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Abstract

Spectrum occupancy models are very useful in cognitive radio designs. They can be used to in-

crease spectrum sensing accuracy for more reliable operation, to remove spectrum sensing for higher

resource usage efficiency or to select channels for better opportunistic access, among other applica-

tions. In this survey, various spectrum occupancy models from measurement campaigns taken around

the world are investigated. These models extract differentstatistical properties of the spectrum occu-

pancy from the measured data. In addition to these models, spectrum occupancy prediction is also

discussed, where the auto-regressive and/or moving-average models are used to predict the channel sta-

tus at future time instants. After comparing these different methods and models, several challenges are

also summarized based on this survey.

Index Terms

Cognitive radio, measurement, modelling, prediction, spectrum occupancy.

I. I NTRODUCTION

Cognitive radio (CR) equips a radio device with cognition by learning from and adapting to

the radio environment during the operation [1]. More specifically, CR finds the parts of the

radio spectrum that are not being occupied at some specific times in some specific locations

and move its operation to these parts called ”spectrum holes” for opportunistic access. Thus,

CR has two main functions: spectrum sensing and data transmission. Among them, spectrum

sensing is probably more important than data transmission in many cases, as it determines the

amount of interference to other systems, including possible licensed systems, which is exactly

the current fixed spectrum access policy tries to avoid and isthe main concern of the regulators.

Consequently, it is of paramount importance to obtain spectrum sensing results as accurately

as possible. The accuracy of spectrum sensing depends on several factors but ultimately it de-

pends on the occupancy status of the spectrum, as the radio spectrum is a dynamic environment

determined by the usage of the spectrum. Therefore, knowledge of statistics or models of the

spectrum occupancy will greatly benefit and improve the designs of CR, and indeed such knowl-

edge has already been used to improve CR performances.
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To name a few, in [2], the authors used the Markov chain model of the spectrum occupancy in

the Bayesian cost factors of missed detection and false alarmto enhance the accuracy of spec-

trum sensing. The proposed weighted sequence detection algorithm is optimal in minimizing

the overall detection error. In [3], the authors proposed proactive opportunistic access scheme

to remove spectrum sensing so that cognitive data transmission is not frequently interrupted by

spectrum sensing. In this case, the spectrum availability is predicted by using the spectrum

occupancy model based on all historical channel information, not by spectrum sensing that is

based on detection using only a snapshot of channel measurements. In [4], the authors used the

spectrum occupancy information in cognitive radios to select the best channels for control and

data transmission purposes. It was shown there that the overall time required to switch cognitive

radio from one channel to the other channel due to collision can be reduced by up to 55% such

that the throughput of the system has been greatly improved.In [5] and [6], the statistics of the

spectrum occupancy were used to control the transmission power of the cognitive radio to max-

imize the bandwidth efficiency. Specifically, the average transmission rate is maximized subject

to a total average power constrain and the optimal transmission power becomes a function of

the statistics of the spectrum occupancy. Similar works have also been conducted in [7], where

more practical spectrum occupancy models were used. In [8],the authors used the spectrum

occupancy information to predict the channel status in the following time slots so that optimal

spectrum sensing order can be achieved by comparing them. The proposed selective scheme can

improve the throughput of the system while meeting quality of service requirements. In [9] and

[10], this spectrum occupancy information was used to achieve trade-off between data buffer-

ing and channel switching that can save up to 50% of the energyconsumption, and to reduce

the required number of spectrum handoffs considerably, respectively. These works and other

works use statistics or models of the spectrum occupancy to improve either the physical layer

spectrum sensing or the upper layer spectrum management forcognitive radios. Thus, spectrum

occupancy models are very important for cognitive radio designs.
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This paper conducts a survey of the state-of-the-art spectrum occupancy models that are

obtained from measurement campaigns up to 2013 used for cognitive radio designs. To start

with, various measurement campaigns around the world that extract important sample statistics,

mainly the duty cycle, are discussed. Then, more in-depth works that extract complete statisti-

cal models out of the measurement data, including cumulative distribution function, probability

density function, Markov chain and linear regression models, are investigated. These models can

also be classified as time-dimension models, frequency-dimension models, location-dimension

models or their mixtures in terms of the dimension of spectrum occupancy model. As the last

part of this survey, various models for spectrum occupancy prediction are presented that predict

the value of the spectrum occupancy in the future. Below is an outline of this paper.
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II. SPECTRUMOCCUPANCY STATISTICS

There have been a large number of measurement campaigns around the world to study the

spectrum utilization. Some of these measurement campaignsgive detailed data analysis in terms

of complete statistical models, such as probability functions and random processes. Other mea-

surement campaigns only give simple but important sample statistics. We start with the mea-

surement campaigns that give the sample statistics. Before proceeding to discuss some of the

important works, it is useful to make a few summary statements regarding these campaigns.

First, most of these campaigns have been conducted by using an antenna that collects data,

a spectrum analyser that displays and processes data and a computer that analyses data. Other

minor equipment for calibration and pre-selection are alsoused in some campaigns for better

results. Different choices of equipment will of course affect the accuracy of the measurement.

However, as long as the equipment works reasonably well, thedifference in equipment has

marginal effect on the statistical behaviours of spectrum occupancy and therefore, the equipment

difference is not discussed in this paper.

Second, all these campaigns consider either outdoor or indoor locations. Overwhelmingly,

the outdoor locations are chosen on the roof of a high building that overlooks a certain area in

order to reduce the effect of radio propagation loss on the measurements. The indoor locations

are often chosen in an office building, a typical applicationenvironment for wireless commu-

nications. Some of the works tried to analyse the location variation of spectrum occupancy by

taking measurements from different locations but this is generally expensive and difficult. As a

result, most works focus on time- and frequency-variationsby fixing locations. The time span of

the measurement varies from a few days in some campaigns to a few years in other campaigns.

Intuitively, the longer the time span is, the more useful butalso the more expensive the mea-

surement campaign will be. For short-term effects they are of similar value. Also, most of these

campaigns focus on the frequency range between 30 MHz and 3 GHz. This range covers some

of the very important applications of wireless communications, such as FM radio, TV broadcast-
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ing, cellular communications. Thus, measurements of frequency bands in this range will provide

useful insights on the current status of spectrum utilization. Another reason for this choice is

that higher frequencies are more vulnerable to propagationloss and thus, the measurements will

be less accurate as an indicator of the channel occupation status when the frequency is higher.

Third, these works only consider some simple statistics of the spectrum occupancy, such as

the maximum, the average and the minimum of the power level, the spectrum occupancy and the

duty cycle. More complicated statistical models, such as cumulative distribution function and

Markov model, will be discussed in the next section.

