
http://wrap.warwick.ac.uk   

 
 

 
 
 
 
 
 
Original citation: 
Chen, Yunfei and Chen, Jiming. (2015) Novel {\rm S}\alpha {\rm S} PDF approximations 
and their applications in wireless signal detection. IEEE Transactions on Wireless 
Communications, 14 (2). pp. 1080-1091.  
 
Permanent WRAP url: 
http://wrap.warwick.ac.uk/76671    
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for  
profit purposes without prior permission or charge.  Provided that the authors, title and 
full bibliographic details are credited, a hyperlink and/or URL is given for the original 
metadata page and the content is not changed in any way. 
 
Publisher’s statement: 
“© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting 
/republishing this material for advertising or promotional purposes, creating new 
collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works.” 
 
A note on versions: 
The version presented here may differ from the published version or, version of record, if 
you wish to cite this item you are advised to consult the publisher’s version.  Please see 
the ‘permanent WRAP url’ above for details on accessing the published version and note 
that access may require a subscription. 
 
For more information, please contact the WRAP Team at: publications@warwick.ac.uk  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/42618011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/76671
mailto:publications@warwick.ac.uk


IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. XX, XX XXQ 1

Novel SαS PDF Approximations and Their
Applications in Wireless Signal Detection

Yunfei Chen,Senior Member, IEEE, Jiming Chen,Senior Member, IEEE

Abstract— Three new approximations to the probability den-
sity function (PDF) of the symmetric alpha stable (SαS) distri-
bution are proposed. The first two approximations use rational
functions while the third approximation uses power functions.
Using these approximations, new detectors for signals in sym-
metric alpha stable noise are also derived. Numerical results
show that all these new approximations have good accuracies.
Numerical results also show that the new detectors based on these
approximations outperform the existing detectors, especially
when the characteristic exponent of the symmetric alpha stable
distribution is small.

Index Terms— Approximation, bit error rate, detection, sym-
metric alpha stable.

I. I NTRODUCTION

Alpha stable distributions have received great research in-
terest in recent years, owing to its accuracy in modeling the
heavy-tailed experimental data [1]. For example, it has been
reported that the atmospheric noise can be well modeled as
alpha stable distributed [1]. In financial application, some
stock price was also fit better with the alpha stable model [2].
In wireless communications, the multiple access interference
in the presence of a field of Poisson interferers or scatters can
also be described as alpha stable distributed [3]. In addition to
its experimental value, the alpha stable distributions also have
theoretical importance. According to a generalization of the
central limit theorem, the sum of independent and identically
distributed random variables with infinite variance converges
to an alpha stable distribution when the number of random
variables is large [4]. This is similar to the Gaussian distri-
bution for the sum of independent and identically distributed
random variables with finite variance.

Despite its experimental and theoretical value, a relatively
few works have been conducted on the alpha stable model.
This is mainly due to the lack of a closed-form expression
for the probability density function (PDF) of the alpha stable
distribution. In fact, the alpha stable distribution is only defined
in terms of its characteristic function [4]. This characteristic
function does not have a closed-form expression for the
inverse Fourier transform and hence, the PDF of the alpha
stable distribution has to be calculated numerically from the
characteristic function [5]. This causes great inconvenience in
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applications related to the alpha stable model. Consequently,
simple approximations to the PDF of the alpha stable are
preferable for these applications. In [6] and [7], a mixture
of Cauchy and Gaussian distributions was used, where [6]
provided a simple heuristic formula for the model parameter
while [7] required extensive simulation to determine the model
parameters. In [8], a mixture of a finite number of Gaussian
distributions was used. Unlike that in [6], the approximations
in [7] and [8] do not have any numerical way of determin-
ing the model parameters and hence extensive simulation is
required to calculate these parameters, which is complicated.
On the other hand, since the approximation in [6] uses simple
formula to calculate the parameters of the mixture, its accuracy
can be further improved.

In this paper, three simple parametric approximations to
the PDF of the symmetric alpha stable (SαS) distribution are
proposed. The first two approximations use rational functions.
Nonlinear least squares curve-fitting and point-matching are
used to derive the model parameters. The third approximation
uses a power function. Nonlinear least squares curve-fitting,
point-matching as well as moment-matching are used to obtain
its parameters. Numerical results are presented to show and
compare the accuracies of these approximations in terms of
the Jensen-Shannon divergence. They also show that detectors
using new approximations outperform the existing detectors,
especially for small characteristic exponent often seen in
wireless communications with high path loss exponent.

II. N EW APPROXIMATIONS

The true PDF of the SαS distribution is given by [9]

fα(x) =
1

2π

∫ ∞

−∞
e−γ|ω|α+jδω−jωxdω (1)

whereδ is the location parameter that controls the mode of the
PDF,γ is the dispersion parameter that controls the spread of
the PDF andα is the characteristic exponent with0 < α ≤ 2
that controls the shape of the PDF [10]. For simplicity, only
the standard alpha stable random variable is considered in the
following such thatδ = 0 andγ = 1. For non-standard alpha
stable random variables, one can simply replace the argument
in the function for the standard alpha stable random variable
with its shifted and scaled version. In this case, the true PDF
is given by

fα(x) =
1

2π

∫ ∞

−∞
e−|ω|α−jωxdω. (2)

The integration in (2) does not have any closed-form expres-
sion, except forα = 1 andα = 2 which lead to the Cauchy
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and Gaussian distributions, respectively. Moreover, whenα is
small, the integration converges very slowly such that it takes a
long time to numerically evaluate (2). In [5], transformations to
the argument have been done to solve this problem. However,
evaluation of the resulting integral is still time-consuming
and inconvenient. In [6], a mixture of Cauchy and Gaussian
distributions was used to approximatefα(x) as

fα(x) ≈
ǫ

π(1 + x2)
+

1− ǫ

2
√
π
e−

x2

4 (3)

whereǫ = 2 − α is a weighting factor that changes with the
value ofα. In the following, new approximations to the PDF
of the SαS distribution are derived.

A. Approximation Using Rational-based Mixture of Cauchy

The first new approximation is a mixture of two Cauchy
distributions given by

fα(x) ≈ g1(x) =
a1

1 + b1x2
+

c1
1 + d1x2

. (4)

This is motivated by the following observations.
First, according to [4, Prop. 1.3.1], the SαS random variable

can be expressed asX = Y ·Z, whereY is the ordinary alpha
stable random variable totally skewed to the right with PDF
fY (y) that has the sameα asX andZ is the Cauchy random
variable with PDFfZ(z) = 1

1+z2 , whenα < 1. Then, the PDF
of the SαS random variableX can be calculated asfα(x) =
∫∞
−∞

1
1+(x/y)2 fY (y)

1
|y|dy. This integral can be approximated

by a sum such that one hasfα(x) ≈
∑N

i=1
1

1+(x/yi)2
fY (yi)∆y

|yi| .
The more terms used in the approximation, the more accurate
but the more complicated the approximation will be. Consid-
ering the tradeoff between accuracy and complexity, one can
take two terms in the approximation to give (4). Theoretically,
this only applies toα < 1. However, for engineering use,
one could also extend this toα > 1, as this is after all an
approximation.

