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Abstract

Spectrum occupancy models are very useful in cognitiveorddsigns. They can be used to in-
crease spectrum sensing accuracy for more reliable opeyati remove spectrum sensing for higher
resource usage efficiency or to select channels for betfgoramistic access, among other applica-
tions. In this survey, various spectrum occupancy models fmeasurement campaigns taken around
the world are investigated. These models extract diffestatistical properties of the spectrum occu-
pancy from the measured data. In addition to these modedstrsion occupancy prediction is also
discussed, where the auto-regressive and/or moving-@¥enadels are used to predict the channel sta-
tus at future time instants. After comparing these differeathods and models, several challenges are

also summarized based on this survey.

Index Terms

Cognitive radio, measurement, modelling, predictioncspen occupancy.

I. INTRODUCTION

Cognitive radio (CR) equips a radio device with cognition byiéag from and adapting to
the radio environment during the operation [1]. More spealily, CR finds the parts of the
radio spectrum that are not being occupied at some spegcifestin some specific locations
and move its operation to these parts called "spectrum he®pportunistic access. Thus,
CR has two main functions: spectrum sensing and data trasismisAmong them, spectrum
sensing is probably more important than data transmissionany cases, as it determines the
amount of interference to other systems, including posdibénsed systems, which is exactly
the current fixed spectrum access policy tries to avoid atiteisnain concern of the regulators.
Consequently, it is of paramount importance to obtain spetensing results as accurately
as possible. The accuracy of spectrum sensing depends eralskactors but ultimately it de-
pends on the occupancy status of the spectrum, as the raatitiam is a dynamic environment
determined by the usage of the spectrum. Therefore, kngeled statistics or models of the
spectrum occupancy will greatly benefit and improve thegiesof CR, and indeed such knowl-

edge has already been used to improve CR performances.
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To name a few, in [2], the authors used the Markov chain moidileospectrum occupancy in
the Bayesian cost factors of missed detection and false ataenhance the accuracy of spec-
trum sensing. The proposed weighted sequence detectionthig is optimal in minimizing
the overall detection error. In [3], the authors proposeshptive opportunistic access scheme
to remove spectrum sensing so that cognitive data transmissnot frequently interrupted by
spectrum sensing. In this case, the spectrum availabsifgrédicted by using the spectrum
occupancy model based on all historical channel informatimt by spectrum sensing that is
based on detection using only a snapshot of channel measuotgnin [4], the authors used the
spectrum occupancy information in cognitive radios to &elee best channels for control and
data transmission purposes. It was shown there that thalbirere required to switch cognitive
radio from one channel to the other channel due to collisamlze reduced by up to 55% such
that the throughput of the system has been greatly imprdve®] and [6], the statistics of the
spectrum occupancy were used to control the transmisswempaf the cognitive radio to max-
imize the bandwidth efficiency. Specifically, the averag@smission rate is maximized subject
to a total average power constrain and the optimal transmniggower becomes a function of
the statistics of the spectrum occupancy. Similar workelaso been conducted in [7], where
more practical spectrum occupancy models were used. IrtH8]authors used the spectrum
occupancy information to predict the channel status in dilewing time slots so that optimal
spectrum sensing order can be achieved by comparing theaproposed selective scheme can
improve the throughput of the system while meeting qualityesvice requirements. In [9] and
[10], this spectrum occupancy information was used to aehieade-off between data buffer-
ing and channel switching that can save up to 50% of the ermyggumption, and to reduce
the required number of spectrum handoffs considerablpecely. These works and other
works use statistics or models of the spectrum occupanaypoave either the physical layer
spectrum sensing or the upper layer spectrum managemesdgdaitive radios. Thus, spectrum

occupancy models are very important for cognitive radiogies

DRAFT October 20, 2014



3

This paper conducts a survey of the state-of-the-art gpacticcupancy models that are
obtained from measurement campaigns up to 2013 used foitivegradio designs. To start
with, various measurement campaigns around the world tietat important sample statistics,
mainly the duty cycle, are discussed. Then, more in-depttksvihat extract complete statisti-
cal models out of the measurement data, including cumaelaiistribution function, probability
density function, Markov chain and linear regression medaie investigated. These models can
also be classified as time-dimension models, frequencgiasinn models, location-dimension
models or their mixtures in terms of the dimension of spentoccupancy model. As the last
part of this survey, various models for spectrum occupamegliption are presented that predict
the value of the spectrum occupancy in the future. Below isudime of this paper.

,
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Statistics{ Occupancy{12] — [15], [17] — [19], [21] — [24], [26], [28], [29]
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1. SPECTRUMOCCUPANCY STATISTICS

There have been a large number of measurement campaignslar@iworld to study the
spectrum utilization. Some of these measurement campgigasletailed data analysis in terms
of complete statistical models, such as probability floriand random processes. Other mea-
surement campaigns only give simple but important samplissts. We start with the mea-
surement campaigns that give the sample statistics. Befomeeding to discuss some of the

important works, it is useful to make a few summary statesyegarding these campaigns.

First, most of these campaigns have been conducted by usiagtanna that collects data,
a spectrum analyser that displays and processes data amgpaiteo that analyses data. Other
minor equipment for calibration and pre-selection are alsed in some campaigns for better
results. Different choices of equipment will of course effthe accuracy of the measurement.
However, as long as the equipment works reasonably wellditference in equipment has
marginal effect on the statistical behaviours of spectraoupancy and therefore, the equipment

difference is not discussed in this paper.

Second, all these campaigns consider either outdoor opbimdoations. Overwhelmingly,
the outdoor locations are chosen on the roof of a high bigldlat overlooks a certain area in
order to reduce the effect of radio propagation loss on thasorements. The indoor locations
are often chosen in an office building, a typical applicagowironment for wireless commu-
nications. Some of the works tried to analyse the locatioratian of spectrum occupancy by
taking measurements from different locations but this isegally expensive and difficult. As a
result, most works focus on time- and frequency-variatlmngxing locations. The time span of
the measurement varies from a few days in some campaigns® efars in other campaigns.
Intuitively, the longer the time span is, the more useful &lsb the more expensive the mea-
surement campaign will be. For short-term effects they &sgnailar value. Also, most of these
campaigns focus on the frequency range between 30 MHz andz3 Gtils range covers some

of the very important applications of wireless communimasi, such as FM radio, TV broadcast-
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ing, cellular communications. Thus, measurements of #aqy bands in this range will provide
useful insights on the current status of spectrum utilimatiAnother reason for this choice is
that higher frequencies are more vulnerable to propagaigsand thus, the measurements will

be less accurate as an indicator of the channel occupa#itrssstvhen the frequency is higher.

