
This is a repository copy of The Duffin-Schaeffer conjecture with extra divergence II.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/95071/

Version: Accepted Version

Article:

Beresnevich, Victor orcid.org/0000-0002-1811-9697, Harman, Glyn, Haynes, Alan 
orcid.org/0000-0001-6077-8162 et al. (1 more author) (2013) The Duffin-Schaeffer 
conjecture with extra divergence II. Mathematische Zeitschrift. pp. 127-133. ISSN 1432-
1823 

https://doi.org/10.1007/s00209-012-1126-5

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



THE DUFFIN-SCHAEFFER CONJECTURE

WITH EXTRA DIVERGENCE II

VICTOR BERESNEVICH, GLYN HARMAN,
ALAN HAYNES AND SANJU VELANI

Abstract. In [7] the authors set out a programme to prove the Duffin-Schaeffer Conjec-
ture for measures arbitrarily close to Lebesgue measure. In this paper we take a new step
in this direction. Given a nonnegative function ψ : N → R, letW (ψ) denote the set of real
numbers x such that |nx − a| < ψ(n) for infinitely many reduced rationals a/n (n > 0).
Our main result is that W (ψ) is of full Lebesgue measure if there exists a c > 0 such that

∑

n≥16

ϕ(n)ψ(n)

n exp(c(log log n)(log log log n))
= ∞ .
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1. Introduction

We use the following notation: p denotes a prime number, ϕ(n) is the Euler phi function,
λ denotes Lebesgue measure on R/Z, and f ≪ g means that the absolute value of f is
bounded above by a constant times the absolute value of g.

Let ψ : N → R be a non-negative arithmetical function and for each positive integer n
define En ⊆ R/Z by

En :=
n
∪

a=1
gcd(a,n)=1

(

a− ψ(n)

n
,
a+ ψ(n)

n

)

.
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Denote the collection of points x ∈ R/Z which fall in infinitely many of the sets En by
W (ψ). In other words,

W (ψ) := lim sup
n→∞

En :=
∞
∩

m=1

∪

n≥m

En .

The question we address is:

Question 1. Let ψ be any non-negative arithmetical function. Under what circumstances
is it true that λ(W (ψ)) = 1?

It is very easy to give a necessary condition for this to happen, namely the divergence
of the series:

(1)
∞
∑

n=1

ϕ(n)

n
ψ(n).

This follows from the Borel-Cantelli Lemma, since

λ(En) ≤ 2
ϕ(n)

n
ψ(n)

and so the convergence of (1) implies that λ(W (ψ)) = 0. It is a central open problem in
metric number theory to show that the divergence of (1) is actually sufficient to conclude
that λ(W (ψ)) = 1.

Conjecture (Duffin-Schaeffer 1941). We have that λ(W (ψ)) = 1 if and only if (1) diverges.

There are several significant partial results towards this conjecture, most notably those
due to Khintchine, Duffin & Schaeffer, Erdös, Vaaler, and Pollington & Vaughan [8, 2, 3,
11, 9]. The proofs of these results and others are all given in [6, Chps 2 & 3]. Recently
Pollington and two of this paper’s authors [7] have considered the effect on the problem of
assuming “extra divergence”. They have posed the following question.

Question 2. For what functions f does the divergence of

(2)
∞
∑

n=1

f

(

ψ(n)

n

)

ϕ(n)

guarantee that λ(W (ψ)) = 1?

In view of the Mass Transference Principle [1] this question is equivalent to investigating
the Duffin-Schaeffer Conjecture for (Hausdorff) measures “arbitrarily” close to Lebesgue
measure – see [7, §5] for the details. Regarding Question 2 itself, the following result is
established in [7].
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Theorem HPV. Let ψ be any non-negative arithmetical function and define the function
f by

f(x) =











0 if x = 0,

x exp
(

log x
log(− log x)

)

if 0 < x < 1,

1 if x ≥ 1.

Then the divergence of (2) is sufficient to conclude that λ(W (ψ)) = 1.

The authors of [7] set as an explicit unsolved problem the task of replacing f(x) above
by f(x) = x(− log x)−1. The hope is that as one approaches the situation of the Duffin-
Schaeffer Conjecture (that is, f(x) = x) one can see more clearly the outstanding problems.
In addition any subsequent attack on the conjecture can assume that the series (1) is
diverging “slowly” in certain senses. In this paper we make progress towards this goal by
establishing the following result.

