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1. Introduction

In a classic paper [18] of 1922 R. Nevanlinna solved the problem of the determinacy 
of solutions of the Stieltjes moment problem. En route he proved several other theorems 
that have since been influential; in particular, the following theorem, which characterizes 
the Cauchy transforms of positive finite measures μ on R, has had a profound impact 
on the development of modern analysis. Let P denote the Pick class, that is, the set of 
analytic functions on the upper half-plane,

Π def= {z ∈ C : Im z > 0},

that have non-negative imaginary part on Π.

Theorem 1.1 (Nevanlinna’s Representation). Let h be a function defined on Π. There 
exists a finite positive measure μ on R such that

h(z) =
∫ dμ

t− z
(1.1)

if and only if h ∈ P and

lim inf
y→∞

y |h(iy)| < ∞. (1.2)

A closely related theorem, also referred to in the literature as Nevanlinna’s Represen-
tation, provides an integral representation for a general element of P.

Theorem 1.2. A function h : Π → C belongs to the Pick class P if and only if there exist 
a ∈ R, b ≥ 0 and a finite positive Borel measure μ on R such that

h(z) = a + bz +
∫ 1 + tz

t− z
dμ(t) (1.3)

for all z ∈ Π. Moreover, for any h ∈ P, the numbers a ∈ R, b ≥ 0 and the measure μ ≥ 0
in the representation (1.3) are uniquely determined.

What are the several-variable analogs of Nevanlinna’s theorems? In this paper we shall 
propose four types of Nevanlinna representation for various subclasses of the n-variable 
Pick class Pn, where Pn is defined to be the set of analytic functions h on the polyhalf-
plane Πn such that Im h ≥ 0. In addition, we shall present necessary and sufficient 
conditions for a function defined on Πn to possess a representation of a given type in 
terms of asymptotic growth conditions at ∞.

The integral representation (1.1) of those functions in the Pick class that satisfy 
condition (1.2) can be written in the form
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h(z) =
〈
(A− z)−11,1

〉
L2(μ) ,

where A is the operation of multiplication by the independent variable on L2(μ) and 
1 is the constant function 1. We propose that an appropriate n-variable analog of the 
Cauchy transform is the formula

h(z1, . . . , zn) =
〈
(A− z1Y1 − · · · − znYn)−1v, v

〉
H for z1, . . . , zn ∈ Π, (1.4)

where H is a Hilbert space, A is a densely defined self-adjoint operator on H, Y1, . . . , Yn

are positive contractions on H summing to 1 and v is a vector in H.
Theorem 1.6 below characterizes those functions on Πn that have a representation of 

the form (1.4). To state this theorem we require a notion based on the following classical 
result of Pick [20].

Theorem 1.3. A function h defined on Π belongs to P if and only if the function A defined 
on Π × Π by

A(z, w) = h(z) − h(w)
z − w̄

is positive semidefinite, that is, for all n ≥ 1, z1, . . . , zn ∈ Π, c1, . . . , cn ∈ C,
∑

A(zj , zi)cicj ≥ 0.

The following theorem, proved in [2], leads to a generalization of Theorem 1.3 to two 
variables. The Schur class of the polydisc, denoted by Sn, is the set of analytic functions 
on the polydisc Dn that are bounded by 1 in modulus.

Theorem 1.4. A function ϕ defined on D2 belongs to S2 if and only if there exist positive 
semidefinite functions A1 and A2 on D2 × D

2 such that

1 − ϕ(μ)ϕ(λ) = (1 − μ1λ1)A1(λ, μ) + (1 − μ2λ2)A2(λ, μ). (1.5)

By way of the transformations

z = i
1 + λ

1 − λ
, λ = z − i

z + i
, (1.6)

and

h(z) = i
1 + ϕ(λ)
1 − ϕ(λ) , ϕ(λ) = h(z) − i

h(z) + i
, (1.7)

there is a one-to-one correspondence between functions in the Schur and Pick classes. 
Under these transformations, Theorem 1.4 becomes the following generalization of Pick’s 
theorem to two variables.
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Theorem 1.5. A function h defined on Π2 belongs to P2 if and only if there exist positive 
semidefinite functions A1 and A2 on Π2 × Π2 such that

h(z) − h(w) = (z1 − w1)A1(z, w) + (z2 − w2)A2(z, w).

In the light of Theorems 1.3 and 1.5 we define the Loewner class Ln to be the set 
of analytic functions h on Πn with the property that there exist n positive semidefinite 
functions A1, . . . , An on Πn such that

h(z) − h(w) =
n∑

j=1
(zj − wj)Aj(z, w) (1.8)

for all z, w ∈ Πn. The Loewner class Ln played a key role in [4], which gave a 
generalization to several variables of Loewner’s characterization of the one-variable 
operator-monotone functions [17]. As the following theorem makes clear, Ln also has 
a fundamental role to play in the understanding of Nevanlinna representations in several 
variables.

Theorem 1.6. A function h defined on Πn has a representation of the form (1.4) if and 
only if h ∈ Ln and

lim inf
y→∞

y|h(iy, . . . , iy)| < ∞. (1.9)

In the cases when n = 1 and n = 2, Theorems 1.3 and 1.5 assert that Ln = Pn, 
and so for n = 1, Theorem 1.6 is Nevanlinna’s classical Theorem 1.1, and when n = 2, 
Theorem 1.6 is a straightforward generalization of that result to two variables. When 
there are more than two variables, it is known that the Loewner class is a proper subset of 
the Pick class, Ln �= Pn [19,22]. Nevertheless, Nevanlinna’s result survives as a theorem 
about the representation of elements of Ln. Other than the work in [11] very little is 
known about the representation of functions in Pn for three or more variables.

For a function h on Πn, we call the formula (1.4) a Nevanlinna representation of 
type 1. Thus, Theorem 1.6 can be rephrased as the assertion that h has a Nevanlinna 
representation of type 1 if and only if h ∈ Ln and h satisfies condition (1.9). Somewhat 
more complicated representation formulae are needed to generalize Theorem 1.2. We 
identify three further representation formulae, of increasing generality, and show that 
every function in Ln has a representation of one or more of the four types.

For a function h defined on Πn, we refer to a formula

h(z1, . . . , zn) = a +
〈
(A− z1Y1 − · · · − znYn)−1v, v

〉
H

for z1, . . . , zn ∈ Π, (1.10)



3004 J. Agler et al. / Journal of Functional Analysis 270 (2016) 3000–3046
where a is a constant, H is a Hilbert space, A is a densely defined self-adjoint operator 
on H, Y1, . . . , Yn are positive contractions on H summing to 1 and v is a vector in H, as 
a Nevanlinna representation of type 2.

Theorem 1.7. A function h defined on Πn has a Nevanlinna representation of type 2 if 
and only if h ∈ Ln and

lim inf
y→∞

y Im h(iy, . . . , iy) < ∞. (1.11)

A Nevanlinna representation of type 3 of a function h defined on Πn is of the form

h(z) = a +
〈
(1 − iA)(A− zY )−1(1 + zY A)(1 − iA)−1v, v

〉
for all z ∈ Πn

for some real a, some self-adjoint operator A and some vector v, where Y1, . . . , Yn are 
operators as in equation (1.4) above and zY = z1Y1 + · · · + znYn.

Theorem 1.8. A function h defined on Πn has a Nevanlinna representation of type 3 if 
and only if h ∈ Ln and

lim inf
y→∞

1
y

Im h(iy, . . . , iy) = 0.

Finally, Nevanlinna representations of type 4 are given by the formula

h(z) = a + 〈M(z)v, v〉 , (1.12)

where a ∈ R and M(z) is an operator of the form

[
−i 0
0 1 − iA

]([
1 0
0 A

]
− zP

[
0 0
0 1

])−1 (
zP

[
1 0
0 A

]
+

[
0 0
0 1

])[
−i 0
0 1 − iA

]−1

,

(1.13)

acting on an orthogonal direct sum of Hilbert spaces N ⊕M. In equation (1.12), v is a 
vector in N ⊕M. In equation (1.13), A is a densely-defined self-adjoint operator acting 
on M and zP is the operator acting on N ⊕M via the formula

zP =
∑

ziPi

where P1, . . . , Pn are pairwise orthogonal projections acting on N ⊕M that sum to 1.

Theorem 1.9. Let h be a function defined on Πn. Then h has a Nevanlinna representation 
of type 4 if and only if h ∈ Ln.
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A weaker, “generic” version of Theorem 1.9 appeared in [4, Theorem 6.9], where it 
was used to show that elements in Ln are locally operator-monotone.

It turns out that for 1 ≤ k ≤ 4, if h is a function on Πn and h has a Nevanlinna 
representation of type k, then for k ≤ j ≤ 4, h also has a Nevanlinna representation of 
type j. Thus, it is natural to define the type of a function in Ln to be the smallest k such 
that h has a Nevanlinna representation of type k.

For h ∈ Ln the type of h can be characterized in function-theoretic terms through the 
use of a geometric idea due to Carathéodory. A carapoint for a function ϕ in the Schur 
class Sn is a point τ ∈ T such that

lim inf
λ→τ

1 − |ϕ(λ)|
1 − ‖λ‖∞

< ∞,

where

‖λ‖∞ = max
1≤i≤n

|λi| .

Carathéodory introduced this notion in one variable in [9], along the way to refining 
earlier results of Julia [14]. The following was Carathéodory’s main result; the notation 

λ nt→ τ means that λ tends nontangentially to τ .

Theorem 1.10. Let ϕ ∈ S1, τ ∈ T. If τ is a carapoint for ϕ, then ϕ is nontangentially 
differentiable at τ , that is, there exist values ϕ(τ) and ϕ′(τ) such that

lim
λ

nt→τ

ϕ(λ) − ϕ(τ) − ϕ′(τ)(λ− τ)
λ− τ

= 0.

In particular, if τ is a carapoint for ϕ then there exists a unique point ϕ(τ) ∈ T such 

that ϕ(λ) → ϕ(τ) as λ nt→ τ .

In several variables, carapoints have been studied in [1,13,3]. The strong conclusion 
of nontangential differentiability is lost in several variables; however, at a carapoint τ , 
there still exists a unimodular nontangential limit ϕ(τ).

As the point χ = (1, . . . , 1) is transformed to the point ∞ = (∞, . . . , ∞) by equa-
tion (1.6), it is natural to say that a function h ∈ Ln has a carapoint at ∞ if the associated 
Schur function ϕ, given by the transformation in equation (1.7), has a carapoint at χ, 
and in that case to define h(∞) by

h(∞) = i
1 + ϕ(χ)
1 − ϕ(χ) . (1.14)

The connection between carapoints and function types is given in the following theo-
rem.
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Theorem 1.11. For a function h ∈ Ln,

(1) h is of type 1 if and only if ∞ is a carapoint of h and h(∞) = 0;
(2) h is of type 2 if and only if ∞ is a carapoint of h and h(∞) ∈ R \ {0};
(3) h is of type 3 if and only if ∞ is not a carapoint of h;
(4) h is of type 4 if and only if ∞ is a carapoint of h and h(∞) = ∞.

The paper is structured as follows. As is clear from the formulae used to define the 
various Nevanlinna representations, Nevanlinna representations are generalizations of 
the resolvent of a self-adjoint operator. These structured resolvents, studied in Sections 2
and 3, are analytic operator-valued functions on the polyhalf-plane Πn with non-negative 
imaginary part, fully analogous to the familiar resolvent operator. There are also struc-
tured resolvent identities for them, studied in Section 10 of the paper.

