the toxicodynamic parameter space”,5 but
testing this hypothesis required solving the “death dilemma”
first. In 2009 Jager & Kooijman demonstrated patterns in the
parameters of GUTS-SD for fish, but without clear separation
of toxicokinetics and toxicodynamics.6 The GUTS framework
provides the theory to solve the “death dilemma” and enables
systematic experimentation to test two related hypotheses in
this study: (i) assuming individual tolerance results in slower
toxicodynamic recovery, and (ii) toxicodynamic parameters
cluster according to the chemical mode of action. In other
words: to better understand toxicodynamic parameters we
mapped them across chemicals and toxic modes of action,
analyzed patterns in their values and tested if the differences in
recovery rates between IT and SD as predicted by theory
manifested themselves in survival data.

Study Overview and Rationale. The first step is to
quantitatively differentiate toxicokinetic processes (uptake,
biotransformation and elimination) from toxicodynamic
processes (interaction with biological target and toxic effect).
In previous work we experimentally quantified the uptake,
biotransformation and elimination rates of 14 synthetic organic
chemicals in the aquatic invertebrate Gammarus pulex and built
a toxicokinetic model.7 With the additional toxicity experiments

Figure 1. Toxicodynamic recovery is intertwined with assumptions about death (stochastic vs individual tolerance). (A) Toxicokinetics determine
the biologically effective dose whereas toxicodynamic recovery shapes the survival curve. (B) Different combinations of assumptions about death and
toxicodynamic recovery can explain the same observation. (C) Assumptions about death also affect survival after constant exposure. The parameter
values used in the simulations shown here are provided in the Supporting Information (SI).
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presented here we are able to construct a toxicokinetic-
toxicodynamic model for each compound where the
toxicokinetic part simulates the time course of the internal
concentrations. The sums of internal concentrations of the
toxicologically active chemicals over time are the biologically
effective doses and serve as inputs for the new toxicodynamic
model part (SI Figure S3). The toxicodynamic model links the
biologically effective dose to the survival data. In a second step
we fitted two toxicodynamic models for each of the 14
compounds: GUTS-IT assumes individual tolerance, and
GUTS-SD assumes stochastic death.3,8 This analysis enables
us to learn about the nature of death and its relation to
toxicodynamic recovery; and extract mechanistic signals from
survival data.

■ MATERIALS AND METHODS

Chemicals, Test Organisms, and Experiments. We
measured the time-course of survival of the freshwater
amphipod Gammarus pulex when exposed to 14 toxicants
separately (listed below) in repeated pulsed toxicity tests.8,9 G.
pulex were collected from a headwater stream [Itziker Ried,
20km southeast of Zürich, Switzerland, E 702150, N 2360850],
acclimatized to laboratory conditions (preaerated artificial pond
water (APW), 13 °C, 12:12 light:dark) and fed horse-chestnut
leaf discs (preconditioned with the fungi Cladiosporium
herbarum).10 Experimental treatments consisted of seven or
eight replicate beakers (600 mL) filled with 500 mL APW, ad
libitum leaf discs and initially ten individual G. pulex per beaker.
Survival was usually measured daily (see Model Fits: SI Figures
S6−S19 and raw data file). We dosed a mixture of 14C-labeled
and unlabeled material and frequently measured the actual
exposure concentration during the experiments by Liquid
Scintillation Counting (LSC) in 1 mL aliquots of the test
solutions.8,9 G. pulex were exposed to each test chemical in
separate experiments.
Additional survival data was taken from four day toxicity tests

with constant exposure11 and previous studies9,12 (SI Table
S1). Overall we analyzed data for 14 compounds: 2,4-
dichloroaniline, 1,2,3-trichlorobenzene, 2,4-dichlorophenol,
pentachlorophenol, 2,4,5-trichlorophenol, 4,6-dinitro-o-cresol,
aldicarb, carbofuran, carbaryl, diazinon, malathion, chlorpyrifos,
sea-nine and 4-nitrobenzyl-chloride. The CAS numbers can be
found in SI Table S2. We used the same batches of 14C-labeled
compounds as in the toxicokinetic studies.7,9 The 14C-labeled
chlorpyrifos, pentachlorophenol, carbaryl, malathion, aldicarb,
carbofuran, imidacloprid were supplied by the Institute of
Isotopes, Budapest, Hungary. 2,4-Dichloroaniline, 2,4-dichlor-
ophenol, 1,2,3-trichlorobenzene, 4,6-dinitro-o-cresol, 2,4,5-
trichlorophenol, ethyl acrylate, 4-nitrobenzyl-chloride were
supplied by American Radiolabeled Chemicals, St. Louis,
MO. Sea-nine (4,5-dichloro-2-octyl-3-isothiazolone) was sup-
plied by Amersham (GE Healthcare), UK. Unlabeled material
of these compounds was of analytical grade and purchased from
Sigma-Aldrich, Buchs, Switzerland, except for Sea-Nine (>97%
purity, Rohm and Haas), which was a gift of Christ Chemie AG,
Rheinach, Switzerland.
The pulsed toxicity tests generally followed the design