Theorem 1. Let ψ be any non-negative arithmetical function and for any c > 0, define
the function fc by

fc(x) =











0 if x = 0,

x exp (−c(log(− log x))(log log(− log x))) if 0 < x < 1,

1 if x ≥ 1.

Then the divergence of (2) with f = fc is sufficient to conclude that λ(W (ψ)) = 1.

It is worth pointing out that this strengthening of Theorem HPV is not a consequence of
simply tweaking the approach taken in [7] – see also the remark at the end of §3 in [7]. By
appealing to the Erdös-Vaaler Theorem [11] and to [9, Theorem 2] we can assume without
loss of generality throughout the proof that 1/n ≤ ψ(n) ≤ 1/2 whenever ψ(n) ̸= 0. In
view of this it suffices to prove the following theorem.

Theorem 2. The Duffin-Schaeffer Conjecture is true for any non-negative arithmetical
function ψ such that the series

(3)
∞
∑

n=16

ϕ(n)ψ(n)

n exp(c(log log n)(log log log n))

diverges for some c > 0.

2. The basic framework

Gallagher [4] (see also [6, §2.2]) proved that there is a “zero-one” law for Question 1.
That is, for any given function ψ we have that λ(W (ψ)) = 0 or 1. We therefore only
need to prove that under our extra divergence hypothesis λ(W (ψ)) > 0. To do this we
need the following result [6, Lemma 2.3] whose proof involves little more than the correct
application of the Cauchy-Schwartz inequality.
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Lemma 1. Let An be a sequence of Lebesgue measurable subsets of R/Z. Let A be the set
of α belonging to infinitely many An. Then

(4) λ(A) ≥ lim sup
N→∞

(

N
∑

n=1

λ(An)

)2( N
∑

m,n=1

λ(Am ∩ Am)

)−1

.

The well known Duffin-Schaeffer result [6, Theorem 2.5] toward the Duffin-Schaeffer
Conjecture follows from this lemma together with the elementary bound

(5) λ(Em ∩ En) ≤ 8ψ(n)ψ(m) for m ̸= n.

However if the sets in the collection {En} were quasi-pairwise independent, i.e. if

(6) λ(Em ∩ En) ≪ ψ(n)ψ(m)
ϕ(m)

m

ϕ(n)

n
for m ̸= n,

then the Duffin-Schaeffer Conjecture would follow at once from (4) together with Gal-
lagher’s zero-one law. Unfortunately (6) does not hold uniformly for all m ̸= n. The best
known upper bound for λ(En ∩ Em) is the following result.

Lemma 2. For m ̸= n we have

(7) λ(Em ∩ En) ≪ λ(Em)λ(En)P (m,n),

where

(8) P (m,n) =
∏

p|mn/gcd(m,n)2

p>D(m,n)

(

1−
1

p

)−1

,

with

(9) D(m,n) =
max(nψ(m),mψ(n))

gcd(m,n)
.

This was first stated by Strauch [10], but was also given independently by Pollington &
Vaughan [9]. The proof is still essentially elementary, but fairly complicated, and needing
a simple sieve upper bound. Effectively the same result was given earlier by Erdös [3].
Clearly what needs to be done in applying Lemma 1 is to show that the factor P (m,n) in
Lemma 2 is bounded on average.

It is worth pausing here to see what the real difficulties are in estimating λ(Em ∩ En).
Two intervals from Em and En overlap if

∣

∣

∣

∣

a

m
−
b

n

∣

∣

∣

∣

<
ψ(m)

m
+
ψ(n)

n
.

We lose nothing in terms of the order of magnitude of the bound in replacing this with

(10) |an− bm| < A(m,n) := 2max(mψ(n), nψ(m)).
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The length of the intersection is no more than the smallest length of the two intervals
(again nothing is lost in order of magnitude in making this assumption). We thus have

λ(Em ∩ En) ≤ 2min

(

ψ(m)

m
,
ψ(n)

n

)

Σ(m,n),

where Σ(m,n) denotes the number of integer solutions to (10) with

1 ≤ a < m, 1 ≤ b < n, gcd(a,m) = 1, gcd(b, n) = 1.

We thus need to show that, at least on average over m,n, we have

Σ(m,n) ≪ A(m,n)
ϕ(m)

m

ϕ(n)

n
.

Now if gcd(m,n) = 1 and A(m,n) is not too small there is no problem with this. The
trouble essentially comes when

1 ≤
A(m,n)

gcd(m,n)
< log(mn).

In that case we are not averaging over enough values of h in the equation an− bm = h to
get the required bound. This is a real problem, not just a deficiency in our knowledge. Our
hope would be that the values of m and n concerned do not make the major contribution
to

∑

1≤m,n≤N

λ(Em ∩ En).

