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The Python package PDielec is described, which calculates the

infrared absorption characteristics of a crystalline material sup-

ported in a non-absorbing medium. PDielec post processes

solid-state quantum mechanical and molecular mechanical cal-

culations of the phonons and dielectric response of the crystal-

line material. Using an effective medium method, the package

calculates the internal electric field arising from different particle

morphologies and calculates the resulting shift in absorption

frequency and intensity arising from the coupling between a

phonon and the internal field. The theory of the approach is

described, followed by a description of the implementation

within PDielec. Finally, a section providing several examples of

its application is given. VC 2016 The Authors. Journal of Computa-

tional Chemistry Published by Wiley Periodicals, Inc.

DOI: 10.1002/jcc.24344

Introduction

The molecular and solid-state quantum mechanical (QM) calcula-

tions of response properties such as the frequencies and inten-

sities of infrared (IR) and terahertz (THz) radiation absorption

have become generally available in many molecular and solid-

state computer programs. A common approach is to assume the

harmonic approximation and calculate the mass weighted force

constant matrix (for molecules) or the dynamical matrix at the

gamma point (for periodic solids). Diagonalization of the matrix

gives the frequencies for absorption and the normal modes (mol-

ecules) or phonon displacements (periodic solids). The calculation

of the absorption intensity for each mode requires the calculation

of the change in dipole moment caused by the displacement of

the atoms for that mode. For solids where there is a large separa-

tion of charge, there can be a large coupling between a phonon

mode and the internal field within a particle resulting from its

morphology. This article describes the PDielec package, which is

written in Python and post processes the output of solid state

QM and molecular mechanics (MM) based codes such as VASP,[1]

CASTEP,[2] and GULP[3] to predict the infrared absorption of crys-

talline insulator materials whose crystal size is small compared

with the wavelength of the absorbing radiation. The package is

suited for the calculation of the complex, frequency dependent

permittivity, and its associated absorption of infrared radiation for

a finely ground crystalline material dispersed in a low loss dielec-

tric medium such as KBr or polytetrafluoroethylene (PTFE). A par-

ticular feature of the program is its ability to take into account

the constant permittivity of the supporting medium and the par-

ticle shape of the material of interest through an effective

medium theory. This article outlines the theory used by the pro-

gram and gives some examples of the application of the program

for ionic and molecular materials.

Theory

Equation (1) describes Beer–Lambert’s law[4] where a is the

(decadic) absorption coefficient (usually given in cm21), I and

I0 are the intensities after and before absorption respectively

and d is the path length.
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It is common, especially in the chemistry community, when

reporting infrared spectra to use a decadic molar absorption

coefficient (a), which has units of L mol21 cm21. The relation-

ship between the absorption coefficient and the molar absorp-

tion coefficient[4] is

a5aC (2)

where C is the concentration of the absorbing species.

Molecular approach to absorption intensity

For molecules, the transition intensity Ik of the kth mode (cal-

culated from the change in dipole moment along the mode

displacement) can be converted to an integrated molar

absorption coefficient, Ak, which can then be more readily
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compared with the experiment. The theory for this is

described by Wilson et al.[5] and results in expressions such as

the two equations below [eq. (3)]. The first expression shows the

relationship between the integrated molar absorption coeffi-

cient and the transition intensity and uses the number of mole-

cules per unit volume (N), the velocity of light (c), and the

degeneracy of the mode (gk). The second expression shows the

appropriate conversion factors if the units for the integrated

molar absorption coefficient are L mol21 cm22 (1 L mol21

cm22 5 0.01 km mol21) and the units for the transition intensity

are D2 Å22 amu21, where D represents the Debye unit of dipole

moment and amu is an atomic mass unit. The factor loge10

arises due to the choice of a decadic Beer’s law.

Ak5
Np

3c2 log e10
gk Ik

Ak5
Nap

3000c22:302585
gk Ik54225:6gk Ik

(3)

The derivation of the above expressions assumes that the

rotational levels are not quantized and that the vibrational lev-

els are thermally occupied according to a Boltzmann distribu-

tion. In order to use the calculated molecular intensities to

predict a spectrum it is usual to assume[5] that each transition

is associated with a Lorentzian line shape with a full width at

half maximum (FWHM) of rk. It is common, when reporting

comparison between theoretical and experimental spectra, to

assume that the line widths are the same for all modes.[6,7]

Recent work on terahertz absorption in crystalline pentaeryth-

ritol tetranitrate (PETN) using molecular dynamics calcula-

tions[8] in combination with the direct calculation of the cubic

anharmonic couplings of the normal modes[9] has shown that

the FWHM of the intense absorptions may vary between 10

and 25 cm21. Assuming a Lorentzian line shape, the molar

absorption coefficient for the kth mode at wavenumber, mk ,

can be written as a function of frequency or wavenumber (m);

akðmÞ5
2Ak

p
rk

4 m2mkð Þ21r2
k

amax
k 5

2Ak

prk

(4)

The maximum height of the Lorentzian, amax
k , clearly depends

upon the value of rk. As can be seen in eq. (5), the choice of nor-

malization for the Lorentzian means that integration of the

molar absorption coefficient over wavenumber returns the inte-

grated molar absorption coefficient and a sum over all the

bands provides the total molar absorption coefficient amol (m) as

a function of wavenumber, calculated from the intensities of

each band. The final expression in eq. (5) shows the relationship

between the absorption and the molar absorption coefficients.

C is the concentration usually expressed in mol/L.

Ak5

ð
akðmÞdm

amolðmÞ5
X

k

akðmÞ

amolðmÞ5CamolðmÞ

(5)

A comment should be made about the various units which

can be used for these quantities. A common unit for the tran-

sition intensity is (D/Å)2/amu, another is km/mol. However, it

should be pointed out that strictly speaking the latter unit

refers to the integrated molar absorption coefficient as defined

above in eq. (3) and therefore relies on the assumptions made

in its derivation (1 (D/Å)2/amu is equivalent to 42.256 km/mol).