established previously,8,9 in which test organisms were exposed
to pulses of toxicant of 1 day duration, then transferred to clean
medium for intervals of varying duration (treatment), followed
by a second pulse of the same concentration and duration.
Survival was measured daily throughout the experiment,
including a follow-up period after the last pulse. This design

allows for depuration of toxicant and different degrees of
recovery between pulses. The overall durations of the pulsed
toxicity tests were between 6 and 28 days (SI Table S1). Raw
data is provided in the Supporting Information, including
measured time series of exposure concentrations and survival in
the pulsed toxicity tests (SI Figures S6−S19).

Modeling Approach. The time-course of the sums of
internal concentrations of toxicologically active chemicals in the
tested organisms (SI Table S3) was simulated using previously
established toxicokinetic models7,9 and served as input for
GUTS-IT and GUTS-SD.3,8 Scaled damage was the dose
metric in both toxicodynamic models (for an explanation of
scaled damage see the original GUTS publication3). Toxicody-
namic parameters were estimated by maximizing the likelihood
(see eq 8 below) with a combination of Monte Carlo sampling
of the parameter space and optimization with the downhill
simplex algorithm.
The models were implemented in ModelMaker (version 4,

Cherwell Scientific Ltd., Oxford, UK). First the background
hazard rate was fitted to the control survival data from each
experiment, assuming constant background hazard through
time (this can be replaced with a different model for
background hazards that change through time, for example,
Weibull13). Then the toxicodynamic parameters were fitted to
the survival data from all the treatments. Wherever possible we
used data from the pulsed toxicity tests in conjunction with data
from standard toxicity tests11 because the combination of
pulsed and constant exposures maximizes the information gain
for this type of model.14

History and Assumptions of GUTS. GUTS is the current
synthesis of a range of assumptions and toxicokinetic-
toxicodynamic models traditionally used to describe survival
data in (eco)toxicology.3,15 Historically these models16−22

evolved out of the need to understand and describe the time
course of toxicity data and they have been reviewed
previously.3,15,23,24 Common to these models is that they relate
a dose metric to mortality, where the dose metric is allowed to
vary over time. Common dose metrics are external concen-
trations (i.e., concentration in experimental media), scaled
internal concentrations, internal whole body concentrations,
scaled damage and damage. GUTS does not prescribe the use
of any of these dose metrics, it can be used with any dose-
metric as long as there is consistency within one study. Here,
we chose to simulate internal whole body concentrations and
use the scaled damage as dose metric because we want to
quantify toxicodynamic parameters without confounding them
with toxicokinetics.
Traditionally effect models relate mortality to the maximum

concentration, critical body residue or the area under the curve.
Inherent in these choices are assumptions about the speed of
toxicodynamic recovery, for example using the maximum
concentration assumes very fast toxicodynamic recovery and
using the area under the curve assumes very slow
toxicodynamic recovery. It has been shown that these
assumptions, when expressed mathematically, translate into a
subset of the traditionally used toxicodynamic models.3,15 As
these assumptions hold only for certain groups of chemicals
and are difficult to ascertain as discussed in the introduction,
the suitability of the corresponding models is often not given or
unclear. GUTS resolves this problem because it does not
require a priori assumptions about the speed of toxicodynamic
recovery.3 This is why it has been suggested that GUTS is
applicable to a wide range of chemicals with diverse modes of
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action and speeds of toxicodynamic recovery.3 However, GUTS
requires the assumption that toxicodynamic recovery can be
approximated with first order kinetics, and that the link
between the dose metric and mortality can be modeled with a
proportionality constant (killing rate constant, see below)
between the dose metric and the hazard rate and a distribution
for the threshold.3 Here we assumed a log−logistic distribution
of the threshold (see eq 6 below), but other distributions are
possible too. Further we assume time-invariable model
parameters, which implies that organisms do not change
substantially during the experiment (e.g., no physiological
adaptation) and we ignore variability in toxicokinetics between
organisms.
Toxicokinetic Model. The time-course of internal

concentrations in G. pulex was simulated using a previously
established toxicokinetic model:7,9