Second, in [6] and [7], a mixture of Cauchy and Gaussian
distributions was used to approximate the exact PDF of the
SαS distribution by controlling the weighting factors for the
Cauchy and Gaussian PDFs. The core idea is to obtain dif-
ferent PDFs of the SαS distribution using different weighting
factors in the mixture. The same idea can actually be applied
to a mixture of two Cauchy distributions by controlling the
weighting factorsa1 and c1 as well as the coefficients of the
second-order termsb1 andd1, as proposed in (4). This not only
gives higher accuracy, especially for small values ofα, as will
be shown later, but also gives simpler detector structures,as
one does not need to calculate the exponential function thatis
required in [6].

The parameters ofa1, b1, c1 andd1 can be determined in
different ways.

1) LS: First, one can use nonlinear least squares (LS) curve-
fitting. MATLAB has such a built-in package. Using this
package, the values ofa1, b1, c1 and d1 can be calculated
as in Table I. In the fitting, the argument is considered from -
10 to 10 with a step size of 0.1. The same range and resolution
are used for all the other curve-fittings. Note that the choice
of this range will affect the approximation accuracy. This is

TABLE I

THE VALUES OFa1 , b1 , c1 AND d1 IN g1(x) FOR DIFFERENT VALUES OFα

VIA NONLINEAR LS.

α a1 b1 c1 d1
1.9 -6.859 0.1517 7.15 0.1595
1.7 -9.347 0.1924 9.642 0.1988
1.5 -16.88 0.2441 17.18 0.2480
1.3 -181.0 0.3093 181.3 0.3097
1.1 -5.525 0.3830 5.829 0.3957
0.9 0.3027 1.534 0.03155 0.2087
0.7 0.3285 4.465 0.06878 0.2476
0.5 0.4905 31.04 0.1242 0.5962
0.3 2.2371 1037 0.2290 3.1219

one of the heuristic characteristics of the LS method. For those
values that are not listed, similar fitting methods could be used,
or one can further fit the parameters as functions ofα. It is
noted from Table I that the values of parameters for1 < α < 2
and for0 < α < 1 have different patterns. Thus, these values
can be fitted as functions ofα for two different intervals as

a1 = −171.0× e−
(α−1.307)2

0.064782 − 14.71× e−
(α−1.477)2

0.40442 (5a)

b1 = 1.455× e−1.19α (5b)

c1 = −171.1× e−
(α−1.307)2

0.064772 + 14.98× e−
(α−1.477)2

0.41192 (5c)

d1 = 1.299× e−1.104α (5d)

for 1 < α < 2 and

a1 = 79.95× e−12.51α + 0.3998× e−0.3262α (6a)

b1 = 3.591× 105 × e−19.59α + 135.1× e−5.005α (6b)

c1 = 0.5812× e−3.104α (6c)

d1 = 53.83× e−9.642α + 0.114× e0.6378α (6d)

for 0 < α < 1.
Note that this may not be a problem for signal detection,

as knowledge ofα can be acquired by either direct estimation
[10] or indirect calculation from the path loss exponent [3]
before detection. In the case whenα is not known for signal
detection, these formulas cannot be used. Nevertheless, the
detector performances will be examined with estimation errors
later. For parameter estimation, these formulas cannot be used,
as one does not know ifα is larger than 1 or smaller than 1.
This will be left as a future research topic. The curve-fitting is
heuristic and normally depends on the range ofα considered.
However, in this case, since0 < α ≤ 2 is a very limited range,
it works well.

2) PMM: The second method of determining these param-
eters is obtained by using point-matching method (PMM).
Essentially, four values of the true PDF and the four cor-
responding values ofg1(x) are calculated and then four
equations can be established by equating them to find the four
unknown parameters. Specifically, usingfα(0),

∫∞
−∞ fα(x)dx,

∫∞
−∞ f2

α(x)dx and thep-th order moment, one has

a1 + c1 =
1

πα
Γ

(

1

α

)

(7a)
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πa1√
b1

+
πc1√
d1

= 1 (7b)

πa21
2
√
b1

+
πc21
2
√
d1

+
2πa1c1√
d1 +

√
b1

=
2−

1
α

απ
Γ

(

1

α

)

(7c)

(

a1

b
p+1
2

1

+
c1

d
p+1
2

1

)

·B
(

p+ 1

2
,
1− p

2

)

=
2p+1Γ(p+1

2 )Γ(− p
α )

α
√
πΓ(−p

2 )

(7d)
where−1 < p < α [11], Γ(·) is the Gamma function [12,
eq. (8.310.1)], andB(·, ·) is the incomplete Beta function [12,
eq. (8.380.1)]. The derivations of these equations are given
in Appendix A. Using (7a) and (7b), the values ofa1 and
c1 can be expressed as functions ofb1 and d1. Using these
expressions in (7c) and (7d), two equations forb1 andd1 can
be derived. Then, a two-dimensional search is performed to
find the values ofb1 andd1. Using them in (7a) and (7b), the
values ofa1 andc1 can then be derived.

B. Approximation Using Rational-based Partial Fraction

From (4), a very straightforward extension is to combine
the two terms in (4) using partial fraction such that one has

fα(x) ≈ g2(x) =
a2 + b2x

2

1 + c2x2 + d2x4
. (8)

This approximation is similar to (4), but is not equivalent to
(4), as the denominator in (8) may not be decomposed to give
(4). In other words, (8) is more general than (4), and this
generality can give extra accuracy that is not offered by (4),
as will be discussed in Section IV. On the other hand, this
approximation is more complicated than (4) due to the fourth-
order term in the denominator.

1) LS: Using LS, the values ofa2, b2, c2 and d2 can be
calculated as in Table II. These values can be fitted as functions
of α as

a2 = 0.0303× α−3.526 + 0.283 (9a)

b2 = 0.01047× α−8.601 + 0.05204 (9b)

c2 = 0.1983× α−7.304 + 0.8007 (9c)

d2 = 0.009657× α−10.86 + 0.2337. (9d)

In this case, one has the same functions for all values ofα.
2) PMM: Also, using PMM, one has

2p+1Γ
(

p+1
2

)

Γ
(

− p
α

)

α
√
πΓ
(

−p
2

) = (10)

√
2a2Γ( 3

2 )P
−

1
2

−

p
2

(

c2
2
√

d2

)

(

c22
4d2

−1

) 1
4
B−1( 3−p

2 , p+1
2 )

+ b2√
d2

√
2Γ( 3

2 )P
−

1
2

−

p+1
2

(

c2
2
√

d2

)

(

c22
4d2

−1

) 1
4
B−1( 1−p

2 , p+3
2 )







√
2a2Γ( 3

2 )P
−

1
2

0

(

c2
2
√

d2

)

(

c22
4d2

−1

) 1
4
B−1( 3

2 ,
1
2 )

+ b2√
d2

√
2Γ( 3

2 )P
−

1
2

−1

(

c2
2
√

d2

)

(

c22
4d2

−1

) 1
4
B−1( 1

2 ,
3
2 )







p+1

and

u(
b2√
d2

)2 + v
b2√
d2

+ w = 0 (11)

TABLE II

THE VALUES OFa2 , b2 , c2 AND d2 IN g2(x) FOR DIFFERENT VALUES OFα

VIA NONLINEAR LS.