One of the earliest measurement campaigns is perhaps done bySanders for the Institute of

Telecommunication Science in the USA [11]. In this work, using a radio spectrum measurement

system with custom-made hardware and software, Sanders measured the frequency bands from

108 MHz to 19.3 GHz in three different US cities, Denver, San Diego and Los Angeles, for

two weeks. All the measurements were performed outdoors. Using these measurements, it

was found that San Diego has considerably more radio activities than Denver. Thus, Sanders

concluded that coastal cities have higher spectrum occupancy than midwestern cities, due to the

presence of maritime radars. By analysing the data from Denver, Sanders also found that radar

bands have severe adjacent interferences and thus, the necessity for guard bands. The spectrum

occupancy from microwave ovens is also evident in the 2400 - 2500 MHz ISM band.

More extensive measurement campaign was done by McHenry andhis colleagues in [12]. In

fact, some of these measurements are publicly available in [13]. In [12], measurements were

taken from 30 MHz to 3 GHz for a few hours. The location was fixedto the roof of a high-rise

building in the centre of Chicago. Pre-selector was used to improve measurement sensitivity and

dynamic range and the data were calibrated to measure the power level at the antenna input, in

contrast to other campaigns that measure the spectrum analyser input. The results were presented

in terms of the maximum power level, the instantaneous spectrum occupancy, and the duty

cycle. From the results, some TV bands have the heaviest occupancy with an average duty cycle
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of 70.9%. The cellular band also has a heavy occupancy with anaverage duty cycle of 55%.

On the other hand, some frequency bands allocated by FCC, including satellite bands, were

completely unused. An interesting result from this study isthat by comparing Chicago and New

York, the two cities have sizable differences in terms of spectrum occupancy, although both are

large cities in the USA. A related measurement campaign in the same city Chicago has drawn

similar conclusions [14] and [15].

In [16], a similar measurement campaign was done by Wellens and his colleagues in Germany.

The measurements were taken on the roof of a building that overlooks the area and a room in

an office building. This is also one of the few works that consider indoor environments. The

frequency range is from 20 MHz to 6 GHz, measured for seven days. The resolution bandwidth

is 200 kHz that evenly divides the whole frequency range. Theresults were presented in terms

of the power levels, and the duty cycle for different locations and different frequencies. For the

outdoor location, it was found that the spectrum occupancy is almost 100% from 20 MHz to

3 GHz, and very low from 3 GHz to 6 GHz. For the indoor location,the spectrum occupancy

is about 32% from 20 MHz to 3 GHz. Thus, the spectrum occupancyis highly related to the

application scenario, an intuition that is confirmed by [16].

In [17], another measurement campaign was performed in Spain. This was also done for an

outdoor application but in the frequency range between 75 MHz and 3 GHz for two days. The

equipment set-up is similar to [16] without any pre-selection or calibration. The resolution is 10

kHz that evenly divides different blocks of frequencies. The results were presented in terms of

the power levels, spectrum occupancy and duty cycle. The statistics focus on the cellular bands,

showing significant spectrum opportunities or low spectrumoccupancy in frequencies above 1

GHz. An interesting result from this work is that the spectrum occupancy is also related to the

frequency bin, that is, the frequency separation between two frequencies measured. This shows

the complexity and difficulty of the measurement campaign.

In [18], a measurement campaign was done in Singapore for thefrequency range from 80
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MHz to 5.85 GHz with a resolution bandwidth of 10 kHz. The measurements were taken on the

roof of a building for 12 weekdays. Duty cycle and spectrum occupancy results show that the

spectrum occupancy in Singapore is as low as 4.54% in terms ofused bandwidth. The busiest

band in Singapore is the GSM900 band, although there are plenty of spectrum opportunities

or low spectrum occupancy in the radar bands, ISM band, and above 1 GHz. This measure-

ment campaign also calculates the received signal at the antenna input but without pre-selection.

The uniqueness about this campaign is that Singapore is a relatively small country whose radio

activities might be mixed with those from neighbouring countries.

There are other works that extract important sample statistics out of the measurement cam-

paigns. For example, in [19], spectrum occupancy in three different locations in two different

countries was studied, based on which spectrum occupancy and duty cycle were calculated. Al-

though this is a good attempt in understanding the spectrum usage difference between different

countries, it is in general difficult to obtain such understanding. In [20], another campaign in

Atlanta, USA, was performed where the power spectral density results were given. In [21], [22],

[23] and [24], some specialized systems, such as Wi-Fi, GSM and public safety systems, were

studied, where measurements were taken to show that the Wi-Fi band was still relatively vacant

while the public safety band was relatively full, at the timeof study. A more important con-

clusion from [23] is that there are seasonal, weekly and daily trends in the spectrum occupancy

statistics. Also, reference [24] has used the measurement results to study the design of spec-

trum sensing schemes for better performances. In [25], the measurement campaign conducted

in Qatar was presented. The frequency bands from 700 MHz to 3 GHz were measured for

seven days with a resolution of 300 kHz in four outdoor locations. Different from most previous

works, this work measured the four locations at the same timeand thus, location analysis in this

work is more convincing, as it has been revealed in the previous works that spectrum occupancy

changes with time so sequential measuring in different locations would lead to a mixed effect

of time and location. It was found in this work that the spectrum utilization is highly related to
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the natural environment where the device is deployed. In [26], two outdoor locations and one

indoor location in Japan were studied, focussing on the TV bands, for 24 hours. The results

in terms of duty cycle, spectrum occupancy rate and amplitude probability distribution revealed

that there is higher spectrum occupancy in outdoor locations than indoor location. The work has

also explicitly compared the spectrum occupancy difference between night time and day time

and has determined a safe distance from the primary user for the operation of secondary user

as 0.68 km in urban areas and 1.7 km in suburban areas. In [27],a measurement campaign in

Amsterdam was performed, where, unlike the other works thatused measurement equipment at

a fixed location, mobile equipment was also used. Based on thiscampaign, the effect of location

variation was studied. The effect of different areas was also studied. This is an interesting work

that extends previous works on a ”point” to an area. Such a mobile monitoring system also takes

communications that only happen locally into account. Thismay be important, as wireless re-

laying also happens locally between peers that may be difficult to be captured by settings used in

other measurement campaigns. In [28] and [29], long-term measurement campaigns were con-

ducted. While most previous works take measurements for a fewdays, [28] took measurements

for six months while [29] took measurements for three years.This will allow the extraction of

long-term statistics from the measurements. Indeed, reference [28] revealed the possibility of

using the difference between weekdays and weekends to explore spectrum opportunities and de-

termined a set of ”suitable” channels above 1 GHz, while reference [29] examined the seasonal,

weekly and daily trends in different frequency bands.