Solid-state approach to absorption intensity

The optical properties of a solid are determined by its com-

plex, frequency dependent relative permittivity (eðmÞ) and in

particular the imaginary refractive index component tensor, j,

of the complex refractive index, N where;

NðmÞ25eðmÞ

NðmÞ5nðmÞ1ijðmÞ
(6)

The intensity of absorption is given by the effect of the

imaginary component of the refractive index on the incident

light assuming an isotropic material[6]

I5I0e24pjðmÞd=k

I5I0e24pmjðmÞd

2ln
I
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� �
54pmjðmÞd:log e

(7)

Comparison with the definition of the absorption coefficient

from Beer–Lambert’s law [eq. (1)] gives

asolðmÞ54pmjðmÞ � log e

asolðmÞ5 asolðmÞ
C

(8)

Since the refractive index is dimensionless, the absorption

coefficient (asol) is specified in cm21. The superscripts “sol,” for

solid, and “mol,” for molecular, are used here to distinguish

between the two methods of calculating the absorption (a)

and molar absorption coefficients (a). In the calculation of the

imaginary component of the refractive index it is necessary to

choose the solution which gives a positive value. This is con-

sistent with the Kramers–Kronig relationship between the real

and imaginary components.[10]

In order to calculate the relationship between absorption

and molar absorption coefficients it is necessary to know the

concentration. For solid-state calculations the required unit is

moles of unit cells per liter. One of the drawbacks of this

molar absorption coefficient unit is that the number of mole-

cules in a unit cell can change depending on whether a super-

cell, primitive or non primitive unit cell is being used. A more

natural unit would be to use a mole of formula units, or a

mole of molecules. However for the rest of this paper eq. (9)

will be used, where V is the volume of the unit cell, and there-

fore the concentration C is moles of unit cell/liter.
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C5
f � 1000 cm3

VNa
(9)

The volume fraction, f, of the dielectric material in a sup-

porting matrix of non-absorbing material is included in the

expression for the concentration as it will be useful when the

theory for mixtures is developed.

For a periodic system, the permittivity tensor can be calcu-

lated as a sum over Lorentz oscillators, incorporating an imagi-

nary loss component through the damping factor rk.[11] The

frequencies of the oscillators are the transverse optic (TO) pho-

non frequencies of the system.

eðmÞ5e11
4p
V

X
k

S k

m2
k2m22irkm

(10a)

S k5ZkZ
T

k (10b)

Zk5
X

a

Z
a

U
a

k (10c)

D Uk5KkUk (10d)

m2
k5Kk (10e)

V is the volume of the unit cell, Sk is the dipole oscillator

strength tensor for the kth transition, with a TO frequency of mk

and e1 the optical permittivity tensor, which represents the elec-

tronic contribution to the permittivity. The intensity of a transi-

tion, Ik is given by the trace of the oscillator strength tensor,

Ik 5 tr (Sk): The damping factor rk removes any discontinuities at

the TO frequencies. Since the oscillator strengths and phonon fre-

quencies can be calculated routinely in solid-state QM packages,

the calculation of the frequency-dependent complex permittivity

using eq. (10a) is straightforward. In some cases, using eqs. (10b)

and (10c), PDielec calculates the oscillator strengths from the

Born charge matrix for atom a, Z
a

, and the contribution of atom

a to the kth phonon mode, U
a

k .[11] As shown in eq. (10d), at the

C point the kth phonon mode is described by the eigenvector,

Uk; and eigenvalue, Kk; of the mass weighted, dynamical matrix,

D, which is a 3N33N matrix, where N is the number of atoms in

the unit cell. The eigenvalues are the squared frequencies of the

phonon modes [eq. (10e)]. The displacement of each atom in the

kth mode, is proportional to U
a

k=
ffiffiffiffiffiffi
ma
p

; where ma is the mass of

atom a. The dynamical matrix has 3N eigenvectors and eigenval-

ues, of which three should be zero due to translational invariance.

If there are any negative eigenvalues the system is unstable to

some displacement and therefore not at an energy minimum.

For ionic systems it is common practice in solid-state QM

and MM programs to include a long wave-length, non-analytic

correction to the mass weighted dynamical matrix at the

C point, which describes the coupling of the longitudinal optic

(LO) modes to the induced field resulting from the vibration.

This may be written for atoms s and t and their Cartesian com-

ponents a and b as[11]

D
LO
q!0

� �
s;a;t;b

5 D
� �

s;a;t;b
1

4p

V
ffiffiffiffiffiffiffiffiffiffiffi
MsMt

p
qTZs

� �
a

qTZt

� �
b

qT � e � q
(11)

The mass weighting has been incorporated through the

mass of the atoms, Ms and Mt. The correction depends upon

the direction, q, that the long wavelength limit is approached.

Diagonalization of the corrected matrix gives the squared fre-

quencies of N 2 1 LO modes and 2N 2 2 TO modes [eqs. (10d)

and (10e)]. In some of the examples given below, the LO fre-

quencies will be given for comparison with the TO

frequencies.

Effect of particle shape on infrared absorption

It has long been recognized that, especially for ionic materials,

the local field within a crystal and its coupling with the trans-

verse optic phonons has an important effect on the position

and intensity of the absorption. Fr€ohlich[12] was one of the first

to point out that the frequency of absorption of a small ionic

sphere embedded in a low dielectric medium is shifted to lie

between the transverse and longitudinal optic frequencies of

the material making up the sphere.

In the development of the theory used in PDielec, an impor-

tant assumption is that the particle size of the crystallites in

the sample is small compared with the wavelength of light.

Using this approach, Genzel and Martin[13] were able to

explain the observed infrared absorption of small spheres of

MgO crystallites and the effect of the permittivity of the sup-

porting medium on the spectrum. Studies of the infrared

absorption by small particles of a-Fe2O3 using an effective

medium theory and an absorption/scattering theory[14,15]

showed that in order to fit the experimental spectra it was

necessary to adjust not only the damping factors in eq. (10a),

but also the permittivity of the matrix and the volume fraction

of the dielectric medium. The latter was used to account for

aggregation effects as the volume fraction increased. It was

also shown that effective medium theories were only applica-

ble for particles smaller than the wavelength of light. For

larger particles the scattering from the particles becomes

increasingly important.

More recently, Balan and coworkers in a series of

papers[16–19] used density functional calculations together with

an effective medium theory to calculate the infrared absorp-

tion of several minerals incorporating information about the

crystallite shape. In an experimental and theoretical study of

irradiated kaolinite,[19] it was shown that exposure to radiation

resulted in shifts in the infrared spectrum which could be

accounted for by increasing the polarizability of the particles

through an increase in the optical permittivity tensor.

