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Mechanisms of assembly and genome packaging in
an RNA virus revealed by high-resolution cryo-EM
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Cowpea mosaic virus is a plant-infecting member of the Picornavirales and is of major interest

in the development of biotechnology applications. Despite the availability of 4100 crystal

structures of Picornavirales capsids, relatively little is known about the mechanisms of capsid

assembly and genome encapsidation. Here we have determined cryo-electron microscopy

reconstructions for the wild-type virus and an empty virus-like particle, to 3.4 Å and 3.0 Å

resolution, respectively, and built de novo atomic models of their capsids. These new

structures reveal the C-terminal region of the small coat protein subunit, which is essential for

virus assembly and which was missing from previously determined crystal structures, as well

as residues that bind to the viral genome. These observations allow us to develop a new

model for genome encapsidation and capsid assembly.
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A
crucial step in virus assembly is the specific encapsidation

of the genome. This is a particular challenge for
single-stranded RNA viruses, as they must preferentially

select their genomes from a high background of cellular
mRNA. Owing to their importance as pathogens and their
relatively simple, non-enveloped capsids, members of the order
Picornavirales have been extensively studied. These viruses
include members infecting vertebrates (poliovirus, hepatitis A
virus), insects (deformed wing virus) and plants (cowpea mosaic
virus (CPMV)) and 4100 X-ray structures of their capsids are
available1. However, while these reveal the structure of the coat
proteins in exquisite detail, they give very few clues about how
RNA is packaged or how specificity is achieved. Despite many
years of study on the replication cycle of the Picornavirales,
remarkably little is known about the process of RNA
encapsidation. For example, it is not known which type of coat
protein aggregate is required for efficient RNA incorporation or
what controls the specificity of RNA packaging2.

CPMV, the type member of the Comoviridae subfamily of the
plant-infecting Secoviridae, has a bipartite, positive-sense, single-
stranded RNA genome. The two segments, RNA-1 (6 kb) and
RNA-2 (3.5 kb) (Fig. 1a), are separately encapsidated. Its
icosahedral particles have a maximum diameter of B30 nm and
are comprised of 60 copies each of a Large (L) and Small (S) coat
protein (Fig. 1). L and S are processed from a single precursor
polyprotein, the RNA-2-encoded VP60, by the action of the
RNA-1-encoded 24K proteinase. Particles containing the two
different genomic RNAs can readily be purified (Fig. 1c).
Crystallographic structures are available for three comoviruses3:
CPMV4,5, bean pod mottle virus (BPMV)6 and red clover mottle
virus7. Together, the L and S subunits comprise three b-barrel
domains (two from L, one from S; Fig. 1d) corresponding to the
three quasi-equivalent conformers of a T¼ 3 icosahedral lattice.
Comovirus capsids thus adopt a pT¼ 3 quasi symmetry (Fig. 1e),
forming a particle with pronounced turrets formed from the S
subunit at the particle fivefold axes. Indeed, a penton of L and S
subunits appears to be the basic building block for all
Picornavirales capsids2. While the capsid structure is well-
understood, the organization of encapsidated genomic RNA is
not. In only one instance, the RNA-2-containing component of
BPMV, can details of RNA structure be observed6, where density

for 11 ordered ribonucleotides near the particle threefold
axes was visualized6. This RNA forms a trefoil, and binds in a
complementary depression on the inside of the capsid. Owing to
icosahedral averaging it was impossible to deduce the RNA
sequence, but the base composition was not random, and it was
suggested that these sequences might be critical determinants for
assembly or stability of capsids8.

The mechanisms by which RNA is selected and packaged are
also poorly understood. The only portion of the CPMV capsid
proteins currently implicated in RNA packaging is a segment of
24 amino acids at the C terminus of the S subunit9. This sequence
is proteolytically cleaved during maturation without affecting
particle stability or infectivity10, and is therefore missing from
X-ray structures of CPMV4. The suggestion that this region may
promote interaction with RNA was supported by the fact that the
S subunit loses its suppressor of host RNA silencing activity when
the C terminus is removed11. However, from studies using a
system that can produce RNA-free CPMV capsids in the absence
of infection12 it is clear that this extension is also essential for
capsid assembly itself13. Deletion of the entire 24-amino acid
sequence almost completely abolished empty particle formation.
This effect could be partially reversed by substituting
the 24 amino acids with 6 histidines, suggesting that basic
amino acids in the C-terminal extension may play a role in capsid
assembly13.

