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Abstract

Individuals with Autism Spectrum Disorder (ASD) often display enhanced attention to detail and

exhibit restricted behaviour. However, due to a lack of comprehensive eye-movement modelling tech-

niques, it is currently unknown whether these behavioural effects are also evident during scene viewing

(i.e. detailed visual inspection and restricted visual exploration). Free viewing eye-tracking data from

observation of everyday photographic scenes were recorded during two experiments involving high func-

tioning adolescents with ASD and matched typically developing (TD) controls (Experiment 1 ASD n=14;

TD n=22; Experiment 2 ASD n=16; TD n=23). Data from both experiments were combined and anal-

ysed using five novel methods of eye-tracking time-course analysis, enabling detailed characterisation of

viewing strategies. Participants’ verbal descriptions of scenes were also assessed. Scenes either contained

a centrally positioned person whose face was in full view or contained no centrally positioned face. For

both types of scene, ASD participants displayed significantly less exploration of new areas over time

compared to their TD peers. Analyses of scanpath length and recursion suggested a greater tendency to

explore areas close to the current fixation in the ASD group, termed visual persistence. Differences were

not accounted for by fixation rate. Significantly more areas within the scenes were also missing from

the verbal descriptions in the ASD group. Differences were observed for both scene types suggesting a

domain-general difference rather than a specific impairment related to face processing. The observed

characteristic viewing patterns may explain relative superior processing of local level information in

individuals with ASD.

General Scientific Summary: Using new analytic approaches to eye-tracking data, we demonstrate that

eye movements when free-viewing visually complex scenes made by individuals with autism are fundamentally

different compared to those of their typically developing peers. We observed reduced visual exploration in

those with autism and a greater tendency to explore areas close to the current fixation. This will result in

the visual information received by the perceptual system being systematically different between those who

have autism and those who do not.

Keywords: Visual exploration; autism; eye tracking; complex scenes; convex hull; linear model with random

effects.
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1 Introduction

The world around us contains a vast array of visually complex information. Although certain aspects of

gist can be extracted from a brief glance at a scene (Fei-Fei et al. 2004; Dobel et al. 2007), during longer

scene viewing fixations tend to be directed towards important and informative regions enabling more detailed

information to be extracted. This is due to high quality visual information only being available from a limited

spatial region surrounding the centre of gaze (the fovea) (Henderson 2003). When viewing our environment,

we tend to fixate only on a small portion of the available information and from this we construct an internal

representation of reality. Therefore, how we visually explore our environment has a fundamental impact on

our perception and understanding of that environment. Klin (2003) termed this process the “enactive mind”.

Recently interest in characterising the temporal dynamics of eye movement scanpaths during free-viewing of

scenes has begun to emerge (Anderson et al. 2013; Wu et al. 2014), although the current range of methods

available to researchers is limited and all work in this area to date has been conducted on data collected

from the neurotypical population.

Many aspects of attention are known to be atypical in individuals with Autism Spectrum Disorder (ASD),

see Ames and Fletcher-Watson (2010); Landry and Parker (2013); Guillon et al. (2014) for reviews. Hence it

is possible that general temporal properties of eye movement scanpaths are also different in this population.

However, currently available methods for characterising temporal aspects are not sufficiently developed to

enable such assessment, in particular the likelihood to fixate new areas over time; tendency to remain close

to previous fixations, or to revert to areas previously viewed. There is therefore a need for new approaches to

characterising eye movement scanpaths that can improve our insight into these aspects of visual exploration.

Individuals with ASD generally display heightened attention to detail. The revised theory of Weak Central

Coherence (Happé and Frith 2006) suggests a processing bias for local over global levels of information in

ASD, resulting in local details being relatively more salient and a processing bias towards features. This

relative local salience has been linked to enhanced perceptual functioning in ASD (Mottron et al. 2006). It

has also been proposed that individuals with ASD have enhanced perceptual capacity (Remington et al. 2009,

2012) resulting in distractor information being suppressed to a lesser extent and making more information

available for perceptual processing. This is supported by the finding that those with ASD have difficulty

ignoring distracting visual information (Burack 1994), and that high levels of autistic traits are associated

with a neural correlate of increased attention to task-irrelevant features of the visual array (Milne et al.

2013).

Those with ASD have also been described as having sticky attention. They can have difficulty disengaging

from an initial point of fixation (Kikuchi et al. 2011; Landry and Bryson 2004) and in demanding tasks tend
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to display reduced saccadic activity (Kemner et al. 1998; Goldberg et al. 2002). In line with this Vabalas

and Freeth (2015) recently found that during a face-to-face interaction individuals who were high in autistic

displayed restricted eye-movements (shorter and less frequent saccades) compared to peers who were low in

autistic traits. Visual inspection of objects is also often prolonged or unusual in infants who later develop

ASD (Ozonoff et al. 2008). When children with ASD viewed picture arrays they tended to view fewer

objects overall, look at individual objects for longer and make more fixations per object inspected (Sasson

et al. 2008). Similar findings were observed in younger children (2–5yr olds) with ASD (Sasson et al. 2011)

though the most pronounced differences were observed in adolescence (Elison et al. 2012). However, it

is currently unclear whether these circumscribed viewing strategies would also be employed when viewing

more naturalistic, visually complex stimuli, such as visual scenes. It is also unclear whether any temporal

differences exist and can be characterised.