An important method that is used in almost all these works is energy detection, where the

measurement is compared with a predetermined threshold. The channel is considered vacant if

the measurement is below this threshold or occupied if the measurement is above this threshold.

Thus, assuming that thei-th measurement at frequencyf is Pi(f) and the threshold isT , one
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has the instantaneous spectrum occupancy rate for thei-th measurement at frequencyf as

Bi(f) = 1, if Pi(f) > T

Bi(f) = 0, if Pi(f) < T. (1)

wherei = 1, 2, · · · , N(f) andN(f) is the total number of measurements taken at frequencyf .

Using (1), the average duty cycle used in the measurement campaigns is calculated as

r(f) =

∑N(f)
i=1 Bi(f)

N(f)
(2)

which is a function of frequency. From (2), the duty cycle is always smaller than 1. The larger

the value of the duty cycle is, the higher the spectrum occupancy will be.

The challenging part of the above calculation is the settingof the thresholdT . In fact, the

spectrum occupancy could be significantly changed when the threshold varies [29]. This is

expected, as if the threshold is too low, there will be more false alarms while if the threshold is

too high, there will be more missed-detections. A natural choice of the threshold is the noise

floor. As mentioned before, each measurement campaign has a slightly different system setting.

Thus, for a specific system, the noise floor can be obtained by replacing the antenna in the

measuring system with a 50 ohms load and taking measurementsfor this load. These noise

samples are then averaged to find the noise power or the noise floor. They are also used to find

the distribution of the noise. It turns out that the noise floor increases with the frequency [26].

Also, in some cases, the noise is not Gaussian [28]. Finally,instead of using the calculated noise

floor, the detection threshold in (1) is often set a few dBs above the noise floor such that the

probability of false alarm satisfies a certain value to take into account strong noise samples that

are comparable to signals. Consequently, the detection threshold in (1) equals

T = W (f) +M(f) (3)

whereW (f) is the calculated noise floor at frequencyf andM(f) is a fixed margin to satisfy

certain probability of false alarm criterion. From (3), thedetection threshold should be a function

of frequency too.
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In [16] and [17],M(f) = 3 dB was chosen to satisfy a probability of false alarm of 0.01

such that the detection threshold varies with frequency. In[26], a probability of false alarm

of 0.015 was chosen such that bothM(f) and the detection threshold vary with frequency. In

[12], a fixed threshold of -90 dBm or -110 dBm was chosen for different bands. In [25], a fixed

threshold of -78 dBm was used. In [28], a fixed margin of 5 dB was used while the detection

threshold varies with frequency between -77.4 dBm and 69.5 dBm. In [19], a fixed margin of 7

dB was used while the detection threshold varies with frequency. In [18], the detection threshold

was set 6 dB above the minimum power level, not the noise floor as in (3). In [22], the noise

samples were assumed Gaussian such that the marginM(f) was chosen as a function of the

standard deviation to achieve a probability of false alarm of 0.003. There are also other ways

of setting the detection threshold, borrowed from other research areas, such as Otsu’s algorithm,

recursive and adaptive thresholding [30]. In fact, reference [30] has a very detailed discussion

of thresholding as well as other data processing techniquesused for the calculation of spectrum

occupancy. In addition to the widely used energy detection,other detection methods are also

available [31].

Tables I and II give a summary of the campaigns. All the afore-mentioned works only obtain

statistics, mainly the average duty cycle, to show the spectrum occupancy. The main conclu-

sions from these works are that there are more spectrum opportunities above 1 GHz than below

1 GHz and there are more spectrum opportunities indoor than outdoor. The actual spectrum

occupancy varies with frequency, time, location, detection threshold and system setting. These

initial results provide important guidance for further studies. The duty cycle statistic is effective

in giving a general idea of the availability of different frequency bands. It can also be used in

cognitive radio designs asa priori knowledge of the channel status. However, for more sophisti-

cated applications, more details about the spectrum occupancy are required. In the next section,

complete statistical models for the spectrum occupancy aresurveyed. These models are more

useful for dynamic access and control of opportunistic spectrum.
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TABLE I

SUMMARY OF THE MEASUREMENT CAMPAIGN RESULTS. (POWER (P), OCCUPANCY (O), DUTY CYCLE (D))

Campaign Frequency Time Location Statistics

[11] 108 MHz - 19.3 GHz two weeks outdoors P

[12] - [15] 30 MHz - 3 GHz hours outdoors P, O, D

[16] 20 MHz - 6 GHz seven days outdoors, indoors P, D

[17] 75 MHz - 3 GHz two days outdoors P, O, D

[18] 80 MHz - 5.85 GHz twelve days outdoors O, D

[19] 400 MHz - 3 GHz six days outdoors O, D

[20] 400 MHz - 7.2 GHz several months outdoors P

[21] Wi-Fi band seven days outdoors O

[22] GSM band N/A outdoors O

[23] public safety band several months outdoors O

[24] public safety band two days outdoors O

[25] 700 MHz - 3 GHz three days outdoors P

[26] 90 MHz - 3 GHz one day outdoors, indoors O, D

[27] 100 MHz - 500 Mhz one day outdoors P

[28] 300 MHz - 4.9 GHz six months outdoors O, D

[29] 30 MHz - 6 GHz three years outdoors O

III. SPECTRUM OCCUPANCY MODELS

In this section, complete statistical models for spectrum occupancy are surveyed. Note that

the measurement system settings in these works are similar to those discussed in the previous

section. In fact, some of the works discussed in this sectionare from the same measurement

campaigns as those in the previous section, such as the Aachen measurement campaign, only

with more comprehensive analysis. Thus, unless necessary,the measurement settings will not be
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TABLE II

SUMMARY OF THE MEASUREMENT CAMPAIGNS’ MAIN FINDINGS .

Campaign Findings

[11] Coastal cities have higher occupancy. Radar bands have severeadjacent interferences.

[12] - [15] TV and celluar bands are heavily occupied. Satellite bands are free.

[16] Occupancy is lower for above 3 GHz and indoor locations.

[17] Occupancy is lower for above 1 GHz and depends on frequency bin.

[18] Occupancy is low in Singapore in most bands. GSM band is the busiest.

[19] Occupancy depends on culture and economical development level.

[20] 5.6 GHz bands in urban area are vacant and 6.6 GHz band in ruralarea are vacant.

[21] Wi-Fi band is relatively vacant.

[22] Occupancy depends on load scenarios and traffic channels butis generally low.

[23] Public safety band is relatively full with seasonal, weeklyand daily trends.

[24] Public safety band is relatively full.

[25] Occupancy is highly related to the natural environment.