In modern texts Nevanlinna’s representation is derived from the Herglotz Representa-
tion with the aid of the Cayley transform [16,10]. In Section 4 we introduce the n-variable 
strong Herglotz class and then prove Theorem 1.9 by applying the Cayley transform to 
Theorem 1.8 of [2].

In Section 5 we derive the Nevanlinna representations of types 3, 2, and 1, we show 
how they arise naturally from the underlying Hilbert space geometry and we prove slight 
strengthenings of Theorems 1.6, 1.7 and 1.8. In Section 6 we give function-theoretic 
conditions for a function h ∈ Ln to possess a representation of a given type.

In Section 7 we introduce the notion of carapoints for functions in the Pick class and 
in Section 8 we establish the criteria in Theorem 1.11 for the type of a function using 
the language of carapoints.

In Section 9 we give the growth estimates for functions in Ln that flow from our 
analysis of structured resolvents, and in Section 10 we present resolvent identities for 
structured resolvents.

Results related to ours from a system-theoretic perspective have been obtained in 
recent works of J.A. Ball and D. Kalyuzhnyi-Verbovetzkyi [6,7]. See also [8], where Krein 
space methods are applied to similar problems.

2. Structured resolvents of operators

The resolvent operator (A − z)−1 of a densely defined self-adjoint operator A on a 
Hilbert space plays a prominent role in spectral theory. It has the following properties.

(1) It is an analytic bounded operator-valued function of z in the upper half-plane Π;
(2) it satisfies the growth estimate ‖(A − z)−1‖ ≤ 1/ Im z for z ∈ Π;
(3) (A − z)−1 has non-negative imaginary part for all z ∈ Π;
(4) it satisfies the “resolvent identity”.

Here we are interested in several-variable analogs of the resolvent. These will again 
be operator-valued analytic functions with non-negative imaginary part, but now on 
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the polyhalf-plane Πn. Because of the additional complexities in several variables we 
encounter three different types of resolvent; all of them have the four listed properties, 
with very slight modifications, and therefore deserve the name structured resolvent.

For any Hilbert space H, a positive decomposition of H will mean an n-tuple Y =
(Y1, . . . , Yn) of positive contractions on H that sum to the identity operator. For any 
z = (z1, . . . , zn) ∈ C

n and any n-tuple T = (T1, . . . , Tn) of bounded operators we denote 
by zT the operator 

∑
j zjTj . Here each Tj is a bounded operator from H1 to H2, for 

some Hilbert spaces H1, H2, so that zT is also a bounded operator from H1 to H2.

Definition 2.1. Let A be a closed densely defined self-adjoint operator on a Hilbert 
space H and let Y be a positive decomposition of H. The structured resolvent of A

of type 2 corresponding to Y is the operator-valued function

z �→ (A− zY )−1 : Πn → L(H).

The following observation is essentially [4, Lemma 6.25].

Proposition 2.2. For A and Y as in Definition 2.1 the structured resolvent (A − zY )−1

is well defined on Πn and satisfies, for all z ∈ Πn,

‖(A− zY )−1‖ ≤ 1
minj Im zj

. (2.1)

Moreover

Im
(
(A− zY )−1) = (A− z∗Y )−1 (Im zY ) (A− zY )−1

= (A− zY )−1 (Im zY ) (A− z∗Y )−1

≥ 0. (2.2)

The range of the bounded operator (A − zY )−1 is of course D(A), the domain of A.

Proof of Proposition 2.2. For any vector ξ in the domain of A,

‖(A− zY )ξ‖ ‖ξ‖ ≥ | 〈(A− zY )ξ, ξ〉 |
≥ | Im 〈(A− zY )ξ, ξ〉 |
= 〈(Im zY )ξ, ξ〉

=
∑
j

(Im zj) 〈Yjξ, ξ〉

≥ (min
j

Im zj)
〈∑

j

Yjξ, ξ

〉

= (min Im zj)‖ξ‖2.

j
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Thus A −zY has lower bound minj Im zj > 0, and so has a bounded left inverse. A similar 
argument with z replaced by z̄ shows that (A − zY )∗ also has a bounded left inverse, 
and so A − zY has a bounded inverse and the inequality (2.1) holds.

The identities (2.2) are easy. �
Resolvents of type 2 are the simplest several-variable analogues of the familiar one-

variable resolvent but they are not sufficient for the analysis of the several-variable Pick 
class. To this end we introduce two further generalizations. Let us first recall some basic 
facts about closed unbounded operators.

Lemma 2.3. Let T be a closed densely defined operator on a Hilbert space H, with domain 
D(T ). The operator 1 + T ∗T is a bijection from D(T ∗T ) to H, and the operators

B
def= (1 + T ∗T )−1, C

def= T (1 + T ∗T )−1

are everywhere defined and contractive on H. Moreover B is self-adjoint and positive, 
and ranC ⊂ D(T ∗).

Proof. All these statements are proved in [21, Sections 118, 119], although the final 
statement about ranC is not explicitly stated. We must show that for all v ∈ H there 
exists y ∈ H such that, for all h ∈ H,

〈Th,Cv〉 = 〈h, y〉 .

It is straightforward to check that this relation holds for y = v − Bv, and so ranC ⊂
D(T ∗). �
Definition 2.4. Let A be a closed densely defined self-adjoint operator on a Hilbert space 
H and let Y be a positive decomposition of H. The structured resolvent of A of type 3
corresponding to Y is the operator-valued function M : Πn → L(H) given by

M(z) = (1 − iA)(A− zY )−1(1 + zY A)(1 − iA)−1. (2.3)

We denote the �1 norm on Cn by ‖ · ‖1. Note that ‖zY ‖ ≤ ‖z‖1 for all z ∈ C
n and all 

positive decompositions Y .

Proposition 2.5. For A and Y as in Definition 2.4 the structured resolvent M(z) of type 3
given by equation (2.3) is well defined as a bounded operator on H for all z ∈ Πn and 
satisfies

‖M(z)‖ ≤ (1 + 2‖z‖1)
(

1 + 1 + ‖z‖1

minj Im zj

)
. (2.4)



J. Agler et al. / Journal of Functional Analysis 270 (2016) 3000–3046 3009
Proof. Since

1 + zY A = 1 − izY + izY (1 − iA) : D(A) → H

and (1 − iA)−1 is a contraction on all of H, with range D(A), the operator (1 +zYA)(1 −
iA)−1 is well defined as an operator on H and

‖(1 + zY A)(1 − iA)−1‖ = ‖(1 − izY )(1 − iA)−1 + izY ‖

≤ ‖1 − izY ‖ + ‖zY ‖

≤ 1 + 2‖zY ‖

≤ 1 + 2‖z‖1. (2.5)

Similarly (1 − iA)(A − zY )−1 is well defined on H, and since

i(A− zY ) = −(1 − iA) + (1 − izY ) : D(A) → H

we have

i = −(1 − iA)(A− zY )−1 + (1 − izY )(A− zY )−1 : H → H.

Thus, by virtue of the bound (2.1),

‖(1 − iA)(A− zY )−1‖ = ‖i− (1 − izY )(A− zY )−1‖

≤ 1 + ‖1 − izY ‖ ‖(A− zY )−1‖

≤ 1 + 1 + ‖z‖1

minj Im zj
. (2.6)

On combining the estimates (2.6) and (2.5) we obtain the bound (2.4). �
The following alternative formula for the structured resolvent of type 3, valid on the 

dense subspace D(A) of H, allows us to show that ImM(z) ≥ 0.

Proposition 2.6. For A and Y as in Definition 2.4 and z ∈ Πn

M(z)|D(A) = (1 − iA)
{
(A− zY )−1 −A(1 + A2)−1} (1 + iA) (2.7)

= (1 − iA)(A− zY )−1(1 + iA) −A : D(A) → H. (2.8)

Moreover, for every v ∈ D(A),

Im 〈M(z)v, v〉 =
〈
(1 − iA)(A− z∗Y )−1(Im zY )(A− zY )−1(1 + iA)v, v

〉
≥ 0. (2.9)
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Proof. By Lemma 2.3 the operator A(1 + A2)−1 is contractive on H and has range 
contained in D(A). On D(A2) we have the identity

1 + zY A = 1 + A2 − (A− zY )A.

Since (1 + A2)−1 maps H into D(A2) we have

(1 + zY A)(1 + A2)−1 = 1 − (A− zY )A(1 + A2)−1 : H → H,

and therefore

(A− zY )−1(1 + zY A)(1 + A2)−1 = (A− zY )−1 −A(1 + A2)−1 : H → D(A).

(2.10)

Clearly

(1 + A2)−1(1 + iA) = (1 − iA)−1 on D(A)

and so, on multiplying equation (2.10) fore-and-aft by 1 ±iA, we deduce that, as operators 
from D(A) to H,

M(z)|D(A) = (1 − iA)(A− zY )−1(1 + zY A)(1 − iA)−1

= (1 − iA)(A− zY )−1(1 + zY A)(1 + A2)−1(1 + iA)

= (1 − iA)
{
(A− zY )−1 −A(1 + A2)−1} (1 + iA).

This establishes equation (2.7).
The expression (2.8) follows from equation (2.7) since

(1 − iA)A(1 + A2)−1(1 + iA) = A on D(A).

By equation (2.8) we have, for any z ∈ Πn and v ∈ D(A),

Im 〈M(z)v, v〉 = Im
〈
(1 − iA)(A− zY )−1(1 + iA)v, v

〉
− Im 〈Av, v〉

= Im
〈
(A− zY )−1(1 + iA)v, (1 + iA)v

〉
and hence, by equation (2.2),

Im 〈M(z)v, v〉 =
〈
(A− z∗Y )−1(Im zY )(A− zY )−1(1 + iA)v, (1 + iA)v

〉
,

and so equation (2.9) holds. �
Corollary 2.7. For A and Y as in Definition 2.4 the structured resolvent M(z) given by 
equation (2.3) satisfies ImM(z) ≥ 0 for all z ∈ Πn.
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For, by Propositions 2.5 and 2.6, M(z) is a bounded operator on H, and
Im〈M(z)v, v〉 ≥ 0 for v ∈ D(A). The conclusion follows by the density of D(A) and 
continuity.

In the case of bounded A there is yet another expression for the structured resolvent 
of type 3.

Proposition 2.8. If A is a bounded self-adjoint operator on H and Y is a positive de-
composition of H then, for z ∈ Πn,

M(z) = (1 + iA)−1(1 + AzY )(A− zY )−1(1 + iA). (2.11)

Proof. Since A is bounded it is defined on all of H. We have

1 + AzY = 1 + A2 −A(A− zY )

and hence

(1 + AzY )(A− zY )−1 = (1 + A2)(A− zY )−1 −A.

Thus

(1 + iA)−1(1 + AzY )(A− zY )−1(1 + iA) = (1 − iA)(A− zY )−1(1 + iA) −A

= M(z)

by equation (2.8). �
Remark 2.9. In the case of unbounded A the expression (2.11) for M(z) is valid wherever 
it is defined, but it is not to be expected that this will be a dense subspace of H in general.

Here are two examples of structured resolvents of type 3, one on C2 and one on an 
infinite-dimensional space.

Example 2.10. Let

H = C
2, A =

[
1 0
0 −1

]
, Y1 = 1

2

[
1 1
1 1

]
, Y2 = 1 − Y1, Y = (Y1, Y2).