Third, these works only consider some simple statistichefgpectrum occupancy, such as
the maximum, the average and the minimum of the power levwelkpectrum occupancy and the
duty cycle. More complicated statistical models, such asudative distribution function and

Markov model, will be discussed in the next section.

One of the earliest measurement campaigns is perhaps doB8aruers for the Institute of
Telecommunication Science in the USA [11]. In this workngsa radio spectrum measurement
system with custom-made hardware and software, Sandesuneelthe frequency bands from
108 MHz to 19.3 GHz in three different US cities, Denver, Saadgd and Los Angeles, for
two weeks. All the measurements were performed outdoorsngltbese measurements, it
was found that San Diego has considerably more radio aesvihan Denver. Thus, Sanders
concluded that coastal cities have higher spectrum ocayghan midwestern cities, due to the
presence of maritime radars. By analysing the data from DeBamnders also found that radar
bands have severe adjacent interferences and thus, thesitgder guard bands. The spectrum

occupancy from microwave ovens is also evident in the 24@DOMHz ISM band.

More extensive measurement campaign was done by McHenrgiamdlleagues in [12]. In
fact, some of these measurements are publicly availabl&3h [In [12], measurements were
taken from 30 MHz to 3 GHz for a few hours. The location was fit@the roof of a high-rise
building in the centre of Chicago. Pre-selector was used poore measurement sensitivity and
dynamic range and the data were calibrated to measure ther pevel at the antenna input, in
contrast to other campaigns that measure the spectrunsanaiput. The results were presented
in terms of the maximum power level, the instantaneous sp@cbccupancy, and the duty

cycle. From the results, some TV bands have the heaviespancy with an average duty cycle
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of 70.9%. The cellular band also has a heavy occupancy wittvarage duty cycle of 55%.
On the other hand, some frequency bands allocated by FCCdinglsatellite bands, were
completely unused. An interesting result from this study& by comparing Chicago and New
York, the two cities have sizable differences in terms otcpen occupancy, although both are
large cities in the USA. A related measurement campaignarstime city Chicago has drawn

similar conclusions [14] and [15].

In [16], a similar measurement campaign was done by Welled$& colleagues in Germany.
The measurements were taken on the roof of a building thatamles the area and a room in
an office building. This is also one of the few works that cdasiindoor environments. The
frequency range is from 20 MHz to 6 GHz, measured for seven.dHye resolution bandwidth
is 200 kHz that evenly divides the whole frequency range. réisalts were presented in terms
of the power levels, and the duty cycle for different loca@nd different frequencies. For the
outdoor location, it was found that the spectrum occupaa@imost 100% from 20 MHz to
3 GHz, and very low from 3 GHz to 6 GHz. For the indoor locatithre spectrum occupancy
is about 32% from 20 MHz to 3 GHz. Thus, the spectrum occup@tyghly related to the

application scenario, an intuition that is confirmed by [16]

In [17], another measurement campaign was performed imSpgaiis was also done for an
outdoor application but in the frequency range between 7% Mkt 3 GHz for two days. The
equipment set-up is similar to [16] without any pre-selactr calibration. The resolution is 10
kHz that evenly divides different blocks of frequencieseThasults were presented in terms of
the power levels, spectrum occupancy and duty cycle. Thiststa focus on the cellular bands,
showing significant spectrum opportunities or low spectagoupancy in frequencies above 1
GHz. An interesting result from this work is that the spectraccupancy is also related to the
frequency bin, that is, the frequency separation betweerfreguencies measured. This shows

the complexity and difficulty of the measurement campaign.

In [18], a measurement campaign was done in Singapore foiréqe@ency range from 80
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MHz to 5.85 GHz with a resolution bandwidth of 10 kHz. The measents were taken on the
roof of a building for 12 weekdays. Duty cycle and spectruroup@ancy results show that the
spectrum occupancy in Singapore is as low as 4.54% in terraseaf bandwidth. The busiest
band in Singapore is the GSM900 band, although there areéyptérspectrum opportunities

or low spectrum occupancy in the radar bands, ISM band, aodeab GHz. This measure-
ment campaign also calculates the received signal at teaaainput but without pre-selection.
The uniqueness about this campaign is that Singapore ist@/edy small country whose radio

activities might be mixed with those from neighbouring coigs.

There are other works that extract important sample staisut of the measurement cam-
paigns. For example, in [19], spectrum occupancy in thréferdnt locations in two different
countries was studied, based on which spectrum occupaiogien cycle were calculated. Al-
though this is a good attempt in understanding the spectsageaudifference between different
countries, it is in general difficult to obtain such undemstiag. In [20], another campaign in
Atlanta, USA, was performed where the power spectral dgnssults were given. In [21], [22],
[23] and [24], some specialized systems, such as Wi-Fi, GB#Mpablic safety systems, were
studied, where measurements were taken to show that the WdirB was still relatively vacant
while the public safety band was relatively full, at the timestudy. A more important con-
clusion from [23] is that there are seasonal, weekly and/deghds in the spectrum occupancy
statistics. Also, reference [24] has used the measurerasunits to study the design of spec-
trum sensing schemes for better performances. In [25], #s@sorement campaign conducted
in Qatar was presented. The frequency bands from 700 MHz t#13 Wwere measured for
seven days with a resolution of 300 kHz in four outdoor lamadi Different from most previous
works, this work measured the four locations at the samedingkthus, location analysis in this
work is more convincing, as it has been revealed in the pusweorks that spectrum occupancy
changes with time so sequential measuring in differenttiosa would lead to a mixed effect

of time and location. It was found in this work that the spewtrutilization is highly related to
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the natural environment where the device is deployed. I @& outdoor locations and one
indoor location in Japan were studied, focussing on the Tdbafor 24 hours. The results
in terms of duty cycle, spectrum occupancy rate and amg@iprdbability distribution revealed
that there is higher spectrum occupancy in outdoor locatiban indoor location. The work has
also explicitly compared the spectrum occupancy diffeeenetween night time and day time
and has determined a safe distance from the primary usehdoogeration of secondary user
as 0.68 km in urban areas and 1.7 km in suburban areas. Ing2igasurement campaign in
Amsterdam was performed, where, unlike the other worksutbatl measurement equipment at
a fixed location, mobile equipment was also used. Based ondhmgpaign, the effect of location
variation was studied. The effect of different areas wag stisdied. This is an interesting work
that extends previous works on a "point” to an area. Such dlegtonitoring system also takes
communications that only happen locally into account. Tha&y be important, as wireless re-
laying also happens locally between peers that may be diffwbe captured by settings used in
other measurement campaigns. In [28] and [29], long-termsme&ment campaigns were con-
ducted. While most previous works take measurements for aégw, [28] took measurements
for six months while [29] took measurements for three yeatss will allow the extraction of
long-term statistics from the measurements. Indeed,aeéer[28] revealed the possibility of
using the difference between weekdays and weekends torexgp@ectrum opportunities and de-
termined a set of "suitable” channels above 1 GHz, whileresfee [29] examined the seasonal,

weekly and daily trends in different frequency bands.

