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Abstract 

The film formation in a journal bearing and the extent of the cavitated region is an important 
contribution to load carrying capacity. In the present work, an ultrasonic method has been used to 
measure the film thickness profile around the circumference of an operating journal bearing. The 
reflection of an ultrasonic pulse at an oil layer can be used to determine the film thickness. A 
transducer was mounted inside a hollow shaft and the signal passed through slip rings. The 
journal bearing was run at a series of loads and rotational speeds. The transducer continuously 
pulsed and received as it swept around the bush circumference. This enabled the full film 
thickness profile to be established.  In the converging region the predicted film shape agrees well 
with predictions from classical lubrication theory. When cavitation occurs, the presence of oil-air 
and aluminium-air interfaces disrupts the ultrasonic signal. The extent of the cavitated region is 
clearly observed in the measurements. The minimum film thickness, the attitude angle, and the 
onset of cavitation are compared with theoretical solutions.   

Introduction 

The formation of a hydrodynamic oil film in a rotating journal bearing is well understood. There 
are well established models to predict the bearing eccentricity ratio and minimum oil film 
thickness. For most engineering applications, this is sufficient design information. However, in 
some cases, an understanding of the behaviour around the full film profile is important. For high 
precision highly loaded bearing, the effect of cavitation in the bearing is of interest. Cavitation 
occurs when the dissolved gas comes out of solution as the pressure falls in the diverging section 
of the bearing. If the pressure drop is low enough then the lubricant itself may evaporate. This 
vaporous cavitation is particularly important because it can lead to surface pitting by bubble 
collapse.  

Another significant aspect of the film profile is the presence of entrained air or vapour bubbles. 
Bubbly oil is believed to have increased load carrying capacity by enhancing the oil viscosity [1, 
2]. Where the bearing is subject to dynamic squeeze action, the presence of bubbles is known to 
significantly affecting the load carrying capacity [3]. 

Progress in the study of bearing cavitation has been reviewed in several papers [4-6]. Reynolds’ 
equation with a cavitation boundary condition is generally used to describe the lubricant flow. 
However under certain circumstances, description by Reynolds’ equation is insufficient to 
describe the film rupture observed in the cavitation region. Consideration of other models such as 
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those proposed by Floberg [7-9] and Coyne and Elrod [10,11] is necessary to avoid significant 
errors. When the journal is lightly loaded, the eccentricity ratio determines the proper 
mathematical model to use. In general, Coyne and Elrod [10,11] prediction is suggested for higher 
eccentricity ratio and Floberg’s model [7-9] for lower eccentricity ratio. Gropser and Etsion [12] 
compared the former model with experiments and found a close agreement for the location of the 
onset of cavitation. Their work also concluded that the cavitation shape is influenced by the shear 
of the cavity gas bubble. 

The method for visualising film formation, based on a transparent bush and suitable lighting, has 
demonstrated how ‘fingers’ of air form in the convergent region [4]. This can be suppressed by 
the use of large lubricant supply grooves (or partial arc bearings) and a high pressure inlet. 
However the precise location of the cavitation front is difficult to control as it varies with 
eccentricity, supply pressure, and lubricant. For these reasons a method of measurement around 
the complete circumference and the detection of the cavitated zone would be useful. 

In the present study, an approach based on the reflection of ultrasound was used to provide the 
complete film profile. The reflection of an ultrasonic pulse at the oil film was recorded as the 
transducer was swept around the film. This can be used to study not only the minimum film 
thickness but also the extent of the cavitated region. 

Ultrasonic Measurement and Oil Film Thickness 

The ultrasonic technique provides a suitable method for oil film thickness measurements without 
the need to make extensive modification to the bearing parts [14]. The concept is simple and 
robust. A wave of ultrasound striking on oil film will be partially transmitted and partially 
reflected. If the oil film is thin compared with the ultrasonic wavelength, then a simple quasi-
static spring model can describe the response of the layer [15]. The magnitude of the reflection 
coefficient (the amplitude of the reflected wave divided by that of the incident wave) is given by: 
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where   is the angular frequency of the incident wave and z1 and z2 is the acoustic impedance of 
the materials either side of the oil film. The acoustic impedance is the product of the density and 
the wave speed in the material.K is the stiffness of the oil film (expressed per unit area). 

The stiffness of an oil film is a function of its bulk modulus, B and film thickness, h according to: 
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Or in terms of the oil’s acoustic properties: 
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where  is the oil density and c is the speed of sound in the oil. The film thickness can then be 
expressed in terms of reflection coefficient by combining (1) and (3): 
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Thus, if the properties of the oil and the media either side are known, then the reflection 
coefficient can be used to determine the oil film thickness.  