∑
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− ×
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Where Cinternal,p(t) is the concentration of the parent compound
in the organism [nmol/kgw.w.], Cw(t) is the concentration of the
parent compound in the water [nmol/L], Cinternal,j(t) is the
concentration of biotransformation product j in the organism
[nmol/kgw.w.], kin,p is the uptake clearance coefficient [L/(kgw.w.
× d)], kout,p is the elimination rate constant of the parent
compound [1/d], kmet,j is the first-order biotransformation rate
constant for formation of metabolite j [1/d] and kout,j is the
elimination rate constant of the biotransformation product j.
As there was a maximum of three different biotransformation

products, j took values between 1 and 3. For some parent
compounds we did not detect any biotransformation7 and for
others we modeled the toxicity using the sum of the internal
concentrations of parent compound and biotransformation
products as driving variable for the toxicodynamic model (e.g.,
for baseline toxicity, see SI Table S3). In both those cases the
toxicokinetic model reduces to eq 1 without the biotransfor-
mation term.
Dose Metric. The dose metric is the state variable which is

compared with the threshold (SI Figure S2). We used the two
limit cases of GUTS, GUTS-SD, and GUTS-IT, both with
scaled damage as dose metric. The scaled damage is a proxy for
the toxicodynamic state of the organism3 and is calculated
based on the sums of the internal concentrations of the
toxicologically active chemicals (SI Table S3):

= × −
D t

t
k C t D t

d ( )

d
( ( ) ( ))scaled

r sum tox,organism scaled (3)

Where Dscaled(t) is the time course of the scaled damage [nmol/
kgw.w.], t is time [d], Csum tox, organism(t) is the time course of the
sums of the internal concentrations of the toxicologically active
chemicals in the organism [nmol/kgw.w.] and kr is the damage
recovery rate constant [1/d]. The damage recovery rate
constant captures the time course of toxicodynamics and we
use two different parameters kr SD and kr IT for the two limit
cases of GUTS.

Effects on Survival in GUTS-SD. Here, the hazard rate is
the probability of an organism dying at a given point in time
and, assuming it increases linearly with the damage above the
threshold, is calculated as3,8,22

= × − + _
H t

t
k D t z h

d ( )

d
max( ( ) , 0) controlsk scaled (4)

Where dH(t)/dt is the hazard rate [1/d], kk is the killing rate
constant [kgw.w./(nmol × d)], Dscaled(t) is the time course of the
scaled damage [nmol/kgw.w.], t is time [d], z is the threshold
[nmol/kgw.w.] and h_controls is the background hazard rate
(control mortality rate, assumed to be constant through time)
[1/d]. The survival probability, that is, the probability of an
individual to survive until time t, is given by

= −S t( ) e H t( )
(5)

Where S(t) is the survival probability [unitless].
Effects on Survival in GUTS-IT. Here we assume a log−

logistic distribution of the threshold in the tested population
(individual tolerance).3,8 Then the cumulative log−logistic
distribution of the tolerance threshold in the test population,
which changes over time as individuals die, is calculated as

=

+
τ

α

β−
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Where F(t) is the cumulative log−logistic distribution of the
tolerance threshold over time [unitless], Dscaled(t) is the time
course of the scaled damage [nmol/kgw.w.], t is time [d], τ is
time [d], α is the median of the distribution [nmol/kgw.w.] and
β is the shape parameter of the distribution [unitless]. Under
the assumption of individual tolerance the survival probability is
then given by3,8

= − × − _ ×S t F t( ) (1 ( )) e th controls
(7)

Where S(t) is the survival probability [unitless] and h_controls
is the background hazard rate (control mortality rate, assumed
to be constant through time) [1/d].

Likelihood Function and Parameter Estimation. The
parameters for GUTS-SD and GUTS-IT were found by
maximizing the ln(likelihood) function:3

∑θ θ θ| = − −
=

+

− −l y y S Syln ( ) ( )ln( ( ) ( ))
i

n

i i i i

1

1

1 1
(8)