An important method that is used in almost all these worksnexgy detection, where the
measurement is compared with a predetermined threshoklchidgnnel is considered vacant if
the measurement is below this threshold or occupied if thesomement is above this threshold.

Thus, assuming that theth measurement at frequengyis P;(f) and the threshold ig’, one
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has the instantaneous spectrum occupancy rate fartthmeasurement at frequengyas

Bi(f)=1, if FE(f)>T
Bi(f) =0, if B(f)<T. (1)

wherei = 1,2,--- | N(f) and N(f) is the total number of measurements taken at frequgncy
Using (1), the average duty cycle used in the measuremergaigns is calculated as

SN Bi(f)
N(f)

which is a function of frequency. From (2), the duty cyclelisays smaller than 1. The larger

r(f) = (@)

the value of the duty cycle is, the higher the spectrum oaocypwiill be.

The challenging part of the above calculation is the settihthe thresholdl". In fact, the
spectrum occupancy could be significantly changed whentestiold varies [29]. This is
expected, as if the threshold is too low, there will be motsefalarms while if the threshold is
too high, there will be more missed-detections. A naturalicd of the threshold is the noise
floor. As mentioned before, each measurement campaign hightysdifferent system setting.
Thus, for a specific system, the noise floor can be obtaineckephacing the antenna in the
measuring system with a 50 ohms load and taking measurerfeentsis load. These noise
samples are then averaged to find the noise power or the noise Tlhey are also used to find
the distribution of the noise. It turns out that the noisefioareases with the frequency [26].
Also, in some cases, the noise is not Gaussian [28]. Finafitead of using the calculated noise
floor, the detection threshold in (1) is often set a few dBs alitve noise floor such that the
probability of false alarm satisfies a certain value to take account strong noise samples that

are comparable to signals. Consequently, the detectiostbietin (1) equals
T =W(f)+ M(f) 3)

wherelV(f) is the calculated noise floor at frequentynd M (f) is a fixed margin to satisfy
certain probability of false alarm criterion. From (3), thetection threshold should be a function

of frequency too.
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In [16] and [17], M(f) = 3 dB was chosen to satisfy a probability of false alarm of 0.01
such that the detection threshold varies with frequency[2@), a probability of false alarm
of 0.015 was chosen such that bdth( /) and the detection threshold vary with frequency. In
[12], a fixed threshold of -90 dBm or -110 dBm was chosen for ckffé bands. In [25], a fixed
threshold of -78 dBm was used. In [28], a fixed margin of 5 dB wseduwhile the detection
threshold varies with frequency between -77.4 dBm and 69.5.dBi19], a fixed margin of 7
dB was used while the detection threshold varies with fraqueln [18], the detection threshold
was set 6 dB above the minimum power level, not the noise fleon 3). In [22], the noise
samples were assumed Gaussian such that the mafgji) was chosen as a function of the
standard deviation to achieve a probability of false alafrd.003. There are also other ways
of setting the detection threshold, borrowed from otheeaesh areas, such as Otsu’s algorithm,
recursive and adaptive thresholding [30]. In fact, refeesf80] has a very detailed discussion
of thresholding as well as other data processing technigsed for the calculation of spectrum
occupancy. In addition to the widely used energy detecttimer detection methods are also

available [31].

Tables | and Il give a summary of the campaigns. All the afoextioned works only obtain
statistics, mainly the average duty cycle, to show the specbccupancy. The main conclu-
sions from these works are that there are more spectrum toiices above 1 GHz than below
1 GHz and there are more spectrum opportunities indoor tiigoor. The actual spectrum
occupancy varies with frequency, time, location, detectioweshold and system setting. These
initial results provide important guidance for furtherdies. The duty cycle statistic is effective
in giving a general idea of the availability of different igency bands. It can also be used in
cognitive radio designs aspriori knowledge of the channel status. However, for more sophisti
cated applications, more details about the spectrum ooccype required. In the next section,
complete statistical models for the spectrum occupancyganeeyed. These models are more

useful for dynamic access and control of opportunistic spet
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TABLE |

SUMMARY OF THE MEASUREMENT CAMPAIGN RESULTS (POWER (P), OccuPANCY (O), DuTY CvycLE (D))

Campaign Frequency Time Location Statistics
[11] 108 MHz - 19.3 GHz  two weeks outdoors P
[12] - [15] 30 MHz - 3 GHz hours outdoors P,O,D
[16] 20 MHz - 6 GHz seven days | outdoors, indoors P, D

[17] 75 MHz - 3 GHz two days outdoors P,O,D
[18] 80 MHz - 5.85 GHz | twelve days outdoors 0O,D
[19] 400 MHz - 3 GHz six days outdoors O,D
[20] 400 MHz - 7.2 GHz | several months outdoors P
[21] Wi-Fi band seven days outdoors O
[22] GSM band N/A outdoors O
[23] public safety band | several months outdoors @)
[24] public safety band two days outdoors @]
[25] 700 MHz - 3 GHz three days outdoors P
[26] 90 MHz - 3 GHz one day outdoors, indoors O, D
[27] 100 MHz - 500 Mhz one day outdoors P
[28] 300 MHz - 4.9 GHz| six months outdoors 0O,D
[29] 30 MHz - 6 GHz three years outdoors @]

[1l. SPECTRUM OCCUPANCY MODELS

In this section, complete statistical models for spectrutupancy are surveyed. Note that
the measurement system settings in these works are simitapse discussed in the previous
section. In fact, some of the works discussed in this searenfrom the same measurement
campaigns as those in the previous section, such as the Aachasurement campaign, only

with more comprehensive analysis. Thus, unless necesisanyeasurement settings will not be
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TABLE Il

SUMMARY OF THE MEASUREMENT CAMPAIGNS MAIN FINDINGS.