α a2 b2 c2 d2
1.9 0.2802 -0.008263 0.1927 0.0471
1.7 0.2826 -0.003591 0.2593 0.05609
1.5 0.2867 0.003727 0.3636 0.07069
1.3 0.2939 0.01666 0.5427 0.09771
1.1 0.3078 0.03413 0.8838 0.1187
0.9 0.3438 0.1159 1.828 0.3294
0.7 0.3973 0.3876 4.709 1.102
0.5 0.6142 4.075 31.35 18.07
0.3 1.847 43.07 396.3 323.0

for c22 ≥ 4d2, whereu, v andw are given by (47) in Appendix
B.

For c22 < 4d2, one has

2p+1Γ
(

p+1
2

)

Γ
(

− p
α

)

α
√
πΓ
(

−p
2

) = (12)

√
2a2Γ( 3

2 )tP
−

1
2

p−2
2

(

c2
2
√

d2

)

(

1− c22
4d2

) 1
4
B−1( p+1

2 , 3−p
2 )

+ b2√
d2

√
2Γ( 3

2 )tP
−

1
2

p
2

(

c2
2
√

d2

)

(

1− c22
4d2

) 1
4
B−1( p+3

2 , 1−p
2 )







√
2a2Γ( 3

2 )tP
−

1
2

−1

(

c2
2
√

d2

)

(

1− c22
4d2

) 1
4
B−1( 3

2 ,
1
2 )

+ b2√
d2

√
2Γ( 3

2 )P
−

1
2

0

(

c2
2
√

d2

)

(

1− c22
4d2

) 1
4
B−1( 1

2 ,
3
2 )







p+1

and

u′(
b2√
d2

)2 + v′
b2√
d2

+ w′ = 0 (13)

wheret = arccos
(

c2
2
√
d2

)

, u′, v′ andw′ are given by (48) in
Appendix B. Equations (10) and (11) or (12) and (13) can be
used to find the values of c2

2
√
d2

and b2√
d2

. In this case, two

one-dimensional searches are required forc2
2
√
d2

and b2√
d2

. The
value ofd2 can be found by using (40) or (41). Then,b2 and
c2 can be calculated. Their derivations are given in Appendix
B.

C. Power-based Approximations

In this subsection, another new approximation is proposed
that uses power functions. It is proposed that the true PDF of
the SαS distribution can be approximated as

fα(x) ≈ g3(x) =
a3

1 + b3|x|α+1
. (14)

This approximation is motivated by the fact that the true PDF
of the SαS distribution decays at a rate of1xα+1 at the tails
[9].

1) LS: Using LS, one has the values ofa3 andb3 as in Table
III. The values in Table III can then be fitted as functions of
α as

a3 = 5.633× e−6.131α + 0.3447× e−0.1197α (15a)

b3 = 497.2× e−9.9445α + 5.067× e−1.629α. (15b)

The fitting functions in (5), (6), (9) and (15) are chosen as
the best fits after testing all commonly used nonlinear func-
tions, including Gaussian, exponential, rational, polynomial



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. XX, XX XXQ 4

TABLE III

THE VALUES OFa3 AND b3 IN g3(x) FOR DIFFERENT VALUES OFα VIA

NONLINEAR LS.

α a3 b3
1.9 0.2781 0.2691
1.7 0.2815 0.3401
1.5 0.2864 0.4388
1.3 0.2942 0.5841
1.1 0.3069 0.8051
0.9 0.3426 1.313
0.7 0.3934 2.318
0.5 0.5895 6.672
0.3 2.945 95.62

and power functions, based on the observations from their
plots with respect toα. This shows another heuristic aspect of
curve-fitting.

2) PMM: Also, using PMM, one has

a3 =
1

πα
Γ

(

1

α

)

(16a)

2a3

(α+ 1)b
1

α+1

3

B

(

1

α+ 1
,

α

α+ 1

)

= 1 (16b)

2a23

b
1

α+1

3

απ

(α+ 1)2
csc

(

πα

α+ 1

)

=
2−

1
αΓ( 1

α )

πα
(16c)

a3
b3

=
α

π
Γ(α) sin

(απ

2

)

. (16d)

In this case, there are four equations available but one only
needs to find the values of two unknown parametersa3 andb3.
Thus, there are six different solutions. Using (16a) and (16b),
one has

a3 =
Γ( 1

α )

πα
(17a)

b3 =

[

2Γ( 1
α )

α(α+ 1)
csc

(

π

α+ 1

)]α+1

. (17b)

Using (16a) and (16c), one has

a3 =
Γ( 1

α )

πα
(18a)

b3 =

[

21+
1
αΓ( 1

α )

(α+ 1)2
csc

(

απ

α+ 1

)

]α+1

. (18b)

Using (16b) and (16c), one has

a3 =
2−

1
αΓ( 1

α )(α+ 1)

πα2
·
csc( π

α+1 )

csc( απ
α+1 )

(19a)

b3 =

[

21−
1
αΓ( 1

α )

α2
·
csc2( π

α+1 )

csc( α
α+1π)

]α+1

. (19b)

Using (16a) and (16d), one has

a3 =
Γ( 1

α )

πα
(20a)

b3 =
Γ( 1

α )

α2Γ(α) sin(απ2 )
. (20b)

Using (16b) and (16d), one has

a3 =

[

(α+ 1)

2αΓ(α) sin(απ2 ) csc( π
(α+1) )

]

α+1
α

· Γ(α)α
π

· sin(απ
2
)

(21a)

b3 =

[

(α+ 1)

2αΓ(α) sin(απ2 ) csc( π
(α+1) )

]

α+1
α

. (21b)

Using (16c) and (16d), one has

a3 =

[

2−
1
α (α+ 1)2

2α4Γ(α)(sin(α×π
2 ))2 csc( α×π

(α+1) )

]

α+1
2α+1

·Γ(α)α
π

·sin(απ
2
)

(22a)

b3 =

[

2−
1
α (α+ 1)2

2α4Γ(α)(sin(α×π
2 ))2 csc( α×π

(α+1) )

]

α+1
2α+1

. (22b)

3) MMM: The p-th order moment can also be derived as

2a3

b
p+1
α+1

3

· π

α+ 1
· csc

(

p+ 1

α+ 1
π

)

=
2p+1Γ(p+1

2 )Γ(− p
α )

α
√
πΓ(−p

2 )
(23)

where−1 < p < α. Using moment-matching method (MMM)
by choosing any two orders of momentsp1 andp2, one has

a3 =
2p1Γ(p1+1

2 )Γ(−p1

α )(α+ 1)

α
√
ππΓ(−p1

2 ) csc(p2+1
α+1 π)

(24a)

·
[

2p1−p2
Γ(p1+1

2 )Γ(−p1

α )Γ(−p2

2 ) csc( (p2+1)π
α+1 )

Γ(p2+1
2 )Γ(−p2

α )Γ(−p1

2 ) csc( (p1+1)π
α+1 )

]

p1+1
p2−p1

b3 =

[

2p1−p2
Γ(p1+1

2 )Γ(−p1

α )Γ(−p2

2 ) csc( (p2+1)π
α+1 )

Γ(p2+1
2 )Γ(−p2

α )Γ(−p1

2 ) csc( (p1+1)π
α+1 )

]

α+1
p2−p1

.

