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Abstract: Bubbles are fundamental to our daily life and have wide applications such as in the 

chemical and petrochemical industry, pharmaceutical engineering, mineral processing and 

colloids engineering. This paper reviews the existing theoretical and experimental bubble 

studies, with a special focus on the dynamics of triple line and the influence of nanoparticles 

on the bubble growth and departure process. Nanoparticles are found to influence 

significantly the effective interfacial properties and the dynamics of triple line, whose effects 

are dependent on the particle morphology and their interaction with the substrate. While the 

Young-Laplace equation is widely applied to predict the bubble shape, its application is 

limited under highly non-equilibrium conditions. Using gold nanoparticle as an example, new 

experimental study is conducted to reveal the particle concentration influence on the 

behaviour of triple line and bubble dynamics. A new method is developed to predict the 

bubble shape when the interfacial equilibrium conditions cannot be met, such as during the 

oscillation period. The method is used to calculate the pressure difference between the gas 

and liquid phase, which is shown to oscillate across the liquid-gas interface and is responsible 

for the interface fluctuation. The comparison of the theoretical study with the experimental 

data shows a very good agreement, which suggests its potential application to predict bubble 

shape during non-equilibrium conditions. 

Keywords: Dynamics of bubble growth, Dynamics of triple line, Contact angle, Liquid-gas 

surface tension, Solid surface tensions, Gold nanoparticles, Nanofluids, Young-Laplace 

equation, Wettability, Bubble fluctuation, Oscillation.  
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1. Introduction 

Nanofluids, functional nanoparticle dispersions, have been recently employed to enhance 

thermal management of miniaturized devices, ink jet printing, automobile industries, 

chemical and power plants, pharmaceutical industries and biomedical engineering. In many 

studies, nanoparticles have been observed to be able to modify thermal conductivity [1-2], 

viscosity [2-3], liquid-gas [4-6] and solid surface tensions [7] of the base fluid. The 

modification of the effective thermophysical properties influences the pressure drop and heat 

transfer coefficient in macro/microchannels [2]. The modification of liquid-gas and solid 

surface tensions would change the force balance at the triple line and consequently affect its 

dynamic behavior [7-8] including  the radius of triple line [9] and the bubble contact angle [5, 

10], which has significant effects on the bubble growth and departure process [11-16], as well 

as the boiling heat transfer [6, 17-24]. 

This paper reviews the existing experimental, analytical and numerical approaches, 

associated with the behavior of triple line and the dynamics of bubble growth and departure 

process, with and without the presence of nanoparticles. In addition, the Young-Laplace 

equation is modified to increase the accuracy of the bubble shape prediction when the 

equilibrium between gas and liquid is relatively weak, i.e., during the bubble fluctuation 

period when the shear stress is relatively high or in the departure period where the bubble is 

stretched upwards. A new method is developed to calculate the pressure difference between 

gas and liquid phases which is observed to oscillate across the liquid-gas interface, along the 

perimeter of bubble. In addition, the effects of gold nanoparticles on the liquid-gas surface 

tension, the dynamics of triple line, and the bubble growth and departure process are 

investigated experimentally.  

2. Overview of the behaviour of triple line 

The liquid-gas, lg , solid-liquid, sl , and solid-gas, sg  surface tensions are the major 

effective forces at the triple line, as shown schematically in Figure 1 (a, c) for bubbles and 

droplets respectively. The Young equation, slsge  coslg , demonstrates the force 

balance at the triple line traditionally, where e  is the equilibrium contact angle. The Young 

equation is associated with several restrictions and has never been experimentally verified for 

axisymmetric droplets. Its application is limited to the situations where the substrate is ideal 

[25-26] and the contact angle is size independent [27-28]. The Young equation cannot be 

applied directly except for long droplets [27]. The left side of the Young equation is size 

dependent, while the right side of the equation contains physical properties which make the 
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equation inconsistent. The force balance between liquid-gas and solid surface tensions has a 

significant role on the behavior of triple line and consequently the interfacial shapes of 

bubbles and droplets. 

The liquid-gas surface tension can be found for most of materials however the solid-

liquid and solid-gas surface tensions are not easily available. Several independent approaches 

have been employed to calculate the solid surface tensions [26, 29], such as Berthelot’s 

combining rule [30], 2
lg )( sgsl   , the modified Berthelot’s rule [31], 

2
lglglg )(exp2 sgsgsgsl   , the alternative formulation [32-33], 

))(1(2 2
lglglg sgosgsgsl   , and the equation of state formulation [34-

35], 
sg

sg

sl 




lg

2
lg

015.01

)(




 , where 22 )/(000115.0 mJm  and 22 )/(0001057.0 mJmo  . 

These given correlations have been compared against each other for some materials and the 

relative agreement has been reported [29]. The solid surface tensions has a key impact on the 

behavior of triple line while the liquid-gas surface tension is supposed to be fixed in a certain 

range, such as the applications of nanofluids in printing conductive wires. The radius of triple 

line was observed to expand towards the gas phase as the solid surface tensions increases 

[14].  

In general, the characteristics of the substrate, the force balance at the triple line (see 

Figure 1a, c) and the gravity are the main factors influencing the behavior of triple line of 

bubbles and droplets. The behavior of triple line can be studied using either the droplet or the 

bubble method. In the case of droplets, the gravity has a positive impact on the spreading of 

the triple line, in favour of the reduction of contact angle. As an evidence of that, the behavior 

of triple line would change tremendously with varying droplet volumes [27-28]. The droplet 

contact angle can not be a unique criterion to measure the wettability, or the effects of 

nanoparticles. Similarly it has been clearly observed that the droplet contact angle varies 

under different gravitational accelerations based on the parabolic flight experiments [36] and 

drop tower tests [37]. It has been observed that droplet contact angle increases as the effect of 

gravity decreases. As the gravitational acceleration decreases to zero, the droplet shape 

gradually changes to a spherical cap. The droplet contact angle under zero gravity has been 

defined as the asymptotic contact angle,s , [7, 27]. The asymptotic contact angle is only 

dependent on the interactions between gas, liquid and solid at the triple line, and it is a unique 

criterion to measure the surface wettability or the effects of nanoparticles on surface 
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wettability. The asymptotic contact angle can be obtained experimentally and theoretically. 

Recently, a new analytical expression has been 

developed, s
ss

ed
V

r 
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3/1

2
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)cos1)(cos2(
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
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

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
 , to calculate the asymptotic 

contact angle,s , [7, 27], where  dr  and V  are the radius of the triple line and the droplet 

volume respectively. Using the asymptotic contact angle, the solid surface tensions can be 

calculated by having liquid-gas surface tension and the modified form of the Young equation, 

slsgs  coslg  
[7], which describes the force balance between liquid-gas and solid 

surface tensions under zero gravity condition. 

Another approach has been employed to explain the variation of droplet contact angle 

with volume, based on the concept of line tension, which has a significant role on adjusting 

the effect of droplet size on contact angle. In this method, the Young-equation has been 

modified as, slsge
dr


 coslg , by considering the effect of line tension, . The 

value of line tension has been obtained experimentally [26, 38] and theoretically [39, 40]. 

The line tension operates to expand the length of triple line when it is negative and vice versa 

[38]. Most probably, the line tension would be zero in no-gravity condition, since the droplet 

contact angle, liquid-gas and solid surface tensions are constant while the radius of triple line 

would change by volume. It has been reported that (a) the line tension decreases as the 

wettability increases and likely vanishes at supper wetting conditions [41], (b) the line tension 

is a function of liquid material [41, 42, 43, 44], and (c) the determination of line tension is 

still involved with large uncertainties, including both the magnitude and the sign of the line 

tension [26, 45]. The accurate measurement of line tension is difficult due to a number of 

issues, including (a) the value of line tension is small, (b) the lack of accurate measurement, 

(c) the possible contamination in triple line, (d) the lack of accurate modelling, and (e) the 

effective parameters on line tension is not well recognized yet. So, further studies are needed 

to provide a better understanding of line tension and the parameters that affect its magnitude 

and sign. Most of existing studies have been focused on obtaining the value and sign of line 

tension theoretically and experimentally while it is equally important to understand that how 

effective is the line tension on different phenomena such as cavitation, boiling, bubble 

formation and etc. It is also essential to understand the effects of gas phase, solid phase, 

system pressure and temperature, and the presence of surfactant and nanoparticles on the line 
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tension. 