Campaign Findings
[11] Coastal cities have higher occupancy. Radar bands have saljacent interferences
[12] - [15] TV and celluar bands are heavily occupied. Satellite barelfree.
[16] Occupancy is lower for above 3 GHz and indoor locations.
[17] Occupancy is lower for above 1 GHz and depends on frequency bi
[18] Occupancy is low in Singapore in most bands. GSM band is thiesiu
[19] Occupancy depends on culture and economical developmeht le
[20] 5.6 GHz bands in urban area are vacant and 6.6 GHz band irangahkre vacant.
[21] Wi-Fi band is relatively vacant.
[22] Occupancy depends on load scenarios and traffic channdksdperterally low.
[23] Public safety band is relatively full with seasonal, weedhd daily trends.
[24] Public safety band is relatively full.
[25] Occupancy is highly related to the natural environment.
[26] Occupancy is lower for indoor. Night time and day time aréedént.
[27] Mobile spectrum monitoring is necessary to reveal locasipecific information.
[28] Difference between weekdays and weekends can be used tocenthidization.
[29] Seasonal, weekly and daily trends exist in different frexyeands.

discussed in the following but bear in mind that these worky miso have to select the times,

frequencies, locations, and detection thresholds medsuré these selections may affect the

results and therefore, the conclusions. We start with tbeadrility function models, including

the probability density function (PDF) and cumulative disition function (CDF).

DRAFT

October 20, 2014

)



13

A. CDF and PDF

The motivation of CDF and PDF modelling is two-fold. Firsteie models describe the range
of possible values for the primary user signal and how ottese values occur. This is useful for
the choices of cognitive transceiver parameters, suchreig range and transmission period.
Second, these models can be used to improve cognitive peafaes. For example, the PDF
of the power level may be used as prior knowledge to improway user signal detection
and estimation. These works can be categorized into twostypeme works model the CDF
and/or PDF of the power level that are obtained directly ftbmmeasurement systems before
energy detection, while others model the CDF and/or PDF odltitg cycle and associated ran-
dom variables that are calculated from the instantanece&rgpn occupancy rate after energy

detection.

In [32] - [37], the probability models for the power level leakieen studied. Specifically, in
[32], another measurement campaign was performed in NelaZeehat covers the frequencies
from 806 MHz to 2.75 GHz for 12 weeks. One outdoor locationtwroof of a tall building
and one indoor location were studied. From the measureméetamplitude probability dis-
tribution, where the probability that a certain power legeturs throughout the campaign is
defined as a function of frequency and power level, was catledland plotted with x axis be-
ing the frequency, y axis being the power level and z axisd#ie probability of occurrence.
Since the measured range covers several wireless systempagsibly different occupancy
statuses, it is necessary to differentiate the amplitudéabilities over different frequencies.
In the calculation, the probability is averaged over all phng times at a fixed frequency.
Mathematically, denoté’; as the measurement taken at th&y sampling timet; in the j-th
frequencyf;, wherei = 1,2,--- /Nyandj = 1,2,--- , N,;, andPr as a certain threshold with

min{P,;} < Pr < max{P;;}. Then, the amplitude probability distribution is calceldts

Ny
1
APD(Pr, f;) = Pr[P; > Pr| = E > 8y (4)
=1
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where

Sij =1, 1f Py>Pr

Sij = O, Zf Pij < Pr. (5)

In this case, the amplitude probability distribution is adtion of threshold?, and frequency;.
Using the amplitude probability distribution, the speatrwas divided into three types: white
space, grey space and black space. The black space has emoi&# chance that the power
level is above certain threshold, not suitable for any esgtion, the grey space has a chance
between 10% and 30% that the power level is above certaistible, possible for opportunistic
access, while the white space has a chance between 5% and#etpower level is above
certain threshold, ideal for exploration. Also, indoordtion and outdoor location do not have
much difference in this study. Similar amplitude probailiistributions were also obtained
in [16] and [26] from different campaigns. To have a bettewif the overall distribution of
the power level, in [33], the amplitude probability distrtlon in [32] was further averaged over
different frequencies and defined as spectrum opportuthiy,is, the probability that a certain

power level occurs is averaged over both all frequenciesafinidnes. This gives

Ny Ny

i=1 j=1

The effects of different system settings on the CDF of the pdeve! were examined. The Beta
distribution was then used to fit the empirical CDFs. In [3#Ak PDF of the power level was
calculated by calculating the probability over the measunets in all frequencies and in a 12-
hour period to account for the fact that day time and nighetirave different patterns. The PDF
is asymmetric and it always rises quickly and then dropslgievnen the power level increases,
that is, there are more weak noises than strong signals.
On the other hand, for narrow-band measurements, the phipald the power level only

needs to be averaged over all sampling times. In [35], the &0ke power level over several

selected channels of GSM system was obtained by calculéiéngrobability over all measure-

DRAFT October 20, 2014



15

ments obtained in one day in that channel. The PDF is in geasyanmetric. The calculated
PDF for the GSM900 channel rises slowly then drops quicklgmthe power level increases,
while the calculated PDF for the GSM1800 channel rises dyiakd then drops slowly when
the power level increases. In [22], another measuremenpaigm for the GSM system was per-
formed for different traffic channels. The obtained PDF shdwimilar asymmetry to [34], but
interestingly, some traffic channels in some scenarios stmvble-peaked PDFs. In [36], the
VHF band was measured and studied. The obtained CDF has cedftima spectrum sparsity
in the VHF band. There is little persistent activity abové éBm in the urban area and above
-110 dBm in the rural area. The best candidate channels for @Rbpns were also identified
based on the CDF. In [37], another measurement campaignddé8M system in China was
conducted. The empirical PDF was first obtained from the omeasents. Again, these PDFs
show asymmetry near zero, implying that there are more wesdes in the measurements than
signals. The characteristic function was then fitted usiagdgamim distribution for both real
and imaginary parts. The fitting works better for the reat gaan for the imaginary part. Un-
like the other works that merely give the empirical PDF or Cis is perhaps the only work
that tries to fit the power level to some known random variaalhough the fitting still needs

improvement.

To summarize, the current works on the probability modelsttie power level are mainly
empirical, with the exception in [37]. Most of them focus oggecific band, such as the GSM
band and the VHF band, while only a few, such as [34], [26] &3], [consider all the frequen-
cies studied in the previous section. The PDF and CDF reflecsplectrum occupancy status
by using the signal strength directly. Thus, unlike the dtpgle measure, it does not suffer
from the noise uncertainty caused by the setting of the limidsn energy detection. Thus, the
PDF and CDF measures are less affected by the measuring sy®tethe other hand, as can
be seen, the PDF and CDF still heavily rely on the times, fragies and locations used in the

calculation. For the same measurements, calculationsaneday or one week may lead to
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totally different conclusions. Thus, it is advisable todifferent methods of calculation in order
to find the most reliable results. Next, we discuss probghitiodels for the duty cycle and its
associated metrics for spectrum occupancy.