Then

M(z) = (1 − iA)(A− zY )−1(1 + zY A)(1 − iA)−1

= 1
1 − z1z2

[
(1 + z1)(1 + z2) −i(z1 − z2)

i(z1 − z2) −(1 − z1)(1 − z2)

]
.
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Example 2.11. Let H = L2(R), let A be the operation of multiplication by the indepen-
dent variable t and let Y = (P, Q) where P , Q are the orthogonal projection operators 
onto the subspaces of even and odd functions respectively in L2. Thus

Pf(t) = 1
2 {f(t) + f(−t)} , Qf(t) = 1

2 {f(t) − f(−t)} .

Let Y ′ = (Q, P ). Note that

PA = AQ, QA = AP

and hence

zY A = AzY ′ , zY ′A = AzY , zY zY ′ = z1z2 = zY ′zY .

It follows that zY and zY ′ commute with A2, and it may be checked that

(A− zY )−1 = (A2 − z1z2)−1(zY ′ + A) = (zY ′ + A)(A2 − z1z2)−1

and hence

(A− zY )−1(1 + zY A) = (A2 − z1z2)−1 ((1 + A2)zY ′ + (1 + z1z2)A
)
.

A straightforward calculation now shows that the structured resolvent M(z) of A corre-
sponding to Y is given by

(M(z)f)(t) =
( 1

2 (z1 + z2)(1 + t2) + (1 + z1z2)t
)
f(t) + 1

2 (z2 − z1)(1 − it)2f(−t)
t2 − z1z2

for all z ∈ Π2, f ∈ L2(R) and t ∈ R. In particular, we note for future use that if f is an 
even function,

(M(z)f)(t) = t(1 + z1z2) + (1 − it)(itz1 + z2)
t2 − z1z2

f(t). (2.12)

3. The matricial resolvent

The third and last form of structured resolvent that we consider has a 2 × 2 matricial 
form. As will become clear, this extra complication is needed for the description of the 
most general type of function in the several-variable Loewner class.

By an orthogonal decomposition of a Hilbert space H we shall mean an n-tuple P =
(P1, . . . , Pn) of orthogonal projection operators with pairwise orthogonal ranges such 
that 

∑n
j=1 Pj is the identity operator.
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Proposition 3.1. Let H be the orthogonal direct sum of Hilbert spaces N ,M, let A be a 
densely defined self-adjoint operator on M with domain D(A) and let P be an orthogonal 
decomposition of H. For every z ∈ Πn the operator on H given with respect to the 
decomposition N ⊕M by the matricial formula

M(z) =
[
−i 0
0 1 − iA

]([
1 0
0 A

]
− zP

[
0 0
0 1

])−1

×
(
zP

[
1 0
0 A

]
+
[
0 0
0 1

])[
−i 0
0 1 − iA

]−1

(3.1)

is a bounded operator defined on all of H, and

‖M(z)‖ ≤ (1 +
√

10‖z‖1)
(

1 + 1 +
√

2‖z‖1

minj Im zj

)
. (3.2)

Proof. Let z ∈ Πn. Let the projection Pj have operator matrix

Pj =
[
Xj Bj

B∗
j Yj

]
(3.3)

with respect to the decomposition H = N ⊕M. Then

X = (X1, . . . , Xn), Y = (Y1, . . . , Yn)

are positive decompositions of N , M respectively, and

B = (B1, . . . , Bn), B∗ = (B∗
1 , . . . , B

∗
n)

are n-tuples of contractions summing to 0, from M to N and from N to M respectively. 
Since the Bj are contractions we have

‖zB‖ ≤ ‖z‖1.

For any z ∈ C
n,

zP =
[
zX zB
zB∗ zY

]
. (3.4)

Consider the third and fourth factors in the product on the right hand side of equation 
(3.1); the product of these two factors is well defined as an operator on H since (1 −iA)−1

maps M to D(A). It is even a bounded operator, since, by virtue of equation (3.4),

(
zP

[
1 0
0 A

]
+
[
0 0
0 1

])[
−i 0
0 1 − iA

]−1

=
[
izX zBA(1 − iA)−1

izB∗ (1 + zY A)(1 − iA)−1

]
.

(3.5)
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Since

‖A(1 − iA)−1‖ = ‖i
(
1 − (1 − iA)−1) ‖ ≤ 2

we can immediately see that the operator (3.5) is bounded. We can get an estimate of 
the norm of the operator matrix (3.5) if we replace each of the four operator entries by 
an upper bound for its norm. We find that

∥∥∥∥∥
(
zP

[
1 0
0 A

]
+
[
0 0
0 1

])[
−i 0
0 1 − iA

]−1
∥∥∥∥∥ ≤

∥∥∥∥
[
‖z‖1 2‖z‖1
‖z‖1 1 + 2‖z‖1

]∥∥∥∥
≤ 1 + ‖z‖1

∥∥∥∥
[
1 2
1 2

]∥∥∥∥
= 1 +

√
10‖z‖1. (3.6)

Now consider the second factor in the definition (3.1) of M(z). We find that

([
1 0
0 A

]
− zP

[
0 0
0 1

])−1

=
[
1 −zB
0 A− zY

]−1

=
[
1 zB(A− zY )−1

0 (A− zY )−1

]
, (3.7)

which maps H into N ⊕D(A). Hence the product of the first two factors in the product 
on the right hand side of equation (3.1) is

[
−i 0
0 1 − iA

]([
1 0
0 A

]
− zP

[
0 0
0 1

])−1

=
[
−i −izB(A− zY )−1

0 (1 − iA)(A− zY )−1

]
. (3.8)

Since

‖(1 − iA)(A− zY )−1‖ = ‖(1 − izY )(A− zY )−1 − i‖
≤ 1 + ‖1 − izY ‖ ‖(A− zY )−1‖

≤ 1 + 1 + ‖z‖1

minj Im zj

we deduce from equation (3.8) that
∥∥∥∥∥
[
−i 0
0 1 − iA

]([
1 0
0 A

]
− zP

[
0 0
0 1

])−1
∥∥∥∥∥

≤
∥∥∥∥
[
1 ‖z‖1 ‖(A− zY )−1‖
0 1 + (1 + ‖z‖1)‖(A− zY )‖−1

]∥∥∥∥
≤ 1 +

∥∥∥∥
[
0 ‖z‖1
0 1 + ‖z‖

] [
0 0
0 ‖(A− z )−1‖

]∥∥∥∥
1 Y
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≤ 1 + 1 +
√

2‖z‖1

minj Im zj
. (3.9)

On combining the estimates (3.9) and (3.6) we obtain the bound (3.2) for ‖M(z)‖. �
Remark 3.2. On multiplying together the expressions (3.8) and (3.5) we obtain the 
formula

M(z) =
[
zX + zB(A− zY )−1zB∗ −izB(A− zY )−1(1 + iA)
i(1 − iA)(A− zY )−1zB∗ (1 − iA)(A− zY )−1(1 + zY A)(1 − iA)−1

]
.

Notice in particular that the (2, 2) entry (that is, the compression of M(z) to M) is the 
structured resolvent of A of type 3 corresponding to Y , the compression of P to M, as 
in equation (2.3).

Definition 3.3. Let H be the orthogonal direct sum of Hilbert spaces N ,M, let A be a 
densely defined self-adjoint operator on M with domain D(A) and let P be an orthogonal 
decomposition of H. The structured resolvent of A of type 4 corresponding to P is the 
operator-valued function M : Πn → L(H) given by equation (3.1).

We shall also refer to M(z) as the matricial resolvent of A with respect to P . The 
important property that ImM(z) ≥ 0 is not at once apparent from the formula (3.1); 
as with structured resolvents of type 3, there are alternative formulae from which this 
property is more easily shown. Once again the alternatives suffer the minor drawback 
that they give M(z) only on a dense subspace of H.

Proposition 3.4. With the notation of Definition 3.3, as operators on N ⊕D(A),

M(z) =
[
−i 0
0 1 − iA

]([
1 0
0 A(1 + A2)−1

]
zP +

[
0 0
0 (1 + A2)−1

])
×

([
1 0
0 A

]
−
[
0 0
0 1

]
zP

)−1 [
i 0
0 1 + iA

]
(3.10)

=
[
−i 0
0 1 − iA

]([
1 0
0 0

]
zP +

[
0 0
0 1

])([
1 0
0 A

]
−

[
0 0
0 1

]
zP

)−1 [
i 0
0 1 + iA

]

−
[
0 0
0 A

]
(3.11)

=
[
−i 0
0 1 − iA

]([
1 0
0 A

]
− zP

[
0 0
0 1

])−1 (
zP

[
1 0
0 0

]
+
[
0 0
0 1

])[
i 0
0 1 + iA

]

−
[
0 0
0 A

]
(3.12)

for all z ∈ Πn. Moreover, for all z, w ∈ Πn,
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M(z) −M(w)∗ =
[
−i 0
0 1 − iA

]([
1 0
0 A

]
− w∗

P

[
0 0
0 1

])−1

×

(zP − w∗
P )

([
1 0
0 A

]
−
[
0 0
0 1

]
zP

)−1 [
i 0
0 1 + iA

]
(3.13)

on N ⊕D(A).

Proof. By Lemma 2.3 the operators (1 + A2)−1 and

C
def= Im(1 − iA)−1 = A(1 + A2)−1

are self-adjoint contractions defined on all of M. Furthermore,

ran(1 + A2)−1 = D(A2), ranC ⊂ D(A).

We claim that, as operators on N ⊕D(A),

([
1 0
0 A

]
−zP

[
0 0
0 1

])−1 (
zP

[
1 0
0 A

]
+

[
0 0
0 1

])
=

([
1 0
0 C

]
zP +

[
0 0
0 (1 + A2)−1

])([
1 0
0 C

]
−
[
0 0
0 (1 + A2)−1

]
zP

)−1

.

(3.14)

We have(
zP

[
1 0
0 A

]
+

[
0 0
0 1

])([
1 0
0 C

]
−

[
0 0
0 (1 + A2)−1

]
zP

)

=
[
0 0
0 C

]
+ zP

[
1 0
0 AC

]
−
[
0 0
0 (1 + A2)−1

]
zP − zP

[
0 0
0 C

]
zP

=
[
0 0
0 C

]
+ zP

([
1 0
0 AC

]
− 1

)
+
(

1 −
[
0 0
0 (1 + A2)−1

])
zP − zP

[
0 0
0 C

]
zP

=
[
0 0
0 C

]
− zP

[
0 0
0 (1 + A2)−1

]
+

[
1 0
0 AC

]
zP − zP

[
0 0
0 C

]
zP

=
([

1 0
0 A

]
− zP

[
0 0
0 1

])([
1 0
0 C

]
zP +

[
0 0
0 (1 + A2)−1

])
.

This is an identity between operators on H, in both cases a composition H → N ⊕
D(A) → H, and moreover the first factor on the left hand side and the second factor 
on the right hand side are invertible, from N ⊕ D(A) to H and from H to N ⊕ D(A)
respectively. We may pre- and post-multiply appropriately to obtain equation (3.14), but 
note that the equation is then only valid as an identity between operators on N ⊕D(A).
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On combining equations (3.1) and (3.14) we deduce that

M(z) =
[
−i 0
0 1 − iA

]([
1 0
0 C

]
zP +

[
0 0
0 (1 + A2)−1

])
×

([
1 0
0 C

]
−

[
0 0
0 (1 + A2)−1

]
zP

)−1 [−i 0
0 1 − iA

]−1

.