In recent years, the Comoviridae, especially CPMV, have
become a major focus of research in biotechnology. CPMV infects
legumes and Nicotiana benthamiana, and grows to extremely
high titres (41 g kg� 1 of leaf tissue). Like many plant viruses, it
is also exceptionally stable in the environment. CPMV capsids
can now be both genetically and chemically manipulated, and
insertion of foreign sequences into surface loops is routine13–15.
CPMV is therefore being developed for many biotechnology
applications, including biosensors, targeted nano-containers for
drug delivery, nanomaterials, imaging agents and as a platform
for novel vaccine development16–27. However, wild-type CPMV
has evolved to package its genome, reducing the potential for
loading with heterologous cargoes. To overcome this problem, an
empty virus-like particle (eVLP) technology has been developed.
Expression of the precursor of L and S subunits (VP60) in plants
using an Agrobacterium-based, pEAQ vector system28 (Fig. 1a)
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Figure 1 | An introduction to CPMV. (a) Schematic of the Cowpea mosaic virus (CPMV) bipartite, positive-sense single-stranded RNA genome. RNA-1 is

6 kb in length and contains the non-structural genes, while RNA-2 is 3.5 kb in length and contains the sequence encoding the large coat protein (L subunit)

and small coat protein (S subunit). Hypertranslatable constructs (HT) separately expressing the viral proteinase and the precursor of the L and S subunits

are used for production of eVLPs using the pEAQ vector system. (b) The sequence of S subunit amino acids 180–213. The C-terminal 24 amino acid

segment of S subunit is cleaved following assembly, and is coloured magenta. The cleavage site between Leu189 and Leu190 is shown. This region of the

polypeptide is highly positively charged and the positive amino acids are indicated. (c) Schematic of CPMV density purification. RNA-1 containing CPMV

sediments at the bottom of a Nycodenz gradient (CPMV-B), RNA-2-containing CPMV (CPMV-M) sediment in the middle and empty CPMV particles

sediment at the top of the gradient (CPMV-T). CPMV-T particles are the natural equivalent to empty virus-like particles (eVLPs). (d) X-ray crystal structure

of the asymmetric unit of CPMV (PDB 1NY74), coloured as above. The C-terminal amino acid of the S subunit (leucine 189) is indicated. (e) Icosahedral

organization of CPMV (using PDB 1NY74). Each icosahedral particle is comprised of 60 copies of both the L subunit and the S subunit. A view down the

twofold axis is shown.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10113

2 NATURE COMMUNICATIONS | 6:10113 | DOI: 10.1038/ncomms10113 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


produces large quantities of essentially insoluble protein12.
Particle formation only occurs on co-expression with the viral
24K proteinase, allowing normal proteolytic processing of VP60
(ref. 12). The result is efficient release of mature coat protein
subunits and large quantities of eVLPs, which can be loaded with
metal and metal oxide provided the C-terminal residues of the S
subunit are first proteolytically removed13. Recently, modification
of the eVLP surface and particle loading with metal ions
(Co2þ , Fe2þ and Fe3þ ) have been achieved simultaneously
for the first time29, and this may herald attempts to develop
targeted therapeutics. Furthermore insertion of integrin-binding
sequences into the surface loops of an eVLP has allowed
targeting of eVLPs to human endothelial cells (Meshcheriakova
et al., unpublished).

However, despite much research on CPMV, its true potential
in biotechnology may not be realized until we achieve a full
understanding of the mechanisms that underlie capsid assembly
and encapsidation of genomic RNA (or other cargo). It is not yet,
for example, possible to package heterologous RNA or DNA.
To gain insights into CPMV biogenesis, we have determined
high-resolution cryo-electron microscopy (cryo-EM) structures
for the CPMV eVLP, in which the C-terminal extension to the S
subunit is visible, to 3.0-Å resolution. We have also determined
the structure for wild-type CPMV containing its larger genomic
RNA at 3.4 Å resolution, where density for genomic RNA is
resolved. The resolution of both maps is sufficient to allow
de novo atomic models to be built. Furthermore, the availability of
a system for producing capsids in the absence of infection has
enabled us to use mutagenesis to explore the role of those amino
acids predicted by the models to be involved in particle
formation, and to discriminate between these and residues
involved in RNA packaging. This combined analysis has enabled
us to develop a new model for RNA recognition and capsid
assembly.