The underlying theory adopted by PDielec is based on simi-

lar premises to the work described above, namely that the

dielectric response of small spherical, ellipsoidal, slab-like or

needle-like crystallites randomly distributed in a non-absorbing

medium such as PTFE, KBr, or Nujol is the same as that of an

effective medium material whose frequency-dependent dielec-

tric response can be calculated from the frequency-dependent

permittivity tensor of the crystal (as calculated by solid state

QM or MM calculations), the shape of the crystallites, and the

permittivity of the non-absorbing medium (taken to be a con-

stant over the frequency range of interest).
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The development of the theory reported here closely fol-

lows the work by Sihvola.[20] It will be assumed that the inclu-

sion particles, which may be non-isotropic, ellipsoidal

(including spherical, needle-like, and plate-like), are randomly

orientated in an embedding, non-absorbing medium such as

PTFE, KBr, or Nujol. It should be emphasized that while PDielec

can take account of particle shape, particle and matrix permit-

tivity, there are many additional aspects of infrared absorption

which need to be considered when comparing calculated and

experimental results. Most notable of these are the coupling

between phonons and mobile electrons or holes (so called

phonon–polariton coupling),[21] the scattering which starts to

dominate as the particles get larger[19] and the agglomeration

of particles as the volume fraction increases.

The polarizability of an isolated particle

Figure 1 shows a schematic of the field and polarization inside

an inclusion with non-isotropic permittivity e i embedded in a

supporting medium with permittivity ee. The internal field

within the inclusion is indicated by E i, the external, applied

field is indicated by Ee and the induced polarization in the

inclusion is shown by P.

The electric field internal to the inclusion gives rise to a

polarization density which is no longer necessarily aligned

with the field because the material is non-isotropic. The polar-

ization density in the inclusion can be expressed as the tensor

product of the permittivity contrast between the inclusion and

the supporting medium and the (as yet unknown) internal

field.

P5 e i2Ee1
� �

E i (12)

For any ellipsoidal shape (including sphere, slab, and needle)

with volume V, the polarization density throughout the particle

is uniform and integrating over all space gives the field

induced dipole moment of the inclusion, p.

p5VP5V e i2Ee1
� �

E i (13)

The dipole and the external field (Ee) are related by the

polarizability tensor, a.

p5a Ee (14)

Equations (13) and (14) allow the determination of the

polarizability, once the field internal to the inclusion has been

expressed in terms of the shape of the inclusion and its per-

mittivity. The polarization within the inclusion gives rise to a

depolarization field (Ed), which depends on the shape of the

inclusion through the symmetric and unit trace depolarization

tensor, L.

Ed52
1

Ee
L � P (15)

The internal field is the sum of the external field and the

depolarization field.

E i5Ee1Ed (16)

The depolarization tensor acts as a projection or screening

operator describing the effect of the geometry of the inclusion

on the depolarization field which results from its polarization.

For instance, in the case of a needle, only polarization perpen-

dicular to the needle axis contributes to the depolarizing field,

whilst for a slab only polarization perpendicular to the slab face

may contribute. Similarly for a sphere, all directions contribute

and so the depolarization matrix is diagonal with a value of 1/3

for each diagonal element, as the trace of the depolarization

tensor must be 1. It follows from eqs. (12), (15), and (16) that

E i5Ee2
1

Ee
L e i2Ee1
� �

E i (17)

Rearrangement allows the internal field of the inclusion to

be expressed in terms of the known permittivities, the shape

of the inclusion and the external field.

E i Ee11L � e i2Ee1
� �� �

5EeEe

E i5EeEe Ee11L � e i2Ee1
� �� �21

(18)

Substituting the internal field expression eq. (17) into eq.

(13) for the dipole moment and requiring the dipole moments

calculated using the polarization density to equal those calcu-

lated from the polarizability allows the polarizability to be

written

Figure 1. Schematic showing the field and polarization inside an inclusion

with non-isotropic permittivity embedded in a supporting medium. [Color

figure can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]
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a5VEe e i2Ee1
� �

Ee11L � e i2Ee1
� �� �21

(19)

Although it has not been specified explicitly, the permittivity

of the inclusion, and therefore the polarizability tensor are fre-

quency dependent through the oscillator strengths of each

phonon mode contributing to the permittivity according to

eq. (10a). The calculation of the complex, frequency-

dependent polarizability tensor of the composite material is

the key step in the calculation of its effective permittivity.

The effective permittivity of a mixture

To extend this approach to include the effect of a number of

inclusions we need to introduce the concept of an effective

permittivity (eeff ), which describes the behavior of an average

field, hEi, where the angle brackets indicate an average over a

volume of the composite material. It is required that the aver-

age electric flux density hDi is the same in the effective

medium as in the composite medium

hDi5eeffhEi5EehEi1hPi (20)

The averaging is necessary because the polarization within a

given inclusion has an effect on the field in other inclusions.

The local field in the cavity left by a single inclusion embed-

ded in the average polarization field is given by

EL5hEi1
1

Ee
LhPi (21)

The local field “excites” the inclusion resulting in a dipole

moment p that is related to the polarization through the num-

ber density of inclusions (n) and through the polarizability of

the inclusion, which is already known from eq. (19).

hPi5np5nha E Li (22)

The angle brackets around the product of the polarizability

and the local field indicate that it is necessary to average the

polarization according to the distribution of alignments of

inclusions. In this work it will be assumed that the inclusions

are randomly aligned. Substituting the expression for the local

field [eq. (21)] gives

hPi5 12nha Li
Ee

 !21

nhaihEi (23)

Mixing rules

There are many mixing rules which have been proposed to

describe the homogenization of composite materials and a lot

of work has been done in comparing their accuracy. Here two

methods will be used. The first and the most commonly used

method is the Maxwell-Garnett mixing rule.[20] Indeed this has

been implied by the use of eq. (20) to define the effective per-

mittivity. The other commonly used method is the Bruggeman

mixing rule,[20] which differs substantially in the way the two

components of the system are treated. It is usually stated that

the Maxwell-Garnet mixing rule is good for low volume frac-

tions of the inclusion and the Bruggeman approach should be

better for higher volume fractions.[22] In addition to these mix-

ing rules one other approach will be described, namely the

Averaged Permittivity (AP) mixing rule, which calculates the

absorption spectrum ignoring the effects of the internal field

on the absorption and can therefore be used as an indicator

of the shifts in frequency and intensity which have occurred

owing to the effect of particle shape.