Since
[
−i 0
0 1 − iA

]−1

=
[
1 0
0 1 + A2

]−1 [
i 0
0 1 + iA

]

and [
1 0
0 1 + A2

]([
1 0
0 C

]
−
[
0 0
0 (1 + A2)−1

]
zP

)
=

[
1 0
0 A

]
−

[
0 0
0 1

]
zP ,

we deduce further that

M(z) =
[
−i 0
0 1 − iA

]([
1 0
0 C

]
zP +

[
0 0
0 (1 + A2)−1

])
×

([
1 0
0 A

]
−
[
0 0
0 1

]
zP

)−1 [
i 0
0 1 + iA

]
, (3.15)

which proves equation (3.10). It is straightforward to verify that

([
1 0
0 C

]
zP +

[
0 0
0 (1 + A2)−1

])([
1 0
0 A

]
−

[
0 0
0 1

]
zP

)−1

(3.16)

=
([

1 0
0 0

]
zP +

[
0 0
0 1

])([
1 0
0 A

]
−
[
0 0
0 1

]
zP

)−1

−
[
0 0
0 A(1 + A2)−1

]
.

(3.17)

Clearly
[
−i 0
0 1 − iA

] [
0 0
0 A(1 + A2)−1

] [
i 0
0 1 + iA

]
=

[
0 0
0 A

]
,

and so on suitably pre- and post-multiplying equation (3.16), we obtain equation (3.11).
To prove equation (3.12), check first that

([
1 0
0 A

]
− zP

[
0 0
0 1

])([
1 0
0 0

]
zP +

[
0 0
0 1

])
=

(
zP

[
1 0
0 0

]
+
[
0 0
0 1

]) ([
1 0
0 A

]
−

[
0 0
0 1

]
zP

)
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as operators on N ⊕D(A). It follows that

([
1 0
0 0

]
zP +

[
0 0
0 1

])([
1 0
0 A

]
−
[
0 0
0 1

]
zP

)−1

=

([
1 0
0 A

]
− zP

[
0 0
0 1

])−1 (
zP

[
1 0
0 0

]
+

[
0 0
0 1

])

as operators from H to N ⊕D(A). On combining this relation with equation (3.11) we 
derive the expression (3.12) for M(z)|N ⊕ D(A).

We now derive the identity (3.13). Let

D =
[
i 0
0 1 + iA

]

and consider z, w ∈ Πn. By equation (3.10)

M(z) = D∗W (z)D (3.18)

on N ⊕D(A), where

W (z) = R(z)S(z)−1 −
[
0 0
0 A(1 + A2)−1

]
(3.19)

and

R(z) =
[
1 0
0 0

]
zP +

[
0 0
0 1

]
, S(z) =

[
1 0
0 A

]
−
[
0 0
0 1

]
zP .

We have seen that S(z) is invertible for any z ∈ Πn, so that W (z) is a bounded operator 
on H. Clearly

M(z) −M(w)∗ = D∗ (R(z)S(z)−1 − S(w)∗−1R(w)∗
)
D

= D∗S(w)∗−1 (S(w)∗R(z) −R(w)∗S(z))S(z)−1D.

Here

S(w)∗R(z) −R(w)∗S(z) =
[
1 0
0 0

]
zP +

[
0 0
0 A

]
− w∗

P

[
0 0
0 1

]
−

(
w∗

P

[
1 0
0 0

]
+
[
0 0
0 A

]
−
[
0 0
0 1

]
zP

)
= zP − w∗

P .

Hence
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M(z) −M(w)∗ = D∗S(w)∗−1(zP − w∗
P )S(z)−1D,

which is equation (3.13). �
The next result shows that the matricial resolvent belongs not just to the operator 

Pick class, but to the smaller operator Loewner class.

Proposition 3.5. With the notation of Definition 3.3, there exists an analytic operator-
valued function F : Πn → L(H) such that for all z, w ∈ Πn,

M(z) −M(w)∗ = F (w)∗(z − w̄)PF (z) (3.20)

on H.

Proof. The identity (3.13) shows that such a relation holds on N ⊕ D(A); we must 
extend it to all of H. Write Pj as an operator matrix with respect to the decomposition 
H = N⊕M, as in equation (3.3). Then zP has the matricial expression (3.4). For z ∈ Πn

let

F �(z) =
([

1 0
0 A

]
−
[
0 0
0 1

]
zP

)−1 [
i 0
0 1 + iA

]
.

Then F �(z) is an operator from N ⊕D(A) to H, and we find that

F �(z) =
[

1 0
−zB∗ A− zY

]−1 [
i 0
0 1 + iA

]

=
[

i 0
i(A− zY )−1zB∗ (A− zY )−1(1 + iA)

]
: N ⊕D(A) → H.

Let

F (z) =
[

i 0
i(A− zY )−1zB∗ i + (A− zY )−1(1 + izY )

]
: N ⊕M → H. (3.21)

Since

(A− zY )−1(1 + iA) = i + (A− zY )−1(1 + izY )

on N ⊕D(A) and the right hand side of the last equation is a bounded operator on all 
of H, it is clear that, for every z ∈ Πn, F (z) is a continuous extension to H of F �(z) and 
is a bounded operator. Furthermore F is analytic on Πn.

By Proposition 3.4, equation (3.13), the relation (3.20) holds on the dense subspace 
N ⊕D(A) of H for every z, w ∈ Πn. Since the operators on both sides of equation (3.20)
are continuous on H, the equation holds throughout H. �
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Corollary 3.6. A matricial resolvent has a non-negative imaginary part at every point 
of Πn.

Proof. In the notation of Proposition 3.5, on choosing w = z in equation (3.20) and 
dividing by 2i we obtain the relation

ImM(z) = F (z)∗(Im zP )F (z)

on H. We have

Im zP =
∑
j

(Im zj)Pj ≥ 0,

and so ImM(z) ≥ 0 on H for all z ∈ Πn. �
Here is a concrete example of a matricial resolvent.

Example 3.7. The function

M(z) = 1
z1 + z2

[
2z1z2 i(z1 − z2)

−i(z1 − z2) −2

]
(3.22)

is the matricial resolvent corresponding to

H = C
2, N = M = C, A = 0 on C, P1 = 1

2

[
1 1
1 1

]
, P2 = 1 − P1.

4. Nevanlinna representations of type 4

In this section we derive a multivariable analog of the most general form of Nevanlinna 
representation for functions in the one-variable Pick class (Theorem 1.2). We start with a 
multivariable Herglotz theorem [2, Theorem 1.8]. We shall say (following G. Herglotz [12]) 
that an analytic operator-valued function F on Dn is a Herglotz function if ReF (λ) ≥ 0
for all λ ∈ D

n. For present purposes we need the following modification of the notion.

Definition 4.1. An analytic function F : Dn → L(K), where K is a Hilbert space, is a 
strong Herglotz function if, for every commuting n-tuple T = (T1, . . . , Tn) of operators 
on a Hilbert space and for 0 ≤ r < 1, ReF (rT ) ≥ 0.

In [2] these functions were called Fn-Herglotz functions. The class of strong Herglotz 
functions has also been called the Herglotz–Agler class (for example [15,7]). It is clear 
that every strong Herglotz function is a Herglotz function, and in the cases n = 1 and 2
the converse is also true [2].
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Theorem 4.2. Let K be a Hilbert space and let F : D
2 → L(K) be a strong Herglotz 

function such that F (0) = 1. There exist a Hilbert space H, an orthogonal decomposition 
P of H, an isometric linear operator V : K → H and a unitary operator U on H such 
that, for all λ ∈ D

n,

F (λ) = V ∗ 1 + UλP

1 − UλP
V. (4.1)

Conversely, every function F : D
n → L(K) expressible in the form (4.1) for some 

H, P , V and U with the stated properties is a strong Herglotz function and satisfies 
F (0) = 1.

Note that λP =
∑

j λjPj has operator norm at most ‖λ‖∞ < 1 for λ ∈ D
n, and hence 

equation (4.1) does define F as an analytic operator-valued function on Dn.
On specializing to scalar-valued functions in the n-variable Herglotz class we obtain 

the following consequence.

Corollary 4.3. Let f be a scalar-valued strong Herglotz function on Dn. There exists a 
Hilbert space H, a unitary operator L on H, an orthogonal decomposition P of H, a real 
number a and a vector v ∈ H such that, for all λ ∈ D

n,

f(λ) = −ia +
〈
(L− λP )−1(L + λP )v, v

〉
. (4.2)

Conversely, for any H, L, P , a and v with the properties described, equation (4.2) defines 
f as an n-variable strong Herglotz function.

Again, the right hand side of equation (4.2) is an analytic function of λ ∈ D
n since

(L− λP )−1 = L−1(1 − λPL
−1)−1

is a bounded operator and is analytic in λ.

Definition 4.4. A Nevanlinna representation of type 4 of a function h : Πn → C consists 
of an orthogonally decomposed Hilbert space H = N ⊕M, a self-adjoint densely defined 
operator A on M, an orthogonal decomposition P of H, a real number a and a vector 
v ∈ H such that

h(z) = a + 〈M(z)v, v〉 (4.3)

for all z ∈ Πn, where M(z) is the structured resolvent of A of type 4 corresponding to P

(given by the formula (3.1)).

We wish to convert Corollary 4.3 to a representation theorem for suitable analytic 
functions on Πn. The fact that the corollary only applies to strong Herglotz functions 
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results in representation theorems for a subclass of the Pick class Pn. Recall from the 
introduction:

Definition 4.5. The Loewner class Ln is the set of analytic functions h on Πn with 
the property that there exist n positive semi-definite functions A1, . . . , An on Πn × Πn, 
analytic in the first argument, such that

h(z) − h(w) =
n∑

j=1
(zj − wj)Aj(z, w)

for all z, w ∈ Πn.

A function h on Πn belongs to Ln if and only if it corresponds under conjugation by the 
Cayley transform to a function in the Schur–Agler class of the polydisc [4, Lemma 2.13]. 
Another characterization: h ∈ Ln if and only if, for every commuting n-tuple T of 
bounded operators with strictly positive imaginary parts, h(T ) has positive imaginary 
part.

We can now prove Theorem 1.9 from the introduction: a function h defined on Πn

has a Nevanlinna representation of type 4 if and only if h ∈ Ln.

Proof of Theorem 1.9. Let h ∈ Ln. Define an n-variable Herglotz function f : Dn → C

by

f(λ) = −ih(z) (4.4)

where

zj = i
1 + λj

1 − λj
for j = 1, . . . , n. (4.5)

When λ ∈ D
n the point z belongs to Πn, and so f(λ) is well defined, and since Imh(z) ≥ 0

we have Re f(λ) ≥ 0, so that f is indeed a Herglotz function. In fact f is even a strong 
Herglotz function: since h ∈ Ln, the function ϕ ∈ Sn corresponding to h lies in the 
Schur–Agler class of the polydisc, and so f = (1 + ϕ)/(1 − ϕ) is a strong Herglotz 
function.