Restricted behaviour is another core feature of ASD. This can apply to a range of domains, such as

having special interests or performing repetitive actions (South et al. 2005). Pierce and Courchesne (2001)

found that children with autism displayed restricted exploration of their environments in a free-play situation

and propose that this type of behaviour could cause those with autism to miss learning opportunities that

fall outside their scope of interest. Pellicano et al. (2011) also observed reduced exploratory behaviour in

a large scale behavioural search task, finding that children with autism had a greater tendency to re-visit

areas previously searched than their typically developing peers. It is possible that restricted exploration is

a domain-general feature of ASD, also applying to eye movements during free-viewing. This hypothesis is

tested by the current investigation. However, in relation to free-viewing of visual scenes, restricting fixations

to smaller regions within scenes may not necessarily have a negative outcome. This could, perhaps, increase

information gained from those regions compared to those who take more cursory glances at such regions,

resulting in increased knowledge or understanding of those regions more carefully inspected.

In this paper, we develop five highly sensitive, novel, robust measures of visual exploration assessing

different aspects of eye movement behaviour: spread of fixations; scanpath length progression; fixation rate;

visual persistence (the tendency to remain in the same area of viewing); and reversion to areas previously

viewed. We also analyse verbal scene descriptions, noting regions omitted, to indicate how widely interest

has been captured. These methods were applied to data previously collected from adolescents with ASD and

matched typically developing (TD) adolescents for other studies, sub-sets of which were published presenting

area of interest analyses in relation to social aspects of scene content (Freeth et al. 2010, 2011b) and analyses

of eye movements in relation to visual saliency properties of images (Freeth et al. 2011a). In the current work

however the interest was in characterising the nature of visual exploration of scenes during free-viewing and

the progression of exploration over time. The presented methodologies are not however only applicable to
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our study group and we hope will have broader appeal to those interested in temporal analysis of scanpaths

and who wish to obtain more detailed characterisations than have been previously available. All analysis

was performed in the R programming language (R Core Team 2015) and code is available from the authors

on request.

Adolescents with and without ASD viewed a series of photographic scenes for 5 (Expt1) or 15 seconds

(Expt2) each. In Expt2, following the free-viewing phase, participants were asked to look at each scene again

and provide a verbal description of the scene. No time limit was applied in this phase. Data from these two

experiments were combined and used to model the progression of visual exploration over time. We analysed

scenes both with and without a centrally positioned face to investigate whether any differences in exploration

would be observed in response to all scenes or merely those containing prominent faces. Based on the findings

of picture array viewing (Sasson et al. 2008, 2011; Elison et al. 2012), together with general observations

of detail focussed processing in ASD (Happé and Frith 2006; Mottron et al. 2006) and restricted behaviour

(South et al. 2005) we predicted that while viewing these complex photographic scenes individuals with ASD

would display reduced visual exploration, as indicated by our fixation spread model. If found to be correct,

our tailored models would enable us to establish whether differences were more likely a result of persistence

within an area (South et al. 2005; Pierce and Courchesne 2001) or reversion to previously explored areas

(Pellicano et al. 2011). Additionally, we were able to establish whether individuals with ASD generally moved

their eyes over a shorter distance, as indicated by scanpath length, and whether there was a reduced fixation

rate overall, which would support suggestions of individuals with ASD exhibiting delayed disengagement

from the current fixation (Kikuchi et al. 2011; Landry and Bryson 2004). We were also interested in the

potential implications of more restricted viewing on perception and specifically whether verbal descriptions

would also be more restricted. We therefore predicted that significantly more areas within the scenes would

be omitted from the descriptions of ASD participants.

2 Methods and Materials

2.1 Data Collection

Participants Twenty three 11–16 year old intellectually able (Full-Scale IQ > 70) adolescents (21 males

and 2 females) with ASD and 24 matched TD adolescents participated in Expt1. Twenty four 11-16 year old

intellectually able (Full-Scale IQ > 70) adolescents (21 males and 3 females) with ASD and 23 matched TD

adolescents participated in Expt2. Of the individuals who took part in Expt2, twelve of the ASD participants

and 17 of the TD participants had also completed Expt1 within a larger testing battery reported elsewhere
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(Freeth et al. 2011a,b, 2010). Each participant had a break of at least 6 months between testing sessions.

All participants with ASD had been formally diagnosed by a UK mental health professional and had a

statement of Special Educational Needs for Autism or ASD. An Autism Spectrum Screening Questionnaire

(ASSQ) (Ehlers and Gillberg 1993; Ehlers et al. 1999) was completed by a parent or teacher of each partici-

pant. The ASSQ is a 27-item screening questionnaire which provides an indication of current level of autistic

features. Possible score range is 0 to 54 and it has a suggested cut-off of 11 indicating clinical relevance when

completed by teachers (a cut-off of 13 is suggested when completed by parents) (Ehlers et al. 1999). Higher

scores indicate more autistic features. Participants were excluded from all analyses reported here if scores

fell outside the suggested cut-offs for each group, resulting in a final sample of data from 14 ASD participants

in Expt1 and 16 ASD participants in Expt2; 22 TD participants in Expt 1 and 23 TD participants in Expt2.

See Tables 1 and 2 for further details of the final sample. All participants plus a parent or individual in loco

parentis gave informed consent to participate prior to participation. Ethical procedures were in accordance

with the Declaration of Helsinki.

Stimuli Twenty four photographs (1024×512 pixels) of everyday indoor and outdoor scenes, created by

the second author, were viewed by each participant in Expt1; sixteen photographs from the same image set

were viewed by each participant in Expt2. Within both Expt1 and Expt2, images were presented in the same

order to each participant to reduce the potential for additional variation. Each scene contained at least one

person (see Figure 1 for examples) and was partitioned into two categories: 1 — those containing a centrally

positioned person whose face was in full view (panels A and D); and 2 — those without a centrally positioned

face (panels B and C). Scenes in category 1 (central faces) accounted for 80% of the images presented while

those in category 2 (no central faces) accounted for 20%. The stimuli from the two categories were dispersed

throughout presentation of scenes in a standard order. Differences in contrast and luminance between images

were controlled for via the random effects terms in our analysis model which allow each image to have a

conditionally independent and data adaptive exploration rate. See Section 2.2 for further details.