Maxwell-Garnett mixing rule

The Maxwell-Garnett approach for treating the properties of

heterogeneous mixtures assumes that the average field and

the average flux density result from volume fraction weighted

sums. Substituting eq. (23) into eq. (20) gives the Maxwell-

Garnett effective permittivity;

emg511
12nha Li

Ee

 !21

nhai (24)

The fact that the polarizability tensor has a volume term in

it [eq. (19)] means that the terms in eq. (24) containing na
depend on the volume fraction f. Although written as a tensor,

because the assumption has been made that the inclusions

are randomly orientated, the effective permittivity has to be

diagonal with equal complex values. Since the polarizability is

complex and frequency dependent the effective permittivity

and its calculation using eqs. (24) and (19) needs to be calcu-

lated over the frequency range of interest.

Bruggeman mixing rule

In the Maxwell-Garnett mixing formalism there is a distinction

between the inclusion and the supporting medium which

results in an asymmetry in the treatment of the two species in

the mixture. Instead, the Bruggeman mixing rule assumes that

each species is polarized against the background of the effec-

tive medium and therefore the polarization in the two compo-

nents cancel each other out

hP1i1hP2i50 (25)

where the components are now labeled 1 and 2 rather than

external and internal. The polarization for species 1 and 2 with

a number density of species represented by n1 and n2 can be

obtained from the polarizability of the species [eq. (22)]

hP1i5n1ha1iE (26)

Substituting eq. (26) into eq. (25) leads to the requirement

that

n1ha1i1n2ha2i50 (27)

Taking eq. (19) and generalizing it for species i, (where i is

1 or 2) embedded in an effective permittivity given by ebr
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a i5Viebr e i2ebr

� �
ebr1L � e i2ebr

� �� �21
(28)

Equation (27) has to be solved for ebr. Since the systems

considered here are isotropic with random inclusions, a solu-

tion has to be found for a complex value of the Bruggeman

permittivity at each frequency considered. An issue in the use

of eq. (28) is that the same depolarization matrix is being used

for both species, which is clearly not always appropriate. The

solution of eq. (27) can be achieved either by iteration or by

casting the equation as a minimization problem. The iterative

approach implemented in PDielec involves repeated applica-

tion of eq. (29) until convergence.[23] The starting point for the

iterations is taken as the Maxwell-Garnett solution for the first

frequency and then the solution at the previous frequency is

used to start the iterations.

ebr5
f1e1 11L e12ebr

� �h i21

1f2e2 11L e22ebr

� �h i21

f1 11L e12ebr

� �h i21

1f2 11L e22ebr

� �h i21 (29)

Although the Bruggeman permittivity is written here as a ten-

sor, the polarizabilities in eq. (27) have to be averaged over the

random orientation of the inclusions and therefore the homoge-

nized material is isotropic with a single complex value for the

diagonal tensor. Also, as with the Maxwell-Garnett mixing rule,

since the polarizability is complex and frequency dependent,

the effective permittivity is also, and its calculation using eq. (29)

needs to be performed over the frequency range of interest.

The choice between using the Bruggeman or Maxwell-

Garnett model is often governed by the assumption that the

Maxwell-Garnett model works well at low concentrations and

the Bruggeman model works better at higher concentrations.

Work by Karkkainen et al. using a finite difference method for

random mixtures of non-absorbing materials indicated that

the Bruggeman approximation works best when there is some

clustering of the inclusions and the Maxwell Garnett model

works best when there is no clustering.[24]

The Bruggeman solution has been shown to be unphysical

in certain circumstances.[25] In particular when the real compo-

nents of the permittivities have different signs or when the

absolute value of the real component is much larger than

those of the imaginary component. Unfortunately, it may be

that these conditions will apply to modeling infrared absorp-

tion. As a result only a few of the examples discussed below

Table 1. PDielec command line options.

Option Default Purpose R[a]

-method s maxwell The method is given by the string s and is either “ap,” “maxwell,” or

“bruggeman.”

�

-sphere The inclusion is a sphere, the default if no other shape is given.

-needle h k l The inclusion is a needle whose unique direction is given by a the direction [hkl]. �

-plate h k l The inclusion is a plate whose surface is defined by the Miller indices (hkl). Note

that needles and ellipsoid use directions in crystal coordinates defined by [hkl].

For non-orthogonal lattices the normal to the (hkl) is not necessarily the same

as [hkl].

�

-ellipse h k l z The inclusion is an ellipsoid, whose unique direction is given by [hkl], z specifies

the eccentricity of the ellipsoid.

�

-vf z 0.1 z specifies the volume fraction �

-mf z 0.0 z specifies a mass fraction from which the volume fraction is calculated. The

calculation requires the density of the supporting matrix.

�

-matrix s ptfe The supporting matrix is defined by the string s. Options are “ptfe,” “kbr,” “nujol,”

“air,” “vacuum,” “ldpe,” “mdpe,” “hdpe.” If the matrix is given in this way both the

density and the permittivity of the supporting matrix are defined. Alternatively

the -density and -dielectric options can be used.

-density z 2.2 z defines the density of the supporting matrix

-dielectric z 2.0 z defines the dielectric of the supporting matrix

-LO h k l The frequencies corresponding to the longitudinal optic modes with a k vector

direction (h k l) are calculated using eqs. (10) and (11)

�

-sigma z 5.0 z specifies the damping factor, r, for all modes in cm21, as used in eq. (10a)

-mode_sigma k z The kth mode is assigned a specific r (cm21) given by z. �

-vmin z 0.0 z is the starting wavenumber (cm21) for the frequency range

-vmax z 300.0 z is the final wavenumber (cm21) for the frequency range

-i z 0.2 z is the increment used to cover the frequency range (cm21)

-plot s Plot types are specified by the string s and they can be “absorption,”

“molar_absorption,” “real,” or “imaginary”

�

-csv s Output is sent to a comma separated file specified by the string s.

-print Additional output is provided from the QM or MM calculation

-ignore k Ignore the kth mode (any mode less than 5 cm21 is ignored automatically) �

-mode k Only use the kth mode in the calculation of the permittivity �

-optical z1 z2 z3 z1, z2, and z3 define the diagonal of the optical permittivity tensor

-optical_tensor z1 z2. . .z9 z1, z2 . . . z9 define the full optical permittivity tensor

[a] This column indicates if a command line option can be used more than once.