Where l is the likelihood, y is the time series of the number of
survivors, i is sampling date, n is the number of sampling dates,
θ is the vector of model parameters and S(θ) is the survival
probability given θ. Note that n is the last sampling date and n
+1 is infinity. This means yn refers to the number of survivors at
the end of the test, who will die between then (n) and infinity
(n+1). The likelihood was calculated for each treatment and the
likelihoods for all treatments were summed up.
Then the −ln(likelihood) was minimized using a combina-

tion of Monte Carlo sampling of the parameter space and
optimization with the downhill simplex algorithm. For the
GUTS-SD model the parameters kr, SD, kk and z were calibrated
and for the GUTS-IT model the parameters kr, IT, α, and β were
calibrated. The parameter kr was constrained to 0.001<kr <
1000 d−1 because this translates to recovery times between 4
min and 30 000 days. All other toxicodynamic parameters were
constrained to positive values.
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The 95% confidence intervals are calculated from transects of
the ln(likelihood) surface. Each parameter is varied separately,
the resulting ln(likelihood) values are compared to the best-fit
ln likelihood value and then the parameter value on each side of
the best fit that corresponds to a 1.92 difference (half of 3.84,
the corresponding value of the χ2 distribution for 1 degree of
freedom) to the best-fit ln(likelihood) is taken as the 95%
confidence interval.
Model for Effects of Internal Mixtures with Different

MOAs. There were two parent compounds for which we
modeled two separate, independent modes of toxic action
because the biotransformation of the parent compound with a
specific MOA led to metabolites that we assumed to act via
baseline toxicity. Details on the biotransformation pathways,
rates, and products can be found in the biotransformation
study.7 In the cases of 4NBCl and Sea-nine the internal
concentrations of the parents were modeled as reactive
toxicants, whereas the sum of the internal concentrations of
the metabolites was modeled as baseline toxicant. The other
specifically acting compounds were either modeled based on
the sum of the internal concentrations of parent and
metabolites combined or based on the internal concentrations
of the parent compound alone (SI Table S3).
In cases of toxicodynamic models with two different MOAs

(parent compounds: 4NBCl and Sea-nine) we used toxicody-
namic parameters of 123TCB (this is a well-known prototype
baseline toxicant) to simulate the effects of the metabolites that
are assumed to act via baseline toxicity. We kept the
toxicodynamic parameters for the metabolites fixed at baseline
toxicity values while fitting the toxicodynamic parameters for
reactive toxicity (4NBCl and Sea-nine). As we assumed
independence of the two MOAs we modeled separate scaled
damages for each using eqs 3 to 7 and then multiplied the
resulting survival probabilities:

= × × − _ ×S t S t S t( ) ( ) ( ) e h t
combined baselinetoxicity specificMOA

controls

(9)

Multiplying S(t) is equivalent to adding hazard rates in GUTS-
SD. Internal mixtures of compounds acting via the same MOA
can be modeled by summing the scaled damages.25

Disappearance Times and Damage Recovery Times.
The disappearance time is an approximation of how fast the
organisms eliminate the toxicants. The damage recovery time is
an approximation of how fast the scaled damage declines after
toxic insult and can be viewed as an indication of how fast
toxicodynamic repair and recovery processes are. Times to 95%
disappearance of the toxicologically active chemicals (dis-
appearance time) were calculated with the toxicokinetic model
and the time to 95% toxicodynamic recovery (damage recovery
time) were calculated assuming a first-order model represents
toxicodynamic recovery as

= −t kln 0.05/damage recovery r (10)

■ RESULTS AND DISCUSSION

Chemicals and Mode of Action Classification. In
aquatic toxicology toxicity is typically represented by the
concentration of chemicals in the aqueous phase that kills 50%
of the test organisms after a fixed time (LC50). Internal
exposure concentrations represent the biologically effective
dose and account for toxicokinetics.26 Toxicity is then reported
as internal lethal concentration that kills 50% of the test

organism, ILC50 (SI Figure S1). The ILC50 much better reflects
the intrinsic toxicity, i.e., toxicodynamics, and thus allows
classification of chemicals according to groups of modes of
action, which is important in itself, but also for understanding
mixture toxicity,27 species sensitivity differences28 and for
environmental risk assessment.29

The baseline toxicity is the minimum toxicity any chemical
can exhibit. It corresponds to a constant internal concentration
independent of chemical and biological species with ILC50 in
the order of a few mmol of chemical per kg of organism, e.g, 2
to 8 mmol/kgfish

29,30 or 0.9 to 3.1 mmol/kgwater flea.
31 The mode

of action underlying baseline toxicity is narcosis, i.e., the
mechanism is the nonspecific partitioning of chemicals in
biological membranes and membrane-protein interfaces.31,32

Because the bioaccumulation is dependent on the hydro-
phobicity of a chemical, the LC50 of baseline toxicants is
quantitatively related to hydrophobicity descriptors such as the
octanol−water partition coefficient Kow,

32 the lipid membrane-
water partition coefficient Klipw

33 or, for ionizable chemicals, the
speciation-corrected lipid membrane-water distribution ratio
Dlipw(pH).