[26] Occupancy is lower for indoor. Night time and day time are different.

[27] Mobile spectrum monitoring is necessary to reveal location-specific information.

[28] Difference between weekdays and weekends can be used to enhance utilization.

[29] Seasonal, weekly and daily trends exist in different frequency bands.

discussed in the following but bear in mind that these works may also have to select the times,

frequencies, locations, and detection thresholds measured and these selections may affect the

results and therefore, the conclusions. We start with the probability function models, including

the probability density function (PDF) and cumulative distribution function (CDF).
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A. CDF and PDF

The motivation of CDF and PDF modelling is two-fold. First, these models describe the range

of possible values for the primary user signal and how often these values occur. This is useful for

the choices of cognitive transceiver parameters, such as dynamic range and transmission period.

Second, these models can be used to improve cognitive performances. For example, the PDF

of the power level may be used as prior knowledge to improve primary user signal detection

and estimation. These works can be categorized into two types: some works model the CDF

and/or PDF of the power level that are obtained directly fromthe measurement systems before

energy detection, while others model the CDF and/or PDF of theduty cycle and associated ran-

dom variables that are calculated from the instantaneous spectrum occupancy rate after energy

detection.

In [32] - [37], the probability models for the power level have been studied. Specifically, in

[32], another measurement campaign was performed in New Zealand that covers the frequencies

from 806 MHz to 2.75 GHz for 12 weeks. One outdoor location on the roof of a tall building

and one indoor location were studied. From the measurements, the amplitude probability dis-

tribution, where the probability that a certain power leveloccurs throughout the campaign is

defined as a function of frequency and power level, was calculated and plotted with x axis be-

ing the frequency, y axis being the power level and z axis being the probability of occurrence.

Since the measured range covers several wireless systems with possibly different occupancy

statuses, it is necessary to differentiate the amplitude probabilities over different frequencies.

In the calculation, the probability is averaged over all sampling times at a fixed frequency.

Mathematically, denotePij as the measurement taken at thei-th sampling timeti in the j-th

frequencyfj, wherei = 1, 2, · · · , NI andj = 1, 2, · · · , NJ , andPT as a certain threshold with

min{Pij} < PT < max{Pij}. Then, the amplitude probability distribution is calculated as

APD(PT , fj) = Pr[Pij > PT ] =
1

NI

NI
∑

i=1

Sij (4)
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where

Sij = 1, if Pij > PT

Sij = 0, if Pij < PT . (5)

In this case, the amplitude probability distribution is a function of thresholdPT and frequencyfj.

Using the amplitude probability distribution, the spectrum was divided into three types: white

space, grey space and black space. The black space has more than 70% chance that the power

level is above certain threshold, not suitable for any exploration, the grey space has a chance

between 10% and 30% that the power level is above certain threshold, possible for opportunistic

access, while the white space has a chance between 5% and 7% that the power level is above

certain threshold, ideal for exploration. Also, indoor location and outdoor location do not have

much difference in this study. Similar amplitude probability distributions were also obtained

in [16] and [26] from different campaigns. To have a better view of the overall distribution of

the power level, in [33], the amplitude probability distribution in [32] was further averaged over

different frequencies and defined as spectrum opportunity,that is, the probability that a certain

power level occurs is averaged over both all frequencies andall times. This gives

APD(PT ) = Pr[Pij > PT ] =
1

NINJ

NI
∑

i=1

NJ
∑

j=1

Sij. (6)

The effects of different system settings on the CDF of the power level were examined. The Beta

distribution was then used to fit the empirical CDFs. In [34], the PDF of the power level was

calculated by calculating the probability over the measurements in all frequencies and in a 12-

hour period to account for the fact that day time and night time have different patterns. The PDF

is asymmetric and it always rises quickly and then drops slowly when the power level increases,

that is, there are more weak noises than strong signals.

On the other hand, for narrow-band measurements, the probability of the power level only

needs to be averaged over all sampling times. In [35], the PDFof the power level over several

selected channels of GSM system was obtained by calculatingthe probability over all measure-
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ments obtained in one day in that channel. The PDF is in general asymmetric. The calculated

PDF for the GSM900 channel rises slowly then drops quickly when the power level increases,

while the calculated PDF for the GSM1800 channel rises quickly and then drops slowly when

the power level increases. In [22], another measurement campaign for the GSM system was per-

formed for different traffic channels. The obtained PDF showed similar asymmetry to [34], but

interestingly, some traffic channels in some scenarios showdouble-peaked PDFs. In [36], the

VHF band was measured and studied. The obtained CDF has confirmed the spectrum sparsity

in the VHF band. There is little persistent activity above -87 dBm in the urban area and above

-110 dBm in the rural area. The best candidate channels for CR operations were also identified

based on the CDF. In [37], another measurement campaign for the GSM system in China was

conducted. The empirical PDF was first obtained from the measurements. Again, these PDFs

show asymmetry near zero, implying that there are more weak noises in the measurements than

signals. The characteristic function was then fitted using Nakagami-m distribution for both real

and imaginary parts. The fitting works better for the real part than for the imaginary part. Un-

like the other works that merely give the empirical PDF or CDF,this is perhaps the only work

that tries to fit the power level to some known random variable, although the fitting still needs

improvement.

To summarize, the current works on the probability models for the power level are mainly

empirical, with the exception in [37]. Most of them focus on aspecific band, such as the GSM

band and the VHF band, while only a few, such as [34], [26] and [33], consider all the frequen-

cies studied in the previous section. The PDF and CDF reflect the spectrum occupancy status

by using the signal strength directly. Thus, unlike the dutycycle measure, it does not suffer

from the noise uncertainty caused by the setting of the threshold in energy detection. Thus, the

PDF and CDF measures are less affected by the measuring system. On the other hand, as can

be seen, the PDF and CDF still heavily rely on the times, frequencies and locations used in the

calculation. For the same measurements, calculations overone day or one week may lead to
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totally different conclusions. Thus, it is advisable to trydifferent methods of calculation in order

to find the most reliable results. Next, we discuss probability models for the duty cycle and its

associated metrics for spectrum occupancy.