SOFTWARE NEWS AND UPDATES WWW.C-CHEM.ORG

1496 Journal of Computational Chemistry 2016, 37, 1491–1504 WWW.CHEMISTRYVIEWS.COM



will include results using the Bruggeman mixing rule; the

majority will use the Maxwell-Garnett mixing rule.

Averaged-Permittivity mixing rule

It is useful to be able to compare the effective medium theo-

ries with the absorption predicted using no shape information,

that is using only the TO frequencies.

eTO5f he ii1 12fð ÞEe (30)

Equation (30) defines an isotropic permittivity which can be

used to calculate such an absorption coefficient. The angle

brackets indicate an average of orientation. This mixing rule

provides a useful comparison between the absorption calcu-

lated without any shape effects and that calculated including

shape effects using the other mixing rules presented above. At

low concentrations the peak positions of the AP mixing rule

will be at the TO frequencies.

Implementation

The above theory has been implemented in a Python 2 pack-

age which is available for download.[26] The package requires

SCIPY,[27] NUMPY,[27] and if visualization of the predicted spec-

tra is required MATPLOTLIB.[27] At the moment the package

has interfaces to two solid-state QM codes, VASP[1] and

CASTEP.[2] In addition, an interface is available for GULP[3]

which is a force field based solid-state code. Examples of data

sets for these packages are included with the distribution. The

interface to these QM and MM codes reads information about

the unit cell, the calculated normal modes, and the Born

charge matrices; from these the permittivity is calculated over

the frequency range requested. The absorption and molar

absorption coefficients can be plotted along with the real and

imaginary permittivities. Optionally all the information can be

written to a comma separated values (csv) file for direct

importing into a spreadsheet. The program is run from the

command line. There are several command options and these

are summarized below in Table 1. The command line must

include the seedname for the files containing the CASTEP

results or a directory name containing the VASP output from a

calculation of the permittivity or the GULP output file name.

Some of the options may be repeated. The package needs a

shape to be specified (sphere, needle, plate, or ellipse). If no

shape is specified on the command line a sphere is assumed.

The shape options: ellipse, slab, and needle, specify a unique

axis [hkl] using the crystal axes of the unit cell. PDielec trans-

forms these to a cartesian coordinate system using the unit

cell lattice vectors. In the case of a slab morphology, the

unique direction is normal to the surface specified by its Miller

indices (hkl). The definitions of the various depolarization ten-

sors are indicated in Table 2.

The three directions defined by V 1, V 2, and V 3 are mutually

orthogonal cartesian vectors calculated from [hkl] for an

ellipse, slab, or needle or (hkl) for a slab. In the case of a slab,

needle or ellipsoid, V 1 defines the unique direction and the

other vectors are orthogonal to it. For the case of an ellipsoid,

the parameters a and b in Table 2 depend on the ratio, z, of

the length of unique axis length over the length of an axis

perpendicular to it.[20]

For z> 1 the ellipsoid is prolate;

e5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12z22
p

; a5
12e2ð Þ
2e3 log 11e

12e
22e

� �
; b5 1

2
12að Þ

For z< 1 the ellipsoid is oblate;

e5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2221
p

; a5
11e2ð Þ

e3 e2tan 21eð Þ; b5 1
2 12að Þ

From an experimental point of view it is often convenient to

use a mass fraction rather than a volume fraction to indicate the

amount of dielectrically active material present. PDielec allows

mass fractions to be specified instead of a volume fraction, but

this requires that the density of the supporting matrix is known.

For convenience the package has a small database of the com-

mon supporting materials shown in Table 3. These can be speci-

fied through the -matrix option. In the case that the properties

of the support material are different, the properties can be

defined instead with the -dielectric and -density options.

The optical permittivity is normally calculated by the QM or MM

program concerned. However, as this property reflects the elec-

tronic contribution to the permittivity at zero frequency, unless

there is some treatment of electrons by the shell model, then in

MM calculations the optical permittivity needs to be defined

through the command line options -optical or -optical_tensor.

Example command line uses of PDielec

pdielec -method ap -method maxwell \

-sphere -plate 0 0 1 -needle 0 0 1 –LO 0 0 1.

This performs a calculation using the Averaged-Permittivity

and Maxwell-Garnett mixing rules for spherical particles, plate-

like particles with a surface (001), and needle-like particles

with a unique direction lying along the [001] direction. The

supporting matrix is taken to be PTFE and the default volume

fraction (10%) is used. The results of a VASP calculation are

stored in the current directory. There is no absorption output

Table 2. Definitions used of the depolarization tensor.

Sphere L5 1
3

V 1V
T

11V 2V
T

21V 3V
T

3

� �
Slab L5V 1V

T

1

Needle L5 1
2 V 2V

T

21V 3V
T

3

� �
Ellipsoid L5aV 1V

T

11bV 2V
T

21bV 3V
T

3

Table 3. Physical properties of matrix materials in PDielec.

Name Density Permittivity Description

ptfe 2.2 2.0 Polytetrafluorethylene

air 0.0 1.0 Air

vacuum 0.0 1.0 Vacuum

kbr 2.75 2.25 Potassium bromide

nujol 0.838 2.155 Nujol

hdpe 0.955 2.25 High density polyethylene

mdpe 0.933 2.25 Medium density polyethylene

ldpe 0.925 2.25 Low density polyethylene
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from this command as neither the -plot nor the -csv options

were specified. The output includes the calculation of the LO

modes along the (001) direction.

pdielec -vmin 300 -vmax 800 -sphere \

-dielectric 3 -vf 0.1 -vf 0.2 -sigma 10 \

-csv mgo.csv phonon

This performs a calculation for spherical particles varying the

frequency from 300 to 800 cm21, the permittivity of the support-

ing media is 3, two volume fractions are considered and a damp-

ing factor of 10 cm21 is used. The results of a CASTEP calculation

with the seed-name “phonon” are analyzed and the results stored

in mgo.csv for further analysis using a spreadsheet. In this exam-

ple, a Maxwell-Garnett mixing rule is used by default.

If visual inspection of the results is required then

pdielec -vmin 300 -vmax 800 -sphere \

-dielectric 3 -vf 0.1 -vf 0.2 -sigma 10 \

-csv mgo.csv \

-plot molar_absorption phonon

will perform the same calculation but a graph showing the

molar absorption coefficients will be displayed.

pdielec -matrix hdpe -method ap \

-method maxwell \

-sphere -plate 21 21 22 -vmax 2000 -mf 0.1 \

calcite.gout -csv calcite.csv

This command performs a calculation of the absorption

spectrum resulting from a GULP calculation. The supporting

matrix density and permittivity are those of high density poly-

ethylene, the frequency range is 0–2000 cm21, the mass frac-

tion considered is 10%, the mixing rules used are Averaged-

Permittivity and Maxwell-Garnett. Spheres and plates with the

ð1 1 2Þ surface are considered.