Results
Cryo-EM structure determination. Although the C-terminal
extension to the S subunit is implicated in capsid assembly and
RNA packaging, understanding these roles has been difficult
because the normal maturation of the RNA-filled capsid
involves its cleavage and dissociation. As a result no structural
information for these residues is currently available. To address
this deficiency, we decided to examine the structure of the
CPMV eVLP particle. Crucially, not only are such eVLPs
completely lacking in any encapsidated RNA, they also undergo
C-terminal cleavage more slowly than wild-type virions, raising
the possibility that we could determine the structure of an eVLP
that retains the C-terminal segment using cryo-EM and single
particle image processing. We therefore collected a cryo-EM
data set for CPMV eVLP comprising B1,150 micrographs
collected on an FEI Titan Krios microscope, using a direct
electron detector (for details of data collection and image pro-
cessing see Methods). Each micrograph was recorded as an
exposure movie consisting of 35 frames, which were computa-
tionally corrected for microscope drift and beam-induced
movement30. Particles were selected semi-automatically31, and a
data set of 62.5k particles was assembled. Iterative rounds of
two-dimensional (2D) and 3D classification were then used to
select a homogeneous subset of 4,998 particles for 3D structure
refinement (see Methods). The resulting final density map was
sharpened using an empirically derived B-factor of � 74.6 Å2 to
3.04 Å resolution (Fig. 2a; EMD-3014).

Wild-type, infectious CPMV particles containing RNA-1
(bottom fraction; CPMV-B) were collected from the bottom of
a Nycodenz gradient, dialysed to remove the Nycodenz, and used

for cryo-EM data collection. A data set of B1,750 electron
micrographs was collected on the same microscope and detector
as described above. Particles were selected automatically,
generating a total data set of B72k particles. A homogeneous
subset (4,331) of these particles was selected and used to
determine a 3D reconstruction. The final structure for CPMV-B
was sharpened using an empirically derived B-factor of
� 107.6 Å2 to a final resolution at 3.44 Å (Fig. 2b; EMD-3013).
It should be noted that the initial starting model for the
eVLP structure was a sphere with a radius of B155 Å.
The CPMV-B structure used the eVLP model filtered to
60 Å resolution. No information from the existing X-ray structure
whatsoever was therefore used to generate either of the structures
presented here.

Atomic model building. As shown in Fig. 2, the resolution of
both eVLP and CPMV-B maps is high enough to clearly resolve
amino acid side chains in the density. We therefore decided to
build de novo atomic models into the EM density rather than rely
on existing atomic models for the CPMV capsid proteins (PDB
1NY74). We started with the higher resolution eVLP map, and
built the polypeptide chain of a single copy of both the L and S
subunit using Coot32. This preliminary model was then iteratively
refined and rebuilt using REFMAC533 and Coot32 to
progressively improve model quality. The resulting model
contained information for the majority of the polypeptide
sequence, critically including a 13-residue segment in the
C-terminal region of S subunit that had never been previously
visualized. The refined eVLP atomic model was then docked into
the 3.4-Å CPMV-B map. Residues in the eVLP atomic model for
which no density was observed for CPMV-B were deleted
(residues 190–202 in S subunit) and amino acids resolved
in CPMV-B but not eVLP were added and modelled (residues
184–189 in the S subunit). This preliminary (for the CPMV-B
structure) model was then again iteratively refined in REFMAC5
to give the final model presented in Fig. 2b.

The structure of the C-terminal extension to the S subunit. The
existing structural information for the CPMV capsid3,4 show the
C terminus of S subunit after cleavage (ending at residue 189) in
an extended conformation running across the exterior surface of
the capsid towards a cleft between the S subunits that form the
turret at an icosahedral fivefold vertex. This is precisely the
conformation we see in our CPMV-B structure (see the yellow
segment in Fig. 3a), but in the eVLP map we see additional
density in this cleft that does not match the previously deposited
structure. The density that would correspond to residues 184–189
in the C terminus is very weak suggesting this segment is poorly
ordered in the particle in solution (see the yellow segment in
Fig. 3b), and we have not been able to build a convincing model
into this region of the map. However, it is clear that the
polypeptide chain takes a steeper path along the edge of the cleft
than it does once C-terminal cleavage (between residues 189 and
190) has occurred (comparison of yellow segments in Fig. 3a,b).
The C-terminal segment then becomes ordered once more, and
we see density corresponding to Leu190 to Arg202, residues
absent from previous structures. A loop runs from the top of the
S subunit back into the cleft between subunits, before forming
two turns of a-helix running out of the cleft towards the bulk
solvent (see magenta segment Fig. 3b). The bottom of this
segment appears to be very well-ordered, with clear density for
side chains that make intimate contacts to the neighbouring S
subunit around the penton (Fig. 3c). The density then becomes
disordered once more, with Arg202 as the last ordered
residue, suggesting that the 11 C-terminal residues are
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disordered in solution. Intriguingly, this tallies with functional
observations that while truncation of the C-terminal segment by
up to 11 residues are tolerated, larger truncations (12 residues
or more) dramatically reduce the yield of intact eVLPs
(see Supplementary Fig. 1 and Supplementary Table 1).