On the cases where the effect of gravity is strong enough to dominate the behavior of 

triple line based on the droplet method [12], the bubble formation method with very low gas 

flow rate could be an alternative approach to investigate the behaviour of triple line [11]. For 

the bubble formation method, the gravity acts as a buoyancy force and pushes the bubble 

upwards, so the triple line can move more freely with less restriction. As a result, the effects 

of nanoparticles can be observed much easily. For instance, the pinning behavior of the triple 

line inside a gold nanofluid has been observed, for the first time, by using the bubble growth 

method (see Figure 2) [9]. The pinning behavior of the triple line affects subsequently the 

dynamics of triple line, and the bubble growth and departure process [12]. 

The characteristics of solid surface [46] such as the homogeneity, roughness and material 

[47] of substrate have been observed to influence the triple line [48-52] and contact angle 

hysteresis [24, 53] significantly. The effect of surface roughness on equilibrium contact angle 

has been considered by Wenzel and Cassie-Baxter equations [48-51]. The conditions of its 

validity [54], the uncertainties of the estimation [55-56] and the use of correct form of these 

equations have been discussed in details in reference [57]. 

The behavior of gas-liquid interface and triple line have been discussed under both 

stationary conditions, considering surface tension and gravity forces [26-27, 135], and 

dynamic conditions by modelling appropriately the momentum and moment of momentum 

balances at the interphase. The details of interfacial transport phenomena can be seen in 

reference [135]. Many existing investigations are concerned about the effects of the substrate, 

liquid-gas-solid materials and gravity on the behavior of triple line. However, the effects of 

roughness, the interactions of gas-liquid-solid at the triple line, the modelling of force balance 

at the triple line, and the prediction of dynamics of triple line are still challenging and no 

exact expression exists to consider all these factors at the same time. As a result, the accurate 

prediction of fluid flow is not possible yet at the vicinity of triple line where gas, liquid and 

solid meat each other. The modelling of dynamics of triple line would enable us to predict the 

evolution of bubble formation [11], drop impact [47], initiation of nucleation and boiling heat 

transfer [17-18] phenomena. 

3. Effect of nanoparticles on the behavior of triple line 

The affinity of liquids for solid substrates is referred to the wettability of the liquid [25]. 

Liquids with weak affinities for a solid substrate will collect themselves into spherical shape 

while those with high affinities for the solid surface will form films to maximize the liquid-



 7 

solid contact area. For a given droplet volume, the droplet contact angle decreases with the 

expansion of radius of triple line. The behavior of triple line such as the radius of triple line 

and contact angle depends on the force balance between liquid-gas and solid surface tensions 

at the triple line (see Figure 1). Nanoparticles have significant roles on liquid-gas [4-6], solid 

surface tensions [7] and the force balance at the triple line, affecting its equilibrium and 

dynamic behaviors [9-10]. 

It was revealed that the substrate, the concentration and size of bismuth telluride 

nanoparticles (2.5 nm, 10.4 nm) have great influences on the behavior of triple line. The 

droplet contact angle was found to increase with the nanoparticle concentration for a given 

droplet volume. As the nanofluid concentration increased further, the droplet contact angle 

started decreasing. In contrast to the contact angle, the liquid-gas surface tension of bismuth 

telluride nanofluid showed an opposite trend [4]. More than 50% reduction in the liquid-gas 

surface tension was observed for a 2.5 nm bismuth telluride nanofluid. The accumulation and 

assembly of nanoparticles at the liquid-gas interface was assumed to be responsible for the 

dependence of liquid-gas surface tension on the nanoparticle concentration. More 

nanoparticles were driven to the liquid-gas interface region as the concentration of bismuth 

telluride nanoparticles increased in the bulk liquid. The nanoparticles were bound at the 

interface [58]. The liquid-gas surface tension continued to decrease due to the electrostatic 

repulsion and a lower surface energy of the effective interface containing nanoparticle-water, 

nanoparticle-air and air-water surfaces compared with the original air-water interface. The 

smaller nanoparticles were observed to be more effective in modifying the behavior of the 

triple line [4]. The influence of nanoparticles on the liquid-gas surface tension was shown to 

be dependent on particle materials. For example, the effect of  aluminum and alumina 

nanoparticles on the liquid-gas surface tension [5-6] were found to be negligible or weak.  

In addition, different triple line dynamics were observed in the presence of nanoparticles. 

For example, the evaporation and spreading of aluminum-ethanol nanofluid on a hydrophobic 

Teflon-AF coated substrate showed that nanoparticles at the vicinity of the triple line could 

enhance the wetting speed even at low particle concentrations [5], i.e. smaller than 1 % by 

weight. In another study, the evaporation and dewetting behavior of ethanol-titanium oxide 

nanofluid droplet on top of PTFE (1m  thick PTFE layer on silicon wafer substrate) were 

investigated [20]. The triple line was shown to display a stick-slip behavior while continuous 

movement of the triple line was observed for the evaporation of pure ethanol droplet on 

PTFE. The stick-slip behavior of the triple line was attributed to the deposited nanoparticles 
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or the increase of viscosity in the triple region due to high local nanoparticle concentrations. 

In a separated study, the evaporating droplets containing nanoparticles were studied 

theoretically based on the lubrication theory, by deriving a system of equations that govern 

the film thickness and concentration of nanoparticles [21].  

The effect of particle size on the pinning behavior of evaporating droplets (5 l  droplet 

volume and 0.5 v% concentration nanofluid) was investigated [59], using 2 nm Au, 30 nm 

CuO, 11 nm and 47 nm Al2O3 nanoparticles. The particle size was observed to have more 

effects on the dryout stain pattern than the temperature of the heating surface. The smaller 

particles resulted in a relatively wider edge accumulation and more uniform central 

deposition, whereas larger nanoparticles produced a narrower and greater deposition of 

particles at the edge. The scenario is similar to the dried coffee droplets, where the dispersed 

solids were observed to migrate to the edge of the droplet, forming a solid ring. The strong 

liquid evaporation in the triple region would draw liquid from the interior as a result of the 

capillary flow, which resulted in an outward flow that carried dispersed particles to the edge 

of the triple line. It was also observed that the pattern and the thickness of the deposited 

nanoparticles could be controlled by the speed of the evaporation [60-61].  

Clearly the deposition and subsequent forming nanoparticle layers is a key factor 

controlling the behavior of triple line. It has been shown that the number of layers of 

nanoparticles (i.e., thickness) decreased in a stepwise pattern towards the triple line edge (see 

Figure 1b). The pattern of nanoparticle distribution at the triple line was influenced by many 

factors including nanoparticles materials and morphology, particle concentration, 

nanoparticle surface charge, solid-liquid-gas materials and film depth in the triple region [62-

63]. In one study, the rate of spreading of the nanofluid film was shown to be a function of 

the nanoparticle concentration and the oil drop volume. It was observed that the speed of the 

inner contact line increased with nanoparticle concentration and decreased with the reduction 

of drop volume, which is associated with an increase in the capillary pressure [137]. A few 

theoretical studies have been conducted to explain the dynamics of the triple line in the 

presence of nanoparticles [138]. It has been shown theoretically that nanoparticles could 

spread the triple line to a distance of 20-50 times of the particle diameter through a structural 

disjoining pressure due to the self-ordering of particles in a confined wedge [64]. However, 

the structural disjoining force only becomes significant at relatively high particle 

concentrations, i.e. over 20 v%. The layering phenomenon has demonstrated in details in 

reference [140]. Obviously, the distribution of nanoparticles in the triple line region has an 
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important role in controlling the behavior of triple line and the gas-liquid-solid interactions. 

Many of the reported studies were concerned about the effects of the concentration and 

characteristics of nanoparticles on the layering phenomenon, disjoining pressure, distribution 

of nanoparticles in triple region, liquid-gas and solid surface tensions. Most of these studies 

were attempted to explain the effects of nanoparticles on the behavior of triple line in one 

way or another, but none of them could explain satisfactorily why and how. In order to 

understand how nanoparticles can be effective, it is essential to understand the detailed 

interactions of nanoparticles in the liquid, and their interactions with the solid and gaseous 

phases. While most of these studies were based on the droplet method, the influence of 

nanoparticles on the behaviour of triple lines and the dynamics of bubbles have been recently 

studied. Certain nanoparticles have been found to modify significantly the triple line and 

bubble dynamics, which cannot be described by the classical Young equation, as reviewed 

below.  