Contents of the csv output file

If a csv output file is requested the file will contain the com-

mand used to perform the calculation. A brief summary is given

of each active infrared mode, including the mode number, fre-

quency, intensity, integrated molar absorption coefficient, its

peak height (calculated from the intensity and damping factor),

and the damping parameter used in the calculation. Following

this is a table with a column for frequency followed by columns

containing the real and imaginary permittivities, the absorption

and molar absorption coefficients at each frequency.

Examples

Several examples are given to illustrate applications of the pack-

age. The calculations used to provide the data for the permittivities

are sufficiently accurate to illustrate aspects of the theory. The

examples are chosen to show the package being used with the

QM packages CASTEP and VASP and with the MM package GULP.

MgO using CASTEP

Magnesium oxide is an isotropic medium, the initial unit cell and

the space group symmetry (Fm3m) were taken from the Inor-

ganic Crystal Structure Database (ICSD)[28] reference number

ICSD-52026.[29] The primitive cell was optimized using CASTEP.

Norm-conserving pseudo-potentials were used to represent the

core electrons of magnesium and oxygen. An energy cutoff of

1,000 eV was used with the PBE[30] density functional and a k-

point spacing for the Monkhorst-Pack grid of 0.04 Å21. The primi-

tive cell was optimized and a Density Functional Perturbation

Theory (DFPT) calculation of the phonon spectrum at the gamma

point was performed. The optimized lattice parameter was found

to be 2.1234 Å, compared with the experimental value of 2.107 Å.

Only three degenerate modes contribute to the permittivity. A

summary of the results is presented in Table 4.

Because MgO is isotropic with only a single frequency con-

tributing to the permittivity, it makes a useful example applica-

tion to illustrate several features of PDielec. The real and

imaginary frequency dependent permittivities are shown in

Figure 2, where a damping factor (r) of 10 cm21 has been

used. In the figure, the real permittivity at zero frequency cor-

responds to the static permittivity in Table 4, and at frequen-

cies above the absorption at 388 cm21 the permittivity tends

to the optical permittivity as the frequency increases. The real

permittivity has zero values at 388.3 and 693.7 cm21 which

are the TO and LO frequencies, respectively.

Table 4. Calculated properties of MgO.

Property Values Units

Unit cell dimensions[a] 2.123 (2.107) Å

Space group Fm3m

Optical permittivity 3.14

Static permittivity 10.0

Phonon frequency

(intensity)[b]
TO

T 388.3 (9.29)

LO (001)

693.7

cm21

((D/Å)2/amu)

[a] The experimental values taken from Ref. 29 are given in brackets. [b]

The intensities are given in brackets, T indicates a triply degenerate

mode.

Figure 2. Calculated permittivity of MgO. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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Using the Maxwell-Garnett mixing rule, Figure 3 shows the

calculated permittivities of a 10% volume fraction of MgO

spheres in a supporting medium with a frequency independ-

ent permittivity of 2.0, which would be typical of a material

such as PTFE. Due to the dilution effect, the real component

has shifted to a base line value close to 2, and the absorption,

as indicated by the maximum in the imaginary component

has shifted by about 160 cm21 to 550 cm21.

The effect of volume fraction on the predicted molar

absorption coefficient, using the Maxwell-Garnett mixing rule,

is shown in Figure 4. The lowest volume fraction of MgO gives

the largest shift of the absorption peak to high frequency. As

the volume fraction increases, the mixing rule predicts a

broadening of the absorption, whilst the peak in the molar

absorption coefficient moves to lower frequency. At the high-

est loading (f 5 0.9) the maximum absorption occurs quite

close to the TO frequency. The Maxwell-Garnett mixing rule is

regarded as being appropriate for low volume fractions and so

should not be used for interpreting results in which higher

volume fractions of absorbing media have been used.[20]

Figure 5 shows the same plot for the Bruggeman mixing rule.

At low volume fractions, the Bruggeman mixing rule predicts a

similar absorption to the Maxwell-Garnett. Indeed as the volume

fraction approaches zero the two rules predict the same absorp-

tion characteristics. However, even at the relatively low 1% load-

ing, the Bruggeman mixing rule shows additional broadening of

the peak, the shape of the absorption peak has lost its Lorent-

zian characteristic shape as can be seen clearly in Figure 5. At

10% loading the Bruggeman predicted absorption is broad with

the peak shifted to lower wavenumber. This broadening

increases with increased loading until, at the higher loadings,

the TO peak begins to dominate the absorption.

Figure 6 shows the effect of varying the permittivity of the

supporting medium. The calculations were performed on

spherical MgO particles with a 1% volume fraction. The lowest

permittivity is that of a vacuum (or air) and shows the highest

shift of the absorption maximum to higher frequencies.

Figure 3. Calculated real and imaginary permittivities of a 10% volume

fraction of MgO spheres in PTFE, calculated using the Maxwell-Garnett

method. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]

Figure 4. Effect of volume fraction on the Maxwell-Garnett molar absorp-

tion coefficient of MgO spheres in PTFE. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 5. Effect of volume fraction on the Bruggeman molar absorption

coefficient of MgO spheres in PTFE. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 6. The Maxwell-Garnett molar absorption coefficients of spherical

MgO particles, 1% volume fraction, embedded in media of varying permit-

tivities. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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Increasing the permittivity lowers the shift until it becomes

quite small. A similar effect is seen for the Bruggeman mixing

model. However, the absorption results for particles in a low

dielectric medium is considerable broader than that seen in

the Maxwell-Garnet case. This broadening reduces as the per-

mittivity of the medium increases (see Fig. 7).

ZnO using VASP

Zinc oxide crystallizes in space group P63mc (wurtzite). All cal-

culations were performed by VASP[1] using projector

augmented-wave PAW[31] pseudo-potentials, the PBE[30] density

functional, an energy cutoff of 600 eV, and a k-point resolution

of approximately 0.1 Å21. The initial unit cell was taken from

the ICSD[28] with code ICSD-26170.[32] The unit cell and atom

positions were optimized using VASP and the permittivity was

calculated using DFPT and the results reported in Table 5.