The role of the C-terminal extension. The ordered C-terminal
segment described for the first time here forms an intimate
network of interactions with the neighbouring S subunit
around the pentameric ring that forms the fivefold vertex
of the particle. It is clear from the structure that hydrophobicity

plays a central role in this network. Shown in Fig. 4a is the
EM-derived atomic model for the eVLP represented as a surface,
and coloured according to the hydrophobicity of the corre-
sponding amino acid residues involved (see legend of Fig. 4
for details). Two phenylalanine residues in the C-terminal
segment (F192 and F194) are well-resolved and appear to bind
to a large hydrophobic patch on the body of the neighbouring S
subunit. To test the importance of these interactions, we made
mutations in the S subunit sequence and analysed their effects
on both eVLP assembly and RNA packaging by the virus. While
F192W has little discernable effect on eVLP assembly, it dra-
matically reduces the efficiency of RNA packaging, resulting in
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Figure 2 | Cryo-EM structures of eVLP and CPMV-B. (a) EM density map of CPMV empty virus-like particle (eVLP) determined by cryo-EM to 3.04 Å

resolution (EMDB-3014). The L subunit is shown in green, the S subunit in blue and the additionally visualized 13 amino acids in the C-terminal region of

the S subunit in magenta. On the right hand side, a zoomed-in view of the boundary between L and S subunits is shown. The density for an individual b
strand is shown in a mesh representation with the EM-derived atomic model within, showing clear resolution of large and small side chains. (b) Identical

views as in a, but showing the EM map of CPMV containing RNA-1 (CPMV-B) to 3.44 Å resolution (EMDB-3013).
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large numbers of empty capsids and systemic movement of the
virus in the plant does not occur (Supplementary Table 2 and
3; Fig. 5a). Mutation of the matching hydrophobic surface on
the S subunit itself (for example, V109W) has even more
profound effects, preventing assembly of particles (Fig. 5b).
However, the network of interactions is complex, as mutation

of the other phenylalanine residue (for example, F194W)
has little discernable effect other than a slightly reduced
particle yield.

Despite the extensive nature of the hydrophobic surface on
both C-terminal extension and the S subunit surface to which it
binds, a number of charged residues also appear to play a key
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Figure 4 | Interactions between the C-terminal extension and the neighbouring S subunit. (a) EM-derived atomic model for the eVLP S subunit and
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Figure 3 | The structure of the C-terminal extension of the S subunit. (a) EM density map of the unsharpened CPMV-B map with colours as described

previously. In yellow is the C terminus of CPMV-B (amino acids 184–189), which follows the same path as the current atomic model (PDB 1NY74). The final

C-terminal amino acids (190–213) are missing from both the crystal structure and the CPMV-B EM density map. (b) EM density map of the unsharpened

eVLP map with colours as described previously. The density corresponding to amino acid 184–189 is coloured yellow. Although this section of the EM

density is too weak to allow a polypeptide backbone to be built, we can clearly see this portion of the C-terminal moves in the eVLP map compared with the

CPMV-B map (see yellow segment in a). Coloured magenta is the newly resolved 13-amino acid residue (190–202 in the S subunit). (c) Zoomed-in version

of the C-terminal extension from the sharpened EM density. The new atomic model is shown inside.
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role. The C-terminal segment is highly basic, and side-chain
density for two arginine residues is visible at the bottom of the
cleft (R193 and R195; see Fig. 4b). R193 is particularly
well-ordered and forms a salt-bridge to E147, again in the
neighbouring S subunit. To test the importance of this
interaction, we mutated these residues and assayed for eVLP
assembly and viral encapsidation of RNA in vivo. Both R193D
and E147R are completely unable to assemble, while the double
mutant R193D/E147R, which preserves the salt-bridge but swaps
its directionality, is almost indistinguishable from the wild type
(Fig. 5c). R195G is similar to wild-type in terms of assembly,
suggesting that it is the R193-E147 salt-bridge that is crucial for
assembly (Supplementary Table 2).

Interactions between the protein capsid and genomic RNA.
The way in which eVLPs are expressed means that no genomic
RNA is present in the cell, so none can possibly be packaged.
However, the eVLP has previously been shown to be devoid of
plant cell mRNA13, including the recombinant message for either
the viral coat proteins or proteinase, which are the two mRNAs
that should have the highest sequence similarity to the genome12.
Indeed, in the 3.0 Å structure of the eVLP there is no EM density
that can be attributed to anything other than capsid proteins,
which together with their very low A260/280 ratio and lack of
ethidium bromide staining in agarose gels13 strongly suggest that
the eVLP particles are devoid of RNA.