Apparatus Eye movements were recorded using a remote Tobii 1750 eye-tracker system. Images were dis-

played at a distance of approximately 60cms and subtended a visual angle of approximately 32◦ horizontally

and 24◦ vertically. A fixation was recorded if eye-tracking points were within 1.5◦ of visual angle for 80ms or

more.

Procedure Following a calibration and head position check, participants viewed a series of photographs

for 5 seconds each (Expt1) or 15 seconds each (Expt2). For Expt1, participants were told that all they

needed to do was to look at the photos. For Expt2 participants were told that they needed to view and then
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verbally describe each photo. In Expt2, following each 15 second viewing phase, a screen prompt requested

the participant give a “short” description of the scene. The scene was still visible in this phase in order that

participants did not need to rely on memory to produce these descriptions, and also that in the viewing

phase participants would genuinely be free-viewing rather than attempting to encode information from the

image. No time limit was administered in the verbal description phase.

2.2 Analysis Approach

We modelled five aspects of exploration strategy, 1) evolution of fixation spread, 2) scanpath progression,

3) fixation rate, 4) visual persistence within an area, and 5) reversion to previous fixation locations. Group

differences were investigated by fitting, over the time-course, linear models with random effects accounting

for repeated images and individuals. Our novel measures provide an overview of an individual’s tendency to

view new regions of an image as opposed to remaining in or returning to previously explored areas. For our

exploration analysis, the entire 5s of Expt 1 was combined with the initial 5s of viewing in Expt 2 and used

together to assess potential differences between the two groups (ASD and TD).

We also explored whether scene perception was more restricted via analysis of the verbal descriptions

generated in Expt2. For each image and individual, the spread of the items mentioned by participants was

quantified as a measure of scene perception. Between group differences were assessed via a randomisation test

to observe the potential implications of differences in visual exploratory behaviour on global understanding.

2.2.1 Comparison of spread and scanpath progression

Measuring Spread — Convex Hull The area of the fixations’ convex hull provides a proxy for the

area of scene explored. While this approach to measuring spread has been used previously for eye-tracking

analysis (Goldberg and Kotval 1999; Sullivan et al. 2005), our novelty involves studying its rate of increase

over time.

The convex hull of any set of fixations X is defined as the smallest convex set containing them. Intuitively,

this hull can be imagined by stretching an elastic band around the outer bounds of all fixations before allowing

it to contract (Figure 2). A set of fixations with a large convex hull indicates a propensity to move to new,

previously unexplored areas of the image rather than remain in (or return to) locations previously viewed.

Larger hulls are also obtained if saccades explore new “orthogonal” directions as opposed to scanpaths lying

along straight lines.

We believe the convex hull to be the most suitable measure of visual exploration, though a range of

alternatives were considered (see next section for discussion). While any measure of spread based on covering
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the entire scanpath has the potential to be significantly influenced by single, distant fixations (even if these

fixations occur for only a short time) this is dealt with by our methodology. Our linear model combines

repeat measurements over multiple images and individuals meaning no single distant excursion can overly

influence group comparisons. If distant excursions occur more frequently in one group, this in itself would

indicate a difference in exploration strategy.

It is however important not to suggest exploration is equivalent to comprehension. An individual fixating

on all four corners of a scene without directing any attention towards the centre would result in a maximal

convex hull but probable poor overall scene comprehension. While we cannot say an individual has necessarily

comprehended everything within the convex hull, a larger hull does suggest a tendency to explore new areas

rather than remain viewing the same regions.

Consideration of alternatives to the convex hull It would be feasible to measure exploration area by

covering the fixations with other shapes, however the convex hull is the canonical choice and also robust to

small changes in fixation locations. For example, a single circumscribed circle will provide greatly differing

areas with only minor variations in fixation locations (for an illustration, see Goldberg and Kotval 1999).

Scanpaths lying only along a single straight line will also be allocated larger circles than those where fixations

lie two-dimensionally.

An alternative could be the bivariate contour ellipse area (BCEA) approach (Holmqvist et al. 2011).

However this measure is based upon an assumption that fixation locations fall independently according to

an identically distributed bivariate normal distribution. This is unlikely to be justified for fixation locations

in a general scene. Such a measure is also highly dependent upon the classification and overall number of

fixations. If a single fixation is instead classed as two separate fixations at near identical locations (perhaps

separated by a microsaccade), the BCEA will decrease simply due to this reclassification. An individual who

evenly explores an image with a large overall number of fixations will therefore be estimated to have lesser

exploration than an individual who covers the identical overall area but with fewer fixations. This is an

undesirable feature in a measure of exploration. Additionally, this dependence means that a BCEA based

measure of exploration can decrease with viewing time. The convex hull is invariant to such classification of

fixation number and is monotonically increasing with time as more of the image is, by definition, explored.

Finally, building an attention map by placing Gaussian kernels around each fixation and measuring

the proportion of image with attention above a certain threshold (Holmqvist et al. 2011; Wooding 2002)

requires an arbitrary but critical selection of both kernel spread parameters and attention cut-off threshold.

Dependent upon this choice, it can also suffer from a similar lack of invariance to fixation number classification

as the BCEA. Such a measure is more suited to assess image coverage than exploration. Once outside the

8



cut-off distance from previous kernels, it does not distinguish between fixations which are still relatively close

within the image and those which are truly distant from one another.

Creating a time-dependent measure of spread To quantify spread at time t we calculated, for each

individual i and image j, the area Aij(t) of the convex hull of those fixations occurring before t (see Figure

3). With each new fixation, the hull will either remain unchanged (if this fixation falls within the existing

hull) or increase (if outside). As such Aij(t) increases monotonically over time.