4. Dynamics of bubble growth 

The formation of bubbles has significant roles in chemical engineering, chemical process 

industry, petrochemical industry, mineral processing, multiphase flow and boiling heat 

transfer phenomenon. A large number of experiential and numerical work have been 

conducted, and a number of influencing factors have been illustrated. The majority of 

existing studies on the bubble formation have been focused on the effects of the substrate and 

the diameter of the orifice [ 15, 74, 80, 82-83, 88-90], volume of gas chamber [89-90, 69-77], 

gas flow rate [74, 88-90], materials and wettability [74, 88, 75-77], and detailed dynamics of 

triple line and bubble growth [13-14], as briefly reviewed below.  

In most of these applications, bubble departure volume is an important factor that is 

dependent on the dynamics of triple line and the bubble growth and bubble departure process. 

Most of the bubble studies have been conducted on either needles or capillary tubes [11-13] 

and very few studies have used substrate nozzles [13-14, 65, 66]. For substrate nozzles, the 

radius of triple line is not restricted and can be expanded freely, whereas the radius of triple 

line on needle nozzles is limited to the outer edge of the needles. Recently, experimental 

investigations have been conducted to study the behavior of the triple line, bubble growth and 

bubble departure inside water, silver, gold and alumina nanofluids from stainless steel 

orifices. It has been observed that nanoparticles play a significant role on the behavior of 

triple line and consequently they have a great potential to modify the dynamics of bubble 

growth and departure process [9, 11-12, 14]. A similar experiment has been conducted to 
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study bubble growth inside de-ionized water from 0.5 mm, 0.12 mm and 0.054 mm diameter 

orifices made by Plexiglas. In this experiment, air was injected using a syringe pump into 

liquid [66]. As the syringe pump operated in stepwise modes and could not produce a 

constant and uniform gas flow without a volume chamber. For both cases, the Young-Laplace 

equation with conventional method could not predict the bubble shapes. To solve the issue, 

the curve fitting method was employed to predict the bubble shape by dividing the bubble in 

two parts, i.e., bubble cap as a spherical cap and the main body as a circle. A similar 

technique was used to define the equation of circumference, passing through the generic point 

and its neighbouring points [67]. In another attempt, fitting an elliptic equation was used to 

solve the Young-Laplace equation and to predict the bubble shape [68]. It is clear that the 

prediction of bubble shape is still challenging and more studies are required. 

The dynamics of bubble growth also depend on the chamber volume and the uniformity 

of the gas flow rate. In the case of large chamber volumes, the possible fluctuation of gas 

pressure could be damped and the mode of gas flow rate into the chamber and bubble would 

not be the same. For instance, syringe pumps need a chamber to damp the fluctuations in gas 

pressure as they operate in a stepwise mode. As chamber volume increases, the fluid flows 

more smoothly and steadily into the bubble. Large chamber volumes are recommended for 

systems with high pressure fluctuations [69]. The dependency of dynamics of bubble growth 

to chamber volume was observed to decrease as the radius of chamber approaches to that of 

the orifice [70]. The departure bubble volume was found to be independent of the chamber 

volume when its value and the gas flow rates were small [71-72]. Similarly, the departure 

bubble volume was observed to increase with the capacitance number,cN , and gas flow rate 

at  25cN , where holcc pDgVN 24  , with cV  the chamber volume, oD  the orifice 

diameter and hp the hydrostatic pressure. For 25cN  the bubble volume was independent 

of gas flow rate [73].  

The variation of gas pressure with time has been measured by locating a pressure sensor 

between the pump and the orifice. It was observed the gas pressure increased to the maximum 

at the very beginning of bubble growth and then reduced continuously until the departure 

point [67]. At the maximum gas pressure, the buoyancy and hydrostatic forces were 

negligible, since the bubble size was so small. The downward component of surface tension 

force, odr  sin2 lg , is nearly identical with the upward Laplace pressure force,
 

2lg2
d

o
r

R



, 

at the apex when bubble volume was small (see equation 5). In fact, the difference between 
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gas and liquid pressures at the apex depends on the radius of curvature at apex, oR . At t=0 

the liquid-gas interface nearly is flat, thus the radius of curvature at the apex is very big, 

therefore the Laplace pressure and gas pressure are very small. Similarly, the normal 

component of surface tension force is small because contact angle is very big. As long as the 

buoyancy force is negligible, bubble shape grows spherically and the radius of curvature 

decreases with increasing of bubble volume. Consequently, the Laplace pressure and gas 

pressure keep increasing. As the buoyancy force starts becoming effective, the bubble begins 

to be lifted upward and the radius of curvature at apex starts increasing, therefore the Laplace 

pressure and gas pressure keep decreasing monotonically to the departure point. It has been 

also reported that the volume of departure increases with orifice diameter for given 

conditions [74, 66-67]. The Laplace pressure and hydrostatic forces are small at the departure 

point, and the main effective forces are buoyancy and normal component of surface tension 

(see equation 5). The buoyancy force and departure volume are nearly proportional to the 

normal component of the surface tension.  

The material and wettability of nozzles were found to have strong effects on the 

dynamics of bubble growth and bubble departure volume [75-65]. Surface wettability was 

observed to have the most important influence on bubble size by varying the surface energy 

of the substrate with controlled deposition of an ultra-thin layer of a plasma polymer [74]. 

Similar results were obtained by solving the Young-Laplace equation to predict the bubble 

volume on top of Brass and Teflon substrates for two modes of bubble volume evolution, i.e. 

the formation at the orifice rim (hydrophilic surface) and the spreading of the bubble base 

(hydrophobic surface) [65]. It was also reported that the air bubble volume inside water 

increased more than half as the equilibrium contact angle increased from 68o to 110o [75-77]. 

It was demonstrated that the liquid sometimes moved into the nozzle during the waiting 

period, because of high surface wettability. As a result, it affected the dynamics of bubble 

growth and the departure bubble volume. The movement of liquid into the nozzle depends on 

the nozzle size, wall wettability, gas flow rate, waiting time and gas pressure [78]. It was 

observed that (a) the bubble departure volume from Teflon tubes with hydrophobic wall was 

smaller than that from glass tubes with hydrophilic wall, (b) the bubble expansion started 

sooner from glass tubes, (c) the triple line expanded on Teflon tubes while the triple line 

always held at the edge of glass tubes, and (d) the liquid incursion into the tubes occurred 

only for glass tubes [78]. Since the glass tube had higher wettability, the liquid could go into 

the tube. As a result, the motion of the gas-liquid interface started from the inside of the 



 12 

tubes. Therefore, it had higher Laplace pressure as the radius of curvature of liquid-gas 

interface inside the glass tube was smaller. So, the gas pressure was lower from the glass tube 

at the beginning of the bubble formation. That’s why the bubble expansion was started sooner 

and more gas could penetrate into the liquid and produce bigger bubbles. For the given 

conditions, the liquid could not go into the Teflon tubes due to its hydrophobic surface, so the 

radius of curvature of liquid-gas interface was higher from Teflon tubes at the beginning of 

bubble formation.    

The liquid viscosity affects the viscous force and apparently it would change the 

dynamics of bubble growth and departure volume. The effect of viscosity on bubble size is 

very difficult to detect directly, because as the working fluid varies, many other properties 

such as the liquid-gas surface tension, solid surface tensions changes, which affects the 

behaviour of triple line and bubble departure volume. The effect of viscosity could not be 

isolated alone, which  might be one of the reasons responsible for the contradictions on the 

effect of liquid viscosity. In the literature, it was reported that the departure bubble size (a) 

increased with liquid viscosity [79-80], (b) had a very weak connection with the viscosity 

[81], (c) was independent of liquid viscosity [82-84, 71] and (d) was independent of the 

liquid viscosity for low viscosities while at higher viscosities, the departure bubble size 

increased with viscosity, but at small flow rates [85]. 

It should be noted that the effect of liquid-gas surface tension could be different in the 

top and bottom sides of a bubble. For instance, in the bottom part  of bubble close to the 

orifice, the bubble surface is pulled toward the orifice. Consequently it pushes and holds the 

bubble on the substrate, delaying bubble departure. On the other hand, the top part  of the 

bubble keeps stretching and generating new surface. The top part of bubble is normally a 

spherical cap and  usually expand relatively faster while the liquid-gas surface tension is 

comparatively lower or the gas flow rate is fairly higher. The effects of gas flow rate and 

surface tension on the bubble departure volume has been the subject of some debates for pure 

fluids and nanofluids. It has been reported that at relatively low gas flow rates, the bubble 

volume increased with the increase of the surface tension, radius of orifice and was 

independent of gas flow rate. Though the bubble volume remained fairly independent of the 

flow rate, the bubble frequency increased as the gas flow rate increased gradually [74].  For 

high gas flow rates, however, the bubble volume became proportional to the gas flow rate and 

independent of surface tension [72]. Either viscous or inertia forces determined the bubble 

volume departure [86]. When gas flow rate was relatively slow, the effect of dynamic gas 

pressure was negligible, and the bubble departure volume was proportional to the normal 
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component of surface tension. For high gas flow rates, the effects of normal component of 

surface tension could be negligible comparing with dynamic gas pressure, viscous and 

inertial forces against bubble expansion. Besides, for a given time, gas has more chance to 

penetrate into liquid, as gas flow rate increases.  