By contrast, the wild-type CPMV-B particle has packaged the
full-length, 6-kb single-stranded RNA-1, and as expected we see
significant extra density inside the capsid that we ascribe to this
packaged RNA genome. However, the B-factor correction used to
sharpen the map and reveal high-resolution features such as
amino acid side chains acts as a strong high-pass Fourier filter,
removing low-resolution features in the map such as poorly
ordered molecular components like the genomic RNA. Shown in
Fig. 6a is a 40-Å-thick central slab through the unsharpened
CPMV-B map (at 3.63 Å resolution; the unsharpened map is
also included in the deposition for EMDB-3013). As seen in the
cryo-EM structures of several single-stranded RNA viruses34,35,
the RNA appears as concentric shells of density. It must be noted
that this density is an icosahedrally averaged picture of an
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asymmetric RNA molecule, so precise structural interpretation is
impossible. However, several observations can be made. First, the
shells of density have a thickness of B20 Å, and are B20–25 Å
apart, consistent with the packing of duplex nucleic acids
observed in other virus structures (for example, refs 34,36),
suggesting that extensive base pairing occurs during
encapsidation. The general form of the packaged RNA is
dodecahedral rather than icosahedral (each is a different
realization of 532 symmetry), with the strongest RNA feature in
the map forming a truncated dodecahedral cage beneath the
capsid shell. This is strongly reminiscent of RNA packaging in
insect viruses of the Nodaviridae, where ordered genomic RNA is
packaged as a dodecahedral cage in both X-ray and EM
structures37,38. The strongest CPMV density is directly beneath
the twofold symmetry axes of the capsid, which are formed by
the interface between two adjacent pentons, implying that this is the
site where RNA binding is strongest. The density fades out as the
RNA extends away from the twofold axis towards the threefold
junctions that form the vertices of the truncated dodecahedron.
We see two major bridges of density between the capsid shell and
the RNA density that are candidates for amino acid side chains,

both from the L subunit, that directly interact with RNA (Fig. 6c).
These are Arg17 and Trp190, with Trp190 being by far the
strongest density feature connecting the capsid shell to the RNA.

To test the importance of these residues, we mutated each and
examined the effect on eVLP assembly and RNA encapsidation
in vivo (Fig. 7). Arg17 does indeed appear to be important for
RNA packaging. Although R17D can be introduced into eVLPs
with little effect, R17E substantially reduces eVLP capsid
assembly (Supplementary Table 2; Fig. 7a). In wild-type virus,
R17E and R17D abolish RNA packaging and substantially reduce
capsid assembly (Supplementary Table 3; Fig. 7b). R17W, R17G
and R17K are all indistinguishable from wild-type virus
(Supplementary Table 3; Fig. 7b), with identical yield and
systemic transport in plants, suggesting that the some degree of
flexibility in the nature of the residue is tolerated. Similarly,
mutations of W190A or W190D are both indistinguishable from
wild-type virus, while W190F abolishes both RNA binding and
capsid assembly (Supplementary Table 3; Fig. 7c).

Discussion
The cryo-EM structures presented here provide new insights into
the structure of viruses in the Comoviridae. They demonstrate the
ability of cryo-EM structures to guide site-directed mutagenesis
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eVLP particles are produced. After time, the C-terminal extension is lost

from the eVLP, suggesting that once an extensive protein:protein interaction

network is formed in the capsid the eVLP structure is stable. In the

presence of genomic RNA (assembly with genome shown in the bottom

half of the diagram), assembly follows a different path. Initially, pentons are

formed in the same way as in the eVLP, using the C-terminal extension for

stability. Two pentons interact to form a twofold axis, and thus the RNA-

binding site appears to exist at that position. Our model shows genomic

RNA (represented as an orange rectangle) initially binds to the two pentons

at this twofold axis, the first step in genome encapsidation. Following

stepwise addition of pentons, the C terminus is rapidly cleaved implying

that RNA occupancy is allosterically communicated through the structure

to the outside of the capsid.
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that can begin to pick apart the molecular mechanisms that
govern capsid assembly and genome packaging, providing the
basis for a new model of CPMV particle assembly.

