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Abstract—The temperature and dV/dt dependence of
crosstalk has been analyzed for Si-IGBT and SiC-MOSFET
power-modules. Due to smaller Miller capacitance resulting
from a smaller die-area, the SiC-module exhibits smaller
shoot-through currents compared with similarly rated Si-IGBTs
in spite of switching with a higher dV/dt and a lower
threshold-voltage. However, due to high voltage overshoots
and ringing from the SiC-Schottky diode, SiC modules often
exhibit higher shoot-through energy density and cause voltage
oscillations in the DC-link. Measurements show that the
shoot-through current exhibits a positive temperature coefficient
for both technologies the magnitude of which is higher for the
Si-IGBT i.e. the shoot-through current and energy shows better
temperature stability in the SiC-power-module. The effectiveness
of common techniques of mitigating shoot-through, including
bipolar gate drives, multiple gate resistance switching paths as
well as external gate-source and snubber capacitors have been
evaluated for both technologies at different temperatures and
switching rates. The results show that solutions are less effective
for SiC-MOSFETs because of lower threshold voltages and
smaller margins for negative gate bias on the SiC-MOSFET
gate. Models for evaluating the parasitic voltage have also
been developed for diagnostic and predictive purposes. These
results are important for converter designers seeking to use SiC
technology.

Index Terms—Crosstalk, Silicon Carbide, Temperature, IGBT,
SiC MOSFET

I. INTRODUCTION

CROSSTALK is an important factor that must be evaluated
when using power semiconductor devices in converters.

Crosstalk has also been referred to as parasitic turn-on,
false turn-on, self-turn-on, etc. [1] Crosstalk occurs when
a device is unintentionally switched on as a result of the
intentional switching of the device in the same phase leg.
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This unwanted turn-on can impose serious reliability concerns
since it can result in semi-short-circuits with high currents
flowing through the power devices thereby resulting in high
thermal losses and unnecessary electro-thermal stresses on
the device wire-bounds and die [2]. Crosstalk normally
happens in synchronous DC-DC converters or in three-phase
DC-AC inverters where the devices are intended to turn on
with appropriate dead-times allocated between the switching
edges [3], [4]. As one device is turned on, the dV/dt imposed
on the complimenting device in the same phase leg causes
the Miller capacitance to discharge a current into the gate
resistance which causes a voltage drop capable of triggering
the device if it is greater than its threshold voltage [5].
The main contributors to crosstalk are the magnitude of the
Miller capacitance and its ratio compared with the input
capacitance of the device, the gate resistance connected to
the device (which includes the internal gate resistance of
the module), the switching rate, the threshold voltage of the
device and its operating temperature. Equation 1 shows the
parasitic gate-source (VGS for MOSFET) or gate-emitter (VGE

for Si-IGBT) voltage as a function of the gate resistance (RG),
Miller capacitance (CGD) and turn-on dV/dt.

VGS = RGCGD
dVDS

dt

1 − e

−t
RG(CGD + CGS)

 (1)

Figure 1 shows an example of a parasitic (unintended) gate
voltage across a SiC MOSFET during turn-on and turn-off of
a complementing device.

Fig. 1. Measured parasitic gate voltage across a Si-IGBT switched with a
dV/dt of up to 10 kV/µs.
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The positive spike in VGS during turn-on and the negative
spike during turn-off is due to the polarity of the Miller
capacitance charge and discharge current. The mechanism
is explained in [6]. To mitigate this problem, techniques
like negative gate bias and multiple resistive paths for
turn-on/turn-off have been developed. This paper aims to
evaluate the problem of crosstalk as well as the effectiveness
of the solutions for SiC MOSFETs compared with silicon
IGBTs [7]. The desire to maximize power density by
increasing the switching frequency gives SiC an advantage,
however, crosstalk is expected to cause problems since the
shoot-through energy is proportional to the switching rate [8].
SiC MOSFETs have lower threshold voltages and switch
with higher dV/dt both of which should contribute to higher
shoot-through currents. However, the Miller capacitance in
SiC MOSFETs is significantly smaller than that in silicon
IGBTs because of its smaller die area [9]. The temperature
coefficients of the threshold voltages in both technologies
will also be critical for the crosstalk performance at higher
temperatures. Furthermore, the impact of oscillations in the
SiC Schottky diode [10] on the DC link voltage and the
shoot-through energy also needs further characterization. This
paper presents a comprehensive analysis of crosstalk in
both technologies. Section II presents a modeling approach
for predicting crosstalk, Section III will provide details
of the experimental measurements performed and analyze
the switching rate (dV/dt) and temperature dependence of
crosstalk. Section IV study the effectiveness of applicable
mitigation techniques while Section V concludes the paper.

II. CROSSTALK MODELS

To develop a diagnostic tool for the prediction of the
crosstalk, several modeling approaches are considered, all of
which are based on the capacitive divider in the device.