29,31 In SI Figure S1A, the Dlipw(pH7) is used as
hydrophobicity descriptor because the test set of chemicals
includes some weak organic acids. The LC50 values of all
baseline toxicants lie on the green line in SI Figure S1A, which
is the baseline Quantitative Structure Activity Relationship for
the model organism G. pulex.
Chemicals that act according to a specific (i.e., receptor-

mediated) mechanism or exhibit reactive toxicity have a lower
LC50 than the corresponding baseline LC50. A measure of the
degree of enhancement of effect is the toxic ratio TR, which is
the quotient of the baseline LC50 to the experimental LC50.

34

The TR values typically range around 1 (0.1 < TR ≤ 10) for
baseline toxicity and TR > 10 for specifically acting and reactive
chemicals.34,35

The TRs derived from the experimentally determined LC50

values after 48h of exposure ranged from 0.2 to 30 000 (SI
Table S2). The known baseline toxicants had TR matching the
criterion for baseline toxicity but the expected uncouplers
245TCP and PCP31 and the expected reactive toxicant 4NBCl
classified in G. pulex merely as baseline toxicants. All other
expected specifically acting compounds were confirmed by the
TR analysis (SI Table S2). Most chemicals were extensively
metabolized and for some MOAs not the parent is the
toxicologically active species but rather an internal metabolite.
This is the case for 4NBCl as well as for the organo-
thiophosphates where only the oxidized species inhibits the
acetylcholinesterase. The subsequent toxicokinetic-toxicody-
namic modeling resulted in similar toxicodynamic parameters
for PCP, 245TCP and DNOC when using GUTS-IT (Figures 2
and 3C,D), but 245-TCP did not cluster with PCP and DNOC
when using GUTS-SD (Figures 2B and 3A,B). The clustering
for GUTS-IT (Figure 3C,D) would support the interpretation
that all three are uncouplers, but the TR analysis indicates
otherwise and the clustering for GUTS-SD would suggest that
PCP acts via baseline toxicity (Figure 3A,B). In case of these
three “controversial uncouplers” the rate limiting process for
organism recovery is damage recovery for GUTS-IT (Figure
4B) and toxicant elimination for GUTS-SD (Figure 4C). In
case of 4NBCl the toxicokinetic-toxicodynamic modeling
revealed that most of the observed toxicity can already be
simulated as result of the baseline toxicity of the metabolites,
which explains why the LC50 based TR analysis (SI Table S2)
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indicates baseline toxicity and the ILC50 based analysis (SI
Figure S1B) indicates specific toxicity.
The ILC50 were calculated from the experimental LC50 using

a comprehensive toxicokinetic model7 and refer only to the
concentrations of the toxicologically active species (parent or
metabolite or combination thereof) (SI Table S2 and S3). The
intrinsic potency (i.e., TR) shifted when the biologically
effective internal dose was taken into account rather than the
parent concentration in the aqueous phase (SI Table S2). The
TR derived from ILC50 can be considered more toxicologically

relevant as it is already corrected for toxicokinetic differences
and is a pure measure of toxicodynamic excess toxicity.29,35

Learning about the Toxic Mechanism from Survival
Data. A cornerstone of toxicology is the idea that the mode of
action (MOA) is related to the chemical structure29 and that
MOAs are often conserved across biota because they are
triggered by common molecular initiating events.36 We
hypothesized that toxicodynamic parameters reflect the MOA
and cluster according to chemical class.5,6 Thus, we look for
patterns in toxicodynamic parameter space. Both toxicody-
namic models contain a generic state variable “damage”. An
increase in the internal concentration of the toxicologically
active chemicals is translated into an increase of damage, and
when a damage threshold (parameter α in GUTS-IT, z in
GUTS-SD) is exceeded then the organism dies (GUTS-IT) or
the hazard rate increases (GUTS-SD) (SI Figure S2). The
recovery of “damage” represents biochemical and physiological
recovery, approximated as a first-order system, and is quantified
by the recovery rate constant kr. The killing rate kk is the slope
between the damage and the hazard rate in GUTS-SD, whereas
β is the slope of the log−logistic distribution of α in GUTS-IT.
The interplay of the three parameters in each model determines
the shape of the survival curve. The toxicodynamic parameters
were found by fitting both GUTS models to survival data from
standard and pulsed exposure toxicity tests for our 14 study
compounds. The parameter values at the smallest -ln likelihood
are the best-fit parameter values given in SI Tables S4 and S5.
Since both models can describe the experimental data

adequately (SI Figures S4, S6−S19), we compared the recovery
rates. For all chemicals IT was associated with smaller recovery
rates than SD (Figure 2A), which confirms the expectation that
recovery is slower in case of IT as compared to SD (first
hypothesis). The same pattern was observed in fathead minnow
and carp, although with only one toxicant.37 This is evidence
that it matters whether one uses a model based on the
assumption of SD or IT. It means that any given survival data
can be explained by either slower toxicodynamic recovery and a
wider individual tolerance distribution, or faster recovery paired
with a narrow tolerance distribution in the test population. This
finding not only has implications for toxicology, pharmacology
and epidemiology but because selection has implications for IT
but not for SD it might also contribute to our understanding of
evolutionary processes.38