By Corollary 4.3 there exist a real number a, a Hilbert space H, a vector v ∈ H, 
a unitary operator L on H and an orthogonal decomposition P on H such that, for all 
z ∈ Πn,

h(z) = if(λ) = a +
〈
i(L− λ)−1(L + λ)v, v

〉
= a +

〈
i[L− (z − i)(z + i)−1]−1[L + (z − i)(z + i)−1]v, v

〉
. (4.6)

Here and in the rest of this section z, λ are identified with the operators zP , λP on H, 
and in consequence the relation
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λ = z − i

z + i

is meaningful and valid.
For z ∈ Πn let

M(z) = i (L− λ)−1 (L + λ) = i

(
L− z − i

z + i

)−1 (
L + z − i

z + i

)
. (4.7)

Since L is unitary on H and λ ∈ D
n, the operator M(z) is bounded on H for every 

z ∈ Πn and, by equation (4.6), we have

h(z) = a + 〈M(z)v, v〉 (4.8)

for all z ∈ Π2. Theorem 1.9 will follow provided we can show that M(z) is given by 
equation (3.1) for a suitable self-adjoint operator A.

Observe that

M(z) = i((z + i)L− (z − i))−1((z + i)L + (z − i))

= i (z(L− 1) + i(L + 1))−1 (z(L + 1) + i(L− 1)) . (4.9)

We wish to take out a factor 1 − L from both factors in equation (4.9), but this may 
be impossible since 1 − L can have a nonzero kernel. Accordingly we decompose H into 
N ⊕M where N = ker(1 − L), M = N⊥. With respect to this decomposition we can 
write L as an operator matrix

L =
[
1 0
0 L0

]
,

where L0 is unitary and ker(1 − L0) = {0}. Substituting into equation (4.9) we have

M(z) = i

(
z

[
0 0
0 L0 − 1

]
+ i

[
2 0
0 L0 + 1

])−1 (
z

[
2 0
0 L0 + 1

]
+ i

[
0 0
0 L0 − 1

]
z

)

=
(
−z

[
0 0
0 1 − L0

]
+
[
2i 0
0 i(1 + L0)

])−1 (
z

[
2i 0
0 i(1 + L0)

]
+
[
0 0
0 1 − L0

])
(4.10)

Formally we may now write

M(z) =
[
− 1

2 i 0
0 (1 − L0)−1

](
−z

[
0 0
0 1

]
+
[
1 0
0 i 1+L0

1−L0

])−1

×
(
z

[
1 0
0 i 1+L0

]
+

[
0 0
0 1

])[
2i 0
0 1 − L

]
, (4.11)
1−L0 0
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but whereas equation (4.10) is a relation between bounded operators defined on all of H, 
equation (4.11) involves unbounded, partially defined operators and we must verify that 
the product of operators on the right hand side is meaningful.

Let

A = i
1 + L0

1 − L0
.

Since L0 is unitary on M and ker(1 − L0) = {0}, the operator A is self-adjoint and 
densely defined on M [21, Section 121]. The domain D(A) of A is the dense subspace 
ran(1 − L0) of M. It follows from the definition of A that

(1 − L0)−1 = 1
2 (1 − iA), (4.12)

which is an equation between bijective operators from D(A) to M. Likewise

1 + L0 = −2iA(1 − iA)−1 : M → D(A) (4.13)

are bounded operators.
Let us continue the calculation from the first factor on the right hand side of equation 

(4.10). Since ker(1 − L0) = {0}, the right hand side of the relation

−z

[
0 0
0 1 − L0

]
+
[
2i 0
0 i(1 + L0)

]
=

(
−z

[
0 0
0 1

]
+
[
1 0
0 A

])[
2i 0
0 1 − L0

]

comprises a bijective map from H to N ⊕D(A) followed by a bijection from N ⊕D(A)
to H (recall the equation (3.7)). We may therefore take inverses in the equation to obtain

(
−z

[
0 0
0 1 − L0

]
+

[
2i 0
0 i(1 + L0)

])−1

=
[
−1

2 i 0
0 (1 − L0)−1

]([
1 0
0 A

]
− z

[
0 0
0 1

])−1

=
[
−1

2 i 0
0 1

2 (1 − iA)

]([
1 0
0 A

]
− z

[
0 0
0 1

])−1

(4.14)

as operators on N ⊕D(A).
Similar reasoning applies to the equation

z

[
2i 0
0 i(1 + L0)

]
+

[
0 0
0 1 − L0

]

=
(
z

[
1 0
0 A

]
+

[
0 0
0 1

])[
2i 0
0 1 − L0

]

=
(
z

[
1 0
0 A

]
+

[
0 0
0 1

])[
−1

2 i 0
1

]−1

; (4.15)
0 2 (1 − iA)
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it is valid as an equation between operators on H. The right hand side comprises an 
operator from H to N ⊕ D(A) followed by an operator from N ⊕ D(A) to H, and so 
both sides of the equation denote an operator on H.

On combining equations (4.10), (4.14) and (4.15) we obtain

M(z) =
[
− 1

2 i 0
0 1

2 (1 − iA)

]([
1 0
0 A

]
− z

[
0 0
0 1

])−1

×
(
z

[
1 0
0 A

]
+

[
0 0
0 1

])[
−1

2 i 0
0 1

2 (1 − iA)

]−1

.

Pre-multiply this equation by 2 and post-multiply by 1
2 to deduce that M(z) is indeed 

the structured resolvent of A of type 4 corresponding to P , as defined in equation (3.1). 
Thus the formula (4.8) is a Nevanlinna representation of h of type 4.

Conversely, let h ∈ Ln have a type 4 representation (4.3). By Proposition 3.5 there 
exists an analytic operator-valued function F : Πn → L(H) such that, for all z, w ∈ Πn,

M(z) −M(w)∗ = F (w)∗(z − w̄)PF (z) (4.16)

on H. Hence

h(z) − h(w) = 〈(M(z) −M(w)∗)v, v〉
= 〈F (w)∗(z − w̄)PF (z)v, v〉

=
n∑

j=1
(zj − w̄j)Aj(z, w)

for all z, w ∈ Πn, where

Aj(z, w) = 〈PjF (z)v, F (w)v〉 .

The Aj are clearly positive semidefinite on Πn, and hence h belongs to the Loewner 
class Ln. �
5. Nevanlinna representations of types 3, 2 and 1

Nevanlinna representations of type 4 have the virtue of being general for functions 
in Ln, but they are undeniably cumbersome. In this section we shall show that there are 
three simpler representation formulae, corresponding to increasingly stringent growth 
conditions on h ∈ Ln.

In Nevanlinna’s one-variable representation formula of Theorem 1.2,

h(z) = a + bz +
∫ 1 + tz dμ(t), (5.1)
t− z



3026 J. Agler et al. / Journal of Functional Analysis 270 (2016) 3000–3046
it may be the case for a particular h ∈ P that the bz term is absent. The analogous 
situation in two variables is that the space N in a type 4 representation may be zero. 
Equivalently, in the corresponding Herglotz representation, the unitary operator L does 
not have 1 as an eigenvalue. This suggests the following notion.

Definition 5.1. A Nevanlinna representation of type 3 of a function h on Πn consists of a 
Hilbert space H, a self-adjoint densely defined operator A on H, a positive decomposition 
Y of H, a real number a and a vector v ∈ H such that, for all z ∈ Πn,

h(z) = a +
〈
(1 − iA)(A− zY )−1(1 + zY A)(1 − iA)−1v, v

〉
. (5.2)

Thus h has a type 3 representation if h(z) = a + 〈M(z)v, v〉 where M(z) is the 
structured resolvent of A of type 3 corresponding to Y , as given by equation (2.3).

In [5] the authors derived a somewhat simpler representation which can also be re-
garded as an analog of the case b = 0 of Nevanlinna’s one-variable formula (5.1).

Definition 5.2. A Nevanlinna representation of type 2 of a function h on Πn consists of a 
Hilbert space H, a self-adjoint densely defined operator A on H, a positive decomposition 
Y of H, a real number a and a vector α ∈ H such that, for all z ∈ Πn

h(z) = a +
〈
(A− zY )−1α, α

〉
. (5.3)

This means of course that, for all z ∈ Πn,

h(z) = a + 〈M(z)α, α〉

where M(z) is the structured resolvent of A of type 2 corresponding to Y (compare 
equation (2.1)).

We wish to understand the relationship between type 3 and type 2 representations.

Proposition 5.3. If h ∈ Pn has a type 2 representation then h has a type 3 representation. 
Conversely, if h ∈ Pn has a type 3 representation as in equation (5.2) with the additional 
property that v ∈ D(A) then h has a type 2 representation.

Proof. Suppose that h ∈ Pn has the type 2 representation

h(z) = a0 +
〈
(A− zY )−1α, α

〉
for some a0 ∈ R, positive decomposition Y and α ∈ H. We must show that h has a 
representation of the form (5.2) for some a ∈ R and v ∈ H. By Proposition 2.6, it 
suffices to find a ∈ R and v ∈ D(A) such that

h(z) = a +
〈
(1 − iA)

{
(A− zY )−1 −A(1 + A2)−1} (1 + iA)v, v

〉
for all z ∈ Πn.
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To this end, let C = A(1 + A2)−1 and let

a = a0 + 〈Cα,α〉 . (5.4)

Since 1 + iA is invertible on H and ran(1 + iA)−1 ⊂ D(A) we may define

v = (1 + iA)−1α ∈ D(A). (5.5)

Then

h(z) = a0 +
〈
(A− zY )−1α, α

〉
= a− 〈Cα,α〉 +

〈
(A− zY )−1α, α

〉
= a +

〈{
(A− zY )−1 − C

}
(1 + iA)v, (1 + iA)v

〉
= a +

〈
(1 − iA)

{
(A− zY )−1 − C

}
(1 + iA)v, v

〉
as required. Thus h has a type 3 representation.

Conversely, let h have a type 3 representation (5.2) such that v ∈ D(A), that is

h(z) = a + 〈M(z)v, v〉

where a ∈ R and M is the structured resolvent of A of type 3 corresponding to Y , as 
in equation (2.3). Since v ∈ D(A) we may define the vector α def= (1 + iA)v ∈ H, and 
furthermore, by Proposition 2.6,

h(z) = a +
〈
(1 − iA)

{
(A− zY )−1 − C

}
(1 + iA)v, v

〉
= a +

〈{
(A− zY )−1 − C

}
α, α

〉
= a− 〈Cα,α〉 +

〈
(A− zY )−1α, α

〉
= a0 +

〈
(A− zY )−1α, α

〉
,

where a0 ∈ R is given by equation (5.4). Thus h has a representation of type 2. �
A special case of a type 2 representation occurs when the constant term a in equation 

(5.3) is 0. In one variable, this corresponds to Nevanlinna’s characterization of the Cauchy 
transforms of positive finite measures on R. Accordingly we define a type 1 representation
of h ∈ Ln to be the special case of a type 2 representation of h in which a = 0 in 
equation (5.3).

Definition 5.4. An analytic function h on Πn has a Nevanlinna representation of type 1 if 
there exist a Hilbert space H, a densely defined self-adjoint operator A on H, a positive 
decomposition Y of H and a vector α ∈ H such that, for all z ∈ Πn,

h(z) =
〈
(A− zY )−1α, α

〉
. (5.6)
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A representation of type 1 is obviously a representation of type 2. The following 
proposition is an immediate corollary of Proposition 5.3.

Proposition 5.5. A function h ∈ Ln has a type 1 representation if and only if h has a 
type 3 representation as in equation (5.2) with the additional properties that v ∈ D(A)
and

a−
〈
A(1 + A2)−1α, α

〉
= 0.