Measuring Scanpath Progression We also measured evolution of the total length of scanpath. For

individual i, viewing image j, let Dij(t) be the summed length of the saccades in the scanpath occurring

before time t. Larger values of Dij(t) will correspond to individuals exploring the image at a faster rate as

measured in terms of saccadic movement.

While distance alone cannot distinguish between an individual exploring entirely new areas and one who

simply alternates between previously viewed regions, when combined with assessment of fixation spread

more insight can be gained. If individual A has a larger hull area but equivalent scanpath length to B, this

suggests A is continuously moving to new image regions while B is moving away initially but then returning

to previously viewed areas.

Linear modeling with random effects Using our image exploration measures, we investigated potential

differences between the ASD and TD groups using a mixed effects model. For illustration, we refer to Aij(t),

our measure of fixation spread. An identical procedure was followed for the path lengths Dij(t). At any

time of interest, we consider

Aij(t) =











µ(t) + α(t) + λi(t) + µj(t) + ǫij(t) if i non-ASD

µ(t) + λi(t) + µj(t) + ǫij(t) if i ASD
(1)

Of specific interest is α(t), the additional mean area viewed by a TD individual by time t (a negative value

indicates reduced mean area). Of the other terms, µ(t) denotes the mean area viewed by those with ASD

at time t; λi(t) ∼ N(0, τ2) the random effect of individual i; µj(t) ∼ N(0, ζ2) the random effect of image j;

and ǫij(t) ∼ N(0, σ2) the additional noise independent of image and individual.

A mixed effects model is required since, in any population, there may be some individuals who tend to

explore an image more quickly than others. Similarly some images may be explored more rapidly. To enable

conclusions to be generalised outside the specific population of study, to new images or individuals, these

factors must be modeled as random effects.
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2.2.2 Comparison of Fixation Rate

Modeling fixation occurrence as a time-inhomogeneous Poisson Process (Diggle 2003; Barthelmé et al. 2013),

we counted, for individual i and stimulus j, the number of new fixations Nij(t) falling in the interval

[t−wsize/2, t+wsize/2]. A random effects Poisson regression was used to assess differences in rate between

groups over the viewing period where Nij(t) ∼ Po(νij(t)wsize) and

log νij(t)=











µ(t) + α(t) + λi(t) + µj(t) + ǫij(t) i non-ASD

µ(t) + λi(t) + µj(t) + ǫij(t) i ASD

Here νij(t) is the instantaneous rate of new fixations at time t. Other model terms are analogous to the hull

model. To obtain robust estimates, a window wsize of 200ms was chosen.

2.2.3 Comparison of Persistence and Reversion

In the context of visual scene exploration, we define persistence as the tendency of an individual to remain

viewing a location close to the current fixation into the future. Alternatively, reversion is the relative tendency

of an individual to return towards previous fixations having moved away. Considering the scanpath as a

time series Xt we quantify both these aspects of exploration through the (scaled) expected distance

L(τ) = E

[

||Xt −Xt+τ)||2

S(t, t+ τ)

]

.

Here ||.||2 denotes Euclidean distance. The indices t and τ can either denote continuous time if interest is in

the expected distance at future time τ ; or discrete fixation number if interest is in the distance to the τ th

future fixation.

Selection of different denominator scalings tailors this measure towards either persistence or reversion.

Using S(t, t+ τ) = 1, L(τ) simply measures the expected distance from the location of the current fixation

to that at future time (or fixation) τ . Individuals exhibiting persistence will have small such values due to

their tendency to remain viewing regions near the current fixation. Reversion requires a finer measure to

control for how far the individual has moved during the interim period from t to t+ τ . This can be achieved

if we rescale by S(t, t + τ) = D(t + τ) − D(τ), the length of the interim scanpath. Small values of L(τ)

will then be obtained if this is large in relation to the numerator. This can only occur if an individual has

continued to explore the image before reverting towards the previous location. Rescaling by the root of the

convex hull area would provide a similar reversion measure.

We believe our two measures offer an improvement over current recursion approaches e.g. RQA (Anderson
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et al. 2013). Explicit incorporation of the lag τ provides clearer and stronger insight into the time scales

on which recurrence might occur and does not require selection of an arbitrary threshold. The ability to

rescale also makes them more adaptable. Having estimated L(τ) another random effects linear model assesses

potential group differences at all lags τ .

2.2.4 Associations between eye-tracking outcomes and ASD symptom severity

We were also interested in potential links between our various eye-tracking measures and the symptom

severity of those individuals with ASD (as measured by their ASSQ scores). To investigate such differences,

for each of our five measures, separate sub-analyses on the ASD group alone were run including the ASSQ

score as a potential predictor in the model. The significance of the ASSQ score was then assessed using

generalised likelihood ratio tests. Since it is only possible to measure the significance of any term in the

model at fixed time points (i.e. not for the entire course of the experiment) we chose to perform this

subanalysis either at 5000ms (the end of the experiment) or when the differences between the ASD and TD

groups appeared largest.

2.2.5 Verbal description analysis

To investigate whether scene processing was more restricted in area in the ASD group, a potential con-

sequence of visual exploratory strategy, we considered the quality of the verbal descriptions provided by

the participants in Expt2. Analogously to our scanpath analysis, interest was in the ability to capture the

entirety of the scene as assessed by the spread of items described. Each image was partitioned into five

regions of equal area - a central area plus the four corner quadrants. Every individual item in the scene was

allocated to one of these regions; where an item covered more than one area, this item was allocated to a

single region for coding purposes, see Figure S1. The number of regions lacking a mention of any items was

recorded to give a missingness score between 0 and 5.