The effect thresholds α and z were very similar in both
models (Figure 2B) and the toxicodynamic parameters tend to
cluster according to the MOA (Figures 2 and 3). For both SD
and IT, the thresholds decreased from baseline toxicity over
reversible (uncoupling, carbamate AChE inhibition) to
irreversible MOAs (reactive toxicity, organophosphate AChE
inhibition). Within each model, the MOAs also tend to cluster
when the recovery rates were plotted against the thresholds
(Figure 3B,D), although IT more strongly differentiated
between the different MOAs. Baseline toxicity is characterized
by the combination of large thresholds with fast recovery in
both GUTS-SD and −IT (Figure 3B, D) as well as small killing
rates in GUTS-SD (Figure 3A).
When using GUTS-SD with scaled internal concentration as

dose metric it is the same as the classic DEBtox acute model.3,22

When using GUTS-SD with modeled internal concentrations as
input and scaled damage as dose metric, killing rates are
expected to be smaller and thresholds larger as compared to the
classic DEBtox acute model for bioaccumulative chemicals (i.e.,
where internal concentrations are larger than external

Figure 2. Patterns in toxicodynamic parameters: (A) Faster damage
recovery when assuming stochastic death, slower damage recovery
when assuming individual tolerance. (B) Decreasing thresholds (α for
GUTS-IT and z for GUTS-SD) from baseline toxicants to reversible
and irreversible MOAs. Green squares: baseline toxicity, blue
hexagons: uncoupling of oxidative phosphorylation, orange triangles:
AChE inhibition (carbamate), red circles: AChE inhibition (organo-
phosphates), purple diamonds: reactive toxicity.

Figure 3. Patterns in toxicodynamic parameters. Clustering of
toxicodynamic parameters according to chemical MOA is more
pronounced for GUTS-IT (panels C, D) than for GUTS-SD (panels
A, B). (A) Parameters z and kr in GUTS-SD, (B) Parameters kr and z
in GUTS-SD, (C) Parameters α and β in GUTS-IT, (D) Parameters kr
and α in GUTS-IT. Green squares: baseline toxicity, blue hexagons:
uncoupling of oxidative phosphorylation, orange triangles: AChE
inhibition (carbamate), red circles: AChE inhibition (organophos-
phates), purple diamonds: reactive toxicity.
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concentrations). Mindful of this caveat we compared our results
with GUTS-SD and G. pulex to previous DEBtox acute
modeling with baseline toxicants and reactive chemicals in
fathead minnows (Pimephales promelas)6 and baseline toxicants
in D.magna.39 Killing rates for G. pulex in this study cover a
narrower range than with P. promelas and sit in the lower range
of baseline toxicity killing rates for P. promelas, but in the upper
range of reactive toxicity killing rates for P. promelas (compare
Figure 3A in this study with Figure 4 in Jager & Kooijman6).
For baseline toxicity this shift is as expected (due to the
different dose metrics) and is also consistent with the higher
killing rates for baseline toxicants in D. magna.39 The G. pulex
threshold values (z in our study, NEC in Jager & Kooijman6)
for baseline toxicity are higher than for P. promelas and D.
magna, whereas the G. pulex z values do extend to lower values
for specifically acting compounds. Interestingly, in our study
most compounds appear to fall on a straight line when plotting
z against kk, but we did not observe the parallel lines for
baselines toxicants and reactive chemicals (shifted to lower left)
observed for P. promelas.6 To learn more about species
sensitivity differences from interstudy comparisons one would
have to account more rigorously for the differences in dose
metrics and the covariation of model parameters (e.g.,
correlated killing rates and thresholds). Due to this covariation
it is unclear how meaningful a comparison of each parameter by
itself across studies with different dose metrics is, but threshold
values would be expected to have larger values for
bioaccumulative chemicals when scaled damage is used as it
is done here as opposed to scaled internal concentration.6,39