In the seminal paper [34], the empirical CDF of the duty cyckswbtained. These CDFs
are significantly different for different locations anddreency bands. Also, the slopes for very
low duty cycle near 0 and very high duty cycle near 1 are veyelaBased on this observation,
a modified Beta distribution for the duty cycle was proposekictv leads to an ordinary Beta

function combined with two delta functions at 0 and 1, resigely, as

o (1 — (17)5*1
B(a, )

where B(+, -) is the Beta function. The proposed modified Beta distributitsmtfie measure-

f(x) = Pyd(z) + Pio(z — 1) +

(7)

ments quite well for different locations and frequency manthe effect of detection threshold
was also examined. It was found that the detection threshdldchange the modified Beta
distribution parameters but has insignificant impact ordis&ibution. Thus, the modified Beta
distribution is a very useful model for duty cycles in diffat locations, frequencies or using
different detection thresholds. The frequency corretatbthe duty cycle was studied as well,
which shows that adjacent channels have high correlatiatuty cycle within 1.7 MHz for
DECT systems and 5 MHz for UMTS systems. In another work [38kell on the measure-
ments taken from the UHF and GSM bands in a fixed location fordays, the empirical CDF
of the duty cycle was fitted with several widely used distiitnos and it was found that the
lognormal distribution and the Beta distribution are thetlvasndidates in this case in terms of
Kolmogorov-Smirnov distance.

The duty cycles used in [34] and [38] are calculated as theageefraction of time at each
frequency when the channel is occupied. In some applicgtiors also important to know how
long the channel will stay occupied or vacant, in additionhi® average fraction. Essentially,
they are the actual channel holding times. For example, inr@Rsinission, the channel hold-

ing time can be used to determine spectrum sensing intemdatiata transmission interval for
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sensing-throughput trade-off. In [39], these intervaksfirted as run length and burst length,
were studied. The complementary CDFs of the run length antutst length were fitted with
different distributions, in addition to other results ir9]31t was found that long-tailed distribu-
tions, in this case log-normal distribution, can fit the rendth and burst length quite well in
many cases. On the other hand, it was also pointed out thiacaunclusions heavily rely on the
frequencies and times chosen. In [35], the time intervakbenh two opportunities was studied
for the GSM system. This is actually the burst length considen [39]. In this case, it was
found that this time interval can be well approximated asxgorential random variable, with
the exception of the first sample point. This verifies the olzgen from [39] that the PDF of
the run length and burst length depends on the frequencyiraedccbnsidered.

In [40] - [42], another important metric related to the duggle was studied as the number of
free channels or spectrum availability. Due to the anadyiifficulty, the spectrum availability
was derived by proposing several approximations and clogl the approximate distribution
parameters from real measurements. It was found that theséteiNormal approximation is
accurate in terms of Chi-square test and the Camp-Paulsonxapation is accurate in terms
of maximum absolute error, to model the distribution of tlwnber of free channels. There is
no comparison between these two approximations using the saterion though. The CDF of

the Camp-Paulson approximation is given by [42, eq. (11)]

Fr(k) = ® (Q_“> (8)

o

1 2 _
wheref) = (1—ﬁ)p3,'u =1l-a,0= \/ﬁpfs +a,a = —9N1—9k” 6 = 9k:1+9’ p= N(k?]if)—(ig)EE{{I[{{}}/N)

and NN is the total number of channels. The Poisson-Normal appration is obtained by

finding the CDF of the sum of a normal random variable and tws$wi random variables.

In the above, the probability models for the duty cycle arardated channel holding time
and spectrum availability have been proposed. For the dute cthe modified Beta distribution
is a good model, for the channel holding time, the log-nordistribution fits the purpose well,

while for the spectrum availability, the Poisson-Normadtdbution could be a good choice.
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Similar to the statistics in the previous section, since thodelling is based on the spectrum
occupancy rate after energy detection, the accuraciegsétimodels are related to the detection
threshold. The relationship between the statistics stuidi&ection Il and the probability mod-
els studied in this subsection is that the statistics iniGedt can be considered as statistical
averages of the random variables for which the probabilibgets in this subsection are estab-
lished. In other words, results in Section Il are the firgtesrstatistics of the random variables
studied in this subsection. From these results, it has beany shown that the spectrum occu-
pancy is time-varying. Thus, a random variable may not beighdo model it. In the following,

a more complete statistical model, random process, is wsatbdel the spectrum occupancy.

More specifically, the overwhelmingly used random proceghis case is the Markov chain.

B. Markov Chain

The Markov chain is a very natural choice for statistical glbdg of the spectrum occupancy,
as the spectrum occupancy rate is either 0 or 1 after enetggta® and the occupancy status
changes between these two cases. Early works found thabttigmwous-time Markov chain
(CTMC) models the spectrum occupancy well. With more measenécampaigns performed
for larger numbers of frequency bands, recent works alsestithat the continuous-time semi-
Markov chain (CTSMC) models the spectrum occupancy bettexr.Niarkov chain, the random
process switches between different states and these avetdrazed by the transition probabil-
ities. In each state, the random process is characterizéfuebsojourn time or channel holding
time. In a CTMC, this holding time follows an exponential distition, while in CTSMC, this
holding time follows an arbitrary distribution.

The CTMC model is widely used in the modelling of HF bands tleded back to the 1970’s.
Reference [43] is perhaps one of the first works that propdsedde of a first-order CTMC to
model the spectrum occupancy. By defining the spectrum oocyes the fraction of time that
the measured power level exceeds a certain threshold, ifosasl that this value is asymptot-

ically Gaussian distributed whose mean and variance orpggrt on the means of the sojourn
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times, not their actual distributions. Then the modellimlsodown to the estimation of the
probability that the measured power level exceeds a cettia@shold from measurements. In
[44] and [45], this model was extended to the two-dimendicaae by taking the channel de-
pendence or frequency dependence into account. In particalthe transition probabilities, in
addition to the dependence on the previous state in timejeépendence on the previous state
in an adjacent channel was also added, giving eight trangitiobabilities instead of four. As a
result, one more parameter was added and the three parameter calculated from the mea-
surements. The developed model is more accurate than thieadfiirst-order CTMC in [43], at
the cost of higher computational complexity. In [46], thedabin [44] and [45] was extended to
cyclostationary chain by taking the diurnal variation imimcount. In particular, the eight tran-
sition probabilities in [44] and [45] are functions of theunmf operation during the day now.

Again, the three parameters were then calculated from tlasunements.