(24b)
The derivations of these equations are given in Appendix C.

In Tables I, II and III, only the values from LS are
shown, because these values are used to find the analytical
relationships betweenα and the model parameters in (5), (6),
(9) and (15). Values from other methods are not shown in the
tables for this purpose due to the fact that they have already
had these analytical relationships and also due to the limited
space.

D. Further Notes

Note that PMM and MMM provide simple closed-form
expressions for the power-based approximation. Thus, they
are particularly useful for the power-based approximation. For
the rational-based approximations using PMM, grid searches
have to be performed. The search time can be saved by using
the results from the LS method as the starting points and
by performing selective searches for the range. For example,
depending on the LS result, the first search can be from 0
to 10000 with a step size of 1000 to determine the first valid
digit. The second search is based on the first search. If the first
search gives 2000 as the best value, the second search will
be from 1000 to 3000 with a step size of 100 to determine
the second valid digit, and so on until the third digit after
the decimal point is determined. Then, the selective searchis
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over. Note also that reference [6] has much lower complexity
in the calculation of the parameters than the approximations
proposed in this paper, as it only needs to determine the value
of ǫ which is a very simple function ofα. This simplicity
comes at the cost of accuracy loss in certain cases.

Note that the above approximations are not normalized,
except those based on PMM that uses

∫∞
−∞ fα(x)dx. This

does not affect signal detection, as the normalization factor
will be canceled out in the likelihood ratio. On the other
hand, the approximations based on LS, MMM and PMM that
does not use

∫∞
−∞ fα(x)dx can be normalized by dividing the

approximations with the left sides of the equations in (7b),
(40), (41) and (16b). Denote the normalized approximations
as h1(x), h2(x) and h3(x) for g1(x), g2(x) and g3(x),
respectively.

III. D ETECTORS BASED ON NEW APPROXIMATIONS

In this section, detectors based on the new approximations
derived in the previous section will be obtained. These de-
tectors are based on the maximum likelihood (ML) detection
principle but use the new approximations to replace the true
PDF of the SαS distribution instead. Specifically, consider a
binary phase shift keying (BPSK) signal with equala priori
probabilities. Thei-th received signal sample can be expressed
as

xi = A ∗ s+ Ii (25)

whereA is the channel gain,s is the BPSK signal andIi is the
SαS interference or noise sample. Thus, one has the likelihood

ratio as
∏N

i=1 fxi
(x|s=1)

∏N
i=1 fxi

(x|s=−1)
and the log-likelihood ratio asΨ =

log{
∏N

i=1 fxi
(x|s=1)

∏N
i=1 fxi

(x|s=−1)
} , where fxi

(x|s = 1) = fIi(x − A)

and fxi
(x|s = −1) = fIi(x + A). Assuming thats = 1

and s = −1 have equala priori probabilities, the detection
threshold becomeslog{Pr{s=−1}

Pr{s=1} } = 0. Then, using the ML
principle, the detector becomesΨ > 0 for s = 1 andΨ < 0
for s = −1. Using (4), (8), (14), the decision variables are

Ψ1 =
N
∑

i=1

log

{

a1

(1+b1(xi−A)2) +
c1

(1+d1(xi−A)2)
a1

(1+b1(xi+A)2) +
c1

(1+d1(xi+A)2)

}

(26)

Ψ2 =

N
∑

i=1

log

{

(1 + c2(xi +A)2 + d2(xi +A)4)

(1 + c2(xi −A)2 + d2(xi −A)4)

· (a2 + b2(xi −A)2)

(a2 + b2(xi +A)2)

}

(27)

and

Ψ3 =
N
∑

i=1

log

{

1 + b3|xi +A|α+1

1 + b3|xi −A|α+1

}

(28)

respectively, whereN is the number of samples for each bit
or symbol. It was reported in the literature that the Cauchy
detector and the Myriad detector have good performances with
simple structures, similar to the proposed detectors here.The
Cauchy detector is given by [9, eq. (3-18)]

Ψ4 =

N
∑

i=1

log

{

1 + (xi +A)2

1 + (xi −A)2

}

(29)

while the Myriad detector is given by

Ψ5 =

N
∑

i=1

log

{

k2 + (xi +A)2

k2 + (xi −A)2

}

(30)

wherek =
√

α
2−α is a simple empirical form by taking three

points of optimality associated with the Myriad and is found
to be consistently efficient in many cases examined in [13],
[14]. The exact optimalk depends on the cost function and
often does not have a simple closed-form expression [13], [14]
and therefore, is not compared here. In the case whenγ 6= 1,
one can replacexi − A and xi + A with xi−A

γ1/α and xi+A
γ1/α ,

respectively, as the above detectors are based on the standard
PDF in (2) that can be obtained from the general PDF in
(1) by lettingω′ = ωγ1/α and thenx′ = x−δ

γ1/α . This can be
verified by using the general PDF in the ML detector and then
replacing it using the shifted and scaled version of the standard
PDF.

IV. N UMERICAL RESULTS AND DISCUSSION

In this section, the accuracies of the proposed approxima-
tions will be examined. Also, the detectors based on these
approximations will be compared in terms of bit error rate
(BER). The BER will be simulated for BPSK signals with
respect to the geometric signal-to-noise ratio (SNR) defined as
Ω = A2N

2γ2/αC
2
α

−1
g

[17], whereCg = 1.78. The geometric power

of a random variable is defined aseE{log{X}}, whereE{·} is
the expectation andX is the interested random variable. The
traditional powerE{X2} does not exist for random variables
with infinite variance, such as SαS, and the geometric power
is reported to be a good alternative in this case [17]. In the
simulation,N = 10, a number of106 trials,α = 1.8, α = 0.5
andα = 0.3 are used. Also, imperfect estimate ofα is assumed
as Gaussian with meanα and varianceǫ = 0.002, unless stated
otherwise. This is based on the sample characteristic function
estimator forα that can achieve a mean squared error (MSE)
of less than 0.002 with enough samples [18].