For consistency with our earlier terminology for structured resolvents and represen-
tations we should have to define a structured resolvent of type 1 to be the same as a 
structured resolvent of type 2. We refrain from making such a confusing definition.

We conclude this section by giving examples of the four types of Nevanlinna repre-
sentation in two variables.

Example 5.6. (1) The formula

h(z) = − 1
z1 + z2

=
〈
(0 − zY )−1v, v

〉
C
,

where Y = (1
2 , 

1
2 ) and v = 1/

√
2, exhibits a representation of type 1, with A = 0.

(2) Likewise

h(z) = 1 − 1
z1 + z2

= 1 +
〈
(0 − zY )−1v, v

〉
C

is a representation of type 2.

(3) Let

h(z) =

⎧⎪⎨
⎪⎩

1
1 + z1z2

(
z1 − z2 + iz2(1 + z2

1)√
z1z2

)
if z1z2 �= −1

1
2 (z1 + z2) if z1z2 = −1

(5.7)

where we take the branch of the square root that is analytic in C \ [0, ∞) with range Π. 
We claim that h ∈ P2 and that h has the type 3 representation

h(z) = 〈M(z)v, v〉L2(R) , (5.8)

where M(z) is the structured resolvent of type 3 given in Example 2.11 and v(t) =
1/

√
π(1 + t2). To see this, let h be temporarily defined by equation (5.8). Since v is an 

even function in L2(R), equation (2.12) tells us that
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h(z) =
∞∫

−∞

t(1 + z1z2) + (1 − it)(itz1 + z2)
π(t2 − z1z2)(1 + t2) dt.

Since the denominator is an even function of t, the integrals of all the odd powers of t
in the numerator vanish, and we have, provided z1z2 �= −1,

h(z) = 2
π

∞∫
0

z2 + t2z1

(t2 − z1z2)(1 + t2) dt

= 2
π

∞∫
0

z2(1 + z2
1)

1 + z1z2

1
t2 − z1z2

+ z1 − z2

1 + z1z2

1
1 + t2

dt.

Now, for w ∈ Π,

∞∫
0

dt
t2 − w2 = iπ

2w,

and so we find that h is indeed given by equation (5.7) in the case that z1z2 �= −1. When 
z1z2 = −1 we have

h(z) = 2
π

∞∫
0

z2 + z1t
2

(1 + t2)2 dt

= 2
π

∞∫
0

z1

1 + t2
+ z2 − z1

(1 + t2)2 dt

= 1
2 (z1 + z2).

Thus equation (5.8) is a type 3 representation of the function h given by equation (5.7). 
This function is constant and equal to i on the diagonal z1 = z2.

(4) The function

h(z) = z1z2

z1 + z2
= −

(
− 1
z1

− 1
z2

)−1

clearly belongs to P2. It has the representation of type 4

h(z) = 〈M(z)v, v〉
C2

where M(z) is the matricial resolvent given in Example 3.7 and

v = 1√
2

(
1
0

)
.
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We claim that each of the above representations is of the simplest available type for 
the function in question; for example, the function h in part (4) does not have a Nevan-
linna representation of type 3. To prove this claim (which we shall do in Example 8.2
below) we need characterizations of the types of functions – the subject of the next two 
sections.

6. Asymptotic behavior and types of representations

In this section we shall give function-theoretic conditions for a function in Ln to have 
a representation of a given type. These conditions will be in terms of the asymptotic 
behavior of the function at ∞.

Every function in Ln has a type 4 representation, by Theorem 1.9. Let us characterize 
the functions that possess a type 3 representation. We denote by χ the vector (1, . . . , 1)
of ones in Cn. The following statement contains Theorem 1.8.

Theorem 6.1. The following three conditions are equivalent for a function h ∈ Ln.

(1) The function h has a Nevanlinna representation of type 3;
(2)

lim inf
s→∞

1
s

Im h(isχ) = 0; (6.1)

(3)

lim
s→∞

1
s

Im h(isχ) = 0. (6.2)

Proof. (1)⇒(3) Suppose that h has a Nevanlinna representation of type 3:

h(z) = a +
〈
(1 − iA)(A− zY )−1(1 + zY A)(1 − iA)−1v, v

〉
(6.3)

for suitable a ∈ R, H, A, Y and v ∈ H. Since

(isχ)Y =
∑
j

isYj = is

we have

h(isχ) = a +
〈
(1 − iA)(A− is)−1(1 + isA)(1 − iA)−1v, v

〉
.

Let ν be the scalar spectral measure for A corresponding to the vector v ∈ H. By the 
Spectral Theorem
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h(isχ) = a +
∫

(1 − it)(t− is)−1(1 + ist)(1 − it)−1 dν(t)

= a +
∫ 1 + ist

t− is
dν(t).

Since

Im 1 + ist

t− is
= s(1 + t2)

s2 + t2
,

we have

1
s

Im h(isχ) =
∫ 1 + t2

s2 + t2
dν(t).

The integrand decreases monotonically to 0 as s → ∞ and so, by the Monotone Conver-
gence Theorem, equation (6.2) holds.

(3)⇒(2) is trivial.
(2)⇒(1) Now suppose that h ∈ Ln and

lim inf
s→∞

1
s

Im h(isχ) = 0.

By Theorem 1.9, h has a Nevanlinna representation of type 4: that is, there exist a, H, 
N ⊂ H, operators A, Y on N⊥ and a vector v ∈ H with the properties described in 
Definition 5.1 such that

h(z) = a + 〈M(z)v, v〉

for all z ∈ Πn, where

M(z) =
[
−i 0
0 1 − iA

]([
1 0
0 A

]
− zP

[
0 0
0 1

])−1

×
(
zP

[
1 0
0 A

]
+
[
0 0
0 1

])[
−i 0
0 1 − iA

]−1

. (6.4)

Thus, for s > 0, since once again (isχ)P = is,

M(isχ) =
[
−i 0
0 1 − iA

] [
1 0
0 (A− is)−1

] [
is 0
0 1 + isA

] [
i 0
0 (1 − iA)−1

]

=
[
is 0
0 (1 − iA)(A− is)−1(1 + isA)(1 − iA)−1

]
.

Let the projections of v onto N , N⊥ be v1, v2 respectively. Then
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h(isχ) = a + 〈M(isχ)v, v〉
= a + is ‖v1‖2 +

〈
(1 − iA)(A− is)−1(1 + isA)(1 − iA)−1v2, v2

〉
and therefore

1
s

Im h(isχ) = ‖v1‖2 + 1
s

Im
〈
(1 − iA)(A− is)−1(1 + isA)(1 − iA)−1v2, v2

〉
≥ ‖v1‖2

by Corollary 2.7. Hence

0 = lim inf
s→∞

1
s

Im h(isχ)

≥ ‖v1‖2
.

It follows that v1 = 0.
Let the compression of the projection Pj to N⊥ be Yj : then Y = (Y1, . . . , Yn) is a 

positive decomposition of N⊥, and the compression of zP to N⊥ is zY . By Remark 3.2
the (2, 2) block M22(z) in M(z) is

M22(z) = (1 − iA)(A− zY )−1(1 + zY A)(1 − iA)−1.

Since v1 = 0 it follows that

h(z) = a + 〈M(z)v, v〉
= a + 〈M22(z)v2, v2〉
= a +

〈
(1 − iA)(A− zY )−1(1 + zY A)(1 − iA)−1v2, v2

〉
,

which is the desired type 3 representation of h. Hence (2)⇒(1). �
In [7] it is shown that condition (3) in the above theorem is also a necessary and 

sufficient condition that −ih have a Πn-impedance-conservative realization.
Type 2 representations were characterized by the following theorem in [5] in the case 

of two variables. The following result, which contains Theorem 1.7, shows that the result 
holds generally.

Theorem 6.2. The following three conditions are equivalent for a function h ∈ Ln.

(1) The function h has a Nevanlinna representation of type 2;
(2)

lim inf
s→∞

s Im h(isχ) < ∞; (6.5)
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(3)

lim
s→∞

s Im h(isχ) < ∞. (6.6)

Proof. (1)⇒(3) Suppose that h has the type 2 representation h(z) = a +
〈
(A− zY )−1v, v

〉
for a suitable real a, self-adjoint A, positive decomposition Y and vector v. Let ν be the 
scalar spectral measure for A corresponding to the vector v. Then, for s > 0, A −(isχ)Y =
A − is and so

s Im h(isχ) = s Im
∫ dν(t)

t− is

=
∫

s2 dν(t)
t2 + s2 .

The integrand is positive and increases monotonically to 1 as s → ∞. Hence, by the 
Dominated Convergence Theorem

lim
s→∞

s Im h(isχ) = ν(R) = ‖v‖2 < ∞.

Hence (1)⇒(3).
(3)⇒(2) is trivial.
(2)⇒(1) Suppose (2) holds. A fortiori,

lim inf
s→∞

1
s

Im h(isχ) = 0.

By Theorem 6.1 h has a type 3 representation (6.3) for suitable a ∈ R, H, A, Y and 
v ∈ H. Let ν be the scalar spectral measure for A corresponding to the vector v. Then 
for s > 0

s Im h(isχ) = s Im
∫ 1 + ist

t− is
dν(t)

=
∫

s2(1 + t2)
t2 + s2 dν(t).

As s → ∞ the integrand increases monotonically to 1 + t2. Condition (2) now implies 
that ∫

1 + t2 dν(t) < ∞.

It follows that v ∈ D(A). Hence, by Proposition 5.3, h has a representation of type 2. �
In [5] we proved Theorem 6.2 for n = 2 using a different approach from the present 

one.
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From this theorem the characterization of type 1 representations follows just as in the 
one-variable case. We obtain a strengthening of Theorem 1.6.

Theorem 6.3. The following three conditions are equivalent for a function h ∈ Ln.

(1) The function h has a Nevanlinna representation of type 1;
(2)

lim inf
s→∞

s |h(isχ)| < ∞;

(3)

lim
s→∞

s |h(isχ)| < ∞. (6.7)

Proof. We follow Lax’s treatment [16] of the one-variable Nevanlinna theorem.
(1)⇒(3) Suppose that h has a type 1 representation as in equation (5.6) for some H, 

A, Y and v. Then

h(isχ) =
〈
(A− is)−1α, α

〉
=

〈
(A + is)(A2 + s2)−1α, α

〉
,

and so

Re sh(isχ) =
〈
sA(A2 + s2)−1α, α

〉
, Im sh(isχ) =

〈
s2(A2 + s2)−1α, α

〉
.

Let ν be the scalar spectral measure for A corresponding to the vector α ∈ H. Then

Re sh(isχ) =
∫

st

t2 + s2 dν(t), Im sh(isχ) =
∫

s2

t2 + s2 dν(t).

The integrand in the first integral tends pointwise in t to 0 as s → ∞, and by the 
inequality of the means it is no greater than 1

2 ; thus the integral tends to 0 as s → ∞
by the Dominated Convergence Theorem. The integrand in the second integral increases 
monotonically to 1 as s → ∞. Thus

Re sh(isχ) → 0, Im sh(isχ) → ‖α‖2 as s → ∞.

Hence the inequality (6.7) holds. Thus (1)⇒(3).
(3)⇒(2) is trivial.
(2)⇒(1) Suppose that

lim inf s |h(isχ)| < ∞. (6.8)

s→∞
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As

lim inf
s→∞

s Im h(isχ) ≤ lim inf
s→∞

s |h(isχ)| < ∞,

h satisfies condition (6.5) of Theorem 6.2. Therefore h has a representation of type 2, 
say

h(z) = a +
〈
(A− zY )−1α, α

〉
.