Only two of the bands showed any significant intensity, a dou-

bly degenerate band (E) with a TO frequency of 372.1 cm21

and a non-degenerate band (A) with a TO frequency of

350.0 cm21. The LO frequency of the non-degenerate band is

shifted to 502.0 cm21 for a wave-vector with direction (001),

whilst the degenerate modes are unaffected. In the case of

the (010) direction the LO frequency of one of the E modes is

shifted to 511.2 cm21. It is known that ZnO can crystallize

with a plate morphology[33] with the (001) surface dominant.

Calculations of the molar absorption were performed for a

sphere, plate, and needle-like shapes the unique direction of

the plate and needle being the [001] directions. A volume frac-

tion of 1% was chosen for these calculations and the pre-

dicted molar absorption coefficients for the Maxwell-Garnett

mixing rule is shown in Figure 8.

For the Maxwell-Garnett mixing rule, the sphere morphology

results in the two absorption peaks shifting from their TO posi-

tions to higher wavenumber by about 80 cm21. The plate mor-

phology results in one of the peaks moving to higher

wavenumber by about 130 cm21, whilst the other remains at

the TO position. The Maxwell-Garnett results are in close accord

with some experimental results by Yamamoto et al.[34] who

measured the infrared spectrum of ZnO smoke particles and

observed peaks in the absorption at 380, 530, and 550 cm21.

Previous works[35,36] have also used effective medium theory to

explain the observed spectrum.

Calcite using GULP

Calcite is the most stable polymorph of calcium carbonate and

the crystal structure belongs to the R3c space group. The force

field and atomic structures used here are described in detail in

work by Fisler et al.[37] Briefly, the oxygen ions are described

Figure 7. The Bruggeman molar absorption coefficients of spherical MgO

particles, 1% volume fraction, embedded in media of varying permittivities.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 8. The effect of shape on the Maxwell-Garnett molar absorption

coefficient of 1% volume fraction ZnO in PTFE. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]

Table 5. Calculated properties of ZnO.

Property Values Units

Unit cell dimensions[a] a,b 5 3.295 (3.25) c 5 5.285 (5.207) Å

Space group P63mc

Optical permittivity[b] 5.09, 5.09, 6.0

Static permittivity[b] 10.83, 10.83, 11.67

Phonon frequency[c]

(intensity)

TO

A 350.0 (17.1)

E 372.1 (16.4)

LO (001)

502.0

LO (010)

511.2

cm21

((D/Å)2/amu)

[a] The experimental values taken from Ref. 32 are given in brackets. [b] Only the diagonal components are given. [c] The intensities are given in brack-

ets, E and A indicate a doubly and non-degenerate mode respectively.
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using a core-shell model.[38] The carbon–oxygen potential of

the carbonate is taken to be a Morse potential and an addi-

tional three atom potential is used to maintain the OACAO

angle at 1208. The van der Waals interactions between non-

bonded atoms are taken to be Buckingham potentials and the

charges on the calcium, carbon, and oxygen ions are 12,

11.3435, and 21.1145, respectively. The shell charge of the

oxygen ion is 22.133 and the spring constant for the core–

shell interaction is 52.74 eV/Å2.

The unit cell was optimized using the primitive unit cell and

the full space group symmetry. The calculation of the phonon

spectrum was performed without symmetry but still using the

primitive cell of the lattice. A summary of the calculated prop-

erties is given in Table 6.

Figure 9 shows the results of analysis of the results using

PDielec. The damping parameter used in the calculation was a

value of 5 cm21. A 10% volume fraction was used with sphere

and plate morphologies for the particles. The unique axis for

the plate was taken to be the normal to the (211) surfaces in

the primitive cell axes (or the {104} surfaces in the standard

unit cell). Such surfaces define the rhombohedral faces com-

monly seen in calcite crystals.[39] Figure 9 shows that the dou-

bly degenerate TO absorption peak at 620 cm21 is not

significantly affected by spherical particles and there is a small

shift to higher frequencies in the case of plate-like particles.

The non-degenerate TO transition at 732 cm21, which corre-

sponds to motion of the carbon atom of the carbonate along

the unique direction of the slab, shows a shift to 786 and

819 cm21 for the sphere and plate, respectively. The doubly

degenerate peak at 1463 cm21 is shifted to 1480 cm21 by

spherical particles and is split by plate-like particles with one

component which shifts to 1491 cm21.

Fluoroapatite using VASP

The line shapes of the infrared absorption of apatite and fluo-

roapatite were examined extensively by Balan et al.[16] Their

calculations included the effect of crystallite habit on the spec-

trum and the results reported here are similar to their conclu-

sions. The method used by Balan et al. is an infinitely dilute

Maxwell-Garnett model, so the only difference between the

methods used by them and those reported here using PDielec

are the incorporation of the volume fraction into the theory

and the use of an ellipsoidal shape for comparison with the

other shapes.

All calculations were performed by VASP[1] using projector

augmented-wave PAW[31] pseudo-potentials, the PBE[30] density

functional, an energy cutoff of 600 eV, and a k-point resolution

of approximately 0.1 Å21. Table 7 summarizes the results of

the calculations. Only the three highest frequency bands are

reported and discussed. The TO intensity of the highest fre-

quency band at 1038 cm21 is low and will not be discussed

further. The Bravais Friedel Donnay Harker (BFDH)[41] crystal

habit of the optimized crystal is shown in Figure 10. The habit

was calculated using the Mercury software package.[42] The

BFDH crystal habit is often used to give an idea of the likely

important faces of a crystal. It uses only the crystal lattice and

space group to determine the crystal morphology. Figure 10

shows that the {100} surfaces form a tube which are capped

by the {011} surfaces. The effect of different particle shapes on

the predicted spectrum is shown in Figure 11. The calculations

of the spectra were performed with a damping parameter (r)

of 2 cm21. The ellipsoid was chosen to have an aspect ratio,

a/b, of 2 and a principle axis along [001], which was

Table 6. Calculated properties of calcite.