The experimental application of the model has been validated in [14] and used to study film 
thickness in a journal bearing [16]. In the latter study, readings were recorded from the stationary 
bush at a single location corresponding to the maximum load point. 

Measurement Apparatus 

Journal bearing test apparatus 

A schematic of the journal bearing test rig is shown in Fig. 1(a). A steel shaft was rotated by an 
electric motor through a belt drive. A brass bush was pressed into a loading frame. A hydraulic 
load was applied to the frame as shown. The journal had a single oil inlet (no lubricating 
grooves). Table 1 shows the dimensions of the test bearing. A mineral oil (Shell Turbo T68) was 
supplied at a slight positive pressure (1.5 to 2.0 bar) to ensure starvation did not occur during 
testing. 

An ultrasonic transducer was assembled inside the shaft of a journal bearing (details follow in the 
next section) as shown in Fig. 1(b). Oil temperature was recorded using thermocouples at the oil 
inlet and outlet of the bearing. The bearing load and speed were monitored throughout using a 
simple load cell and laser tachometer. 

 

Ultrasonic measurement equipment 

The components of the ultrasonic system used were the PC, transducer, ultrasonic pulser receiver 
(UPR), and oscilloscope. A schematic diagram of the apparatus is shown in Fig. 2. The PC was 
used to control the UPR, which supplied short-period top hat voltage pulses to the transducer. The 
piezo-electric transducer causes a displacement pulse under an applied voltage. The transducer is 
arranged so the pulse is emitted normal to the oil film (the curvature of the journal has only a 
minor effect). 

 

The pulse is partially reflected and is recorded by the same transducer. The signal is amplified by 
the UPR, then digitised by the oscilloscope and downloaded to the PC for further analysis and 
display. A Labview interface was written to control the UPR, capture signals, and digital 
processing. 

 

Transducer Installation 

The ultrasonic transducer used was a piezoelectric disk of thickness 2 mm and diameter 10 mm as 
shown in Fig. 3(a).  The nominal frequency is 1 MHz. The resulting centre frequency was 1.2 
MHz. The transducer was bonded to an aluminium plug using high temperature cyanoacrylate 
glue. The plug was then pres-fitted into a machined hole in the journal and the outer bore ground 
to size. 

Aluminium was chosen for the plug material. This is because it has similar acoustic impedance to 
brass and so in equation (4) the (z1-z2) term is small. This means that there is a wide reflection 
coefficient range to work with and so will increase the film thickness range that can be accurately 
measured by the transducer. 

One contact was soldered to the top face of the transducer and the second to the aluminium plug 
(as shown in Fig. 3(b). The contacts wires were then soldered to anchor pads and then the main 
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wires fed back through slip rings to the pulsing-receiving circuit. The piezo and soldered contacts 
were then covered in a protective layer of epoxy.  

 

Signal processing  

In order to obtain the reflection coefficient needed for equation (4) it is required to obtain both 
reflected and incident signals. The simplest way to determine the incident signal was to record a 
reflection when there was no oil at the interface (journal and sleeve disengaged). In this case the 
pulse was virtually fully reflected and so the incident signal equalled the reflected signal. All 
subsequent signals from oil films were divided by the reference signal to obtain the reflection 
coefficient. Signals were recorded in time domain and later transformed into frequency domain 
using the Fast Fourier Transform (FFT) to obtain amplitude spectra. 

Inspection of Fig. (4) shows that the reflection coefficient will depend on the frequency of the 
wave. The full amplitude spectrum was recorded and equation (4) used to obtain the film 
thickness at all frequencies. The film thickness is independent of frequency so the result is a 
straight line. In practice, it is not necessary to record the full waveform but instead calculations 
are performed using just the centre frequency of the transducer where energy is maximum. 

The reflection coefficient recorded from the oil layer was plotted against the angular position 
around the journal. Sufficient data were required to get a good film thickness profile per 
revolution. The rate of digitisation and transfer of data from the scope to the PC was too slow to 
achieve this if the full reflection was to be recorded. Instead only the required reflection data 
segment at the aluminium-oil-brass interface was stored on the scope’s internal memory.  The 
scope had the memory to store 500 segments.  The sampling rate was 50 Ms.s-1 and each segment 
contains 250 points. This corresponds to approximately 210 data points per revolution of 300 rpm 
(or 1 point for every 1.7º). These data were later transferred in one block for post-processing. 