3. Proof of Theorem 2

Our proof is in the same spirit as that of [7, Theorem 1], however our approach here is
more direct. The proof of [7, Theorem 1] was divided into two steps: (i) dealing with the
case when the function ψ is constant on large intervals in its support, and (ii) utilizing the
extra divergence hypothesis to reduce to this case. Our proof here avoids this technical
digression and furthermore makes use of a new idea that was not used before and allows
us to obtain the stronger result announced in the introduction.

The crucial new ingredient can be described as follows. When we have a collection of
integers with a large number of pairs with gcd’s falling into the bad intervals (i.e. the
intervals which make P (m,n) large), we can try dividing all of the corresponding values
of ψ(n) by some constant amount in order to shift the intervals. The extra divergence
condition gives us enough room to do this in a way that we control the contribution from
the P (m,n) terms, while maintaining the hypothesis that the sum of the measures of our
sets diverges.

We proceed to the details of the proof. Without loss of generality, assume that ψ(n) ≥
n−1 whenever ψ(n) ̸= 0 – see the discussion just before the statement of the theorem. We
divide the integers n into blocks

24
h

≤ n < 24
h+1

, h ∈ Z.
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It then follows that series (3) diverges with n restricted to blocks with either all the h even,
or all the h odd. Without loss of generality we suppose the series diverges over blocks with
h even, and that ψ(n) = 0 for all integers n which lie in blocks with h odd. We then note
that if m < n, if ψ(m), ψ(n) > 0, and if m and n are in different blocks then

A(m,n) ≥ 2nψ(m) ≥ 2nm−1 ≥ 2n gcd(m,n)m−2 ≫ gcd(m,n)(log nm).

Hence P (m,n) ≪ 1 if m and n belong to different blocks.

Now we consider a block 24
h

= X ≤ m,n < X4. Write R = log logX and

Ψ(X) =
∑

X≤m,n<X4

ψ(n)ψ(m)
ϕ(m)

m

ϕ(n)

n
.

By one of Mertens’ theorems [5, Theorem 328] we have for D(m,n) ≥ 1 that

P (m,n) ≪ exp





∑

D(m,n)<p<logX

1

p



≪
R

1 + logD(m,n)
.

We let Dj be the collection of pairs (m,n) such that ej ≤ D(m,n) < ej+1. The idea is
going to be to divide each ψ(n) by a suitable factor (say ek) so that the contribution from
R consecutive ranges for which P (m,n) ≫ 1 is not of a larger magnitude than the expected
overall contribution. Specifically, we have

∑

k≤K

∑

k≤j≤k+R

R

j + 1− k

∑

(m,n)∈Dj

ψ(n)ψ(m)
ϕ(m)

m

ϕ(n)

n
≪ RΨ(X) logK,

since each set Dj is counted with weight

≤
∑

k≤min(j,K)

R

j + 1− k
≪ R logK.

We can therefore choose an integer k ≤ cR logR such that

∑

k≤j≤k+R

R

j + 1− k

∑

(m,n)∈Dj

ψ(n)ψ(m)
ϕ(m)

m

ϕ(n)

n
≪ Ψ(X).

With this choice of k write

E =
∪

k≤j≤k+R

Dj.

Note that

ek ≤ exp (c(log logX)(log log logX)) .

Now for positive integers n put

ρ(n) =

{

ψ(n)e−k if X ≤ n < X4 with X = 24
h

for some even h,

0 otherwise,
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where k = k(X) is as above. We now consider the sets En(ρ). By construction, we have
that

∞
∑

n=1

ρ(n)ϕ(n)

n
= ∞,

and

λ(Em(ρ) ∩ En(ρ)) ≪ λ(Em(ρ))λ(En(ρ))

unless (m,n) ∈ E . But now we also have that

∑

(m,n)∈ E

ρ(m)ρ(n)
ϕ(n)

n

ϕ(m)

m
P (m,n) ≪

∑

X≤m,n<X4

ρ(m)ρ(n)
ϕ(n)

n

ϕ(m)

m

(we note that P (m,n) here does depend on ρ) and so

N
∑

m,n=1

λ(Em(ρ) ∩ Em(ρ)) ≪

(

N
∑

n=1

λ(En(ρ))

)2

for N taking the values 24
h+1

. By Lemma 1 and Gallagher’s zero-one law we have that
λ(W (ρ)) = 1, and since W (ρ) ⊆ W (ψ) the proof is completed.
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