Let Mij denote the missingness score for individual i and image j. To test for a reduction in the spread

of the verbal descriptors amongst those with ASD, we used a cumulative t-based statistic summed over the

image set

T =
∑

j

tj ,

where

tj =
M̄ j

ASD − M̄ j
Typ

sj
M̄

j

ASD
−M̄

j

Typ

(2)
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is the standard signed t-statistic to compare the missingness scores of the two groups on image j. A positive

value of tj suggests more areas were absent from descriptors in the ASD group for image j. Use of cumulative

signed t-statistics guaranteed we assessed uniformity in the direction of differences in missingness between

groups e.g. that the ASD missingness scores were constantly higher over all images. The significance of

any reduction in descriptor spread between groups was assessed using a randomisation test based on 10,000

reallocations of the participants. Analyses of this form were also conducted on mean length of utterance data

and the number of nouns in each description in order to establish whether these measures could account for

any differences between groups in missingness scores. N.B. For a contents analysis of these data, please see

Freeth et al. (2011b).

2.2.6 Data cleaning and pre-processing

Before analysis, off screen fixations were removed. It was also decided that any individual who was seen to

fixate on-screen for less than an average of 90% of the time analysed over the images would be discarded

i.e. fixated off screen for more than 500ms of the 5000ms. No individuals fell into this category. One image,

depicting the second author, was also removed (Figure 1, panel D). This image was not felt to be comparable

to the other images due to the author’s involvement in administration of the experiment. After cleaning, for

each individual within the ASD group, the average time (of the 5000ms analysed) spent looking off screen

was 80ms. Within the TD group it was 44ms.

Data from Expt1 and Expt2 contributed to all five models: all data from Expt1 and the first 5s of

data from Expt2. Models contained data from 36 distinct ASD participants and 30 TD participants once

accounting for those individuals participating in both experiments. Analysis was performed using the R

programming language (R Core Team 2015). Code is available from the authors on request.

3 Results

Group comparison of eye-tracking data The (generalised) linear model results of our area, distance,

and rate comparisons can be seen in Figure 4. The estimated values for each group at time t are shown

in the left hand plots while the right hand plots show α(t), the additional area/distance/fixation rate for

the TD adolescents compared to the ASD group, together with 95% confidence intervals. Estimates are

calculated pointwise over time with statistical significance indicated by confidence intervals which do not

overlap zero. However, one should recognise that tests at neighbouring time points are not independent but

instead borrow strength from one another. If differences are seen consistently over a period of time (as is

mainly the case in our analysis) then a pointwise approach to significance will give a conservative assessment
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of group differences. Similarly one must not to read too much into individual significant time points when

there is little evidence for a trend at surrounding times. As we will see, this is somewhat less of a concern

in our study since most measures show consistent trends whereby once differences are observed between the

groups they tend to remain for future times.

The fixation spread, as measured by the convex hull, is consistently greater in the TD group. This

becomes particularly clear from 2500ms when a gradient change can be seen in α(t) suggesting a point at

which the ASD individuals slow their exploration. Beyond this time, the mean hull area of the TD group

is uniformly larger than that of the ASD group. Analysis of scanpath length also suggests a trend that the

TD group travel further although, unlike the hull area, the pointwise 95% confidence intervals still overlap

zero and no corresponding gradient change at 2500ms is seen. This suggests the ASD group are continuing

to make eye movements but the location of gaze is less likely to be in an entirely new area. Importantly,

there is no evidence for a difference in the rate of new fixations between the two groups at any time. This

indicates that the above differences are not simply due to a decrease in the number of new fixations but

rather a more structural disparity in viewing strategy between the two groups.

Figure 5 shows our measure of persistence (top) and reversion (bottom). Persistence was measured

with a continuous time lag τ so long dwells on the same location are considered evidence of persistence.

At all lags τ , the TD individuals are expected to be further from previous fixations than those with ASD

clearly demonstrating increased persistence in ASD. Similar results were seen with a fixation number lag.

Reversion was measured with a fixation number lag so L(τ) was still defined if the individual had not moved

in the period from t to t+ τ . As shown by a mean level consistently above zero, there is some evidence for

increased reversion amongst the ASD group. This reversion seems to occur predominantly in those images

with a centrally located face, see Figure S4 indicating lesser reversion for general scenes.

Analysis by stimuli type Our stimuli fall into two general categories: 1. Prominent face scenes -

containing a centrally positioned person whose face was in full view (80% of all images) ; 2. Non-prominent

face scenes - containing no centrally positioned face (20% of all images). To demonstrate our results are not

just due to atypical attention to faces in ASD, all analyses were repeated on only the scenes containing no

centrally positioned face. All effects, except for reduced levels of reversion (discussed above) and scanpath

length (where the observed mean path length for the ASD group was actually larger than the TD group

between 1000 and 3000ms), were replicated (see Figures S3 and S4).

Importance of ASSQ score on eye-tracking outcome measures within ASD group Our sub-

analysis amongst the ASD group indicated little or no evidence that symptom severity (as assessed by ASSQ
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score) played a significant role in any of our exploration measures. As explained in Section 2.2.4, it is only

possible to assess such importance at single time-points. Hull area (p-value 0.58) and scanpath length (p-

value 0.18) were both assessed at 5000ms; fixation rate (p-value 0.58) at 3000ms when the difference between

the ASD and TD groups appeared largest and rates still reasonably high; persistence/lagged distance by

time (p-value 0.77) at 2000ms and reversion/scaled lagged distance by fixation (p-value 0.2) at lag 20 where

again the observed TD to ASD group differences were towards their largest. The fact no evidence for the

importance of ASSQ score was seen even at these time points suggests that, beyond being diagnosed with

ASD, an individual’s symptom severity was not a significant factor for our exploration outcomes — although

it may be that ASSQ score is not a suitable linear measure of such severity.