In the seminal paper [34], the empirical CDF of the duty cycle was obtained. These CDFs

are significantly different for different locations and frequency bands. Also, the slopes for very

low duty cycle near 0 and very high duty cycle near 1 are very large. Based on this observation,

a modified Beta distribution for the duty cycle was proposed, which leads to an ordinary Beta

function combined with two delta functions at 0 and 1, respectively, as

f(x) = P0δ(x) + P1δ(x− 1) +
xα−1(1− x)β−1

B(α, β)
(7)

whereB(·, ·) is the Beta function. The proposed modified Beta distribution fits the measure-

ments quite well for different locations and frequency bands. The effect of detection threshold

was also examined. It was found that the detection thresholdwill change the modified Beta

distribution parameters but has insignificant impact on thedistribution. Thus, the modified Beta

distribution is a very useful model for duty cycles in different locations, frequencies or using

different detection thresholds. The frequency correlation of the duty cycle was studied as well,

which shows that adjacent channels have high correlation induty cycle within 1.7 MHz for

DECT systems and 5 MHz for UMTS systems. In another work [38], based on the measure-

ments taken from the UHF and GSM bands in a fixed location for two days, the empirical CDF

of the duty cycle was fitted with several widely used distributions and it was found that the

lognormal distribution and the Beta distribution are the best candidates in this case in terms of

Kolmogorov-Smirnov distance.

The duty cycles used in [34] and [38] are calculated as the average fraction of time at each

frequency when the channel is occupied. In some applications, it is also important to know how

long the channel will stay occupied or vacant, in addition tothe average fraction. Essentially,

they are the actual channel holding times. For example, in CR transmission, the channel hold-

ing time can be used to determine spectrum sensing interval and data transmission interval for
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sensing-throughput trade-off. In [39], these intervals, defined as run length and burst length,

were studied. The complementary CDFs of the run length and theburst length were fitted with

different distributions, in addition to other results in [39]. It was found that long-tailed distribu-

tions, in this case log-normal distribution, can fit the run length and burst length quite well in

many cases. On the other hand, it was also pointed out that such conclusions heavily rely on the

frequencies and times chosen. In [35], the time interval between two opportunities was studied

for the GSM system. This is actually the burst length considered in [39]. In this case, it was

found that this time interval can be well approximated as an exponential random variable, with

the exception of the first sample point. This verifies the observation from [39] that the PDF of

the run length and burst length depends on the frequency and time considered.

In [40] - [42], another important metric related to the duty cycle was studied as the number of

free channels or spectrum availability. Due to the analytical difficulty, the spectrum availability

was derived by proposing several approximations and calculating the approximate distribution

parameters from real measurements. It was found that the Poisson-Normal approximation is

accurate in terms of Chi-square test and the Camp-Paulson approximation is accurate in terms

of maximum absolute error, to model the distribution of the number of free channels. There is

no comparison between these two approximations using the same criterion though. The CDF of

the Camp-Paulson approximation is given by [42, eq. (11)]

FK(k) = Φ

(

Ω− µ

σ

)

(8)

whereΩ = (1−β)ρ
1

3 , µ = 1−α, σ =

√

βρ
2

3 + α, α = 1
9N−9k

, β = 1
9k+9

, ρ = N(k+1)(1−E{K}/N)
(N−k)E{K}

andN is the total number of channels. The Poisson-Normal approximation is obtained by

finding the CDF of the sum of a normal random variable and two Poisson random variables.

In the above, the probability models for the duty cycle and the related channel holding time

and spectrum availability have been proposed. For the duty cycle, the modified Beta distribution

is a good model, for the channel holding time, the log-normaldistribution fits the purpose well,

while for the spectrum availability, the Poisson-Normal distribution could be a good choice.
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Similar to the statistics in the previous section, since this modelling is based on the spectrum

occupancy rate after energy detection, the accuracies of these models are related to the detection

threshold. The relationship between the statistics studied in Section II and the probability mod-

els studied in this subsection is that the statistics in Section II can be considered as statistical

averages of the random variables for which the probability models in this subsection are estab-

lished. In other words, results in Section II are the first-order statistics of the random variables

studied in this subsection. From these results, it has been clearly shown that the spectrum occu-

pancy is time-varying. Thus, a random variable may not be enough to model it. In the following,

a more complete statistical model, random process, is used to model the spectrum occupancy.

More specifically, the overwhelmingly used random process in this case is the Markov chain.

B. Markov Chain

The Markov chain is a very natural choice for statistical modelling of the spectrum occupancy,

as the spectrum occupancy rate is either 0 or 1 after energy detection and the occupancy status

changes between these two cases. Early works found that the continuous-time Markov chain

(CTMC) models the spectrum occupancy well. With more measurement campaigns performed

for larger numbers of frequency bands, recent works also showed that the continuous-time semi-

Markov chain (CTSMC) models the spectrum occupancy better. Ina Markov chain, the random

process switches between different states and these are characterized by the transition probabil-

ities. In each state, the random process is characterized bythe sojourn time or channel holding

time. In a CTMC, this holding time follows an exponential distribution, while in CTSMC, this

holding time follows an arbitrary distribution.

The CTMC model is widely used in the modelling of HF bands that dates back to the 1970’s.

Reference [43] is perhaps one of the first works that proposed the use of a first-order CTMC to

model the spectrum occupancy. By defining the spectrum occupancy as the fraction of time that

the measured power level exceeds a certain threshold, it wasfound that this value is asymptot-

ically Gaussian distributed whose mean and variance only depend on the means of the sojourn

DRAFT October 20, 2014



19

times, not their actual distributions. Then the modelling boils down to the estimation of the

probability that the measured power level exceeds a certainthreshold from measurements. In

[44] and [45], this model was extended to the two-dimensional case by taking the channel de-

pendence or frequency dependence into account. In particular, in the transition probabilities, in

addition to the dependence on the previous state in time, thedependence on the previous state

in an adjacent channel was also added, giving eight transition probabilities instead of four. As a

result, one more parameter was added and the three parameters were calculated from the mea-

surements. The developed model is more accurate than the original first-order CTMC in [43], at

the cost of higher computational complexity. In [46], the model in [44] and [45] was extended to

cyclostationary chain by taking the diurnal variation intoaccount. In particular, the eight tran-

sition probabilities in [44] and [45] are functions of the hour of operation during the day now.

Again, the three parameters were then calculated from the measurements.

The CTMC model requires that the sojourn time or the channel holding time follow exponen-

tial distributions. However, measurements in several campaigns revealed that this is not the case.

Thus, the CTSMC model is used where another distribution is used to fit the channel holding

time. References [47] and [48] studied the 2.4 GHz WLAN channel. The study first showed

that the initial four states in the Markov chain can be well simplified to two states that denote

either a transmit status or an idle status. However, unlike CTMC, the channel holding time of

the idle status does not follow exponential distribution. Instead, it discovered that the general-

ized Pareto distribution fits the measurements better in [47] and the hyper-Erlang distribution

fits the measurements better in [48], from the Kolmogorov-Smirnov test. The parameters of

these models were then calculated from the measurements. These results were obtained based

on the assumption that the channel does not suffer from any interferences. However, in reality,

the 2.4 GHz WLAN channel has considerable interferences fromother applications, such as mi-

crowave ovens and cordless phones. In [49], this more realistic scenario was studied. This study

revealed that the hyper-exponential distribution provides better fits to the empirical curve, while
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simpler distributions, such as the generalized Pareto distribution, also provides good accuracy.