The C-terminal region of the S subunit, despite its importance
for particle formation, is normally lost during virus maturation.
The novel structure of this region presented here therefore reveals
for the first time an extensive protein:protein interface that
combines both hydrophobicity and electrostatic interactions that
are important for capsid assembly and RNA encapsidation. Many
questions remain, but the C-terminal extension occupies the cleft
between the small coat protein subunits that form the pentameric
capsomere from which the virus assembles (Fig. 8). While we do
not resolve the residues that connect the C-terminal structure to
the body of the S subunit (residues 184–189), we do see extensive
interactions to the neighbouring subunit around the pentameric
ring. The C-terminal extension may act therefore as a dab of
‘molecular glue’ stabilizing the structure of the penton of L and S
subunits. In the absence of genomic RNA, this stabilization
appears to be sufficient to allow formation of the intact eVLP. The
eVLP does lose its C-terminal extension over time, implying that
the stability gained from making the many protein:protein
interactions formed during capsid assembly is sufficient to make
the eVLP structure stable. In this context, the role of the
C-terminal extension would in fact precisely fit the definition of a
molecular chaperone or a scaffold protein, enhancing the
efficiency of folding/assembly reactions without becoming a part
of the final structure.

In the presence of genomic RNA, however, assembly takes a
very different path. If the C terminus stabilizes the CPMV
penton, then the next step in building a capsid is the interaction
between two pentons, which forms the first twofold axis of the
growing particle. This is precisely the position at which our EM
density suggests there is the strongest interaction with the
genomic RNA. We suggest therefore that the C-terminal
extension promotes the formation of the RNA-binding site itself,
the first step in encapsidating the genomic RNA (Fig. 8; see
asterisk). This is in contrast to previous models of BPMV
assembly where RNA binding is proposed to occur at particle
threefold axes39. However, the rapid cleavage of the C terminus in
such conditions suggests that RNA binding must be allosterically
communicated through the structure to the binding site of the C
terminus on the outside of the capsid. Furthermore, the lack of
obvious mixed electrophoretic forms that would reveal a mixture
of cleaved/uncleaved subunits suggests that cleavage is strongly
cooperative within a particle. The precise details of this
communication remain unresolved, but the network of
interactions is clearly complex. Mutation of residues on the
inside of the capsid that directly interact with RNA prevent capsid
assembly (for example, W190F in the large subunit). Conversely,
residues on the outside of the capsid that were predicted to
disturb protein:protein interactions allow capsid assembly but
prevent RNA encapsidation (for example, F192W). Further
structural studies on these mutants will likely help to elucidate
the fine detail of these interactions.

All members of the Comoviridae have a similar, cleavable
C-terminal extension to their small coat protein subunit, although
its length and sequence are highly variable. For example, in
BPMV the sequence is strongly negatively charged in contrast to
the positive charge found in CPMV. The structures presented
here help to explain this diversity, because sequence changes in
the C-terminal extension could easily be compensated for by
surface mutations on the small subunit itself, as we show in the
viability of the R193D/E147R mutant, which makes CPMV more
BPMV-like in this regard. This idea is also consistent with
observations that replacing the CPMV extension with the
equivalent region from BPMV results in a virus with similar
properties to one from which the C-terminal residues have been
deleted11.

Although our studies provide an excellent view of capsid–RNA
interactions in assembled particles, they do not, as yet, provide
insights into how the specificity of RNA packing is achieved; this
remains a goal of future structural studies in this system. The
prevailing view in Picornavirales research is that RNA encapsida-
tion is tightly linked to RNA replication. The paradigm is thus
that specificity is a function of protein:protein rather than
protein–RNA interactions, and that nucleotide sequence specifi-
city is apparently unimportant. Our finding that the C-terminal
24 amino acids of the S subunit are involved in stabilizing the coat
protein penton fits into this paradigm. The stabilization of the
penton and the resulting promotion of interactions between
pentons explains how this region can promote RNA encapsida-
tion despite this sequence lying on the external surface of the
assembled particle. Similar sequences are not found in other plant
RNA viruses, perhaps because they commonly interact with their
genomes via charged N-terminal arms that are missing in the
comoviruses. However, conceptually the role of the C-terminal
sequence may be similar to the effect seen in Hepatitis A, an
animal picornavirus, where the uncleaved 2A peptide at the

Table 1 | Particle numbers at each stage in image processing.

eVLP CPMV-B

Autopicking 62,514 72,061
Particle sorting 52,970 65,346
2D classification 39,800 48,189
3D classification 4,998 4,331

eVLP, empty virus-like particle; CPMV-B, cowpea mosaic virus B; 2D, two-dimensional; 3D,
three-dimensional.