Verbal description analysis Analysis of verbal description data indicated strong evidence for a uniform

increase in the number of areas missed from the ASD participants descriptions across the entire image set

(two-sided p-value 0.035) supporting our hypothesis that the descriptions of participants with ASD would

be significantly more restricted in area than those of TD participants. Figure 6 presents the mean additional

number of areas missed in verbal descriptions (together with approximate 95% confidence intervals based

on individual t-tests) for each image. As can be seen, for all of the 16 images, the mean number of areas

lacking description is higher amongst the ASD group. This adds further support to our hypothesis that

scene processing was more restricted in area amongst the ASD group. As for analyses of the eye-tracking

data, no relation was found between symptom severity and number of areas missed - a Pearson’s correlation

found no significant correlation between ASSQ scores and overall number of areas missing from participant

descriptions, r=.01, p=.96. The difference between groups in the number of areas described was not simply

due to variations in length of the descriptions or the number of nouns used between groups. An analogous

randomisation test analysis on the total length of utterance indicated no strong evidence of a decrease in

length in the ASD descriptions compared to the TD group (p-value 0.16); similarly there was no strong

evidence that the number of nouns used in the descriptions was different between the groups (p-value 0.11).

10% of data were blind second coded. Inter-rater reliability was assessed via intra class correlation. There

was excellent agreement for both the missingness coding, r=.99, p < .001, and the number of nouns coding,

r=.95, p < .001.

Consistency amongst individuals and range of exploration speeds One may also be interested in

whether, separately from any ASD effect, individuals are consistent in their rate of exploration over images

or if they vary. Specifically, does an individual in either the TD or ASD group who explores one image at

a faster rate than the rest of their group also explore the other images at this same increased rate or do
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they vary their speed from image to image. This consistency, along with the range of exploration speeds

in both groups, can be assessed via the λi random effect terms of Equation 1 which correspond to the

various individuals i. We assessed consistency for both our area and distance exploration measures on the

complete scanpath data at 5000ms. A generalised likelihood ratio test was used to compare the full models

of Equation 1 with reduced models which did not include the λi individual random effect terms. In both

cases there was overwhelming evidence (p < 2× 10−16) to support inclusion of the individual random effect

term corresponding to individual exploration consistency across images. For more details and histograms of

the estimated random effects, see Section A.4 in Supplementary Information.

4 General Discussion

We report five novel methods of eye-tracking analysis applied to data collected during free-viewing of scenes

completed by adolescents with and without ASD plus analysis of participants’ verbal descriptions of these

scenes. Analyses enabled characterisation of the time-course of various eye-tracking measures revealing

clearly different visual exploration strategies between groups. This suggests fundamentally different per-

ceptual experiences for individuals belonging to each group. Analysis of fixation spread, as measured by

progression of the area of the convex hull of fixation points, revealed that adolescents with ASD had a slower

rate of increase in area viewed when compared to TD adolescents. This finding demonstrates a detailed

focussed processing style of visual exploration, replicating findings reported in other domains (Happé and

Frith 2006; Mottron et al. 2006). This became particularly clear from 2500ms after stimulus onset. Study of

scanpath progression found somewhat shorter scanpaths for the ASD participants, suggesting a tendency to

explore areas closer to the current fixation than their TD peers. Investigation of fixation rate via a Poisson

regression model indicated both the above differences were not simply due to a reduction in the rate of new

fixations but rather fundamentally differing strategies adopted by each group, therefore we found no evidence

of sticky attention, or delayed disengagement at the level of fixation, in our current dataset (Kikuchi et al.

2011; Landry and Bryson 2004). Our data also reveal that interest in a more restricted area within scenes

was not only found in the eye-tracking data but also in the verbal description data as participants with ASD

missed significantly more areas within the scenes from their verbal descriptions than did the TD participants.

We found no evidence to suggest that the extent of reduced visual exploration was related to ASD symp-

tomatology, as indicated by scores on the ASSQ (Ehlers et al. 1999). However, further investigation using

a more robust assessment and symptomatology tool, such as ADOS (Lord et al. 2000) or ADI (Le Couteur

et al. 2003), would be necessary to draw firmer conclusions in this regard and should be a focus of future

investigation.
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A recursion analysis found evidence of increased visual persistence in the ASD group as individuals with

ASD tended to view locations significantly closer to previous locations for all lags τ , extending findings of

behavioural persistence often observed in ASD (South et al. 2005; Pierce and Courchesne 2001) to the visual

domain. This trend was observed across the whole dataset, and independently in our two stimulus categories

- images depicting a centrally positioned person whose face was in full-view and in scenes where there was no

centrally positioned face - indicating that this finding was independent of scene content. This is important

as it demonstrates that increased visual persistence is domain general rather than being driven by atypical

face processing. In addition, for scenes containing a centrally positioned face, there was also a tendency

for ASD participants to return towards previous locations after having moved away suggesting a propensity

to revisit areas previously viewed. However, differences were not as marked on this measure as for visual

persistence.

Previous work has suggested that individuals with ASD exhibit circumscribed viewing patterns when

looking at picture arrays and tend to view fewer items than TD individuals (Sasson et al. 2008, 2011; Elison

et al. 2012). Our visual exploration models support this work and extend the findings to everyday scenes.

It appears that for individuals with ASD, attention was captured by aspects of the visual scene that were

close to the current fixation to a greater extent than was the case for TD individuals. This is in accordance

with the observation that individuals with ASD can be disproportionally affected by distracter items close

to a current fixation (Burack 1994). It has been proposed that those with ASD have an enhanced perceptual

capacity and spontaneously process surrounding information as well as central information (Remington et al.