The time-variance of this distribution was also discussed by calculating the sample average of

the occupancy. Such results were also found in [34] and [38] for other frequency bands that

favoured the long-tailed distributions, such as log-normal distribution, over the exponential dis-

tribution. In [50], more simple distributions and more frequency bands were studied for the

distribution of the channel holding time in the CTSMC model. This study confirmed the inva-

lidity of the exponential distribution and also suggested the generalized Pareto distribution for

different frequency bands, when the sampling rate is relatively low.

There are a few other works that do not use the standard Markovchain. An empirical discrete-

time Markov chain was used to model the spectrum occupancy in[51] and [52]. This work

proposed the use of discrete-time Markov chain such that thechannel does not stay in any of the

states. Instead, it keeps switching between states. Thus, this model cannot be used to describe

the channel holding time that is quite common in practice. Toaccommodate this in the discrete-

time, the transition probabilities were made functions of time. Both deterministic method and

stochastic method were used to determine the transition probabilities as functions of time from

the measurements and the empirical curves seem to match verywell with the fitted curves using

this model. In [53], a heuristic model was proposed by assuming exponential holding times,

Gaussian transmission powers and uniform centre frequencies. A detailed description of the

proposed model was given. This is the first time that centre frequency and transmission power

are considered. However, compared with the Markov chain, this model is quite heuristic.

C. Linear Regression

The Markov chain mainly describes the variation of spectrumoccupancy with time. Indeed, it

provides an accurate description of the time dimension of the spectrum occupancy. On the other

hand, in addition to time, the spectrum occupancy is also largely dependent on the location and

the frequency considered, as shown by almost all the afore-mentioned works. In this case, the

Markov chain is not very useful to describe the frequency dimension and the space dimension
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of the spectrum occupancy. To describe the frequency and space dimensions, or in some cases a

mixture of different dimensions, the linear regression model is often used.

This method was first proposed and termed as the Laycock-Gottmodel in [54] for HF spec-

trum occupancy modelling. The Laycock-Gott model uses the logit transformation to the spec-

trum occupancy rate, which is then modelled as a linear function of all the parameters that affect

the spectrum occupancy, including time, frequency, location, and threshold. DenoteQ as the

spectrum occupancy rate, one has

y = ln

(

Q

1−Q

)

=
I

∑

i

aixi (9)

whereai is a coefficient to be determined,xi is a parameter that affects the spectrum occupancy

and I is the total number of parameters that affect the spectrum occupancy. The measured

spectrum occupancy rates with the corresponding parameters, such as threshold and frequency,

were then used in this model to calculate the coefficients. Ifa binomial distribution for the

occupancy rate in each HF band is assumed, further works in [54] showed that the model can be

simplified to [54, eq. (3)]

y = Ak + B × detectionthreshold(dBm) + (C0 + C1fk + C2f
2
k )× sunspotnumber (10)

whereAk, B, C0, C1 andC2 are the coefficients to be determined, andfk is the centre fre-

quency of thek-th HF band. These coefficients can be determined using the maximum likeli-

hood method. This model was revisited in [55], where the Laycock-Gott model was applied to

a specific measurement system to model the HF spectrum occupancy.

In [56], the Laycock-Gott model was extended to account for the seasonal variation by adding

the week of the year in the linear function, again, for HF spectrum occupancy modelling. Specif-
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ically, using similar assumptions, the model in this case becomes

y = Ak + (B0 +B1fk + B2f
2
k )× detectionthreshold(dBm)

+(C0 + C1fk)× sunspotnumber

+(D0 +D1fk +D2f
2
k +D3f

3
k ) cos(ω · week)

+(E0 + E1fk + E2f
2
k + E3f

3
k ) cos(ω · week)× sunspotnumber

+F0 cos(2ω · week) (11)

whereω = 2π
52

. The cosine function is used to recognize the fact that the seasonal variation is

a cycle. In this case, there are more coefficients to be determined and thus the model is more

complicated. One sees that the Laycock-Gott model is very flexible and has great potential to be

extended in many related cases.

In [57], linear regression was used to describe the mixed effects of the measuring times, fre-

quency bands and locations. Three frequency bands in the range of 88 MHz - 3 GHz, five differ-

ent locations in the USA and different times were chosen as the parameters, whose coefficients

were fitted from the measurements. More specifically,

Q = a0 + a1 × band1 + a2 × band2 + a3 × band3

+b1 × location1 + b2 × location2 + b3 × location3 + b4 × location4

+c1 × weekend+ c2 × afternoon+ ǫ (12)

wherea0, a1, a2, a3, b1, b2, b3, b4, c1 and c2 are the coefficients to be determined from the

measurements,ǫ is the error term and the rest of the variables are indicatorsof either 1 or 0.

Results showed that a good fit could be achieved using their measurements. Comparing (12)

with the Laycock-Gott model, apparently (12) does not consider the fact that the occupancy rate

can only be between 0 and 1 and thus, transformations would benecessary before regression.

Also, unlike the Laycock-Gott model, the variables have been treated equally in (12).

Most of the above works focus on the time and/or frequency dimensions of the spectrum
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occupancy. However, the space dimension is as important as the time and frequency dimen-

sions. In fact, many of these works show that the spectrum occupancies in different locations

are considerably different. In a realistic system, different locations in the same network will

have different coverage and thus, different spectrum occupancies. This motivates the investiga-

tion of the space dimension of the spectrum occupancy. Ideally, this could be done by running

several identical measuring systems simultaneously in a grid of locations with reasonable grid

sizes and analysing the obtained measurements for spatial distributions. This would incur a very

high cost of the measurement campaign, one of the reasons whythere have been so few works

on the space dimension of the spectrum occupancy. Nevertheless, some works have modelled

the space dimension of the spectrum occupancy.

In [58] and [59], the space dimension model of the spectrum occupancy was proposed using

a deterministic model for the duty cycle as a function of various parameters in the system, such

as the activity factor, the probability of false alarm, the mean and variance of the primary user

power. This model is built by combining the assumed number and locations of the primary users

and the assumed primary user power and propagation patterns. Using the number of primary

users, the transmission power and the power loss during the propagation of each primary user,

and the locations of the primary users, one can calculate thereceived power at the CR for the

spectrum occupancy as a linear combination of powers from all transmitting primary users.