Table 2 | Refinement and model statistics for atomic models
built de novo into eVLP and CPMV-B EM density.

eVLP CPMV-B

Data collection
Particles 4,998 4,331
Pixel size (Å per pixel) 1.04 1.04
Defocus range (mm) 0.5–5.0 0.5–8.0
Voltage (kV) 300 300
Dose (e- per Å2) 45 45

EM refinement
Final resolution (Å) 3.04 3.44
Experimental B-factor (Å2) � 74.6 � 107.6
EMDB accession number EMD-3014 EMD-3013

r.m.s. deviations
Bonds (Å) 0.0077 0.0108
Angles (�) 1.2957 1.5319

Model validation
R factor 0.2207 0.2909
Molprobity score 1.61

(100th percentile)
1.76

(100th percentile)
Clashscore (all atoms) 0.81

(100th percentile)
1.52

(100th percentile)
Good rotamers (%) 96.3% 96.5%
PDB ID 5a33 5a32

EM, electron microscopy; eVLP, empty virus-like particle; CPMV-B, cowpea mosaic virus B;
r.m.s., root mean squared.
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C terminus of VP1 strongly promotes capsid assembly29. It also
offers an explanation as to why this sequence can act to suppress
RNA silencing when part of the S subunit11 but not when it is
fused to other proteins such as green fluorescent protein
(Cañizares and Lomonossoff, unpublished), as the C-terminal
extension’s role is in chaperoning the formation of the silencing-
active surface rather than silencing itself. However, given that the
presence of the RNA accelerates the rate of C-terminal cleavage, it
is plausible that both the C terminus and the genomic RNA may
co-chaperone the assembly of the nascent virus particle.

Methods
CPMV-B and CPMV eVLP purification. Infection of N. benthamiana with
CPMV was initiated by agroinfiltration of 3-week-old plants with pBinP-S1NT and
pBinP-S2NT40. Wild-type eVLPs were produced either by co-infiltration of
3-week-old N. benthamiana with pEAQ-HT-VP60 and pEAQ-HT-24K12 or by
infiltration with the single plasmid, pEAQexpress-VP60-24K15. Leaves were
harvested 5–7 days post infection. Wild type CPMV41 and eVLPs29 were extracted
and purified (described below).

CPMV and eVLP particles were purified by the following method; leaf tissue
was homogenized in a blender in 3 volumes of 0.1 M sodium phosphate buffer, pH
7.0. The homogenate was filtered through two layers of muslin and clarified by
centrifugation at 13,000g, for 20 min at 4 �C. Virus particles were precipitated using
0.25 volumes of 20% (w/v) PEG6000 and 1 M NaCl and pelleted by centrifugation
at 13,000g for 20 min at 4 �C. The resulting pellet was resuspended thoroughly in
10 mM sodium phosphate, pH 7.0. eVLPs were purified further by centrifugation at
27,000g for 20 min at 4 �C followed by a centrifugation of the clarified supernatant
at 118,700g for 2.5 h at 4 �C. The pellet was resuspended in small volume of 10 mM
sodium phosphate buffer overnight at 4 �C. The eVLP suspension was further
purified by centrifugation at 16,000g for 15 min at 4 �C. For wild-type CPMV and
mutated CPMV, the individual components were separated by centrifugation on
30–60% (w/v) Nycodenz gradients42.

Mutagenesis. Point mutations were introduced into the coat protein-coding
region of either pEAQ-HT-VP60 or pEAQ-RNA-2, a plasmid containing a
full-length copy of CPMV RNA-2 in pEAQ-HT using the GENEART Site-Directed
Mutagenesis System (Invitrogen) according to manufacturer’s protocol. Primers
for site-directed mutagenesis were designed using QuikChange Primer Design
Program (Supplementary Table 4). To produce eVLPs containing the required
mutation(s), the mutant forms of pEAQ-HT-VP60 were infiltrated into N. ben-
thamiana in the presence of pEAQ-HT-24K12 and mutant eVLPs, if present, were
extracted. To examine the effect of the mutations on virus infectivity and RNA
encapsidation, the mutant forms of pEAQ-RNA-2 were co-infiltrated into N.
benthamiana with pBinP-S2NT and any particles produced were purified as
described for wild-type CPMV (above).

Deletions in the C-terminal region of the S subunit of eVLPs were made by PCR
amplification using pEAQ-HT-VP60 as a template12. The primers used for PCR
also contained appropriate restriction sites (BspEI and StuI) to replace the
full-length VP60 with deleted variants of S subunit in pEAQ-HT-VP60
(Supplementary Table 5). The resulting deletion mutants were verified by
sequencing before agroinfiltration of N. benthamiana plants in the presence of
pEAQ-HT-24K. The formation of assembled capsids was assessed as described
above. Raw images of uncropped gels are shown in Supplementary Figs 2 and 3).