It remains to show that a = 0. The inequality (6.8) implies that there exists a sequence 
(sj) tending to ∞ such that h(isjχ) → 0. But

Reh(isjχ) = a +
〈
A(A2 + s2

n)−1α, α
〉
→ a.

Hence a = 0 and h has a type 1 representation. This establishes (2)⇒(1). �
7. Carapoints at infinity

How can we recognize from function-theoretic properties whether a given function in 
the n-variable Loewner class admits a Nevanlinna representation of a given type? In the 
preceding section it was shown that it depends on growth along a single ray through the 
origin. In this section we describe the notion of carapoints at infinity for a function in 
the Pick class, and in the next section we shall give succinct criteria for the four types 
in the language of carapoints.

Carapoints (though not with this nomenclature) were first introduced by Carathéo-
dory in 1929 [9] for a function ϕ on the unit disc, as a hypothesis in the “Julia–Carathéo-
dory Lemma”. For any τ ∈ T, a function ϕ in the Schur class satisfies the Carathéodory 
condition at τ if

lim inf
λ→τ

1 − |ϕ(λ)|
1 − |λ| < ∞. (7.1)

The notion has been generalized to other domains by many authors. Consider domains 
U ⊂ C

n and V ⊂ C
m and an analytic function ϕ from U to the closure of V . The 

function ϕ is said to satisfy Carathéodory’s condition at τ ∈ ∂U if

lim inf
λ→τ

dist(ϕ(λ), ∂V )
dist(λ, ∂U) < ∞.

Thus, for example, when U = Πn, V = Π, a function h ∈ Pn satisfies Carathéodory’s 
condition at the point x ∈ R

n if

lim inf
z→x

Im h(z)
< ∞. (7.2)
minj Im zj
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This definition works well for finite points in ∂U , but for our present purpose we need to 
consider points at infinity in the boundaries of Πn and Π. We shall introduce a variant 
of Carathéodory’s condition for the class Pn with the aid of the Cayley transform

z = i
1 + λ

1 − λ
, λ = z − i

z + i
, (7.3)

which furnishes a conformal map between D and Π, and hence a biholomorphic map 
between Dn and Πn by coordinatewise action. We obtain a one-to-one correspondence 
between Sn \ {1} and Pn via the formulae

h(z) = i
1 + ϕ(λ)
1 − ϕ(λ) , ϕ(λ) = h(z) − i

h(z) + i
(7.4)

where 1 is the constant function equal to 1 and λ, z are related by equations (7.3). For 
ϕ ∈ Sn we define τ ∈ T

n to be a carapoint of ϕ if

lim inf
λ→τ

1 − |ϕ(λ)|
1 − ‖λ‖∞

< ∞. (7.5)

We can now extend the notion of carapoints to points at infinity. The point (∞, . . . , ∞)
in the boundary of Πn corresponds to the point χ in the closed unit polydisc; as in the 
last section, χ denotes the point (1, . . . , 1) ∈ C

n.

Definition 7.1. Let h be a function in the Pick class Pn with associated function ϕ in the 
Schur class Sn given by equation (7.4). Let τ ∈ T

n, x ∈ (R ∪∞)n be related by

xj = i
1 + τj
1 − τj

for j = 1, . . . , n. (7.6)

We say that x is a carapoint for h if τ is a carapoint for ϕ. We say that h has a carapoint 
at ∞ if h has a carapoint at (∞, . . . , ∞), that is, if ϕ has a carapoint at χ.

Note that, for a point x ∈ R
n, to say that x is a carapoint of h is not the same 

as saying that h satisfies the Carathéodory condition (7.2) at x. Consider the function 
h(z) = −1/z1 in Pn. Clearly h does not satisfy Carathéodory’s condition at 0 ∈ R

n. 
However, the function ϕ in Sn corresponding to h is ϕ(λ) = −λ1, which does have a 
carapoint at −χ, the point in Tn corresponding to 0 ∈ R

n. Hence h has a carapoint at 0.
We shall be mainly concerned with carapoints at 0 and ∞. The following observation 

will help us identify them. For any h ∈ Pn we define h� ∈ Pn by

h�(z) = h

(
− 1
z1

, . . . ,− 1
zn

)
for z ∈ Πn.

For ϕ ∈ Sn we define
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ϕ�(λ) = ϕ(−λ).

If h and ϕ are corresponding functions, as in equations (7.4), then so are h� and ϕ�.

Proposition 7.2. The following conditions are equivalent for a function h ∈ Pn.

(1) ∞ is a carapoint for h;
(2) 0 is a carapoint for h�;
(3)

lim inf
y→0+

Im h�(iyχ)
y|h�(iyχ) + i|2 < ∞;

(4)

lim inf
y→∞

y Im h(iyχ)
|h(iyχ) + i|2 < ∞.

Proof. (1)⇔(2) Since −χ ∈ T
n corresponds under the Cayley transform to 0 ∈ R

n, we 
have

∞ is a carapoint of h ⇔ χ is a carapoint of ϕ

⇔ −χ is a carapoint of ϕ�

⇔ 0 is a carapoint of h�.

(2)⇔(3) A consequence of the n-variable Julia–Carathéodory Theorem [13,1], is that 
τ ∈ T

n is a carapoint of ϕ ∈ Sn if and only if

lim inf
r→1−

1 − |ϕ(rτ)|
1 − r

< ∞.

It follows that

0 is a carapoint for h� ⇔ −χ is a carapoint for ϕ�

⇔ lim inf
r→1−

1 − |ϕ�(−rχ)|
1 − r

< ∞

⇔ lim inf
r→1−

1 − |ϕ�(−r,−r)|2
1 − r2 < ∞.

Let iy ∈ Π be the Cayley transform of −r ∈ (−1, 0), so that y → 0+ as r → 1−. In view 
of the identity

1 − |ϕ(λ)|2
1 − ‖λ‖2

∞
=

(
max

j

|zj + i|2
Im zj

)
Im h(z)

|h(z) + i|2 (7.7)

we have
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0 is a carapoint for h� ⇔ lim inf
y→0+

|iy + i|2
y

Im h�(iyχ)
|h�(iyχ) + i|2 < ∞

⇔ lim inf
y→0+

Im h�(iyχ)
y|h�(iyχ) + i|2 < ∞.

(3)⇔(4) Replace y by 1/y. �
Corollary 7.3. If f ∈ Pn satisfies Carathéodory’s condition

lim inf
z→x

Im f(z)
Im z

< ∞ (7.8)

at x ∈ R
n then x is a carapoint for f . If

lim inf
y→∞

y Im f(iyχ) < ∞

then ∞ is a carapoint for f .

Proof. Let h = f � ∈ Pn. Clearly |h�(z) + i| ≥ 1 for all z ∈ Πn. If the condition (7.8)
holds for x = 0 then

lim inf
z→0

Im h�(z)
|h�(z) + i|2 minj Im zj

≤ lim inf
z→0

Im h�(z)
minj Im zj

< ∞

and hence, by (2)⇔(3) of Proposition 7.2, 0 is a carapoint for h� = f . The case of a 
general x ∈ R

n follows by translation. �
If h ∈ Pn has a carapoint at x ∈ (R ∪∞)n then it has a value at x in a natural sense. 

If ϕ ∈ Sn has a carapoint at τ ∈ T
n, then by [13] there exists a unimodular constant 

ϕ(τ) such that

lim
λ

nt→τ

ϕ(λ) = ϕ(τ). (7.9)

Here λ nt→ τ means that λ tends nontangentially to τ in Dn.

Definition 7.4. If h ∈ Pn has a carapoint at x ∈ (R ∪∞)n then we define

h(x) =

⎧⎪⎨
⎪⎩

∞ if ϕ(τ) = 1

i
1 + ϕ(τ)
1 − ϕ(τ) if ϕ(τ) �= 1

where τ ∈ T
n corresponds to x as in equation (7.6).

Thus h(∞) ∈ R ∪ {∞} when ∞ is a carapoint of h.
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In the example h(z) = −1/z1, since the value of ϕ(−λ) at −χ is 1, we have h(0) = ∞.
Although the value of h(∞) is defined in terms of the Schur class function ϕ, it can 

be expressed more directly in terms of h.

Proposition 7.5. If ∞ is a carapoint of h then

h(∞) = h�(0) = lim
z

nt→∞
h(z). (7.10)

Here we say that z nt→ ∞ if z → (∞, ..., ∞) in the set {z ∈ Πn : (−1/z1, . . . ,
−1/zn) ∈ S} for some set S ⊂ Πn that approaches 0 nontangentially, or equivalently, if 
z → (∞, . . . , ∞) in a set on which ‖z‖∞/ minj Im zj is bounded.

Proof of Proposition 7.5. Clearly

h(∞) = ∞ ⇔ ϕ(χ) = 1 ⇔ ϕ�(−χ) = 1 ⇔ h�(0) = ∞.

Similarly, for ξ ∈ R,

h(∞) = ξ ⇔ ϕ(χ) = ξ − i

ξ + i
⇔ ϕ�(−χ) = ξ − i

ξ + i
⇔ h�(0) = ξ.

Thus, whether h(∞) is finite or infinite, h(∞) = h�(0). Equation (7.10) follows from the 
relation (7.9). �
8. Types of functions in the Loewner class

In this section we shall show that the type of a function h ∈ Ln is entirely determined 
by whether or not ∞ is a carapoint of h and by the value of h(∞). Let us make precise 
the notion of the type of a function in Ln.

Definition 8.1. A function h ∈ Ln is of type 1 if it has a Nevanlinna representation of 
type 1. For n = 2, 3 or 4 we say that h is of type n if h has a Nevanlinna representation 
of type n but has no representation of type n − 1.

Clearly every function in Ln is of exactly one of the types 1 to 4. We shall now prove 
Theorem 1.11. Recall that it states the following, for any function h ∈ Ln.

(1) h is of type 1 if and only if ∞ is a carapoint of h and h(∞) = 0;
(2) h is of type 2 if and only if ∞ is a carapoint of h and h(∞) ∈ R \ {0};
(3) h is of type 3 if and only if ∞ is not a carapoint of h;
(4) h is of type 4 if and only if ∞ is a carapoint of h and h(∞) = ∞.

Proof of Theorem 1.11. (2) Let h ∈ Ln have a type 2 representation h(z) = a +〈
(A− zY )−1v, v

〉
with a �= 0. By Theorem 6.2,
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lim inf
y→∞

y Im h(iyχ) < ∞.

By Corollary 7.3, ∞ is a carapoint for h. Furthermore, by Proposition 7.5

h(∞) = lim
y→∞

h(iyχ) = a ∈ R \ {0}.

Conversely, suppose that ∞ is a carapoint for h and h(∞) ∈ R \ {0}. By Proposi-
tion 7.2

lim inf
y→∞

y Im h(iyχ)
|h(iyχ) + i|2 < ∞

while by Proposition 7.5

lim
y→∞

|h(iyχ) + i|2 = h(∞)2 + 1 ∈ (1,∞).

On combining these two limits we find that

lim inf
y→∞

y Im h(iyχ) < ∞,

and so, by Theorem 6.2, h has a representation of type 2. Since h(∞) �= 0 it is clear that 
h does not have a representation of type 1. Thus (2) holds.

A trivial modification of the above argument proves that (1) is also true.