The advantage of this model is that it is deterministic. Thus, given the primary user propagation

parameters, the primary user transmission powers and the distances to the primary users, the duty

cycle can be calculated from the formula. The disadvantage is its inflexibility. Any mismatch

between the assumed patterns and the real patterns may lead to a poor modelling.

In [60], a similar deterministic model was also proposed by using the assumed primary user

transmission power patterns and propagation models. However, unlike [58] and [59], this model

does not assume known number and locations of the primary users. Instead, it uses the random

field theory and the spatial point process to model the numberand locations of the primary users.
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TABLE III

MAIN PROS AND CONS OF DIFFERENT MODELLING METHODS

Method Pros Cons

Statistics simple, reliable incomplete model

CDF, PDF basic statistical model
no time-, frequency-,

location-, or threshold-variance

Markov Chain comprehensive model with time-variance
complicated, no frequency-,

location-, or threshold-variance

Linear regression
comprehensive model with time-, frequency-,

location- and threshold-variance
complicated and heuristic

This model is then fitted to the measurements obtained in a grid of area. It was shown that this

model works relatively well in terms of the semivariograms.

In another relevant work [61], the spatial distribution of the spectrum occupancy om the TV

band was simply obtained by locating all the primary TV transmitters in the UK, calculating the

”safe” distances from the transmitters using the propagation model, and counting the number

of TV channels available in this distance. This is a reasonable method for modelling, as the

TV transmitters are of fixed locations. The study found that on average a total of about 150

MHz channels are available for low-power CR operations but the available channels are scat-

tered around. Thus, orthogonal frequency division multiplex may be required to collect all the

channels for wideband services.

Note that these spectrum occupancy models are statistical models that are used to improve

the average accuracy of the occupancy detection, not the instantaneous accuracy of the occu-

pancy detection. The instantaneous accuracy depends on thespecific realization of the spectrum

occupancy as a random variable or random process and varies from realization to realization,

but its performance can be improved on average by using its statistical behaviours, as in [2] -

[10]. This is also the purpose of many other statistical detection and estimation applications

that aim for average performance improvement rather than instantaneous performance improve-
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ment, such as average bit error rate improvement in fading channels. Another advantage of the

spectrum occupancy model is its use in proactive spectrum access. The work in [3] used the

Markov chain model of the spectrum occupancy to detect the primary user based on past ob-

servations. Traditional spectrum sensing detects the primary user based on current observations

and switches channels after detecting the primary user, causing unavoidable disruption, while

proactive spectrum access based on the spectrum occupancy model predicts the primary user

status using the expected channel idle times and switches tochannels with longer idle times pre-

emptively. Computer simulation has shown that proactive access based on spectrum occupancy

model can increase the channel utilization by 3% and reduce interference to the primary user

by 30%. Using a testbed it was also shown that the average throughput increases by 10% with

less fluctuations. This confirms the advantages of using spectrum occupancy model. It is not

possible to fairly compare spectrum prediction with spectrum sensing in terms of receiver oper-

ating characteristics (ROC) in this case. First, it is difficult to compare prediction with detection

as two different statistical methods. Second, prediction and sensing are determined by different

parameters. Although the definitions of probabilities of detection and false alarm are the same

for both prediction and sensing, the probabilities of detection and false alarm as functions of

system parameters are unknown for prediction. Thus, one does not know how to adjust these

parameters for a fair comparison. For example, prediction often depends on the number of pre-

dictors. It is not clear how to choose this parameter for sensing, as sensing does not depend on

it. Finally, the purpose of ROC comparison has already been served by comparisons in terms

of channel utilization and disruption rate. The false alarmprobability is related to the channel

utilization, while the detection probability is related tothe disruption rate. It is not necessary to

provide a ROC comparison in this paper either, as the main purpose of this paper is to provide

a survey on spectrum modeling, where [3] is only used as a motivation for existing works. It

is more appropriate and easier for [3] to provide such a comparison using their existing testbed

and codes.
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IV. SPECTRUM OCCUPANCY PREDICTION

The measurement-based modelling methods discussed so far are related. For example, the

average duty cycle studied in Section II can be considered asa distribution parameter for the

CDF or PDF of the duty cycle in Section III-A. The CDF or PDF of theduty cycle in Section

III-A can be used to describe the channel holding time of the Markov chain in Section III-B.

They do describe the statistical behaviours of the spectrumoccupancy as a whole, but they do

not give the actual value of the spectrum occupancy. In some applications, it is also of interest

to obtain such a value so that one is able to predict what will happen in the future. In this case,

spectrum occupancy prediction may be used.

A commonly used method for spectrum occupancy prediction isthe auto-regressive (AR),

moving-average (MA) or auto-regressive moving-average (ARMA) model. DefineXt as a time

series. The AR model of orderp is of the form

Xt = φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p + ǫt,

whereφ1, φ2, . . . , φp (φp 6= 0) denote the coefficients and are constants, andǫt is a Gaussian

white noise series with mean zero and varianceσ2. Note that the mean ofXt is zero. If the mean

of Xt is not zero, sayµ, then replaceXt byXt − µ, that is,

Xt = α + φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p + ǫt,

whereα = µ(1− φ1 − · · · − φp). The MA model of orderq is defined as

Xt = ǫt + θ1ǫt−1 + θ2ǫt−2 + · · ·+ θqǫt−q,

where the coefficientsθ1, θ2, . . . , θq (θq 6= 0) are constant, and the noiseǫt is assumed to be

Gaussian white noise. The ARMA model of ordersp andq is given by

Xt = φ1Xt−1 + · · ·+ φpXt−p + ǫt + θ1ǫt−1 + · · ·+ θqǫt−q.

If Xt has a nonzero meanµ, the model is expressed as

Xt = α + φ1Xt−1 + · · ·+ φpXt−p + ǫt + θ1ǫt−1 + · · ·+ θqǫt−q,
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whereα = µ(1− φ1 − · · · − φp).

Different methods may be applied to different data. One way of choosing these models is to

calculate the auto-correlation function (ACF) and partial auto-correlation function (PACF). If

the ACF decreases gradually with the lag and the PACF is zero when the lag is larger thanp, a

suitable model is likely to be the AR model. If the ACF is zero when the lag is larger thanq and

the PACF decreases gradually with the lag, the MA model may be more suitable. If both the

ACF and PACF decrease gradually with the lag, the ARMA model is a good choice.

In [62], the duty cycle was predicted by using the measurements for the frequency range of

100 MHz - 2.4 GHz in a fixed outdoor location during one week. The GSM band data were

used as an example to show that it can be described by an ARMA model, as it has cyclic trends.

The fitted data were compared with the measurements to show good agreement in terms of the

Akaike information correction criterion. It was pointed out that for stationary data, such as the

TV band, a simpler AR model can be used.