Table IV shows the Jensen-Shannon divergence (JSD) of
different approximations with different methods. JSD is a
symmetric version of the commonly used Kullback-Leibler
divergence. Since the JSD is only represented in an integral
form and does not have a closed-form expression for SαS,
it is calculated using the Simpson’s rule between -1000 and
1000 with a step size of 0.1. Sinceα > 0 and−1 < p < α,
the order of moment is chosen between -1 and 0 for small
values ofα such that it always exists. For PMM ofg1(x),
p = −0.9, p = −0.7, p = −0.5, p = −0.3 and p = −0.1
with a step size of 0.2 are tested to cover the chosen range,
and the smallest JSD is given in Table IV. For PMM ofg2(x),
p = −0.9, p = −0.7, p = −0.5 and p = −0.3 are tested
with a step size of 0.2 to cover the chosen range. For PMM of
g3(x), all six possible solutions are tested. It is found that (18)
gives the smallest JSD, given in Table IV. For MMM ofg3(x),
p1 = −0.9, p2 = 0.1, p1 = −0.7, p2 = −0.1, p1 = −0.5,
p2 = −0.3 are tested forα = 0.3, p1 = −0.9, p2 = 0.3,
p1 = −0.7, p2 = −0.1, p1 = −0.5, p2 = −0.1 are tested
for α = 0.5, p1 = −0.9, p2 = 1.7, p1 = −0.7, p2 = 1.5,
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TABLE IV

THE JSDOF DIFFERENT APPROXIMATIONS WITH DIFFERENT METHODS OF

PARAMETER CALCULATIONS.

Method α = 1.8 α = 0.5 α = 0.3
h1(x), LS 0.01643 0.03105 0.08311

h1(x), PMM 0.01415 0.02116 0.05857

h2(x), LS 0.008399 0.03088 0.1270
h2(x), PMM 0.03124 0.02341 0.07229

h3(x), LS 0.01020 0.009127 0.02903
h3(x), PMM 0.008542 0.01280 0.07459
h3(x), MMM 0.008716 0.004903 0.01419

[6] 0.001982 0.02586 0.1365

p1 = −0.5, p2 = 1.3, p1 = −0.3, p2 = 1.1, p1 = −0.3,
p2 = 1.1, p1 = 0.1, p2 = 0.7 are tested forα = 1.8, with
decreasing distances betweenp1 andp2, and the smallest JSD
is given in Table IV. Note that other values ofp and other
combinations of multiple orders can also be tested. Due to the
limited space and the similar method used, they are not given
here to make the paper compact.

Several important observations can be made from Table IV.
First, comparing the new approximations with [6], one sees
that the new approximations have smaller JSD than [6] for
most cases ofα = 0.3 and α = 0.5, and larger JSD for
α = 1.8. This is because whenα increases, the decaying rate
of the tails increases (exponential rate in the limiting case
when α = 2) to a degree that it cannot be captured well
by the new approximations, as the maximum decaying rate
for h1(x) and h2(x) is 1

x2 , and for h3(x) is 1
xα+1 , smaller

than the exponential rate offered by the Gaussian term in [6],
which weighs more asα increases. Second, among the new
approximations,h3(x) has the lowest overall JSD, followed
by h1(x) and then byh2(x). For α = 1.8, h2(x) using LS
has a JSD of 0.008399, only about half ofh1(x) using LS.
This verifies the necessity of usingg2(x) in (8), in addition
to g1(x) in (4). It can be shown that, whenα = 1.8, c22 −
4d2 < 0 such that the denominator ofg2(x) in (8) cannot be
decomposed into the product of two terms. As a result,g2(x)
in (8) is not equivalent tog1(x) in (4). Thus, the generality
of g2(x) in (8) does offer extra accuracy in this case. Third,
comparing different parameter calculation methods for each
approximation, one sees that PMM gives the smallest JSD for
h1(x) andh2(x) in most cases, while MMM gives the smallest
JSD forh3(x). Finally, the value of JSD increases when the
value ofα decreases in most cases. This is because the true
PDF of the SαS distribution becomes more impulsive when
α decreases and hence, approximations become more difficult
to track this dramatic change.

Fig. 1 compares the approximate PDFs using the LS method
and the exact PDF graphically. Only the positive part is shown
as the PDF is symmetric around 0. As expected,h3(x) has the
same decaying rate as the exact PDF, as it is designed based on
this observation. Forh1(x), h2(x) and [6], they have similar
decaying rates, all of which are faster than that of the exact
PDF, as expected, as the exact PDF decays at1

x1.5 for α = 0.5
at 1

x1.3 for α = 0.3 while h1(x), h2(x) and [6] decay at1x2

(the Gaussian term in [6] can be ignored forx > 10 from
the figures.). However, [6] varies a lot when approaching the
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Fig. 1. Comparison of the positive tails of different approx-
imations whenα = 0.5 andγ = 1.

−20 −15 −10 −5 0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

GSNR (dB)

B
E

R

 

 
Ψ

1

Ψ
2

Ψ
3

Ψ
4

Ψ
5

[6]

Fig. 2. BER vs. GSNR for different detectors whenα = 0.5
andγ = 1.

tail due to the interaction between the Cauchy term and the
Gaussian term in the mixture that have different decaying rates,
while h1(x), h2(x) are quite consistent. In summary, the new
approximations seem to track the exact PDF better than the
existing approximation in [6] in Fig. 1.

Figs. 2 - 4 show the BER performances of different detectors
under different conditions whenγ = 1. In these figures, only
LS is used for the new approximations for better readability.
Fig. 2 shows the detector performances forα = 0.5. In this
case, the detector performances have significant differences.
Specifically,Ψ1, Ψ2 andΨ3 have the best performances and
their performances are indistinguishable from each other.The
Myriad detectorΨ5 has the second best overall performance,
while CauchyΨ4 and [6] have the worst overall performances.
The performance gains decrease when the SNR increases. The
reason why the performances of all the detectors converge
at smaller BER is that the SαS noise is less important in
signal detection for larger values of SNR (smaller BER) where
signals dominate such that the approximation error does not
determine the BER performance in this case.
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Fig. 3. BER vs. GSNR for different detectors whenα = 0.3
andγ = 1.
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Fig. 4. BER vs. GSNR for different detectors whenα = 1.8
andγ = 1.