From baseline toxicity to reversible to irreversible MOAs the
thresholds and recovery rates decreased in GUTS-SD and
GUTS-IT (Figure 3), whereas killing rates increased for GUTS-
SD (Figure 3A) but no clear pattern for β emerged for GUTS-
IT (Figure 3C). A comparison of thresholds (z and α) with
critical organism concentrations for a wide range of aquatic
species and toxicants40 revealed that values from this study are
similar but confined to narrower ranges. This could mean that
the three toxicodynamic parameters of GUTS are better able to
discriminate between MOAs than a single critical organism
concentration, but this notion requires further study with a
wider range of species and toxicants.
What Is Rate Limiting: Toxicokinetics or Toxicody-

namics? The interplay of toxicokinetics and toxicodynamics
determines the time-course of toxicity. The question of
toxicokinetics versus toxicodynamics is fundamental because
toxicokinetics are driven by physicochemical properties whereas

toxicodynamics are related to the chemical reactivity and three-
dimensional structure of the active chemical species. Complete
organism recovery can be defined as when damage falls
sufficiently below the threshold that a subsequent exposure
would not cause excess damage accumulation and carry-over
toxicity.9 Thus, organism recovery depends not only on
toxicokinetics but also on the threshold and damage recovery
rates and it is dominated by whichever is slower, toxicokinetics
or toxicodynamics.
Shorter damage recovery times were calculated when

assuming SD, longer times for IT (Figure 2A). In general for
IT, toxicodynamics appear more rate limiting, while for SD
toxicokinetics and toxicodynamics are equally rate limiting
(Figure 4B,C). The classes, which generally discriminate mode
of action of the toxins, show the same clusters but they are
shifted in TK-TD space. For both patterns of mortality
organism recovery from baseline toxicants was driven by
toxicokinetic rates, that is, biotransformation and elimination.
Toxicodynamic recovery dominated overall organism recovery
for MOAs that are known to be slowly reversible (e.g.,
carbamates) or even irreversible (e.g., OPs, reactive chemicals)
on the biochemical level. Exceptions were Carbofuran and
Chlorpyrifos (GUTS-SD), for which organism recovery was
also dominated by toxicokinetics instead of toxicodynamics due
to unexpectedly slow elimination of a toxicologically active
metabolite. For specific reversible (e.g., uncoupling) and
reactive mechanisms IT and SD differed in outcomes.

Toxicity, Organism Recovery and Incipient LC50.
GUTS does not require a priori assumptions about whether a
maximum damage at a given time, an average or an area under
the curve is critical, rather any of these cases are possible
depending on the parameter values.15 Here we used GUTS to
study organism recovery, which is quantified by a first-order
rate constant (kr). This simple, generic model of toxicody-
namics eqs 3−7 allowed a top-down comparison of damage
recovery across different chemical classes. These features make
the model applicable across chemical classes, but less accurate
in each single, specific case. Previous studies have established
the importance of recovery time, because incomplete organism
recovery leads to delayed (latent) and carry-over toxic-
ity.5,9,12,25,41−45 Delayed effects occur after exposure ceases,
whereas carry-over toxicity manifests itself in the increased
toxicity of subsequent exposures.5,9,25 Here we simply defined
toxicodynamic recovery as the time needed to repair 95% of
damage in our first-order model eq 10, however toxicokinetic-
toxicodynamic modeling also enables calculation of the time

Figure 4. (A) Damage recovery time for IT and SD model. Importance of toxicokinetics and toxicodynamics for organism recovery: individual
tolerance (B) and stochastic death (C). Dotted: 1:1 line. Green squares: baseline toxicity, blue hexagons: uncoupling of oxidative phosphorylation,
orange triangles: AChE inhibition (carbamate), red circles: AChE inhibition (organophosphates), purple diamonds: reactive toxicity.
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that an organism needs to recover such that no delayed effects
(e.g., damage falling below threshold) or carry-over toxicity
occur anymore (e.g., damage falling below 5% of the
threshold5,9). The former is a straightforward definition, but
the latter is operationally defined and requires further
investigation. Our results imply that assuming SD or IT will
also result in different organism recovery times. A special case
of time to steady state considerations is the “incipient” LC50.
Much effort in (eco)toxicology has been spent searching for
“incipient” or “asymptotic” LC50 values when evaluating the
time dependence of toxicity.4,20,46,47 This search could be
misdirected because an incipient LC50 is only possible in an
experimental system that conforms entirely to the individual
tolerance assumption. If stochastic death plays a role then
incipient LC50 values cannot exist (Figure 1C, see also6),
although we speculate that apparent incipient LC50 values may
be observed due to adaptation or small sample size.
Temporal Aspects of Toxicity and Model Parsimony.