The radius of the orifice is another important factor affecting bubble formation. The 

radius of the orifice not only will change the departure volume but also it will modify the 

waiting, bubble formation and total bubble formation times. Here the waiting time is the 

duration between the end of the previous bubble departure and the beginning of the rapid 

formation of the current bubble. The bubble formation time starts from the beginning of the 

rapid formation of the bubble and ends at the departure point. The total bubble formation time 

is summation of the waiting and bubble formation times. For a given condition, the total 

bubble formation period increases with the nozzle diameter, so the bubble frequency 

decreases. In fact, for a given gas flow rate, bubble departure volume increases with the 

increase of nozzle diameter, so the bubble frequency should be decreased. However, the 

waiting and bubble formation times do not show a monotonic trend with the nozzle diameter 

(see Figure 3) [11]. This is due to the inter-play between the capillary pressure and gas 

dynamic pressure. The gas dynamic pressure for a given gas flow rate is proportional to 4/1 r  

while the capillary pressure is proportional tor/1 . As the radius of nozzle decreases, the 

effect of dynamic pressure increases faster than the capillary pressure, therefore the waiting 

time for smaller nozzle (r= 0.055 mm) is lower. Once the radius of the nozzle increases to 

0.255 mm, the capillary pressure decreases; but the reduction of the dynamic pressure is more 

and consequently the waiting time increases. For the biggest nozzle size (0.42 mm), the 

effects of capillary pressure and dynamic pressure are not significant and waiting time 

decreases again. Similar behavior was observed for different gas flow rates. 

The effect of partial confinement on the dynamics of bubble growth and departure 

volume has been studied numerically and experimentally by injecting gas through an orifice 

into cylindrical tube or conical space, filled with viscous liquid. The departure bubble volume 

was affected by the angle of the cone or the radius of the cylinder. The results confirmed that 

the departure volume of the vertically elongated bubbles were significantly larger than those 

of the round bubbles, generated in the absence of walls, where the radius of cylindrical was 

smaller than six times of the radius of the orifice, or when the angle of the cone was smaller 

than 30o [87]. As bubble grew inside a cylinder or a cone filled with liquid, the surrounded 

liquid moves downward and eventually, the liquid filled the gap after the bubble departure. 
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As the angle of the cone or the radius of cylinder decreases, the downward liquid flow 

becomes more difficult especially in viscous fluids which produces an extra force against 

bubble expansion in the vertical direction. Therefore a higher buoyancy forces or bigger 

bubble volume was required to depart the bubble from the orifice. The buoyancy, viscous 

drag and viscous friction with the wall have a key role on dynamics of bubble growth and 

bubble departure volume. 

As shortly reviewed above, there are many factors that can influence bubble formation 

significantly, with still many existing contradictory results. Clearly more investigations are 

still needed to reveal clearly the effect of gas flow rate, inertial force, size and geometry of 

orifices, dynamics of bubble growth and departure process, inside homogenous liquids and 

nanofluids. The modelling of bubble growth, especially under high non-equilibrium 

conditions still presents as a big challenge, as reviewed below.    

4.1 Prediction of bubble shape 

A number of methods have been developed to predict bubble shape, which can be 

generally categorized as the mechanical approach or the fluid mechanics approach.  The 

former approach is focused on the mechanical balance across the interface, and a classical 

example is the Young-Laplace method, which as reviewed above, has the problems in 

modeling bubbles under high non-equilibrium conditions. The latter method deals with the 

momentum equations from both fluids with applied boundary conditions across the interface. 

The fluid approach ranges from semi-analytical and simplified analytical methods to full 

numerical simulation based on computational fluid dynamics (CFD) approaches. A short 

review is developed below  to explain the nature, weakness and references of these methods 

for further elaborations. 

The Young-Laplace equation, 









21

11

RR
p , represents a mechanical equilibrium 

condition between two fluids separated by an interface. Where 1R  and 2R  are the radii of 

curvatures, i.e. 1R  is the radius of curvature describing the latitude as it rotates  and 2R  is the 

radius of curvature in a vertical section, describing the longitude as it rotates. Traditionally, 

the Young-Laplace equation has been solved to predict the droplet [4, 7, 10, 26-27, 106-111] 

and bubble [11-12, 27, 112-113] shapes. The Young-Laplace equation can predict the liquid-

gas interface where (a) gas and liquid phases are in equilibrium, (b) gas flow rate is steady 

and relatively slow enough to neglect the liquid-gas shear stress and the variation of 

momentum and (c) bubble is not stretched upward and effect of viscosity is negligible. Under 
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these conditions, the Young-Laplace equation is able to predict the bubble shape, knowing 

only two bubble parameters among the bubble height, radius of triple line, contact angle and 

bubble volume. The Young-Laplace equation has been observed to be able to predict the 

bubble shape from needle nozzles (0.11-0.84 mm internal diameters), for nominal air flow 

rates of 0.015-0.7 ml/min. A good agreement has been observed between experimental data 

and prediction of the Young-Laplace equation [11-15]. Similarly, it has been observed that 

the Young-Laplace equation was not able to predict the bubble shape in the departure period 

[11-16] when the bubble was stretched upward or while gas flow rate was relatively high 

[141]. 

From the fluid mechanics consideration, the Rayleigh-Plesset equation is widely applied 

as a simplified approach  predict bubble shapes. The Rayleigh-Plesset equation can be 

derived from the integration of the Navier-Stokes equation or differentiation with respect to 

radius of bubble from balance between the kinetic energy in the liquid and the potential 

energy in the gas [128]. The Rayleigh-Plesset equation is able to predict the variation of 

bubble radius  as a function of time, however it is only limited to the spherical bubbles and 

the effect of the surface wettability is neglected. Many examples have show that the 

Rayleigh-Plesset equation can be applied  successfully to predict  the dynamics of bubble 

growth while it was restricted to the spherical shape[118-121, 136].Some attempts have been 

made to modify  the  Rayleigh-Plesset equation to predict the bubble radius oscillations in 

response to the imposed fluctuating pressure field [137], but with limited success. 

Extending to more complicated bubble conditions, a number of numerical methods have 

been developed to predict bubble shapes. Examples include  the prediction of  the bubble 

[114-117, 122-123] and impact droplet [124-125] shapes by solving numerically the 

momentum and continuity equations. Many of these simulations were based on  commercial 

codes such as FLUENT and CFX, where  the Young equation was used to incorporate the  

effect of surface wettability in order to predict the liquid-gas interface in the vicinity of a 

substrate. However  the Young equation is not valid for the most of cases[27], including 

axisymmetric bubbles and droplets.  The accuracy and the reliability of any numerical 

approach for bubble prediction are down to the proper modelling of the dynamics and of the 

triple line and the fluid around it, whose understanding is essentially insufficient at the 

moment.  The situation becomes worsen when the speed of triple line is high, in fluctuation, 

or the characteristics of substrate is far from ideal in terms of the surface roughness and 

homogeneity.. 

The suitability of  bubble shape prediction by the Young-Laplace equation has been 
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examined by several numerical simulations based on the volume of fluid (VOF) and level-set 

(LS) methods [114-115], and good agreement has been reported. . For example, a coupled LS 

and VOF method was used  to predict the bubble growth, bubble detachment and bubble rise 

for low and medium air flow rates. The bubble dynamics  was modelled by various 

approaches, including the algebraic compressive scheme of VOF (Open FOAM), geometric 

VOF (ANSYS-Fluent V13), LS (TransAT) and geometric coupled VOF with LS (CLSVOF) 

(ANSYS-Fluent V13) method,  and compared with experimental data from  an orifice  of 1.6 

mm in diameter under flow rate of  50, 100, 150 and 200 ml/h.  The results illustrated that  (a) 

the level of accuracy of predictions of all four methods were decreased as the bubble grew 

larger , (b) the LS method gave better  bubble shape prediction  compared with other methods 

while the VOF-com method was less accurate [116]. It was also  observed that the static 

contact angle had a significant influence on the prediction of bubble growth. Increasing the 

contact angle above a threshold value could increase the bubble departure volume and 

departure time by allowing the triple line to expand away from the orifice rim. The threshold 

contact angle was observed to be nearly identical with the minimum contact angle during the 

bubble growth [117]. The coupled LS and VOF method [115] also showed the importance of 

the gravity in affecting bubble dynamics, which is consistent with the general trend of the 

Young-Laplace prediction.   