In [63], the radio resource availability of the WLAN channel,defined as the sum of the packet

occupation time in the channel in seconds, was predicted using the AR model. The order of

the AR model was chosen between 10 and 18, depending on the data considered and the mean

squared error requirement. This work also compared the prediction that is based on n-step-ahead

for a time series with intervals of 1 second and the prediction based on 1-step-ahead for a time

series with intervals of n seconds. They almost have identical prediction performances.

In [64] and [65], the duty cycle was predicted by using the AR model with logit transforma-

tions of the linearly combined binary spectrum occupancy rates to account for the fact that the

duty cycle is between 0 and 1. Four locations for the GSM band were examined and a model

order ofp = 3 was shown to have acceptable performances. The prediction error was calculated

and was shown to be dependent on the location.

Note that the above model applies to the general case when thespectrum statuses are cor-

related. In the special case when the spectrum statuses are independent, this model can still be

applied but may not produce a meaningful prediction. From the expression of the ARMA model,
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the correlation of the time series comes from the termsXt−1, · · · , Xt−p andǫt−1, · · · , ǫt−q and

thus, the coefficients ofψ andθ should be zero when the spectrum statuses are independent.

Then,Xt = µ + ǫt, giving a constant trend plus noise. Since the white noiseǫt has a flat spec-

trum and does not contain any useful information, the prediction becomes the mean ofXt in the

mean squared error sense. One does not have a better prediction in this model. However, since

the actual value is the sum of the mean and the noise and the predicted value is the mean, this is

equivalent to tossing a coin randomly. Thus, the produced prediction as the mean is not mean-

ingful, which agrees with the intuition that one cannot use past statuses to predict the occupancy

accurately when the spectrum statuses are independent, although one could still produce such a

prediction. In reality, the spectrum statuses are correlated, as shown in [66] and [34]. Thus, the

prediction done in [62] - [65] is useful.

There are other works on auto-regressive prediction, such as [67]. Also, there exist other

works that use machine learning for spectrum sensing, such as neural networks [68] and hidden

Markov model [69]. A survey of artificial intelligence for cognitive radios can be found in [70].

Since [70], more recent works on the use of machine learning for spectrum sensing include [71]

that used artificial neural network technique to detect primary user in low signal-to-noise ratio

scenarios, [72] that used unsupervised learning to evolve the classifier in sensing with security

countermeasures, [73] that used support vector machine to outperform energy detection, [74]

that used unsupervised K-means clustering and Gaussian mixture model as well as supervised

support vector machine and K-nearest neighbour for cooperative spectrum sensing, and [75]

that also used support vector machine to detect weak primaryuser signals, to name a few. These

works do not use measurement data for verification. Since this paper focuses on measurement-

based models and [70] already provides a good survey for non-measurement-based works, they

are not discussed here. Table III shows the main contributions of the works discussed in this

survey.

In general, the spectrum occupancy models can be applied to standard cognitive radio systems
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TABLE IV

MAIN CONTRIBUTIONS OF THE WORKS DISCUSSED IN THE SURVEY

Model Contributions

Statistics more opportunities beyond 1 GHz and indoor

PDF of power generally asymmetric and sometimes double-peaked

PDF of duty cycle modified Beta

PDF of holding time hyper-Erlang, hyper-exponential, generalized Pareto

PDF of available channels Poisson-normal, Camp-Paulson

Markov chain continuous-time semi-Markov chain

Linear regression Laycock-Gott model

Prediction AR or ARMA

in several ways. First, the simple statistics can be used as prior knowledge to improve current

sensing accuracies. For example, they can be used as thea priori probabilities for the null and

alternative hypotheses in energy detection in the physicallayer. Second, the PDF and CDF may

be used in signal detection. Current detectors are based on the maximum likelihood principle,

while these PDFs and CDFs can be used for maximuma posterioridetection. Third, the Markov

chain, the linear regression and the ARMA models can be used inthe network layer for resource

management. All of them will improve the system performance, as shown in [2] - [10].

It is worth mentioning that [76] also provided a brief reviewof some of the measurement

campaigns discussed in this survey up to 2009. Reference [77]compiled the results in [39],

[51] and [59]. In addition, they proposed a new model considering time-, frequency- and space-

variance by focusing on the Markov process and the correlation. Reference [78] provides a

complementary review of spectrum models, focusing more on theoretical models instead of

measurement-based models. It has a brief discussion of the Markov models and time series as

well.
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V. CHALLENGES

It can be seen from the above that spectrum occupancy modelling for obtained measurements

is a very complicated and challenging task to perform and it depends on a lot of known and

unknown factors. Although much has been done on measurement-based spectrum occupancy

modelling, especially in the recent years due to the great interest in opportunistic access to

under-utilized frequency bands, a lot of open problems remain.

First, future communications systems are more and more likely to be a heterogeneous network

that consists of long-range communications, such as cellular communications and satellite com-

munications, as well as short-range local communications,such as Bluetooth and peer-based

relaying. These local communications have largely been ignored in the measurement campaigns

performed, as most outdoor measurements have been taken on the roofs of high buildings so

far. If the measurements are taken at the street level, the radio activities might be significantly

different, and in this case the local radio hot spots may havea huge impact. The challenge here

is that there are so many possible hot spots that it may be difficult to find a typical scenario. A

mobile monitoring system may be a solution to this problem.

Second, most models are established based on the observations from the measurements and

are extracted by fitting them to the well-known theoretical models. This leads to a large number

of different models for similar situations. They are very inconvenient to use, as one has to

determine which model to use first before making any use of themodel. The question arises

whether a general, if not universal, model exists that can unify most existing models. This

problem is likely to be solved by using a complicated model with more parameters but if such a

model exists, it does provide great convenience.

Third, it has been discussed in most of these works that time,frequency, location and detection

threshold are the four most important factors that affect the spectrum occupancy. So far, most

modelling works have studied the time-dependence of the spectrum occupancy. A few of them

have also studied the frequency-dependence of the spectrumoccupancy. And a very limited
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number of them have studied the effects of location and detection threshold on the spectrum

occupancy. One would ask if a more comprehensive model that takes all these important factors

into account can be derived. Linear regression may be a solution to this problem but certainly

more sophisticated regression models would be required than those in the literature.

Finally, although most frequency bands in the range between30 MHz and 3 GHz have been

measured, current modelling works are limited to only a few bands, such as the GSM band, the

ISM band and the HF bands, especially for the Markov chain modelling and the linear regression

modelling. It is yet unknown if other bands have similar statistical behaviours or completely

different. Thus, it is worthwhile to extend existing modelling methods to all frequency bands to

see if they have any common behaviours.
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