Property Values Units

Primitive cell dimensions[a] a,b,c 5 6.376 (6.375) Å

a,b,c 5 46.0 (46.1) Degrees

Space group R3c

Optical permittivity[b] 1.91, 1.91, 2.0

Static permittivity[b] 6.7, 6.7, 7.1

Phonon frequency[c]

(intensity)

TO

E 114.8 (2.39)

A 127.4 (3.36)

A 249.3 (1.23)

E 320.7 (5.82)

A 338.1 (4.14)

E 620.1 (3.38)

A 732.0 (26.89)

E 1463.6 (16.97)

cm21

((D/Å)2/amu)

[a] The experimental values taken from Ref. 37 are given in brackets. [b] Only

the diagonal components are given. [c] The intensities are given in brack-

ets, E and A indicate a doubly and non-degenerate mode respectively.

Figure 9. Calculated Maxwell-Garnett absorption spectrum of 10% volume

fraction of calcite in PTFE. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 10. BDFH Morphology of fluoroapatite.
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compatible with the morphology predicted by the BDFH

method. The two TO absorption frequencies at 981 and

986 cm21 have A and E symmetry, respectively. Spherical crys-

tallites result in three absorption peaks at around 1000, 1010,

and 1015 cm21. Needle-shaped crystallites leave the A symme-

try TO absorption peak at 981 cm21 unaffected, but shift and

split the E symmetry TO peak to 1020 and 1046 cm21. A plate

morphology with (100) surfaces results in the A and one com-

ponent of the E TO absorption peak remaining at the TO fre-

quencies, with the other component of the E shifting 85 cm21

to 1075 cm21. The ellipsoidal morphology show three shifted

peaks at 1000, 1018, and 1045 cm21. These results are consist-

ent with those of Balan et al.,[16] who gave detailed results for

hydroxyapatite.

L-Aspartic acid using CASTEP

L-Aspartic acid is a zwitterion in the solid state and so the

shape of the particles used in the measurement of IR and THz

spectra maybe important. The starting geometry for optimiza-

tion of the unit cell and molecular structure of L-aspartic acid

was taken from Derissen et al.[43] The PBE[30] functional was

used with a plane wave energy cutoff of 1000 eV and norm

conserving pseudo-potentials. A dispersion correction using

the Tkatchenko–Scheffler scheme[44] available in CASTEP was

applied for both the geometry optimization and the calcula-

tion of the phonon spectrum at the gamma point, with a

value S6 scaling factor[44] of 1.0. A summary of the results of

the calculations is shown in Table 8.

The THz spectrum of L-aspartic acid has been reported by

Juliano and Korter[45] in the frequency range 0–90 cm21. The

infrared spectrum has been reported and assigned by Lopez

Navarrete et al.[46] Figure 12 shows the calculated absorption

spectra for L-aspartic acid for three frequency ranges. The cal-

culation of the spectra used the Maxwell-Garnett mixing rule

with a 10% volume fraction of L-aspartic acid in PTFE and for

comparison the TO mixing rule. A damping factor of 2 cm21

was used. Spherical and a variety of plate-like inclusions were

used to illustrate their effect on the absorption spectra. Figure

12a shows the frequency range from 60 to 130 cm21 which is

that covered by THz spectroscopy. The shifts observed for the

different particle morphologies are not large, but the change

in intensities is significant. The molecular motions associated

with phonons at these frequencies tend to be whole molecule

motion involving rotation. Figure 12b shows the frequency

range from 1260 to 1340 cm21. In this frequency range, bend-

ing of the carboxylate anion contributes to the spectrum sig-

nificantly. The three different plate morphologies show

different and significant shifts in the TO absorption peak at

1290 cm21. The spherical morphology shows a shift of around

25 cm21 to higher wavenumber. Figure 12c shows the spectra

in the frequency range 2900–3100 cm21, which corresponds

to the motion of OAH (below 2980 cm21) and NAH (above

2980 cm21) stretching. The effect of the different possible

crystal morphologies is large with shifts to higher frequency of

up to 50 cm21. The spectra below 3000 cm21 arise from two

TO absorptions at 2946 and 2947 cm21. Because the motions

associated with each mode interact differently with the

Table 7. Calculated properties of fluroapatite.

Property Values Units

Primitive cell dimensions[a] a,b 5 9.447 (9.417)

c 5 6.926 (6.875)

Å

Space group P63m

Optical permittivity[b] 2.891, 2.891, 2.894

Static permittivity[b] 12.081, 12.081, 8.841

Phonon frequency[c]

(intensity)

TO

A 981.8 (112.6)

E 986.3 (101.0)

E 1038.1 (7.92)

cm21

((D/Å)2/amu)

[a] The experimental values taken from Ref. 40 are given in brackets. [b]

Only the diagonal components are given. [c] The intensities are given

in brackets, E and A indicate doubly and non-degenerate modes,

respectively.

Figure 11. Calculated Maxwell-Garnett absorption spectra of 10% fluoroa-

patite in PTFE. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Table 8. Calculated properties of L-aspartic acid.

Property Values Units

Unit cell dimensions[a] a 5 7.597 (7.617) Å

b 5 7.028 (6.982)

c 5 5.113 (5.142)

b 5 98.77 (99.84)

Space group P21 Degrees

Optical permittivity[b] 2.68, 2.20, 2.56

Static permittivity[b] 4.58, 3.65, 3.65

Phonon frequency[c]

(intensity)

TO

84.5 (0.120)

104.7 (0.202)

106.0 (0.243)

115.3 (0.474)

137.3 (0.617)

1290.0 (55.0)

2945.9 (102.8)

2947.3 (48.2)

3053.7 (44.1)

cm21

((D/Å)2/amu)

[a] The experimental values taken from Ref. 43 are given in brackets. [b]

Only the diagonal components are given. [c] Only selected transitions

are tabulated. The intensities are given in brackets.
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internal field within each crystal they give rise to different

shifts producing more complex spectra.

Conclusions

The PDielec package has been described and examples given

as to its application in calculating the infrared absorption

spectrum of a dielectric material embedded in the supporting

matrix. The shape of the crystallites can be taken into account

by describing them as spheres, plates, needles, or ellipsoids.

The package can calculate the dielectric response of the effec-

tive medium as well as the infrared absorption as a function

of frequency. Several of the examples cover dielectric materials

which have been well studied, both experimentally and theo-

retically and the results are in agreement with the previous

work. The package is written in Python and can be extended

relatively straightforwardly to interface with other packages.

The results show the sensitivity of the absorption spectrum to

the particle morphology and illustrate the complexity of inter-

preting IR and THz absorption spectra.

The PDielec package along with some example test cases

for each QM or MM package supported is available on

GitHub.[26] The data used to create the figures and tables are

openly available from the Leeds University data repository.[47]
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