Grid preparation and imaging. Cryo-EM grids were prepared by placing 3 ml of
B4.2 mg ml� 1 (eVLP) or B5.8 mg ml� 1 (CPMV-B) onto 200 mesh grids with
2-mm holes (Quantifoil R2/2, Quantifoil Micro Tools, GmbH, Germany). Grids
were glow discharged for B20 s prior plunge freezing in liquid ethane cooled by
liquid nitrogen, using a FEI Vitrobot IV at 100% relative humidity. Data was
collected on an FEI Titan Krios (MRC-LMB, Cambridge, UK.) transmission
electron microscope at 300 kV, using an electron dose of B45e- per Å2 and a
magnification of � 134,615. The final object sampling was therefore of 1.04 Å per
pixel. A total of 1,135 (eVLP) and 1,754 (CPMV-B) exposures were recorded using
the EPU automated acquisition software on a 17 Hz FEI Falcon II direct electron
detector. Each exposure movie had a total exposure of 2 s and contained 35 images.

Image processing. Drift-corrected averages of each movie were created using
MOTIONCORR30 and the contrast transfer function of each determined using
CTFFIND3 (ref. 43); any images showing signs of astigmatism were discarded. All
subsequent image processing steps were performed using RELION (v1.3)44 unless
otherwise stated. Approximately 1,000 particles were manually picked and
classified using reference-free 2D classification. The resulting 2D class average
views were used as templates for automated particle picking31 (see Table 1 for
particle numbers at each processing step). To produce a structurally homogeneous
subset of CPMV particles, this initial stack was reduced using a statistical particle-
sorting algorithm31, which excludes the particles that are least similar to the initial

search references. The remaining particles were classified using reference-free
2D classification to yield a data set for 3D structure refinement that only
includes isolated molecular views of CPMV (see Table 1). These data sets, which
comprise B80% of all initially selected particles, were used to calculate initial 3D
reconstructions at B3.5 Å (eVLP) and 4.1 Å (CPMV-B). We then searched within
each data set for a subset of particle images with greater homogeneity and/or higher
resolution, using sequential 3D classification steps with icosahedral symmetry
imposed. Each of these steps split the data into two, and the class with the sharpest
features and highest resolution was taken forward. The initial starting model for the
eVLP structure was a sphere with a radius of B155 Å. For the CPMV-B structure,
the eVLP structure filtered to B60 Å resolution was used. Following 7 rounds of
3D classification for eVLP and 13 rounds for CPMV-B, the final data sets
(consisting of B8–10% of the original data) were considered to be homogeneous
and used to determine final 3D reconstructions45. To correct for mechanical drift,
beam-induced movement and radiation damage, statistical movie processing and
particle polishing procedures were implemented45. As CPMV particles are readily
visible even in individual movie frames, a running average of three frames was used
in the calculations. Post-processing was employed to appropriately mask the
model, estimate and correct for the B-factor of the maps46. The final resolution was
determined using the ‘gold standard’ Fourier shell correlation (FSC¼ 0.143)
criterion44 as 3.04 Å for eVLP and 3.44 Å for CPMV-B (FSC curves are shown in
Supplementary Fig. 4). Local resolution was estimated using the ResMap wrapper
in RELION47.

Model building and refinement. The backbone of each polypeptide chain in a
single asymmetric unit of the 3 Å eVLP cryo-EM map was built de novo using the
‘baton building’ tool in Coot32. The sequence was manually entered and the model
refined using the ‘real space refinement tool’ in Coot32. Prior to refinement,
secondary structure restraints were applied using ProSMART48. Structure factors
obtained from the Fourier transform of the experimental density were used to
restrain the coordinates in REFMAC5 (ref. 33). After each refinement round
non-ideal rotamers, bond angles and Ramachandran outliers were improved. The
final model was assessed for quality using MolProbity49. The refined eVLP atomic
model was docked into the 3.4 Å CPMV-B map. Residues in the eVLP atomic
model for which no density was observed in the CPMV-B map were deleted
(residues 190–202 in S subunit) and amino acids resolved in CPMV-B but
not eVLP were added and modelled (residues 184–189 in S subunit). External
restraints (produced from the eVLP model) and secondary structure restraints were
applied using ProSMART, the structure was refined in REFMAC5 and assessed for
quality using MolProbity (Table 2). Figures were generated using Chimera50

and PyMOL51.
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