. 

4.2 Analytical expressions  

From the mechanical equilibrium approach, the analytical expressions have been 

developed initially to predict the bubble departure volume which was mainly based on the 

force balance analysis under different assumptions; these expressions can be used for 

different purposes. Under a quasi-steady state condition, a relationship [91-94] was 

developed between bubble departure volume,V , and gas flow rate,Q , as 

5/3

5/6

g

Q
NV                                                               (1)  

g  was the gravitational acceleration andN was a constant, N=1.378. It was assumed that the 

upward motion was determined by the buoyancy force and mass acceleration of the fluid, 

surrounding the bubble. The constant N was modified, 1.138, later on. Equation (1) was also 

achieved by two-stage bubble growth model (expansion and detachment stages) [95]. In the 

first stage, the bubble was assumed to expand and remain on top of the orifice while 

downward forces were dominant. The beginning of detachment stage was assumed to start 
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from the end of expansion stage, where the bubble was started to move away from the orifice 

to the departure point. In case of two stage model, the constant was N=0.976. The bubble 

shape was assumed to be spherical for both models. The first stage of two-stage model was 

modified [96] by assuming that the bubble was expanding in a hemispherical shape. The 

bubble was switched to the second stage by transforming to a detaching spheroid as it 

reached a certain size. The maximum volume of the first stage was calculated by writing the 

force balance between reactive forces on the plate and forces on the expanding surface such 

as pressure due to expansion and hydrostatic pressure. The second stage was considered to be 

similar to that of the previous model [94]. As a result, equation (1) was again obtained with a 

different constant of N=1.09. Obviously, the bubble shape cannot be spherical at the presence 

of gravity, unless the bubble size is so small. The small bubbles remain suspended inside the 

liquid, since buoyancy force is negligible and they need an external force to move upward 

after detachment [97]. Besides, the effect of surface wettability has not been considered in 

equation (1) while behavior of triple line has significant effects on dynamics of bubble 

growth and bubble volume departure [13-14, 57-59, 74, 88]. Equation (1) can only be 

considered as a very primary approach to predict the bubble departure. 

Subsequently, the force balance has been employed [98] between forces due to 

buoyancy, surface tension and change in momentum of the liquid to derive the following 

equation 

aVmrr
R

RCggV gaodd
o

oll )(sin2]
2

)([ lg
2lg

1 


                    (2) 

where the coefficient 1C  is an empirical constant, related to the shape of the curved upper 

surface, am  is the added mass due to the expansion and the rise of bubble, and a  is the 

upward acceleration of the bubble. The second term of equation (2) contains the corrections 

for the negative buoyancy of the cylinder, or hydrostatic term, 2
1 )]([ dol rRCg   , and it is 

included an empirical constant which is made this equation very complicated unnecessarily. 

The magnitude of hydrostatic term is very small compare to the values of Laplace pressure, 

normal component of liquid-gas surface tension and buoyancy forces [11, 15]. The accuracy 

of equation (2) and credibility of coefficient1C  need to be investigated more precisely. 

Equation (3) has been developed, considering the effects of buoyancy, drag, inertial and 

surface tension forces where lldD  ,,,  and   respectively are bubble diameter, nozzle 
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diameter, liquid density, liquid viscosity and dimensionless inertial parameter 

( 16/115.0  ). 
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Similarly, another correlation [99] has been developed, assuming that, the bubble shape 

is spherical throughout the bubble growth, under constant gas flow rate,
dt

dV
Q  , as 
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Equation (4) is the combination of buoyancy,
 

gVgl )(   , gas momentum flux,
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surface tension,
 

lgd , added mass inertia,
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d
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42

1 2 , forces, where DC
dt

ds
,,1 and wv  respectively are added 

mass coefficient defined as 11/16, bubble center velocity, drag force coefficient [100] and 

average impressed velocity [101] of the previous bubble wake. Equations (3-4) have not been 

considered, the effect of wettability while it has been shown that behavior of wettability has a 

significant role on dynamics of bubble growth. Besides, the primary assumption of spherical 

bubble growth for both correlations is far from reality and cannot be practical. The next 

expressions have been developed by writing force balance on a slice of a bubble between z 

and z+dz, along the vertical and horizontal axes, two different differential equations have 

been derived. By taking integral from these differential equations, the following analytical 

expressions have been obtained 

  0sinlg22)(2lg2
)(  odrdrggldroR
gVgl 


                   (5) 
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Both equations 5 [15] and 6 [141] were mathematically proved to be the exact analytical 

solution of the Young-Laplace equation. In fact, equation (5) is a force balance between 
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downward hydrostatic,
 

2)( dgl rg  , downward component of surface tension,
 

odr  sin2 lg , upward buoyancy, gVgl )(    and upward Laplace pressure,
 

2lg2
d

o
r

R



, 

and equation (6) is a force balance in a horizontal axis between surface tension force at the 

perimeter of bubble, Slg , hydrostatic force, ])(
2

[
lg

AzgA
R lg

o



 , and horizontal 

component of surface tension force at the vicinity of triple line, odr  cos2 lg . Practically, 

equation (6) proves that the Young equation is not valid for bubbles. In fact, equation (6) can 

be applied instead of the Young equation in CFD calculations to reduce the level of 

uncertainty and errors. Similar to equation (6), another analytical expression was developed 

for droplets, which is the exact analytical solution of the Young-Laplace equation [141]. 

Later on, equation (5) has been modified by adding the effect of inertial force against of 

bubble expansion in vertical direction [13] and gas flow rate [15]. Another expression is 

developed by considering  the force balance between upward partial buoyancy, upward 

contact pressure, )(2
tgd ppr  , downward component of surface tension forces, where tp is 

liquid pressure at the bubble apex. Partial buoyancy force has been defined as an upward 

force, assuming the triple line is pinned at the rim of nozzle during the bubble growth. It is 

assumed the net upward force only acts on the partial volume of bubble which is equal with 

total bubble volume minus volume of a cylindrical column with radius of triple line and 

height of bubble [67]. By adding the first and third terms of equation (5), the partial buoyancy 

force can be obtained. 

Similar force balance method has been also used to develop an expression to predict the 

bubble size at a nucleation site. The force balance between the surface tension, the unsteady 

drag, the pressure, the gravity and quasi-steady forces, acting on a bubble at a nucleation site, 

can be seen in references [129]. In addition, a few other theoretical expressions [102-105] 

have been developed based on the force balance method.  

The gas flow rate has crucial roles on the dynamics of bubble growth and bubble 

departure. Considering the effect of gas flow rate, several correlations and analytical 

expressions have been developed, including equations (1, 3-4). For spherical bubbles, the 

effect of gas flow rate on pressure difference between liquid and gas phases has developed 

[131] by considering viscosity and liquid-gas surface tension as follows 
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where sr ,  , lg  are radius of spherical bubble, shear viscosity and mean surface tension 

respectively. A simultaneous consideration of viscosity and surface tension is the advantage 

of equation (7). Recently, equation (5) has developed [15] by considering the effect of gas 

flow rate as follows 
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Properly modelling of the effect of gas flow rate is essential, because the gas flow rate 

has important influences on the pressure difference between the gas and liquid phases, the 

geometry of gas-liquid interface and dynamics of bubble growth and departure process. 

For a proper modelling, the oscillation of gas-liquid interface is the key parameter that 

has to be taken into the consideration. The oscillation of gas-liquid interface before bubble 

detachment has been investigated in reference [13] and it has been considered after bubble 

detachment by several others [133-134]. Similarly, the oscillation of spherical gas-liquid 

interface has been explored [132] for drops in gases by neglecting the effect of viscosity,      

In spite of long time working on theoretical approaches, it has not been made much of 

progress. Most of existing analytical expressions are valid in certain conditions and they are 

not accurate out of those conditions. For bubbles under high non-equilibrium conditions, such 

as before the departure and during the oscillation period, the validity of these analytical 

expressions requires careful examination. The next generation of analytical expressions has to 

consider the effective parameters such as gas flow rate, buoyancy, Laplace pressure, 

hydrostatic, gas and liquid inertial, drag and surface tension forces as well as gas flow rate 

and viscosity, especially under non-equilibrium conditions.     