Fig. 3 shows the BER performances of the detectors for
α = 0.3. In this case, the performance gains of the new
detectors are larger than those in Fig. 2. For example, at a
BER of 0.08, the performance gain over Myriad is about 2
dB, and the performance gain over Cauchy and [6] is about
6 dB. Importantly, the performance gain is larger at smaller
values of SNR, when it is needed most. Although a BER value
of 0.1 or 0.01 and a SNR value of -20 dB are not common for
data-oriented or cellular communications systems, it is quite
common in optical wireless communications systems [19]
that may suffer from atmospheric turbulence often modeled
as alpha stable distributed [1], in air-borne wireless sensor
networks with very weak transmitted signals but large node
density, or in radar communications, such as passive or long-
range radars, where SNR is often small as the signal from the
target is weak. For example, in distributed sensor networks,
the effective BER could reach 0.1 or 0.2 for various signal
processing algorithms [20]. In ultra-wideband radars [21], the
SNR could be as low as -56 dB or -86 dB, and in some sensor
applications [22], the SNR could be at -6 dBm or -36 dB.
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Fig. 5. BER vs. GSNR for different detectors whenγ = 1
and values ofα are not listed in the tables.

The performance gains of the new detectors are in the range
between 2 dB and 6 dB near the SNR value of -20 dB. These
are significant in this operating region [23], [24].

Fig. 4 shows the detector performances forα = 1.8. In
this case, the Cauchy detector has the worst performance,
while all the other detectors have similar performances. Itcan
be seen that [6] has a slightly better performance than all
other detectors, as expected, as none of the other detectors
can capture the exponentially decaying rate of the SαS tails
better than [6] whenα is large, inlcuding the Myriad detector.

From Figs. 2 - 4, the new detectors outperform the existing
detectors in most cases, and the performance gain increases
whenα decreases, implying that these new detectors are more
suitable for impulsive noise. In wireless communications with
a Poisson field of scatters,α is often determined byα = 2

β

for a plane [3, eq. (16)] andα = 3
β for a volume [3, eq.

(17)], whereβ is the path loss exponent in the channel. On the
other hand, it was reported in [25, Table 4.2] that the path loss
exponentβ is often between 2 and 6 for different application
scenarios. Using these two results, the value ofα can be
calculated as between 1 and 0.33 if a plane is considered. For
future wireless systems with higher carrier frequency, such as
the proposed 5G system at 26 GHz,β will be larger due to
higher attentuation, leading to even smallerα. This observation
is not confirmed by any experimental measurements and does
not exclude other applications withα larger than 1 either.
Rather, it comes directly from combining results in [3] and
[25].

Fig. 5 shows the performances of the detectors for values of
α that are not listed in the tables. Similar observations to those
from Figs. 2 - 4 can be made. This verifies the usefulness of
the derived analytical expressions for the LS method. From
Figs. 2 - 4, one can see that the proposed new approximations
offer performance gains in detection mainly for values of
α ≤ 0.5 in the cases examined. This gain is very small when
α > 0.5, as can be seen from Fig. 5 whenα = 0.66. This
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Fig. 6. BER vs. GSNR for different detectors whenα = 0.5
andγ = 1 using different proposed methods.
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Fig. 7. BER vs. GSNR forΨ3, Ψ4, Ψ5 and [6] whenα = 0.3
andγ = 1.

agrees with the previous conclusion that the new detectors are
more suitable for impulsive noise with large path loss. Fig.
6 shows the performances of the detectors where different
proposed methods are used to calculate the approximation
parameters. One sees that the difference between different
methods of the proposed detectors is trivial compared with
the difference between the proposed detectors and the existing
detectors. Our numerical tests show that the PMM method,
although with higher complexity due to the grid search, offers
little gain in detection performance over the LS method in
the cases examined. Thus, for signal detection, the LS method
is a better choice. For other applications that require a more
accurate approximation, the PMM method may be a better
choice according to Table IV.

Fig. 7 examines the sensitivities of the detectors to the
errors in the estimation ofα. One sees that in general the
detectors are not sensitive to the estimation error when the
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Fig. 8. BER vs. GSNR whenγ = 4 andα = 0.5.

−20 −15 −10 −5 0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

GSNR (dB)

S
ym

bo
l e

rr
or

 r
at

e

 

 
Ψ

1

Ψ
2

Ψ
3

Ψ
4

Ψ
5

[6]

Fig. 9. Symbol error rate vs. GSNR whenγ = 1 andα = 0.5
for QPSK.

error MSE increases from 0.002 to 0.02, both of which are
attainable using practical estimators designed in the literature.
Fig. 8 shows the BER vs. GSNR whenγ = 4 to examine
the effect of varyingγ, which is the case when one considers
the system performance in different scenarios, for example,
different densities of interferers [3, eq. (18)]. One sees from
Fig. 8 that the new detectors still have the best performances,
in all the cases considered. The performance gains of the new
detectors do not change much compared with Fig. 2. Fig. 9
shows the symbol error rate vs. GSNR for quaternary phase
shift keying (QPSK). Similar observations to those from Fig. 2
can be made. Moreoever, QPSK has poorer performance than
BPSK in Fig. 2 under the same conditions.

Finally, the complexities of the detectors are compared as
follows. For Ψ1 using LS,Ψ2 using LS andΨ3 using LS,
PMM and MMM, closed-form expressions for their model
parameters are available. Thus, their complexities in terms of
model parameter calculation are comparable with those of the
Myriad detector and the existing detector in [6] that also have
closed-form expressions, although the new approximations
do have more complicated functions, such as power and
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exponential functions, in their closed-form expressions.

ForΨ1 using PMM andΨ2 using PMM, their model param-
eters do not have any closed-form expressions. Instead, two-
dimensional searches forΨ1 and one-dimensional searches for
Ψ2 are required. Using a desktop PC with i7 CPU and 8 GB
memory and the tic-toc operations in MATLAB, a11×11 two-
dimensional search takes on average 2.8 seconds. From Tables
I and II, the longest search is the two-dimensional search for
b1 andd1 in Ψ1 whenα = 0.3. In this case, using values from
LS in Table I as starting points, 7 selective searches each of
21 grid points are required to findb1 and 4 selective searches
each of 21 grid points are required to findd1, asb1 has 7 digits
andd1 has 4 digits if the third digit after the decimal point is
required. Thus, the total is about28×4×2.8 = 313.6 seconds,
where 28 is the number of selective searches and 4 is the
number of11×11 two-dimensional grids in each search. Using
the same hardware and software, the Myriad detector takes
1.6 seconds on average. These calculations include the time
required to compute the decision variables and all necessary
parameters. Thus,Ψ1 takes about 196 times longer than the
Myriad detector or consumes about 23 dB more power than
the Myriad detector using PMM. However, these searches are
on-off as long as the new detectors operate in a homogeneous
environment. From Fig. 3,Ψ1 has a performance gain of about
2 dB over the Myriad detector, whenα = 0.3. Thus, the
power penalty incurred from the two-dimensional search may
be completely compensated after 12 operations. From the 13th
operation,Ψ1 will provide gains over the Myriad detector. For
other values ofα andΨ2, the search will be quicker and less
power-consuming too. The aforementioned figures are only
indicative and rough estimates. A more accurate comparison
will depend on the practical hardware as well as the actual
operating environment.