The CTMC model requires that the sojourn time or the channéitgtime follow exponen-
tial distributions. However, measurements in several @agms revealed that this is not the case.
Thus, the CTSMC model is used where another distributionesl ts fit the channel holding
time. References [47] and [48] studied the 2.4 GHz WLAN chaniiéle study first showed
that the initial four states in the Markov chain can be wethglified to two states that denote
either a transmit status or an idle status. However, unlik&1CTthe channel holding time of
the idle status does not follow exponential distributionstéad, it discovered that the general-
ized Pareto distribution fits the measurements better ihdad the hyper-Erlang distribution
fits the measurements better in [48], from the KolmogorovtBov test. The parameters of
these models were then calculated from the measurementéseTasults were obtained based
on the assumption that the channel does not suffer from dagfénences. However, in reality,
the 2.4 GHz WLAN channel has considerable interferences btar applications, such as mi-
crowave ovens and cordless phones. In [49], this more tieadisenario was studied. This study

revealed that the hyper-exponential distribution prosibdetter fits to the empirical curve, while
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simpler distributions, such as the generalized Paretalalition, also provides good accuracy.
The time-variance of this distribution was also discussgddiculating the sample average of
the occupancy. Such results were also found in [34] and [@8pther frequency bands that
favoured the long-tailed distributions, such as log-ndmiigtribution, over the exponential dis-

tribution. In [50], more simple distributions and more fuemcy bands were studied for the
distribution of the channel holding time in the CTSMC modehisTstudy confirmed the inva-

lidity of the exponential distribution and also suggesteel generalized Pareto distribution for
different frequency bands, when the sampling rate is xeltiow.

There are a few other works that do not use the standard Mahain. An empirical discrete-
time Markov chain was used to model the spectrum occupan§ylinand [52]. This work
proposed the use of discrete-time Markov chain such thattibenel does not stay in any of the
states. Instead, it keeps switching between states. Tingsanbdel cannot be used to describe
the channel holding time that is quite common in practiceadoommodate this in the discrete-
time, the transition probabilities were made functionsimfet Both deterministic method and
stochastic method were used to determine the transitidmapitities as functions of time from
the measurements and the empirical curves seem to matclve#nyith the fitted curves using
this model. In [53], a heuristic model was proposed by assgrekponential holding times,
Gaussian transmission powers and uniform centre freqeendh detailed description of the
proposed model was given. This is the first time that cengguency and transmission power

are considered. However, compared with the Markov chais miodel is quite heuristic.

C. Linear Regression

The Markov chain mainly describes the variation of spectoagupancy with time. Indeed, it
provides an accurate description of the time dimensione§gectrum occupancy. On the other
hand, in addition to time, the spectrum occupancy is alsgelgrdependent on the location and
the frequency considered, as shown by almost all the afemrtioned works. In this case, the

Markov chain is not very useful to describe the frequencyattision and the space dimension
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of the spectrum occupancy. To describe the frequency arw sfpaensions, or in some cases a

mixture of different dimensions, the linear regression selasl often used.

This method was first proposed and termed as the Laycockr@umtel in [54] for HF spec-
trum occupancy modelling. The Laycock-Gott model usesdlé transformation to the spec-
trum occupancy rate, which is then modelled as a linear fonaf all the parameters that affect
the spectrum occupancy, including time, frequency, locatand threshold. Denotg as the

spectrum occupancy rate, one has

whereq; is a coefficient to be determined, is a parameter that affects the spectrum occupancy
and / is the total number of parameters that affect the spectrucapancy. The measured
spectrum occupancy rates with the corresponding parasyestgch as threshold and frequency,
were then used in this model to calculate the coefficientsa Binomial distribution for the
occupancy rate in each HF band is assumed, further workglrsflowed that the model can be

simplified to [54, eq. (3)]
y = Ay + B x detectionthreshold(dBm) + (Co + Cy fi + Caof?) x sunspotnumber (10)

where A, B, Cy, C and (s, are the coefficients to be determined, afydis the centre fre-
guency of thek-th HF band. These coefficients can be determined using thxe@maen likeli-
hood method. This model was revisited in [55], where the balkeGott model was applied to

a specific measurement system to model the HF spectrum aomupa

In [56], the Laycock-Gott model was extended to accounttierdeasonal variation by adding

the week of the year in the linear function, again, for HF spae occupancy modelling. Specif-
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ically, using similar assumptions, the model in this cassobees

y = Ap+ (By+ Bif + Byf?) x detectionthreshold(dBm)
+(Co + C1 fr) X sunspotnumber
+(Dg + D1 fy + Daf? + Dsf}) cos(w - week)
+(Ey + B fi + By ff + Esf?) cos(w - week) x sunspotnumber

+Fp cos(2w - week) (11)

wherew = ?,)—g The cosine function is used to recognize the fact that them®l variation is
a cycle. In this case, there are more coefficients to be detedvand thus the model is more
complicated. One sees that the Laycock-Gott model is vexipfeeand has great potential to be
extended in many related cases.

In [57], linear regression was used to describe the mixezteffof the measuring times, fre-
guency bands and locations. Three frequency bands in the &r88 MHz - 3 GHz, five differ-
ent locations in the USA and different times were chosen ap#nameters, whose coefficients

were fitted from the measurements. More specifically,

Q = ag+ a; X bandl + as X band2 + az x band3
+b, X locationl 4 by X location2 + bs X location3 + by X location4

+c1 X weekend 4 ¢y X afternoon + € (12)

whereay, a;, as, as, by, ba, bs, by, ¢c; andc, are the coefficients to be determined from the
measurements, is the error term and the rest of the variables are indicaibesther 1 or O.
Results showed that a good fit could be achieved using theisune@ents. Comparing (12)
with the Laycock-Gott model, apparently (12) does not cdersihe fact that the occupancy rate
can only be between 0 and 1 and thus, transformations woutttbessary before regression.
Also, unlike the Laycock-Gott model, the variables haveraeeated equally in (12).

Most of the above works focus on the time and/or frequencyedsions of the spectrum
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occupancy. However, the space dimension is as importariteasnhie and frequency dimen-
sions. In fact, many of these works show that the spectrumapastcies in different locations
are considerably different. In a realistic system, différlocations in the same network will
have different coverage and thus, different spectrum aaecips. This motivates the investiga-
tion of the space dimension of the spectrum occupancy. lidelis could be done by running
several identical measuring systems simultaneously indaaflocations with reasonable grid
sizes and analysing the obtained measurements for spiatidbdtions. This would incur a very
high cost of the measurement campaign, one of the reasonshvte/have been so few works
on the space dimension of the spectrum occupancy. Nevestiedome works have modelled

the space dimension of the spectrum occupancy.

In [58] and [59], the space dimension model of the spectruoupancy was proposed using
a deterministic model for the duty cycle as a function of asi parameters in the system, such
as the activity factor, the probability of false alarm, thean and variance of the primary user
power. This model is built by combining the assumed numbeéidarations of the primary users
and the assumed primary user power and propagation pattesisg the number of primary
users, the transmission power and the power loss duringripagation of each primary user,
and the locations of the primary users, one can calculateettesved power at the CR for the
spectrum occupancy as a linear combination of powers frdrtraalsmitting primary users.
The advantage of this model is that it is deterministic. Tigigen the primary user propagation
parameters, the primary user transmission powers andstandes to the primary users, the duty
cycle can be calculated from the formula. The disadvantags inflexibility. Any mismatch

between the assumed patterns and the real patterns may lagaor modelling.