The remaining part of the paper will perform an experimental investigation on the effect 

of nanoparticles on the triple line and bubble dynamics, develop a new method to calculate 

the pressure difference between gas and liquid phases along the bubble perimeter, and 

compare the results in between.  

5. Experimental setup 

In the bubble formation experiment, air is injected into water and different nanofluids 

through stainless steel substrate nozzles to observe the effects of nanoparticles on the 

dynamics of triple line and bubble growth. The schematics of experimental setup is shown in 
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Figure 4. Two different stainless steel substrate nozzles with diameters of 0.4 mm and 0.51 

mm and a stainless steel needle with internal diameter of 0.51 mm were submerged into a 

transparent square-sized glass container with a 20 mm by 20 mm base and 72 mm height. The 

substrate nozzles were polished to reduce the roughness (with average value of the peaks and 

valleys, mRa 021.0 , and the largest difference from peak-to-valley, mRz 03.0 ) and 

were large enough to allow the triple line to expand freely. The glass container was filled 

with deionized water or nanofluid to a height of 20 mm and was open to the atmosphere. The 

gas flow was supplied by compressed air in a cylinder, connected to a gas flow controller 

(model F-200CV-002 of Bronkhorst) through a pressure reduction valve. Nominal gas flow 

rates in range of 0.1-0.7 min/ml were used with an accuracy of %5.0 . The dynamics of 

triple line and bubble growth were captured by a high speed camera (Photosonics Phantom 

V4.3, 1200 frames/sec) equipped with an optical microscope head (10X Navitar Macro zoom 

7000). The resolution of the camera was 5 ȝm per pixel. The profile of bubbles were obtained 

from the captured images by fast camera equipped with a microscope during the bubble 

growth from 0.4 mm substrate nozzles, inside water and gold nanofluids with three different 

concentrations of 1E-4, 5E-4, and 10E-4 by weight. The captured images were stored in the 

computer for more analysis.  

Well-defined gold nanoparticles, with a narrow size distribution averaged at 5 nm for 

gold was dispersed into deionized water without any surfactant (see Figure 5). A drop of gold 

nanofluid was left on top of a stainless steel surface to dry slowly. The dried nanofluid 

droplet was analyzed by an Energy Dispersive x-Ray Spectroscopy (EDX), which confirmed 

the purity of the nanoparticles. The Drop Shape Analysis System (KRUSS, DSA 100) was 

employed to obtain the surface tension of water and gold nanofluid. The surface tension of 

pure water, 1E-4, 5E-4, and 10E-4 gold nanofluids were 0041.007238.0  , 005.006753.0  , 

0052.00615.0   and 0055.00591.0   mN /  Respectively. 

6. Analytical force balance 

In this study, the force balance is applied on a slice of a bubble along the vertical axis to 

find an analytical expression between the radius of curvature at upper apex,oR , and other 

bubble parameters. A schematic view of effective forces on a slice of a bubble, extending 

betweenzand dzz  along the vertical axis is shown in Figure 6. The force balance equation 

is written along the vertical direction on a slice of a bubble as 
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bF , pF  and F  are respectively forces due to buoyancy, pressure and liquid-gas surface 

tension. Equation (7) can be simplified as 

0]sin)()([)(   zFzFdzdF pb                                         (8) 

The individual elements of equation (8) include the buoyancy force,  

dzrgdF glb
2)(                                                      (9) 

the force due to pressure difference 
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                                                       (10)

 

and the force due to the liquid-gas surface tension 

rzF  2)( lg                                                          (11) 

where )(zp is the pressure difference between gas, )(zpg , and liquid phases, )(zpl . The gas 

and liquid pressures as a function of z  are given by 
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where
oR
lg2

 is the pressure difference at the bubble apex and oR is the radius of curvature at 

the upper apex. gzg  is hydrostatic gas pressure,  gzl  is hydrostatic liquid pressure and 

op  is the pressure at the apex due to hydrostatic pressure or anything else. Interestingly, 

op has no role on pressure difference at the interface. )()()( zpzpzp lg   is given by 
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By substituting equations (9-14), equation (8) can be modified as 
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Equation (15) can be rewritten as 
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Knowing 
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tan and sindsdz , equation (16) can be transformed to the Young-

Laplace equation, 
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 . In fact, it proves mathematically that 

the solution of equation (15) is identical with the exact analytical solution of the Young-

Laplace equation. 

By taking integral from zero to mz (see Figure 6), where mm rz  , equation (15) can be 

solved as  
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Equation (17) is an exact analytical solution of the Young-Laplace equation. The 

experimental evidence shows that the upper part of bubble is nearly hemisphere and mV  can 

be obtained with a good approximation by 
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Substituting equation (18) into equation (17), a new analytical expression is derived to 

express the radius of curvature at the apex as  
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Equation (19) gives a new analytical expression to predict the radius of curvature at the 

upper apex by knowing maximum radius of bubble,mr , (see Figure 6). For given 

experimental data, the radius of curvature,oR , is predicted by equation (19) and the Young-

Laplace equation. A good agreement is observed between these two.  

6.1 Prediction of bubble shape 

The Young-Laplace equation has been used to predict the bubble [11-12, 15, 89, 130] 

and droplet [7, 27, 130] shapes. The Young-Laplace equation can be derived by considering 

the force balance at the liquid-gas interface. By writing force balance along the n


-direction 

(see Figure 7), the following equation is obtained 
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By equating equations 20 and 21, and assuming that the static pressure and surface 



 24 

tension forces are only effective elements, the Young-Laplace equation can be obtained as 
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The Young-Laplace equation demonstrates a mechanical equilibrium between two fluids, 

separated by an interface, and gives the pressure difference across the liquid-gas interface as 

a function of the product of the curvature multiplied by the liquid-gas surface tension. 1R , 

and 2R  are the radii of the curvature at the liquid-gas interface, where 1R  is the radius of 

curvature describing the latitude as it rotates and 2R  is the radius of curvature in a vertical 

section, describing the longitude as it rotates. The centres of 1R  and 2R  are on the same line, 

vertical to the liquid-gas interface, but different location (see Figure 7). The formulation of 

the Young-Laplace equation can be seen in reference [130]. Obviously, the Young-Laplace 

equation can be applied under a quasi-steady state condition, where the static pressure and 

surface tension forces are only effective elements and there is an equilibrium condition 

between gas and liquid at the interface. 

The Young-Laplace equation is modified by introducing an extra force along the n


-

direction (a) when the equilibrium between gas and liquid is relatively weak during the 

bubble fluctuation, (b) the while bubble is stretched upward, in departure period or (c) when 

gas flow rate is relatively high and the  shear stress is not negligible. Employing extra force, 

equation (21) can be modified as   

0)( 21lg21  exdFddRddRddRpR                          (23) 

Simplifying equation (23), the following equation is obtained 

)
11

(
21

lg RR
pp ex                                            (24) 

exp is positive while the interface is pushed toward the liquid phase in n


-direction and vice 

versa. Any extra forces on the liquid-gas interface area,dA , have two components of 

tangential and vertical. In case of axisymmetric bubbles, the tangential components cancel 

each other and normal components divided by area can be represented asexp  in n


-direction. 

The radii of curvature (see Figure 7) are 

ddsR /1  , and sin/2 rR                                              (25) 

 , r  and s  are respectively the bubble contact angle, radius of the bubble and length of 

bubble perimeter at the location of z (see Figure 8). Considering equations 14 and 25, 

equation (24) for bubbles becomes 
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The sign of exp is assumed to be positive in equation (26), however the real sign can be 

obtained when equation (26) is solved. If exp  is zero, then equation (26) reforms to the 

Young-Laplace equation and can be written as 

r
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 sin
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2

lg
                                              (27) 

The radius of curvature at the upper apex,oR , can be calculated from equation (19), 

knowing maximum radius of bubble,mr . To obtain the axisymmetric bubble shape, equation 

(26) can be solved with following system of ordinary differential equations 

cos
ds

dr
                                                            (28) 

sin
ds

dz
                                                             (29) 

 sin2r
ds

dV
                                                         (30) 

where V  is bubble volume. Equations 26 and 27 avoid the singularity problem at the bubble 

apex, since 

os Rr

1sin

0





                                                        (31) 

In case of nanofluids, the liquid-gas surface tension,lg , need to be changed to the liquid-gas 

surface tension of nanofluids, nlg . 