Results and Discussion 

Static Measurement of Journal Bearing Clearance 

A series of preliminary tests were carried out to measure the bearing cavity when static. This was 
to ensure accuracy of the readings and that the concentricity and dimensions of the journal were 
correct. The nearing cavity was flooded with oil and a very low load was applied. The shaft was 
then rotated by hand and the reflected signal was recorded at several different locations. The 
reflection coefficient was correlated to film thickness using equation (1).  

The resulting film thickness profile is shown in Fig. 4. The geometrical predicted profile of the 
gap is also shown (for the case when the radial clearance is 25 m).  
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A slight bump in the film thickness profile in the converging region (between 120<<180) was 
observed. The bump implies that the calculated film thickness is larger than the predicted values. 
This was due to slight out of roughness of the bush. Later plots (Fig.s 7 and 8) of film thickness 
measurements also show a slight anomalous bump in this region caused by the superposition of 
the geometric irregularity. As the gap thickness approaches 50 m the scatter in the results 
increases. This is because the reflection coefficient is approaching unity and then, by inspection 
of equation (4), a small variation due to noise causes a large variation in the film thickness 
calculated. To optimise the measurements a low frequency transducer could be used to measure 
these thicker films. The reflection coefficient would then be lower, however too low a frequency 
will not permit the measurement of the thinnest films as the reflection tends to zero. 

Temperature Compensation for Measured Reflection Coefficient 

Measurement of film thickness is based on the variation in the amplitude of the reflected 
ultrasonic pulse from an oil layer divided by a measured reflection when no oil is present (the 
reference pulse). The energy output from piezo-electric materials is subject to variation with 
temperature. In addition the adhesive attenuation can also change with temperature. If this occurs 
during a test the reflection coefficient will change, as the reference trace was recorded in the cold 
state. 

Frictional heating will cause the temperature of the journal to rise due to over time. The piezo 
output will also change. This becomes especially critical as the reflection coefficient approaches 
unity when the film thickness is large. As described above, in this region a small variation in R 
can cause a big variation in the calculated film thickness. 

To compensate for this thermal drift, the reflected reference pulse was recorded after a test when 
the journal was disengaged but still warm. A thermocouple was placed right on the outer surface 
of the aluminium plug onto which the piezo sensor was attached. The variation in surface 
temperature and the reflected pulse was recorded as the journal cooled down. The results are 
shown in Fig. 5. A linear curve fit produces a mathematical equation that can be used for the 
thermal correction factor. 

Variation in Reflection Coefficient Data 

Fig. 6 illustrates the journal bearing geometry with fluid layer formed by clockwise rotation. The 
thickness of the fluid layer varies around the journal, which can be determined from bearing 
geometry. The co-ordinate  has its origin at the line passing through the bush and journal 
centres; the attitude angle  is measured from that line to the vertical. 

For this bearing, the bush can be assumed to be rigid so the film thickness profile should be 
symmetrical over the line passing through the maximum, hmax (0) and the minimum, hmin (180) 
locations. The region where the fluid converges (below the symmetrical line) is known as the film 
formation region. Conversely, the region where the fluid diverges is called the film rupture 
region.  

Fig. 7 shows a series of reflection coefficient profiles recorded around the circumference for 
increasing bearing load. Each set of data shows a distinct reflection coefficient minimum 
corresponding to the minimum film thickness (this data point was set at an angular position of 
180). In the converging section (0 to 180) the reflection reduces as the oil film reduces in the 
wedge. At higher load, this reduction is greater, corresponding to the steeper wedge formed by a 
more eccentric journal. 
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The distribution is clearly not symmetrical about =180°. Immediately after the minimum point, 
there is a sudden increase in R as cavitation occurs. The lower load cases show only a slight 
increase, as the condition is less severe. In the divergent part, the gap is filled with a mixture of 
oil and suspended air. This has three possible effects on ultrasonic reflection. Firstly a large 
aluminium-air or oil-air interface will completely reflect any incident ultrasound (R tends to one). 
Secondly, a distribution of large air bubbles will act to scatter the sound waves, R will be reduced. 
And thirdly, smaller suspended air bubbles will cause the effective density and wave speed in the 
oil to reduce. In each case the oil film thickness will be over-predicted because of the apparent 
signal loss due to attenuation or scatter.  

As mentioned above, as R tends to unity, equation (4) shows that h tends to infinity and small 
errors in R lead to big errors in h. The resulting error will depend on the noise in the reflected 
signals, which in turn depends on the quality of the electronic equipment and electromagnetic 
shielding. Past experience [16] suggests that data in the region R<0.95 gives satisfactory 
measurements of h. This limit is plotted on the graph. 