2009, 2012). It is possible that, in the current study, this enhanced perceptual capacity resulted in ASD

participants taking in more information surrounding the current fixation and hence exploring this in greater

detail at certain points in their visual exploration. Conversely, the mechanism could operate in the opposite

direction in that reduced visual exploration results in enhanced perceptual capacity. Regardless of the

causative direction, a naturally different sampling method, such as observed here, will likely have a profound

effect on visual perception and other aspects of processing.

If the systematic differences in visual exploration and processing observed here generalise to everyday

life, this could help explain why those with ASD display a local processing bias. The evidence presented

here suggests many aspects of the environment will likely not be sampled during natural visual exploration

by individuals with ASD. Restricted or persistent behaviour is commonly reported in individuals with ASD

(South et al. 2005). It had previously been proposed that individuals with ASD may exhibit visual persistence

(Pierce and Courchesne 2001). Here we demonstrate clear evidence in support of this theory.

There are a number of future directions that we see as particularly important in relation to the current

work. The stimuli presented to participants in the current experiment represented a range of scenes that
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could be viewed in everyday life. Our scenes fell into two categories: 1. Prominent face scenes — containing

a single centrally positioned person whose face was in full view; 2. Non-prominent face scenes — containing

no centrally positioned face, in which individuals could be small and/or in the background. However, none

of our scenes were entirely non-social. An interesting future question will be whether the same effects (i.e.

restricted visual exploration and visual persistence in those with ASD) would be observed when viewing

scenes completely absent of all social elements. Additionally, it would be of interest to investigate whether,

as suggested in the convex hull analysis of Figure 4, there is a step change in exploration rate at around

2500ms where those with ASD being to slow relative to their TD peers.

Future work could also investigate individual differences in exploration strategy and strategy consistency

over time, i.e. the degree of exploration strategy consistency over multiple testing sessions. A particular

further question of importance in relation to individual differences is the relationship between restricted and

repetitive behaviours and visual exploration strategy in both the general population and in those with ASD.

This could be assessed using the Repetitive Behaviours sub-scale of the ADI-R (Le Couteur et al. 2003), the

RBS-R (Bodfish et al. 2003) or the RBQ/RBI (Turner 1995)). An association between ”repetitive sensory

and motor behaviours” or ”insistence on sameness” (two sub-scales of the ADI-R (Szatmari et al. 2006)) and

visual exploration strategy could facilitate understanding of these aspects of the autistic profile.

To conclude, this paper aims to provides a two-fold contribution to the literature: to investigate differ-

ences between the exploration strategies of ASD and TD individuals; and also present a new set of analysis

tools for the temporal analysis of scanpaths. The novel visual fixation modelling methods presented here

provide a clearer insight into visual exploration behaviour than was previously possible. This significantly

improves our understanding of the perceptual experience of the individual and provides a more holistic

overview of this experience. For the data analysed in the current study our novel eye-tracking data analysis

methods found fundamentally different viewing strategies in individuals with ASD compared to TD individ-

uals, demonstrating reduced visual exploration by adolescents with ASD. Our verbal description data also

suggested that visual processing was more restricted in ASD. However, it is not necessarily the case that one

strategy is better than another, or that one strategy represents a deficit. Rather it is valuable to consider

the implications of each strategy. Although exploring less of the visual scene overall will lead to certain

information being missed, one potential benefit of the observed viewing strategies exhibited by individuals

with ASD could be improved attention to detail within a small area. It could be that the individuals with

ASD, as a result of their more restricted viewing strategy, were able to more effectively process the available

information within the areas viewed. In the future, it will be important to investigate potential consequences

of reduced visual exploration for individuals with ASD.
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ASD participants Typically developing
participants

N 14 22

Age (years;months)
Mean 13;6 14;3
SD 1.0 1.3
Range 11;6 – 15;1 11;8 – 16;5

Full-scale IQ
Mean 96.6 96.3
SD 16.2 8.3
Range 70 – 129 79 – 109

ASSQ
Mean 28.9⋆⋆ 2.2⋆⋆

SD 13.1 2.8
Range 18 – 45 0 – 9

Table 1: Participant Characteristics — Experiment 1. The double starred ⋆⋆ entries indicate a p-value
p < 0.001 i.e. participants with ASD scored significantly higher on the ASSQ than TD participants.
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ASD participants Typically developing
participants

N 16 23

Age (years;months)
Mean 14;8 14;9
SD 1.4 1.3
Range 12;4 – 16;6 12;4 – 17;1

Full-scale IQ
Mean 102.5 97.9
SD 13.3 7.3
Range 74 – 126 83 – 112

ASSQ
Mean 26.4⋆⋆ 2.2⋆⋆

SD 8.5 2.8
Range 17 – 43 0 – 9

Table 2: Participant Characteristics — Experiment 2. The double starred ⋆⋆ entries indicate a p-value
p < 0.001 i.e. participants with ASD scored significantly higher on the ASSQ than TD participants.
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Figure 1: Example stimuli: Scene category 1. Prominent face scenes - panel A and D (contain a centrally
positioned person whose face was in full view), Scene category 2. Non-prominent face scenes - panel B and
C (contain no centrally positioned face)
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Figure 2: Illustration of a convex hull. The left plot shows a hypothetical set of fixations; the right plot shades
their convex hull.
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Figure 3: Convex Hull Evolution. The fixations for two individuals at a series of increasing times (t =
500, 2000, 3500, 5000ms) for an image of an archaeological dig. The left hand red plots show the fixations
of an ASD adolescent while the right hand blue plots a TD adolescent. At each time point we draw the
increasing convex hull of the fixations and calculate its shaded area. The bottom two plots show the evolution
of the convex hull between t = 0 and 5000ms.
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Figure 4: Linear model results for evolution of area, scanpath distance and fixation rate. The left hand plots
show the estimates for each group. The right hands plots show α(t) — the additional area, distance and rate of
the TD group compared to the ASD group — together with their pointwise 95% confidence intervals. Positive
values of α(t) indicate that the TD group have a larger hull area/scanpath length/fixation rate respectively.
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Figure 5: Linear model results for lagged distance (persistence, top) and scanpath scaled distance (reversion,
bottom). The left plots show the mean for each group. The right hands plots show, for each measure, the
additional distance as a function of lag τ within the TD group compared to the ASD group, again with
pointwise 95% confidence intervals. Positive values indicate greater persistence/reversion amongst the ASD
group.
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Figure 6: The difference in means between ASD and TD individuals (with 95% approximate CIs based on
t-test) for the verbal descriptor missingness scores calculated by image. A positive difference indicates more
areas were missed by the ASD group.
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A Supplementary Information