In [60], a similar deterministic model was also proposed bng the assumed primary user
transmission power patterns and propagation models. Hawenlike [58] and [59], this model
does not assume known number and locations of the primarg.usestead, it uses the random

field theory and the spatial point process to model the nuh@tocations of the primary users.
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TABLE IlI

MAIN PROS AND CONS OF DIFFERENT MODELLING METHODS

Method Pros Cons

Statistics simple, reliable incomplete model
no time-, frequency-,

CDF, PDF basic statistical model

location-, or threshold-varianc
complicated, no frequency-,

Markov Chain comprehensive model with time-variance

location-, or threshold-variang
_ | comprehensive model with time-, frequency-, _ o
Linear regression complicated and heuristic

location- and threshold-variance

This model is then fitted to the measurements obtained indeogi@rea. It was shown that this

model works relatively well in terms of the semivariograms.

In another relevant work [61], the spatial distribution loé tspectrum occupancy om the TV
band was simply obtained by locating all the primary TV traiiters in the UK, calculating the
"safe” distances from the transmitters using the propagatiodel, and counting the number
of TV channels available in this distance. This is a reaskenatethod for modelling, as the
TV transmitters are of fixed locations. The study found thatawerage a total of about 150
MHz channels are available for low-power CR operations betavailable channels are scat-
tered around. Thus, orthogonal frequency division mudkphay be required to collect all the

channels for wideband services.

Note that these spectrum occupancy models are statistmaélsthat are used to improve
the average accuracy of the occupancy detection, not the@niasmeous accuracy of the occu-
pancy detection. The instantaneous accuracy depends spéhiic realization of the spectrum
occupancy as a random variable or random process and vesiesréalization to realization,
but its performance can be improved on average by usingatsttal behaviours, as in [2] -
[10]. This is also the purpose of many other statistical ciéia and estimation applications

that aim for average performance improvement rather thetamaneous performance improve-
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ment, such as average bit error rate improvement in fadiagrogls. Another advantage of the
spectrum occupancy model is its use in proactive spectruasac The work in [3] used the
Markov chain model of the spectrum occupancy to detect thregoy user based on past ob-
servations. Traditional spectrum sensing detects thegpyimser based on current observations
and switches channels after detecting the primary usesimgqunavoidable disruption, while
proactive spectrum access based on the spectrum occupan®} predicts the primary user
status using the expected channel idle times and switctasmtmels with longer idle times pre-
emptively. Computer simulation has shown that proactivessbased on spectrum occupancy
model can increase the channel utilization by 3% and redutegférence to the primary user
by 30%. Using a testbed it was also shown that the averageghput increases by 10% with
less fluctuations. This confirms the advantages of usingtigpemccupancy model. It is not
possible to fairly compare spectrum prediction with spgotsensing in terms of receiver oper-
ating characteristics (ROC) in this case. First, it is diftita compare prediction with detection
as two different statistical methods. Second, predictimhsensing are determined by different
parameters. Although the definitions of probabilities adiedéon and false alarm are the same
for both prediction and sensing, the probabilities of diédecand false alarm as functions of
system parameters are unknown for prediction. Thus, ongs doeknow how to adjust these
parameters for a fair comparison. For example, predictfenalepends on the number of pre-
dictors. It is not clear how to choose this parameter forisenas sensing does not depend on
it. Finally, the purpose of ROC comparison has already beeved by comparisons in terms
of channel utilization and disruption rate. The false algnobability is related to the channel
utilization, while the detection probability is relatedttee disruption rate. It is not necessary to
provide a ROC comparison in this paper either, as the maipgser of this paper is to provide
a survey on spectrum modeling, where [3] is only used as avatain for existing works. It

is more appropriate and easier for [3] to provide such a colsgausing their existing testbed

and codes.
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IV. SPECTRUM OCCUPANCY PREDICTION

The measurement-based modelling methods discussed seefeglated. For example, the
average duty cycle studied in Section Il can be considerea distribution parameter for the
CDF or PDF of the duty cycle in Section IlI-A. The CDF or PDF of thaty cycle in Section
llI-A can be used to describe the channel holding time of trerkdv chain in Section 111-B.
They do describe the statistical behaviours of the spectrcenpancy as a whole, but they do
not give the actual value of the spectrum occupancy. In sqpkcations, it is also of interest
to obtain such a value so that one is able to predict what wpligen in the future. In this case,
spectrum occupancy prediction may be used.

A commonly used method for spectrum occupancy predictidhasauto-regressive (AR),
moving-average (MA) or auto-regressive moving-averageN¥) model. DefineX, as a time

series. The AR model of orderis of the form
X =1 X1+ P Xy o+ -+ 0p Xy + €4,

whereoy, ¢, ..., ¢, (¢, # 0) denote the coefficients and are constants, ansl a Gaussian
white noise series with mean zero and variamteNote that the mean of; is zero. If the mean

of X, is not zero, sayi, then replaceX; by X; — , that is,
Xi=a+ 01 Xo + 0 Xy o+ -+ 0 Xop + &,
wherea = u(1 — ¢; — --- — ¢,,). The MA model of ordey; is defined as
Xi=e+ 0161+ 0o+ -+ 046,

where the coefficient8,, 6., ...,6, (6, # 0) are constant, and the noisgis assumed to be

Gaussian white noise. The ARMA model of ordgrandgq is given by
Xt = ¢1Xt_1 +--F prXt_p + € + 91615_1 + -+ qut_q.
If X; has a nonzero mean the model is expressed as

Xi=a+ g Xia+ -+ 0 Xep+ e+ 0161+ + 0h6—g,
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wherea = (1 — ¢y — -+ — ¢).

Different methods may be applied to different data. One waghoosing these models is to
calculate the auto-correlation function (ACF) and partiaioacorrelation function (PACF). If
the ACF decreases gradually with the lag and the PACF is zero Wigelag is larger thap, a
suitable model is likely to be the AR model. If the ACF is zeroantthe lag is larger thapand
the PACF decreases gradually with the lag, the MA model may ¢t rsuitable. If both the
ACF and PACF decrease gradually with the lag, the ARMA model isaghoice.

In [62], the duty cycle was predicted by using the measurésnien the frequency range of
100 MHz - 2.4 GHz in a fixed outdoor location during one week.e T3SM band data were
used as an example to show that it can be described by an ARMA&Irasdit has cyclic trends.
The fitted data were compared with the measurements to shotvagreement in terms of the
Akaike information correction criterion. It was pointedtdhat for stationary data, such as the
TV band, a simpler AR model can be used.