Conversion to Film Thickness 

The data for three of the load cases from Fig. 7 has been converted to film thickness using 
equation (4). The calculation is strictly only valid in the converging section of the bearing. The 
results are shown in Fig. 8 (a) to (e) for five different loads. The data shown in grey represent the 
cases where R>0.95 and the model becomes unstable. 

The predicted minimum film thickness is also shown on the plot. The film thickness is given by: 

 )cos1(  ch  (5) 

where c is the radial clearance and   is the angular position measured from the maximum film 
thickness location. The corresponding eccentricity ratio,   was obtained using the method 
described in [17] based on the hydrodynamic solutions of Raimondi and Boyd [18]. This solution 
is isothermal. The temperature of the lubricant increases by ~20° from the inlet to the outlet; this 
will change its viscosity. Two predictions are plotted on Fig. 10; one assuming the oil remains at 
the inlet temperature and one assuming it is at the outlet temperature throughout. 

 

Over the converging section 120<<180 the agreement between the measured film and the 
hydrodynamic prediction is close. As soon as cavitation occurs the predicted film rises rapidly. It 
is possible that the capture is not fast enough to record some data points where the signal may 
have reached R=1. In the diverging part, where the data deviate from the theoretical line, air 
bubbles have formed. At around =220 the air is being dispersed and the film starts to reform. 
The predicted film is still higher than it should be because the oil contains dispersed air bubbles. 
For the highest load case the reflection dips immediately after the cavation region and then rises 
again. The reasons for this are not clear, possibly smaller bubbles are coalescing and acting as 
ultrasonic scatterers. At =300- 320° fresh oil is pumped into the bearing cavity. This oil is free 
from second phase air and so the measured film thickness is close to the predicted value. In some 
cases it has dipped slightly below the predicted value. This is caused by the slight uncertainty in 
the temperature of the oil at this point. If it is lower that the value used for the prediction, the 
resulting film thickness will be lower. 
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Attitude Angle and Minimum Film Thickness 

The measurement of the minimum film thickness and its location (attitude angle, ) have been 
compared with the theoretical hydrodynamic solution [17]. The film thickness ratio is plotted 
against the Sommerfeld number: 
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The attitude angle is obtained by comparing the positions of the oil film minimum to the oil inlet 
point. Fig. 9 and 10 show the results. There is a good agreement in both cases. 

 

Location of the Onset of Cavitation 

Hydrodynamic predictions (using the method of [17]) suggest that the onset of cavitation varies 
from 198° for the 3 kN case to 195° for the 10 kN case. From the plots of Fig. 10, it is not 
immediately obvious at which location cavitation first starts to occur. There is no sharp boundary 
between a measurable reflection coefficient and one that tends to unity. There is possibly a 
spacing of a few degrees past the minimum film thickness point where the measured film still 
agrees with the predicted one. However the transition to a peak in reflection is gradual. This 
suggests air bubbles are forming gently and there is not a sudden rupture of the film at the loads 
and speeds tested here. 

Discussion 

A key advance in this work has been the location of an ultrasonic transducer inside a rotating 
shaft. The signal has been passed through slip rings. Despite the high frequency nature of the 
signal transmitted, there have been no significant problems with and increase in signal noise. This 
has allowed the measurement of the film profile around the bearing circumference, rather than 
being restricted to one location. However, for this kind of study it is important to ensure the 
correct frequency of transducer is used. Each transducer has a limited bandwidth. The reflection 
coefficient should typically remain within the limits 0.05 < R < 0.95 so that any noise present in 
the signal does not unduly affect the conversion to film thickness. The transducers used in this 
study had a bandwidth in the range 0.6 to 1.8 MHz. This meant that they were suitable for 
measuring films in the range 1 to 116 m. For the present bearing, of radial clearance 25 m, 
these transducers are adequate. The danger of using transducer in a rotating shaft where they are 
required to measure both thick and thin films is that their range must be such that this can be 
achieved (or more than one transducer must be used). 

A further complexity is that the oil film temperature varies around the circumference of the 
bearing. This has two effects; the acoustic properties of the oil change (by about 0.2% per °C), 
and the transducer output varies (by about 0.5% per °C). It is possible to compensate for the 
latter; this is easily done using some kind of calibration curve (as shown in Fig. 4). The 
temperature at the sensor needs to be measured. It is not so easy to compensate for the former 
since it varies around the circumference and would require measurement of the film temperature 
at a number of locations. In this work a mean film temperature has been used as the variation is 
not great. 