(4) Let h be of type 4. Then h has no type 3 representation, and so, by Theorem 6.1, 
there exists δ > 0 and a sequence (sn) of positive numbers tending to ∞ such that

1
sn

Im h(isnχ) ≥ δ > 0.

Let yn = 1/sn; then −1/(isn) = iyn, and we have

yn Im h�(iynχ) ≥ δ for all n ≥ 1. (8.1)

Since |h�(z) + i| > Im h�(z) for all z, we have

lim inf
z→0

Im h�(z)
|h�(z) + i|2 minj Im zj

≤ lim inf
z→0

1
Im h�(z) minj Im zj

≤ lim inf
n→∞

1
yn Im h�(iynχ)

≤ 1/δ.

Hence (0, 0) is a carapoint of h�, and so ∞ is a carapoint of h.
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Since yn → 0 it follows from the inequality (8.1) that Imh�(iynχ) → ∞, hence that 
h�(0) = ∞, and therefore that h(∞) = ∞.

Conversely, suppose that ∞ is a carapoint of h and that h(∞) = ∞. We shall show 
that

lim
s→∞

1
s

Im h(isχ) �= 0, (8.2)

and it will follow from Theorem 6.1 that h does not have a representation of type 3, that 
is, h is of type 4.

Let ϕ ∈ Sn correspond to h and let r ∈ (0, 1) correspond to is ∈ Π. Then

1
s

Im h(isχ) = 1 − r

1 + r

1 − |ϕ(rχ)|2
|1 − ϕ(rχ)|2

= 1 − |ϕ(rχ)|2
1 − r2

(1 − r)2

|1 − ϕ(rχ)|2 . (8.3)

By hypothesis, χ is a carapoint for ϕ and ϕ(χ) = 1. By definition of carapoint,

lim inf
z→χ

1 − |ϕ(z)|2
1 − ‖z‖2

∞
= α < ∞ for all s > 0.

The n-variable Julia–Carathéodory Lemma (see [13,1]) now tells us that α > 0 and

|1 − ϕ(rχ)|2
|1 − r|2 ≤ α

1 − |ϕ(rχ)|2
1 − r2 for all r ∈ (0, 1). (8.4)

On combining equations (8.3) and (8.4) we obtain

1
s

Im h(isχ) ≥ 1
α

> 0 for all s > 0.

Thus the relation (8.2) is true, and so, by Theorem 6.1, h is of type 4.
Statement (3) now follows easily. The function h ∈ Ln is of type 3 if and only if it is 

not of types 1, 2 or 4, hence if and only if it is not the case that ∞ is a carapoint for h
and h(∞) ∈ R ∪ {∞}, hence if and only if ∞ is not a carapoint of h. �

We now show that there are functions in the Pick class P2 of all four types. We return 
to Example 5.6 and show that the functions in P2 which we presented there are indeed 
of the stated types.

Example 8.2. (1) The function

h(z) = − 1 =
〈
(0 − zY )−1v, v

〉
C
,

z1 + z2
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where Y = 1
2 and v = 1/

√
2, is obviously of type 1. Let us nevertheless check that ∞ is a 

carapoint of h and h(∞) = 0, in accordance with Theorem 1.11. We have h(iy, iy) = 1
2 i/y

and hence

lim inf
y→0+

y Im h(iy, iy) = 1
2 .

Thus ∞ is a carapoint for h by Proposition 7.2. Moreover h(iy, iy) → 0 as y → ∞, and 
therefore h(∞) = 0.

(2) It is immediate that the function 1 + h, with h as in (1), is of type 2, and that ∞ is 
a carapoint of 1 + h with value 1.

(3) We have seen that the function

h(z) =

⎧⎪⎨
⎪⎩

1
1 + z1z2

(
z1 − z2 + iz2(1 + z2

1)√
z1z2

)
if z1z2 �= −1

1
2 (z1 + z2) if z1z2 = −1

(8.5)

has a representation of type 3. To show that h is indeed of type 3 we must prove that 
∞ is not a carapoint of h.

For all y > 0 we have h(iy, iy) = i. Hence

lim inf
y→∞

y Im h(iy, iy)
|h(iy, iy) + i|2 = lim inf

y→∞
y

4 = ∞.

By Proposition 7.2, ∞ is not a carapoint for h. Thus h is of type 3.

(4) The function

h(z) = z1z2

z1 + z2
= −1

/(
− 1
z1

− 1
z2

)

is clearly in P2. We gave a type 4 representation of h in Example 5.6. We claim that ∞
is a carapoint of h. We have h(iy, iy) = 1

2 iy, and thus

lim inf
y→∞

y Im h(iy, iy)
|h(iy, iy) + i|2 = lim inf

y→∞

1
2y

2

|12 iy + i|2
= 2.

Hence ∞ is a carapoint for h. Furthermore h(iy, iy) = 1
2 iy → ∞ as y → ∞, and so 

h(∞) = ∞. Thus h is of type 4.

Another example of a function of type 4 is h(z) = √
z1z2.
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9. Rates of growth in the Loewner class

The Nevanlinna representation formulae give rise to growth estimates for functions in 
the n-variable Loewner class. It turns out that growth is mild, both at infinity and close 
to the real axis. Even though the type of a function is determined by its growth on the 
single ray {iyχ : y > 0}, in turn the growth of the function on the entire polyhalf-plane
is constrained by its type.

Consider first the one-variable case. If h is the Cauchy transform of a finite positive 
measure μ then

|h(z)| ≤
∫ dμ(t)

|t− z| ≤
∫ dμ(t)

Im z
= C

Im z

for some C > 0 and for all z ∈ Π. For a general function h in the Pick class, by 
Nevanlinna’s representation (Theorem 1.2) there exist a ∈ R, b ≥ 0 and a finite positive 
measure μ on R such that, for all z ∈ Π,

h(z) = a + bz +
∫ 1 + tz

t− z
dμ(t)

= a + bz +
∫ 1 + z2

t− z
+ z dμ(t)

and therefore

|h(z)| ≤ |a| + b|z| +
(

1 + |z|2
Im z

+ |z|
)
μ(R)

≤ C

(
1 + |z| + 1 + |z|2

Im z

)

for some C > 0.
Similar estimates hold for the Loewner class.

Proposition 9.1. For any function h ∈ Ln there exists a non-negative number C such 
that, for all z ∈ Πn,

|h(z)| ≤ C

(
1 + ‖z‖1 + 1 + ‖z‖2

1
minj Im zj

)
. (9.1)

For any function h ∈ Ln of type 2 there exists a non-negative number C such that, 
for all z ∈ Πn,

|h(z)| ≤ C

(
1 + 1

)
. (9.2)
minj Im zj
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For any function h ∈ Ln of type 1 there exists a non-negative number C such that, 
for all z ∈ Πn,

|h(z)| ≤ C

minj Im zj
. (9.3)

Proof. Let h ∈ Ln. Let N , M, A, P , a and v be as in Theorem 1.9, so that

h(z) = a + 〈M(z)v, v〉

for all z ∈ Πn, where M(z) is the matricial resolvent given by equation (3.1). By Propo-
sition 3.1 we have, for all z ∈ Πn,

‖M(z)‖ ≤ (1 +
√

10‖z‖1)
(

1 + 1 +
√

2‖z‖1

minj Im zj

)

≤ 1 +
√

10‖z‖1 + B
1 + ‖z‖1 + ‖z‖2

1
minj Im zj

for a suitable choice of B ≥ 0. Hence

|h(z)| ≤ |a| + ‖M(z)‖‖v‖2

≤ |a| +
(

1 +
√

10‖z‖1 + B
1 + ‖z‖1 + ‖z‖2

1
minj Im zj

)
‖v‖2.

Since

1 + ‖z‖1 + ‖z‖2
1 ≤ 3

2(1 + ‖z1‖2),

we have

|h(z)| ≤ C

(
1 + ‖z‖1 + 1 + ‖z‖2

1
minj Im zj

)

for some choice of C > 0 and for all z ∈ Πn. Thus the estimate (9.1) holds.
Similarly, the estimates (9.2) and (9.3) follow easily from the simple resolvent estimate 

(2.1). �
10. Structured resolvent identities

To conclude the paper we point out that there are structured analogs of the classical 
resolvent identity

(A− z)−1 − (A− w)−1 = (z − w)(A− z)−1(A− w)−1

for any z, w in the resolvent set of an operator A.
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Proposition 10.1. Let A be a densely defined self-adjoint operator on a Hilbert space H
and let Y be a positive decomposition of H. For all z, w ∈ Πn

(A− zY )−1 − (A− wY )−1 = (A− zY )−1(z − w)Y (A− wY )−1. (10.1)

If M(z) is the structured resolvent of type 3 corresponding to A and Y then

M(z) −M(w) |D(A) = (1 − iA)(A− zY )−1(z − w)Y (A− wY )−1(1 + iA). (10.2)

Proof. The first of these identities is immediate. For the second, by equation (2.8),

M(z) −M(w) |D(A) = (1 − iA)
(
(A− zY )−1 − (A− wY )−1) (1 + iA),

and the identity (10.2) follows from equation (10.1). �
Proposition 10.2. Let H be the orthogonal direct sum of Hilbert spaces N ,M, let A be a 
densely defined self-adjoint operator on M with domain D(A) and let P be an orthogonal 
decomposition of H. For every z, w ∈ Πn, as operators on N ⊕D(A),

M(z) −M(w) =
[
−i 0
0 1 − iA

]([
1 0
0 A

]
− zP

[
0 1
0 0

])−1

(z − w)P

×
([

1 0
0 A

]
−

[
0 0
0 1

]
wP

)−1 [
i 0
0 1 + iA

]
. (10.3)

Proof. Let

D =
[
i 0
0 1 + iA

]
: N ⊕D(A) → H.

By equations (3.11) and (3.12) we have

M(z) −M(w) |N ⊕ D(A)

= D∗

{([
1 0
0 A

]
− zP

[
0 1
0 0

])−1 (
zP

[
0 0
0 1

]
+
[
0 0
0 1

])

−
([

1 0
0 0

]
wP +

[
0 0
0 1

])([
1 0
0 A

]
−

[
0 0
0 1

]
wP

)−1
}
D

= D∗
([

1 0
0 A

]
− zP

[
0 1
0 0

])−1
{(

zP

[
0 0
0 1

]
+

[
0 0
0 1

])([
1 0
0 A

]
−

[
0 0
0 1

]
wP

)

−
([

1 0
0 A

]
− zP

[
0 1
0 0

])([
1 0
0 0

]
wP +

[
0 0
0 1

])}

×
([

1 0
0 A

]
−
[
0 0
0 1

]
wP

)−1

D.



3046 J. Agler et al. / Journal of Functional Analysis 270 (2016) 3000–3046
The term in braces in the last expression reduces to (z − w)P , and the identity (10.3)
follows. �
Corollary 10.3. With the assumptions of Proposition 10.2, there exists an analytic func-
tion F : Πn → L(H) such that, for all z, w ∈ Πn,

M(z) −M(w) = F (z̄)∗(z − w)PF (w). (10.4)

The statement follows from Proposition 10.2 just as Proposition 3.5 follows from 
Proposition 3.4. If F is defined by equation (3.21) then F (z) is a bounded operator 
on H, F is analytic on Πn and Proposition 10.2 states that equation (10.4) holds on 
N ⊕D(A). It follows by continuity that equation (10.4) holds on H.
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