On the other hand, if one does require closed-form expres-
sions forΨ1 using PMM andΨ2 using PMM, one can simplify
them. From (7), any use of (7c) or (7d) will lead to intractable
solutions, due to the highly nonlinear functions of thep-th
power in (7d) and the square root in (7c). Thus, to obtain
closed-form expressions forΨ1 using PMM, one can use two
closed-form expressions from LS to replace (7c) and (7d). This
gives

a1 =
1− Γ(1/α)√

d1α
π√
b1

− π√
d1

(31a)

c1 =
1− Γ(1/α)√

b1α
π√
d1

− π√
b1

(31b)

whereb1 and d1 are determined in closed-form by (5) when
α > 1 and (6) whenα < 1. Similarly, for Ψ1 using PMM,
one has

a2 =
1

πα
Γ(1/α) (32a)

b2 =
d

3
4
2 (

c22
4d2

− 1)
1
4

√
2Γ(3/2)B(1/2, 3/2)P

− 1
2

−1 ( c2
2
√
d2
)

−
√
d2Γ(1/α)

πα

P
− 1

2
0 ( c2√

d2
)

P
− 1

2
−1 ( c2√

d2
)
, c22 ≥ 4d2 (32b)

b2 =
d

3
4
2 (1−

c22
4d2

)
1
4

√
2Γ(3/2)B(1/2, 3/2)P

− 1
2

0 ( c2
2
√
d2
)

− t
√
d2Γ(1/α)

πα

P
− 1

2
−1 ( c2√

d2
)

P
− 1

2
0 ( c2√

d2
)
, c22 < 4d2 (32c)

where c2 and d2 are given by (9). Essentially, this is a
combination of LS and PMM to simplify PMM-based approx-
imations.

V. CONCLUSION

New approximations to the PDF of the SαS distribution
have been proposed. Numerical results have shown that the
new approximations have high accuracy in most cases. Numer-
ical results have also shown that detectors based on these new
approximations outperform the existing detector in most cases,
especially when the value ofα is small. A future work includes
the experimental verification of the proposed detectors in a
wireless sensing system.

APPENDIX A
DERIVATIONS OF (7)

In this appendix, the methods of calculating the parameters
of g1(x) are derived. One has

fα(0) =
1

π

∫ ∞

0

e−ωα

dω =
1

πα
Γ

(

1

α

)

(33)

where [12, eq. (3.478.1)] has been used. Usingfα(0) = g1(0),
one has (7a). Also,

1 = 2

∫ ∞

0

[
a1

1 + b1x2
+

c1
1 + d1x2

]dx. (34)

The integrations in (34) can be solved using [12, eq. (3.252.2)]
to give (7b). Also, from the Parseval’s theorem, one has

2−1/α

πα
Γ

(

1

α

)

=

∫ ∞

−∞
[

a21
(1 + b1x2)2

+
c21

(1 + d1x2)2
+

2a1c1
(1 + b1x2)(1 + d1x2)

]dx. (35)

These integrations can be solved using [12, eq. (3.252.2)] and
[12, eq. (3.264.2)] to give (7c). Finally, thep-th order moment
of g1(x) is given by
∫ ∞

−∞
|x|pg1(x)dx =

∫ ∞

−∞
|x|p[ a1

1 + b1x2
+

c1
1 + d1x2

]dx.

(36)
The two integrations can directly be solved using [12, eq.
(3.252.2)] to give (7d). The moments offα(x) are given by
[11, eq. (6)]. By equating them, one has (7d).
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APPENDIX B
DERIVATIONS OF (10) - (13)

First, usingfα(0) = g2(0), one has

a2 =
1

πα
Γ

(

1

α

)

. (37)

Second, one has

1 = 2

∫ ∞

0

a2 + b2x
2

1 + c2x2 + d2x4
dx. (38)

Using variable transformation ast =
√
d2x

2, one further has

2

∫ ∞

0

a2 + b2x
2

1 + c2x2 + d2x4
dx

=
1

d
1
4
2

[a2

∫ ∞

0

1√
t

1

1 + c2√
d2
t+ t2

dt

+
b2√
d2

∫ ∞

0

t
1
2

1 + c2√
d2
t+ t2

dt]. (39)

The two integrals in (39) can be solved using [12, eq.
(3.252.11)] and [12, eq. (3.252.10)] twice

√
2a2

d
1
4
2

(

c22
4d2

− 1

)− 1
4

Γ

(

3

2

)

B

(

3

2
,
1

2

)

P
− 1

2
0

(

c2

2
√
d2

)

+

√
2b2

d
3
4
2

(

c22
4d2

− 1

)− 1
4

Γ

(

3

2

)

B

(

1

2
,
3

2

)

P
− 1

2
−1

(

c2

2
√
d2

)

= 1

(40)

for c22 ≥ 4d2 and forc22 < 4d2

√
2a2 arccos

(

c2
2
√
d2

)

d
1
4
2

(

1− c22
4d2

)
1
4

Γ

(

3

2

)

B

(

1

2
,
3

2

)

P
− 1

2
−1

(

c2

2
√
d2

)

+

√
2b2 arccos

(

c2
2
√
d2

)

d
3
4
2

(

1− c22
4d2

)
1
4

Γ

(

3

2

)

B

(

3

2
,
1

2

)

P
− 1

2
0

(

c2

2
√
d2

)

= 1

(41)

whereP (·) is the associated Legendre function of the first
kind [12, eq. (8.702.1)]. Also,

2−1/α

πα
Γ

(

1

α

)

=

∫ ∞

−∞
g22(x)dx

=
1

d
1
4
2

∫ ∞

0

(a2 +
b2√
d2
t)2

√
t(1 + c2√

d2
t+ t2)2

dt. (42)

This gives 1

d
1
4
2

∫∞
0

a2
2√

t(1+
c2√
d2

t+t2)2
dt +

1

d
1
4
2

∫∞
0

2a2b2√
d2

t
√
t(1+

c2√
d2

t+t2)2
dt + 1

d
1
4
2

∫∞
0

b22
d2

t2

√
t(1+

c2√
d2

t+t2)2
dt,

which can be solved by using [12, eq. (3.252.11)] and [12,

eq. (3.252.10)] three times to give

2−
1
α

πα
Γ

(

1

α

)

=
2

3
2 a22

d
1
4
2

(

c22
4d2

− 1

)− 3
4

Γ

(

5

2

)

B

(

7

2
,
1

2

)

P
− 3

2
1

(

c2

2
√
d2

)

+
2

5
2 a2b2

d
3
4
2

(

c22
4d2

− 1

)− 3
4

Γ

(

5

2

)

B

(

5

2
,
3

2

)

P
− 3

2
0

(

c2

2
√
d2

)

+
2

3
2 b22

d
5
4
2

(

c22
4d2

− 1

)− 3
4

Γ

(

5

2

)

B

(

3

2
,
5

2

)

P
− 3

2
−1

(

c2

2
√
d2

)

(43)

and

2−1/α

πα
Γ

(

1

α

)