The measurement of an oil film ultrasonically relies on the liquid being homogeneous of known 
acoustic properties (density and speed of sound). In the inlet region these conditions are fulfilled 
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and the measured oil film thickness agrees with predictions based on classical hydrodynamic 
theory. Both the attitude angle and minimum film thickness measurements are reliable. 

In the diverging part of the bearing cavitation occurs and the presence of macro pockets of air or 
distributed air bubbles modify the reflected signal. This happens by the large pockets of air fully 
reflecting the ultrasonic wave, and small suspensions causing a reduction in the speed of sound. 
For small quantities of finely dispersed second phase, the speed of sound in a two phase mixture, 
c can be described the so-called Urick [19] equation: 
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where  is the air volume fraction,  is the density, c the speed of sound, and the subscripts a and 
o stand for air and oil respectively. A small fraction of air can have a significant effect on the 
speed of sound. Oil typically contains about 8% of dissolved air. This is easily enough to upset 
the acoustic measurements should full cavitation takes place. The reflection coefficient then tends 
to unity and the calculated oil film tends to infinity. 

The proportion of the second phase suspended air varies around the journal. Thus the speed of 
sound will also change. In the inlet zone there are no suspended bubbles. In the diverging zone 
220°<<300°, the required speed of sound to make the results ‘fit’ the model is between 500 and 
1300 m/s. This corresponds to around 0.1 – 0.01% suspended air. However, the effect of this 
second phase on the reflection of ultrasound is complex and there is little merit in trying to draw 
too many conclusions as to the nature of the film from the reflected signal. The transducer is 
probably best used to detect the onset of cavitation rather than any detailed predictions about what 
is happening inside the cavitated region. 

In a stiff bearing of the kind used here the location of the cavitation region is well defined. But in 
an elastically deforming bearing shell, this is not the case. The deformation is a function of the 
film pressure distribution that in turn depends on the extent of the cavitation region. Ultrasonic 
measurements around the circumference could prove useful in bearings of this kind. 

Conclusions 

A journal bearing test rig has been built with an ultrasonic sensor located inside a hollow shaft. It 
has proved possible to transit the high frequency ultrasonic signal through a conventional set of 
slip-rings. 

The reflection of an ultrasonic pulse is related to the stiffness of the oil film and hence the oil film 
thickness. The film thickness profile has been recorded around the bearing circumference under a 
range of loads and speeds. The profile obtained in the converging region agrees well with 
classical hydrodynamic predictions. The minimum film thickness and attitude angle 
measurements also agree well. 

However, as soon as cavitation occurs the presence of second phase air provides another source of 
attenuation or reflection of ultrasound. This means that the conversion from reflection coefficient 
to oil film thickness is no longer valid. 

Whilst quantitative film measurements are no longer possible in the diverging zone, the form of 
the data reveals information about the onset of cavitation and reformation of the film. The results 
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indicate an arc of around 20-30° over which severe cavitation occurs followed by expulsion or re-
absorption of the air.  

Provided the effects of cavitation can be separated from genuine film thickness measurements, 
this approach can be useful in film thickness determination in elastically deforming bearings, or to 
study the effect of oil grooves. 
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Diameter 75 mm 

Length 37.5 mm 

Radial clearance 25 m 

Load range,  2 – 10 kN 

Speed range 200 – 800 rpm 

Lubricant viscosity 46 cSt @ 40°C 

8.8 cSt @100°C 

 

Table 1: Dimensions of the test bearing, lubricant properties, and operating parameters. 
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Figure 10: Experimental and Predicted Attitude Angle 
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Figure 1 (a) Schematic of the journal bearing test assembly, (b) Photograph and schematic of the 
journal and transducer. 
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Figure 2: Schematic diagram of the apparatus used for generating and receiving ultrasonic pulses. 
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Figure 3: (a) Piezo-electric disk and (b) schematic of assembly to plug. 
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Figure 4: Measured static bearing gap compared with the geometrical solution. 
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Figure 5: Variation in the ultrasonic reflection coefficient as the sensor temperature changes. 
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Figure 6: Schematic of Film Thickness Profile in Journal Bearing 
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Figure 7: Reflection coefficient measurements around the bearing circumference. 
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(c) 

Figure 8: Measured film thickness profile for five bearing loads (a) 3 kN, (b) 6 kN, and (c) 10 kN, 
all rotating at 300 rpm. Theoretical solutions [17] are plotted for the case where the oil 
temperature is equal to the inlet temperature and the outlet temperature throughout. 
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Figure 9: Experimental and Predicted Minimum Film Thickness Ratio  
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Figure 10: Experimental and Predicted Attitude Angle 
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