In order to raise the accuracy of the prediction of bubble shape, the bubble is divided 

intok parts (k=1:N) and the system of ordinary differential equations (26, 28-30) along with 

equation (19) is solved for each individual part separately to obtain the extra pressure, exp , 

and bubble shape simultaneously by knowing the radius,r , and height,z , at the end of the 

each part (see Figure 8). The first part, k=1, starts from the apex (point A) with given initial 

boundary conditions, 0)0()0()0()0(  Vzr  . Because of the continuity of the bubble 

shape, the second part, k=2, starts from the end of the first part. So the initial boundary 

conditions of the second part, k=2, such as radius,r , height,z , contact angle, , and 

volume,V , are identical with  those at the end of the first part, k=1. Similarly the system of 

ordinary differential equations (26, 28-30) along with equation (19) can be solved separately 
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for the rest of the parts. The accuracy of the prediction of bubble shape increases with the 

number of parts, N, or the reduction of distance between two nodes,s , for each individual 

part. In fact, the effects of inertia force and viscosity decrease with respect to liquid-gas 

surface tension as the distance between the two nodes,s , decreases (see Figure 8) and 

consequently, the validity and accuracy of prediction of the Young-Laplace equation for the 

bubble shape increase. The case of N=1 and 0exp  corresponds to the conventional method 

of applying the Young-Laplace equation to predict the bubble shape while there is an 

equilibrium between gas and liquid phases, shear stress and inertial force are negligible and 

bubble is not stretched upward. The experimental evidences have been confirmed that the 

system of differential equations (27-30) was valid for the given conditions. 

The system of ordinary differential equations (26, 28-30) along with equation (19) is 

solved to predict the upper and lower parts of bubble shape. For the given conditions, a 

reliable agreement is observed between the prediction of bubble shape and the experimental 

data by dividing bubble shape in two parts (N=2). The first part is started from upper apex 

and ended at the lateral apex. Similarly the second part is started from lateral apex and ended 

at the triple line. The quality of bubble prediction increases with the number of parts, N . 

7. Results and discussion 

The force balance was employed on a slice of bubble, extending betweenzand dzz , in 

vertical axis, to obtain an analytical equation (17) among the bubble parameters such as 

bubble volume, maximum radius of bubble and radius of curvature at apex. Combining 

equations 17 and 18, an analytical expression (19) was developed to predict the radius of 

curvature at apex,oR , as a function of maximum radius of bubble,mr . In addition, the 

Young-Laplace equation (27) along with equations (28-30) was solved for the upper part of 

bubble to obtain the radius of curvature at apex, oR . The upper part of bubble was started 

from upper apex and ended at the lateral apex. Figure 9 compares the radius of curvature at 

apex, oR , predicted by the Young-Laplace equation and the analytical expression (19), inside 

water and gold nanofluid with different concentrations, i.e.  1e-4 w, 5e-4 w and 10e-4 w, 

from a 0.4 mm stainless steel substrate nozzle under a  nominal air flow rate of 0.7 ml/min. 

The mean absolute parentage error between the radius of curvature, predicted by the Young-

Laplace equation and analytical expression (19) is 0.00451, for all given experimental data. 

Experimental evidence demonstrates that equation (19) is accurate enough to predict the 

radius of curvature at apex,oR , knowing the maximum radius of bubble, mr . 
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Figure 10 shows the prediction of bubble shape inside gold nanofluid (1e-4 w) from 0.4 

mm stainless steel substrate nozzle under a nominal air flow rate of 0.7 ml/min. The bubble 

shape is divided to 26 parts, i.e, N=26. The system of ordinary differential equations (26, 28-

30) along with equation (19) is solved for each individual part to predict the bubble shape. 

The prediction of bubble shape was compared with experimental data and parentage of 

absolute average error was calculated. The mean absolute parentage error was 1.2 and 0.5 

while N was respectively for N=2 and 26. In fact, the mean absolute parentage error 

decreased with number of parts, k. 

The system of ordinary differential equations (26, 28-30) along with equation (19) is 

solved for each individual part separately to obtain the extra pressure, exp , across the liquid-

gas interface, along the bubble perimeter. The variation of exp  with s  can be seen in Figure 

11 when (a) bubble stops growing upward and start moving downward at t=604.109 ms, (b) 

starts growing upward again at t=607.442 ms and (c) in the middle of these two points at 

t=605.775 ms where bubble accelerating downward and the equilibrium between gas and 

liquid is weaker. exp was observed to fluctuate across the liquid-gas interface which implies 

that the liquid-gas interface oscillated along the bubble perimeter from one point to another. 

The amplitude of pressure oscillation at t=607.442 ms was relatively higher, because the 

equilibrium between gas and liquid was weaker. The quality of Figure 11 can be increased 

with the number of experimental points, i.e. by using a higher speed camera with higher 

resolution. 

In case of bubble growth from needle nozzle, the value of exp is negligible and no 

oscillation is observed along the liquid-gas interface. The bubble fluctuation and oscillation 

of pressure difference between gas and liquid are only observed for bubble growth from 

substrate nozzle. This indicates that the oscillation of pressure difference between gas and 

liquid is attributed to the bubble fluctuation.   

To investigate the oscillation of bubble in bubble growth period, the air was injected into 

water to produce bubble from stainless steel substrate and needle nozzles. The internal 

diameter of stainless steel substrate and needle nozzles was 0.51 mm. No oscillation was 

observed while bubble was forming from needle nozzle. For the same conditions, the bubble 

was observed to oscillate from a substrate nozzle. The Young-Laplace equation (27) along 

with equations (28-30) was solved (N=1) to predict the bubble shape inside water from 

stainless steel needle nozzle by knowing the radius of triple line and bubble height. Having 

bubble shape, characteristics of bubble such as volume and contact angle can be obtained. 
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Knowing characteristics of bubble, the variation of effective forces on bubble were calculated 

in bubble growth period. Figure 12 demonstrates the variation of main forces on bubbles with 

time inside water from stainless steel needle and substrate nozzles, for nominal gas flow rate 

of 0.7 ml/min. The internal diameter of stainless steel substrate and needle nozzles was 0.51 

mm.  

The main forces are due to the Laplace pressure (upward), 2lg2
d

o

r
R




, buoyancy (upward), 

gVgl )(   , vertical component of the surface tension (downward), odr  sin2 lg , and 

inertial (downward), ])[
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dt
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dV

dt
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V
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MUd
gl

  [13]. The inertial force was 

reached to its maximum from stainless steel substrate and needle nozzles respectively in 1.1% 

and 3.9% of their bubble formation time. In addition, the maximum of inertial force from 

substrate nozzle was 2.8 times bigger than that from needle nozzle. The inertial force was 

raised quickly to its maximum and pushed the bubble downward. The bubble was begun to 

oscillate under the effect of high downward inertial force, since air was compressible fluid. 

The fluctuation of bubble from substrate nozzle was related to high inertial force, effective in 

a short period of time. For the same conditions, the bubble fluctuation was not observed from 

needle nozzle, since the maximum inertial force was effective in a longer time with a lower 

value.   

This study also investigated the effects of nanoparticles on the behavior of triple line. 

Suspended nanoparticles have considerable influence on variation of the liquid-gas [4] and 

solid surface tensions [7]. As a result they are able to change the force balance at the triple 

line. Figure 13 demonstrates the variation of radius of triple line with time inside water, gold 

(1E-4 w), silver (1E-4 w) and alumina (0.37E-4 w) nanofluids from 0.4 mm stainless steel 

substrate, for 0.7 ml/min nominal air gas flow rate. It clearly illustrates how gold, silver and 

alumina nanofluids affect the behavior of triple line differently. Nanoparticles affect the 

liquid-gas and solid surface tensions and they consequently change the force balance at the 

triple line and as a result the contact angle and radius of triple line might alter. It is clear that 

the gold nanoparticles increased the pinning behavior of triple line and reduced the radius of 

triple line significantly, which was attributed to variation of nanofluid solid surface tensions. 

It has been observed that radius of triple line increased toward the liquid phase as solid 

surface tensions, slsg   , decreased [14]. Among water, gold and silver nanofluids, gold 

nanofluid had the maximum solid surface tensions and the minimum radius of triple line 



 29 

while the silver nanofluid had the minimum solid surface tensions and maximum radius of 

triple line. The resistance force against the expansion of triple line inside silver nanofluid was 

observed to be weaker. Consequently, the silver nanofluids had the maximum radius of triple 

line. 

For the given droplet volume, the water contact angle was smaller than that of alumina 

nanofluid which means the solid surface tensions of alumina nanofluid is lower than that of 

water. Since the liquid-gas surface tension of water and alumina nanofluid are relatively 

similar at the low concentration of 0.001 v%, the solid surface tensions has an important role 

on the variation of droplet contact angle. The triple line expands more toward the gas phase, 

with solid surface tensions. 