=
2

3
2 a22 arccos

(

c2
2
√
d2

)

d
1
4
2

(

1− c22
4d2

)
3
4

Γ

(

5

2

)

B

(

1

2
,
7

2

)

P
− 3

2
−2

(

c2

2
√
d2

)

+
2

5
2 a2b2 arccos

(

c2
2
√
d2

)

d
3
4
2

(

1− c22
4d2

)
3
4

Γ

(

5

2

)

B

(

3

2
,
5

2

)

P
− 3

2
−1

(

c2

2
√
d2

)

+
2

3
2 b22 arccos

(

c2
2
√
d2

)

d
5
4
2

(

1− c22
4d2

)
3
4

Γ

(

5

2

)

B

(

5

2
,
3

2

)

P
− 3

2
0

(

c2

2
√
d2

)

(44)

for c22 ≥ 4d2 and c22 < 4d2, respectively. Also, for
the moments ofg2(x), one has

∫∞
−∞

(a2+b2x
2)|x|p

1+c2x2+d2x4 dx =

1

d
p+1
4

2

∫∞
0

(a2+
b2√
d2

t)t
p−1
2

1+
c2√
d2

t+t2
dt, which can be expanded as

1

d
p+1
4

2

∫∞
0

a2t
p−1
2

1+
c2√
d2

t+t2
dt+ 1

d
p+1
4

2

∫∞
0

b2√
d2

t
p+1
2

1+
c2√
d2

t+t2
dt, each solved

using [12, eq. (3.252.11)] and [12, eq. (3.252.10)] to give

2p+1Γ
(

p+1
2

)

Γ
(

− p
α

)

α
√
πΓ
(

−p
2

)

=

√
2a2

d
p+1
4

2

(

c22
4d2

− 1
)

1
4

Γ

(

3

2

)

B

(

3− p

2
,
p+ 1

2

)

P
− 1

2

− p
2

(

c2

2
√
d2

)

+

√
2b2

d
p+3
4

2

(

c22
4d2

− 1
)

1
4

Γ

(

3

2

)

B

(

1− p

2
,
p+ 3

2

)

P
− 1

2

− p+1
2

(

c2

2
√
d2

)

(45)

and

2p+1Γ
(

p+1
2

)

Γ
(

− p
α

)

α
√
πΓ
(

−p
2

) =

√
2a2 arccos

(

c2
2
√
d2

)

d
p+1
4

2

(

1− c22
4d2

)
1
4

Γ

(

3

2

)

·B
(

p+ 1

2
,
3− p

2

)

P
− 1

2
p−2
2

(

c2

2
√
d2

)

+

√
2b2 arccos

(

c2
2
√
d2

)

d
p+3
4

2

(

1− c22
4d2

)
1
4

·Γ
(

3

2

)

B

(

p+ 3

2
,
1− p

2

)

P
− 1

2
p
2

(

c2

2
√
d2

)

(46)



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. XX, XX XXQ 11

for c22 ≥ 4d2 andc22 < 4d2, respectively.
Using (37) in (40), (43) and (45), one has three equations

that are functions ofd2, b2√
d2

and c2
2
√
d2

only. Using these
three equations to eliminated2, one can derive a second-order
polynomial of b2√

d2
in (11), whose coefficients are functions

of c2
2
√
d2

only as given by

u = 2
3
2

(

c22
4d2

− 1

)− 3
4

Γ

(

5

2

)

B

(

3

2
,
5

2

)

P
− 3

2
−1

(

c2

2
√
d2

)

(47a)

v = 2
5
2 a2

(

c22
4d2

− 1

)− 3
4

Γ

(

5

2

)

B

(

5

2
,
3

2

)

P
− 3

2
0

(

c2

2
√
d2

)

− 2
1
2− 1

αΓ
(

1
α

)

πα
(

c22
4d2

− 1
)

1
4

Γ

(

3

2

)

B

(

1

2
,
3

2

)

P
− 1

2
−1

(

c2

2
√
d2

)

(47b)

w = a222
3
2

(

c22
4d2

− 1

)− 3
4

Γ

(

5

2

)

B

(

7

2
,
1

2

)

P
− 3

2
1

(

c2

2
√
d2

)

− 2
1
2− 1

αΓ
(

1
α

)

πα
(

c22
4d2

− 1
)

1
4

Γ

(

3

2

)

B

(

1

2
,
3

2

)

P
− 1

2
0

(

c2

2
√
d2

)

.(47c)

Solving this polynomial, one can expressb2√
d2

as a function
of c2

2
√
d2

. Using this expression in (10), one has an equation
for c2

2
√
d2

only. Similarly, one can derive (12) and (13), where
the polynomial coefficients forc22 < 4d2 are

u′ = 2
3
2

(

1− c22
4d2

)− 3
4

tΓ

(

5

2

)

B

(

5

2
,
3

2

)

P
− 3

2
0

(

c2

2
√
d2

)

(48a)

v′ = 2
5
2 a2

(

1− c22
4d2

)− 3
4

tΓ

(

5

2

)

B

(

3

2
,
5

2

)

P
− 3

2
−1

(

c2

2
√
d2

)

− 2
1
2− 1

αΓ
(

1
α

)

πα
(

1− c22
4d2

)
1
4

tΓ

(

3

2

)

B

(

3

2
,
1

2

)

P
− 1

2
0

(

c2

2
√
d2

)

(48b)

w′ = a222
3
2

(

1− c22
4d2

)− 3
4

tΓ

(

5

2

)

B

(

1

2
,
7

2

)

P
− 3

2
−2

(

c2

2
√
d2

)

− 2
1
2− 1

αΓ
(

1
α

)

πα
(

1− c22
4d2

)
1
4

tΓ

(

3

2

)

B

(

3

2
,
1

2

)

P
− 1

2
−1

(

c2

2
√
d2

)

.

(48c)

APPENDIX C
DERIVATIONS OF (16) - (24)

The first equation (16a) comes directly fromfα(0) = g3(0).
Also,

1 =
2a3

b
1

α+1

3

∫ ∞

0

1

1 + tα+1
dt. (49)

The last integral can be solved using [12, eq. (3.241.2)] to
give (16b). Similarly, one has

2−1/α

πα
Γ(

1

α
) =

∫ ∞

−∞
g23(x)dx =

2a23

b
1

α+1

3

∫ ∞

0

1

(1 + tα+1)2
dt.

(50)

Using [12, eq. (3.241.5)], one has (16c). Also, one has [9]

lim
x→∞

fα(x) =
αΓ(α) sin(απ2 )

πxα+1
. (51)

Sincelimx→∞ g3(x) =
a3

b3xα+1 , one has (16d). Also, thep-th
order moment ofg3(x) is derived as

∫ ∞

−∞

a3|x|p
1 + b3|x|α+1

dx =
2a3

b
p+1
α+1

3

∫ ∞

0

tp

1 + tα+1
dt. (52)

The last integral can be solved using [12, eq. (3.241.2)] to
give (23).
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