In [63], the radio resource availability of the WLAN channd#fined as the sum of the packet
occupation time in the channel in seconds, was predictatyukie AR model. The order of
the AR model was chosen between 10 and 18, depending on thealaidered and the mean
squared error requirement. This work also compared theqti@dthat is based on n-step-ahead
for a time series with intervals of 1 second and the predidiiased on 1-step-ahead for a time
series with intervals of n seconds. They almost have idalnpiediction performances.

In [64] and [65], the duty cycle was predicted by using the ABdel with logit transforma-
tions of the linearly combined binary spectrum occupantgs#o account for the fact that the
duty cycle is between 0 and 1. Four locations for the GSM baakvwexamined and a model
order ofp = 3 was shown to have acceptable performances. The predictimrveas calculated
and was shown to be dependent on the location.

Note that the above model applies to the general case whesp#atrum statuses are cor-
related. In the special case when the spectrum statusesdaeeindent, this model can still be

applied but may not produce a meaningful prediction. Frogretkpression of the ARMA model,
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the correlation of the time series comes from the teins,,--- , X;_, ande;_q,--- , ¢, and

thus, the coefficients o and# should be zero when the spectrum statuses are independent.
Then, X; = p + ¢, giving a constant trend plus noise. Since the white nqi$&as a flat spec-
trum and does not contain any useful information, the ptextidoecomes the mean &f; in the

mean squared error sense. One does not have a better predhictinis model. However, since

the actual value is the sum of the mean and the noise and thietack value is the mean, this is
equivalent to tossing a coin randomly. Thus, the producediption as the mean is not mean-
ingful, which agrees with the intuition that one cannot uastgtatuses to predict the occupancy
accurately when the spectrum statuses are independéwaiigit one could still produce such a
prediction. In reality, the spectrum statuses are coedl|as shown in [66] and [34]. Thus, the

prediction done in [62] - [65] is useful.

There are other works on auto-regressive prediction, sadeéd. Also, there exist other
works that use machine learning for spectrum sensing, ssiok@al networks [68] and hidden
Markov model [69]. A survey of artificial intelligence for gaitive radios can be found in [70].
Since [70], more recent works on the use of machine learmingdectrum sensing include [71]
that used artificial neural network technique to detect prymuser in low signal-to-noise ratio
scenarios, [72] that used unsupervised learning to evblelassifier in sensing with security
countermeasures, [73] that used support vector machinatpeidorm energy detection, [74]
that used unsupervised K-means clustering and Gaussidarsmmodel as well as supervised
support vector machine and K-nearest neighbour for cotiperapectrum sensing, and [75]
that also used support vector machine to detect weak priosaysignals, to name a few. These
works do not use measurement data for verification. Sinsegpidgber focuses on measurement-
based models and [70] already provides a good survey formsassurement-based works, they
are not discussed here. Table Ill shows the main contribsitad the works discussed in this

survey.

In general, the spectrum occupancy models can be appli¢gitdard cognitive radio systems
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TABLE IV

MAIN CONTRIBUTIONS OF THE WORKS DISCUSSED IN THE SURVEY

Model Contributions
Statistics more opportunities beyond 1 GHz and indoor
PDF of power generally asymmetric and sometimes double-peaked
PDF of duty cycle modified Beta

PDF of holding time | hyper-Erlang, hyper-exponential, generalized Pareto

PDF of available channels Poisson-normal, Camp-Paulson
Markov chain continuous-time semi-Markov chain
Linear regression Laycock-Gott model
Prediction AR or ARMA

in several ways. First, the simple statistics can be usediaskmowledge to improve current
sensing accuracies. For example, they can be used asptheri probabilities for the null and
alternative hypotheses in energy detection in the phykgar. Second, the PDF and CDF may
be used in signal detection. Current detectors are basedeandkimum likelihood principle,
while these PDFs and CDFs can be used for maxirayrosterioridetection. Third, the Markov
chain, the linear regression and the ARMA models can be usie inetwork layer for resource

management. All of them will improve the system performarmseshown in [2] - [10].

It is worth mentioning that [76] also provided a brief revievsome of the measurement
campaigns discussed in this survey up to 2009. Referencecpfiipiled the results in [39],
[51] and [59]. In addition, they proposed a new model cormrangetime-, frequency- and space-
variance by focusing on the Markov process and the coroslatReference [78] provides a
complementary review of spectrum models, focusing moreheoretical models instead of
measurement-based models. It has a brief discussion of #nkdV models and time series as

well.
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V. CHALLENGES

It can be seen from the above that spectrum occupancy muglédli obtained measurements
is a very complicated and challenging task to perform anegethds on a lot of known and
unknown factors. Although much has been done on measurdmsatl spectrum occupancy
modelling, especially in the recent years due to the grdatest in opportunistic access to

under-utilized frequency bands, a lot of open problems nema

First, future communications systems are more and morly likde a heterogeneous network
that consists of long-range communications, such as eell@mmunications and satellite com-
munications, as well as short-range local communicatisansh as Bluetooth and peer-based
relaying. These local communications have largely beeorigghin the measurement campaigns
performed, as most outdoor measurements have been takée ooofs of high buildings so
far. If the measurements are taken at the street level, the a&tivities might be significantly
different, and in this case the local radio hot spots may ladvege impact. The challenge here
is that there are so many possible hot spots that it may beuifto find a typical scenario. A
mobile monitoring system may be a solution to this problem.

Second, most models are established based on the obsesveiton the measurements and
are extracted by fitting them to the well-known theoreticaldels. This leads to a large number
of different models for similar situations. They are vergonvenient to use, as one has to
determine which model to use first before making any use ofrtbdel. The question arises
whether a general, if not universal, model exists that cafy unost existing models. This
problem is likely to be solved by using a complicated modehwimore parameters but if such a
model exists, it does provide great convenience.

Third, it has been discussed in most of these works that fregiency, location and detection
threshold are the four most important factors that affeetgpectrum occupancy. So far, most
modelling works have studied the time-dependence of thetspe occupancy. A few of them

have also studied the frequency-dependence of the specitaupancy. And a very limited
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number of them have studied the effects of location and tetethreshold on the spectrum
occupancy. One would ask if a more comprehensive modeldkastall these important factors
into account can be derived. Linear regression may be aicoltd this problem but certainly

more sophisticated regression models would be requiretthuse in the literature.

Finally, although most frequency bands in the range betv@®eMHz and 3 GHz have been
measured, current modelling works are limited to only a fands, such as the GSM band, the
ISM band and the HF bands, especially for the Markov chainettiog) and the linear regression
modelling. It is yet unknown if other bands have similar istatal behaviours or completely
different. Thus, it is worthwhile to extend existing modied) methods to all frequency bands to

see if they have any common behaviours.
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