The material of nanoparticles has a significant role on the behavior of triple line inside 

nanofluids. In fact, the behavior of triple line such as variation of contact angle and radius of 

triple line depends on the base liquid, gas, solid, concentration and characteristics of 

nanoparticles. These parameters affect the liquid-gas and solid surface tensions. 

Consequently they change the force balance at the triple line and modify the contact angle 

and radius of triple line. 

Figures 14 and 15 demonstrate the variation of bubble contact angle and radius of triple 

line with time inside water and gold nanofluids with three different concentrations (1E-4, 5E-

4, and 10E-4 by weight). Different concentrations of nanofluid change the waiting time, 

bubble formation time and total bubble formation period as well as bubble frequency. The 

waiting and bubble formation times decreased with the concentration of gold nanoparticle, 

which might be attributed to the reduction of liquid-gas surface tension with concentration of 

gold nanofluid. The waiting time is proportional to the capillary pressure and capillary 

pressure is proportional with liquid-gas surface tension. Consequently the waiting time and 

total bubble formation period decreased with decreasing liquid-gas surface tension.  

The radius of triple line was observed not to distort much with the concentration of gold 

nanoparticle, which might imply that force balance at the triple line was not influenced much 

by the concentration of gold nanofluid. The bubble volume departure was observed to 

decrease with reduction of liquid-gas surface tension. As liquid-gas surface tension reduces, 

downward surface tension force, odr  sin2 lg , decreases; so bubble requires less 

buoyancy force, gVgl )(   , to departure which would result in a reduction of bubble 

departure volume [82-83, 126]. However a few other studies reported that there is no effect of 

surface tension on bubble departure volume [80, 91], whereas others showed that the bubble 
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departure volume increased with the decrease of surface tension [127]. |There are difficulties 

to evaluate the role of liquid-gas surface tension alone, as the bubble departure volume is 

modulated by many other experimental variables such as orifice diameter, gas-liquid-solid 

physical properties and gas flow rate.   

The variation of bubble contact angle with time inside gold nanofluid (5E-4 w) can be 

seen in Figure15. At the beginning of bubble growth, bubble volume was very small, 

109933.90  EV , mstms 5666.05649.0  , so the effect of buoyancy force was 

negligible, therefore the bubble expanded laterally and contact angle decreased with bubble 

volume. As bubble volume increased further, 93437.6109933.9  EVE , 

mstms 5782.05666.0  , the effect of buoyancy force became more effective gradually. As 

a result, the bubble lifted upward increasingly and the bubble contact angle began to increase 

and eventually reached to its maximum. In the meantime, the oscillation of bubble initiated 

and so the bubble contact angle began to decrease 

at 92873.893437.6  EVE , mstms 5899.05782.0  . Eventually the bubble contact 

angle reached to its second minimum. As volume increased further, the bubble contact angle 

resumed to increase again till the bubble departure point, 99221.992873.8  EVE , 

mstms 6066.05899.0  .  

8. Conclusions  

This work reviews the dynamics of triple line and theoretical modeling of bubble growth 

and departure process, with a particular focus on the influence of nanoparticles, and advances 

the field through new experimental and theoretical studies. In a short summary:  

i) The presence of gold nanoparticle was found to reduce the bubble waiting and 

formation times, which might be attributed to the reduction of liquid-gas 

surface tension due to the presence of gold nanoparticles, and the triple line 

dynamics was not sensitive to the particle concentrations.   

ii)  Experimentally no oscillation of liquid-gas interface or bubble fluctuation was 

observed from the needle nozzle. However for bubble formation from the 

stainless steel substrate nozzle, the downward inertial force was observed to 

increase in a short period of time to a high value, resulting in bubble 

fluctuations.  

iii)  A theoretical model was developed to raise the accuracy of prediction of 

bubble shape when the bubble was in non-equilibrium. Different to 

conventional approach of applying the Young-Laplace equation on the whole 
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bubble, here bubble was divided into the several parts (k=1:N) and the Young-

Laplace equation was solved for each part separately, which improved the 

accuracy of bubble shape prediction. The new method can be applied to many 

situations such as a) the equilibrium between gas and liquid phases at the 

interface was weak, b) the bubble was stretched upward in departure period 

and c) the shear stress between gas and liquid phases was relatively high. 

iv) The theoretical model was examined with experimental data and good 

agreement was observed. Using this method, the pressure difference between 

gas and liquid phases was calculated during the bubble fluctuation period.  

The pressure difference was observed to oscillate along the liquid-gas 

interface, which was attributed to the oscillation of the liquid-gas interface 

across the bubble.  

Nomenclature 

A  Bubble cross section area ][ 2m  

g  Acceleration of gravity ]/[ 2sm  

oR  Radius of curvature at apex ][m  

1R , 2R  Radius of curvature ][m  

dr  Radius of triple line ][m  

S  Perimeter of bubble cross section ][m  

V  Bubble Volume ][ 3m  

Greek Symbols 

  Height of apex ][m  

o  Bubble contact angle [Deg.] 

e  Equilibrium contact angle [Deg.] 

s  Asymptotic contact angle [Deg.] 

l  Liquid density ]/[ 3mkg  

g  Gas density ]/[ 3mkg  

lg  Liquid-gas surface tension ]/[ mN  

sg  Solid-gas surface tension ]/[ mN  

sl  Solid-liquid surface tension ]/[ mN  
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nlg  Liquid-gas surface tension of nanofluids ]/[ mN  
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Figures 
 

Figure 1. Schematic of forces at the bubble/droplet triple line.  

 

Figure 2. Comparison of the radius of contact lines of gas bubbles on top of a stainless steel 

tube (outside radius 105m ) between water (left) and 1E-4 w gold/water nanofluid (right) at 

bubble volume of 2.73l . Gas flow rate is 0.48 ml/min [10]. 
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Figure 3. Variation of waiting, formation, and total times with internal diameter of needle 

nozzle for 0.48 ml/min gas flow rate [14]. 

 
Figure 4. Schematic of the experimental setup.    

 

Figure 5. Transmission electron microscopy (TEM) pictures of gold nanoparticles. 
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Figure 6. Schematic of effective forces on a slice of axisymmetric bubble, extending 

betweenzand dzz , along the vertical axis.  

 

 

 



 44 

 

Figure 7. Schematic of geometry and surface forces of three dimensional liquid-gas interface. 

Gas is inner phase and liquid is outer phase.  

 

Figure 8. Schematic of the bubble shape, when it is divided into the several parts.  
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Figure 9. Comparison of radius of curvature at apex predicted by the Young-Laplace equation 

and analytical expression (19), inside water and gold nanofluid from 0.4 mm stainless steel 

substrate nozzle, for 0.7 ml/min nominal air flow rate. Three gold nanofluids with 

concentrations of 1E-4 w, 5E-4 w and 10E-4 w are compared with each other. 
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Figure 10. Prediction of bubble shape inside gold nanofluid (1E-4 w) from 0.4 mm stainless 

steel substrate nozzle for nominal air flow rate of 0.7 ml/min, using system of ordinary 

differential equations (26, 28-30) along with equation (19) for each individual part.   
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Figure 11. Variation of exp  across the liquid-gas interface, along the bubble perimeter.  
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Figure 12. Variation of forces due to Laplace pressure, vertical component of surface tension, 

buoyancy, and inertial with time inside water from stainless steel needle and substrate nozzles 

with the same diameter (0.51 mm). The nominal gas flow rate is 0.7 ml/min. 



 49 

2.0E-04

2.4E-04

2.8E-04

3.2E-04

0.52 0.57 0.62 0.67 0.72
 Time (sec)

r d
 (m

).

Water

Gold

Silver

Alumina

 

Figure 13. Variation of the radius of triple line with time from the 0.4 mm stainless steel 

nozzle inside water, gold (1E-4 w), silver (1E-4 w) and alumina (0.37E-4 w) nanofluids for 

0.7 ml/min nominal air flow rate [26]. 
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Figure 14. Variation of radius of triple line with time inside water and gold nanofluids from 

0.4 mm stainless steel substrate nozzle, for 0.7 ml/min nominal air flow rate. Three gold 

nanofluids with concentrations of 1E-4 w, 5E-4 w, and 10E-4 w are compared with each 

other. 
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Figure 15. Variation of bubble contact angle with time inside water and gold nanofluids from 

0.4 mm stainless steel substrate nozzle, for 0.7 ml/min nominal air flow rate. Three gold 

nanofluids with concentrations of 1E-4 w, 5E-4 w, and 10E-4 w are compared with each 

other. 

 

 

 

 

 

 