Inclusion of the temporal dimension quickly reveals that GUTS
requires far fewer fit parameters to describe toxicity than
traditional concentration response modeling. This becomes
obvious when predicting toxicity at different points in time.
GUTS-IT and GUTS-SD can also be used with exposure
quantified by external concentrations8 and always only require
three parameters each−independently of the number of time
points modeled. The additional parameters of the toxicokinetic
model do not count in this comparison, because that was a
choice we made here so that we can learn about
toxicodynamics. More to the point, using concentrations in
the medium as driving variable for GUTS, for example
fluctuating pesticide concentrations,37 resulted in similar
predictive power as when using internal concentrations in
one previous study.8 The most simple concentration−response
model for four time points already requires eight parameters
(four times slope and LC50) or five parameters if a constant
slope is assumed. For more time points and predictions over
time GUTS quickly outperforms concentration response
models. There are also other methods that account for the
time course of mortality data with relatively few fit parameters,
for example time-to-event modeling48 or a modified Mancini-
type model,49 which differ in their assumptions and applicability
scenarios. Because toxicokinetic-toxicodynamic models like
GUTS are based on differential equations they are a natural
choice for scenarios with fluctuating or time-variable
exposure.23,47,50−52 This sets them apart from conventional
survival analysis,53 time-to-event analyses,48 modifications of
Haber’s law54−58 or other methods that require constant
exposure concentrations.49,59,60 Our observation that GUTS-IT
results in systematically slower damage recovery (Figure 4A)
does not mean that it will necessarily result in worst case
mortality predictions. Due to parameter covariance the
calibration of GUTS-IT can result also in parameter
combinations that predict less mortality than GUTS-SD and
that outcome also depends on the exposure scenario.37 As the
theory underlying the effect model influences predictions for
intermittent exposures43 and it is difficult to know a priori
which limit case (SD or IT) results in the worst case for which
exposure scenario,37 it seems prudent to always use both,
GUTS-SD and GUTS-IT, or GUTS proper when doing
environment risk assessment.37 Here we modeled toxicody-
namics of different MOAs with one model structure using the
same toxicodynamic equations for all MOAs. This constitutes a

parameter-sparse model and contributes to the development of
overarching principles in ecotoxicology.61

Applications to Current Challenges in Ecotoxicology.
Generally applications of toxicokinetic-toxicodynamic models
range widely,24,51,52 including assessment of time-variable
exposures,37,47,62,63 mixture toxicity25,27,64,65 and potentially
quantitative adverse outcome pathways.44 The General Unified
Threshold model of Survival can be viewed as a refinement of
traditional survival curve analysis and dose response models.
GUTS has also been used to study life-stage specific
sensitivity,66 species sensitivity differences,67 the relation
between biomarkers and survival68 as well as the combined
effects of toxicity and starvation69,70 (i.e., multiple stressors).
Mixtures pose another great challenge for chemical pollution
and to date cannot be sufficiently addressed.27,71,72 Here we
include mixture effects by explicitly modeling the biotransfor-
mation products and their contribution to toxicity.
Our results support the hypothesis that toxicodynamic

parameters cluster according to mode of action (Figures 2, 3,
and 4), although the pattern for GUTS-IT is more pronounced
than for GUTS-SD and there is substantial variability within
modes of action. This variability could originate from
interexperimental variability, from the use of field sourced
test organisms, the ignorance of toxicokinetic variability among
organisms or a host of other reasons. Also the model calibration
is very sensitive to variability in the data and the choice of
toxicologically active chemicals. Further studies are clearly
needed to understand how robust the toxicodynamic patterns
are and whether they also exist for other species, chemicals and
end points (e.g., sublethal).
Assuming that the toxicodynamic clustering hypothesis holds

true more widely it would suggest several applications. First,
analyzing survival data in combination with toxicokinetic
information (modeled or measured) for other chemicals
using GUTS could indicate the mode of action. Second, it
might be possible to predict the toxicity of untested chemicals
of a known mode of action (e.g., from chemical structure) by
reading GUTS parameters from Figure 3 and combine them
with predicted toxicokinetics73,74 to calculate a toxicity
estimate. Third, we suggest toxicodynamic parameters as
novel phenotypic anchors for in vitro to in vivo toxicity
extrapolation. Toxicity extrapolation from in vitro to in vivo
systems should aim at predicting TK-TD model parameters on
the organism level as they have a biological interpretation and
appear to reflect the biochemical mechanisms of toxicity. For
the same reasons TK-TD parameters may be potentially
powerful end points for novel Quantitative Structure Activity
Relationships6 and their study contributes to building theory in
ecotoxicology.29,52,75 Finally, we note that our approach to
survival analysis can also be applied to stressors other than
chemicals and entities other than organisms.
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