A.1 Assessment of global processing quality

In Figure S1 we illustrate the partitioning of a sample image into five regions. From the verbal descriptions

given by the participants of Expt2, each item in the scene was coded and identified. The number of regions

which were not mentioned by the participant was recorded and used as a proxy for the quality of global

processing.

A.2 Illustrative Example - Change in exploration rate amongst ASD adoles-

cents

Figure S2 presents the mean area and scanpath evolution for a single stimulus. The path lengths increase

at a fairly constant rate for both groups throughout the experiment. However, in keeping with the findings

of our linear model, the rate of increase in hull area for the ASD group undergoes a change around 2500ms.

At this point the ASD individuals appear to slow new exploration and fixate on points already within their

convex hull. Since a similar change is not seen in scanpath length, this indicates the start of a tendency to

return to/remain in previously viewed areas.

A.3 Analysis by Stimuli Type

To evidence that our results were not only found on a single type of stimulus, analysis was repeated on only

those images without a centrally prominent face. Plots of the extra distance travelled, area explored and

rate of new fixations with viewing time for these scenes are shown in Figure S3. The overall findings agree

with the analysis of the full image set in both direction and magnitude — a consistently reduced hull area for

ASD individuals (showing pointwise signficance beyond about 3000ms) which is not explained by a difference

in the rate of new fixations. This suggests robustness to stimuli type. Interestingly however, differences in

scanpath length between the two groups are reduced. Figure S4 plots the lagged distance (perseveration

measure) and scanpath scaled distance (reversion measure). Again results agree with analysis of the complete

stimuli set. Even on images without a centrally prominent face, ASD individuals are expected to be viewing

a location significantly closer to the current fixation location at future times τ . There is however less evidence

of a tendency to revert to previous fixations having moved away.
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Figure S1: Partitioning of a sample image into five disjoint regions to assess spread of the verbal description
data. Each item in the image was allocated to the most representative region. For this particular image,
items were coded to the following regions: Area 1: window, blinds, Area 2:microwave, worktop, kitchen
surface Area 3: TV, magazine, desk, books, grey trousers Area 4: bin, fridge Area 5: woman, girl, glasses,
black cardigan, plug socket, she, person
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A.4 Size of random effects

Figure S5 shows histograms, stratified into ASD and TD groups, of the estimated random effects for individ-

uals in both hull area and scanpath length after 5000ms stratified. They represent the range of individual

variation in exploration rate, shown consistently across the images and in addition to the fixd ASD effect,

within both groups i.e. the random effects for the ASD individuals relate to only their variation in explo-

ration relative to other ASD individuals and likewise for the TD individuals. To allow some idea of their

relative sizes, the plots legends show the area/path length that an average ASD/TD individual would have

at this time.

As can be seen, there is considerable support for variation in individual exploration rates exhibited

consistently across images within the groups. A fast/slow explorer can consistently explore a hull area of

10,000-20,000 more/fewer pixels2 than the average for their group. Similarly, within each group, individuals

can have a consistent scanpath length of up to 500 pixels longer/shorter than the group average across

the images. We also note that one individual in the ASD group appears to have explored very little, as

shown by the single large negative random effects for both area and scanpath length. Our earlier results on

ASD/TD group differences are robust to this one individual since, as we see, their reduced exploration has

been accounted for by their large personalised λi random effects within our model and hence not the between

group parameter α of primary interest.
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Figure S2: A sample illustration of the mean area viewed and scanpath length.
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Figure S3: Linear model results for evolution of area, scanpath distance and fixation rate using only those
images without a prominent centrally positioned face. The left hand plots show the estimates for each group.
The right hands plots show α(t) — the additional area, distance and rate of the TD group compared to the
ASD group — together with their pointwise 95% confidence intervals. Positive values of α(t) indicate that
the TD group have a larger hull area/scanpath length/fixation rate respectively.
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Figure S4: Linear model results for lagged distance (persistence) and scanpath scaled distance (reversion)
using only those images without a prominent centrally positioned face. The left plots show the mean for each
group. The right hands plots show, for each measure, the additional distance as a function of lag τ within
the TD group compared to the ASD group, again with pointwise 95% confidence intervals. Positive values
indicate greater persistence/reversion amongst the ASD group.

36



ASD random effects for Hull Area (5000ms)

Average Area of ASD individual is 35700 pixels2
Individual Random Effects
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TD random effects for Hull Area (5000ms)

Average Area of TD Area is 45700 pixels2
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ASD random effects for Path Length (5000ms)

Average Scanpath length of ASD individual 1470 pixels
Individual Random Effects
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TD random effects for Path Length (5000ms)

Average Scanpath length of TD individual is 1630 pixels
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Figure S5: Histograms of estimated random effect terms for each individual for the area explored and scanpath
length at 5000ms. These can be contrasted with the expected values for a TD/ASD individual at this time.
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