• The first modeling approach is described in [11] by
using the maximum possible voltage at turn-ON as Vm

of the device, along with time instance it occurs as Tm

in Equation 1. This approach is the simplest method of
modeling and does not consider the parasitic elements in
the circuit. Also it does not consider the changes in the
dV/dt of the circuit. Hence despite being straightforward,
it lacks accuracy. An example of this method is shown in
Figure 2. This method results in the following expression:

VGS = RGCGD
Vm
Tm

1 − e

−t
RG(CGD + CGS)

 (2)

• The second approach is to use the dV/dt measured from
the transient of the device to estimate the induced gate
voltage. This method is more accurate as it considers
the dynamic changes of the dV/dt in the circuit and also
indirectly considers the impact of parasitic elements in
the circuit. However, using this method requires having
the voltage transient measurements of the circuit requires
some initial characterisations. An example of this method
is shown in Figure 3.

Fig. 2. Modeled and measured induced VGS using method one for (a) Si-IGBT
and (b) SiC-MOSFET with top RG = 10 Ω and bottom RG = 100 Ω.

Fig. 3. Modeled and measured induced VGS using method one for (a) Si-IGBT
and (b) SiC-MOSFET with both top and bottom RG = 10 Ω.

• The third method, which is common, uses simulation
software such as PLECS or SPICE to model the
characteristics of the device in a circuit emulator. This
method is capable of providing the characteristics of the
induced gate voltage as a function of the parasitic circuit
components (inductances and capacitances) and is user
friendly. However, the temperature dependency of the
shoot-through current is not modelled accurately because
the temperature coefficient of the threshold voltage and
on-state resistance is not properly accounted for. An
example of this method is shown in Figure 4.

Fig. 4. Modeled and measured induced VGS using method one for (a) Si-IGBT
and (b) SiC-MOSFET with top RG = 10 Ω and bottom RG = 47 Ω.

• The last method is the method proposed here. The
parasitic voltage is modeled by developing a transfer
function of the equivalent circuit shown in Figure 5. In
this figure, the power device that is intentionally switched
is modeled as an ideal switch however with a finite
dV/dt that falls on the low side power device causing
it to be parasitically triggered. In this case, first the
equations for the VGS are developed. This is done by
using the Kirchhoff law in the circuit. Then, having the
numerator and denominators of the transfer function, and
by using the dV/dt of the intentionally switched device as
an input to the transfer function, the induced voltage can
be calculated. Details of this method is described next.

The circuit shown in Figure 5 includes the parasitic
capacitances of the device, the stray inductances as well
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as the parasitic resistances and inductances resulting from
the circuit layout. These parasitic elements are critical for
accounting the possible oscillations in the parasitic voltage
transient characteristics [12]. Hence, the model developed can
be used to predict the possibility of crosstalk, if a voltage
above the threshold voltage of the device is induced on the
gate. The model can be used to predict the severity of the
shoot-through current (to a certain extent) by comparing the
level of the VGG with VTH. The average values for the parasitic
elements are used for the development of the model [13], and
are applicable when devices are switched with no mitigation
technique applied. These are shown in Table II.

Fig. 5. Equivalent circuit schematic for developing parasitic voltage model
for the bottom power device with the top device as an ideal switch.

TABLE I
MODEL PARAMETERS AND VALUES

CGD (Si-IGBT) ≈ 0.15 nF
CGS (Si-IGBT) ≈ 7.2 nF
CGD (SiC-MOSFET) ≈ 0.08 nF
CGS (SiC-MOSFET ) ≈ 10 nF
LS ≈ 5 nH
LG ≈ 5 nH
LCirc. ≈ 100 nH
RCirc. ≈ 1 Ω
VDD 650 Volts

Applying KCL at the gate, source and drain terminals of
the circuit in Figure 5 will yield 3 equations as shown in 3- 5.

VG
RG + sLG

+(VG−VS)sCGS +(VG−VD)sCGD = 0 (3)

(VS − VG)sCGS +
VS
sLS

+ (VS − VD)sCDS = 0 (4)

(VD − VG)sCGD + (VD − VS)sCDS

+
VD − VDD

RCr + sLCr
= 0 (5)

Solving the equations above for the gate-source voltage will
yield the transfer function shown in 6 as:

VG =
N4s

4 +N3s
3 +N2s

2 +N1s

D4s4 +D3s3 +D2s2 +D1s+ 1
(6)

where the numerators are given by:

N4 = LGLSVDD × (CDSCGD + CDSCGS + CGDCGS)

N3 = LSRGVDD × (CDSCGD + CDSCGS + CGDCGS)

N2 = CGDLGVDD

N1 = CGDRGVDD

And the denominators are given by:

D4 = (LCrLG + LCrLS + LSLG) ×
(CDSCGD + CDSCGS + CGDCGS)

D3 = (CDSCGD + CDSCGS + CGDCGS) ×
(LCrRG + LGRCr + LSRCr + LSRG)

D2 = LCR(CDS + CGD) + LG(CGS + CGD)

+ LS × (CDS + CGS)

+RCrRG × (CDSCGD + CDSCGS + CGDCGS)

D1 = RCr × (CDS + CGD) +RG × (CGS + CGD)

The dV/dt of the intentionally switched device is used as an
input to the model. The values of the capacitances used in the
model are obtained from the datasheets as shown in section
III and the inductances are measured directly from the test rig.
The results of the model are shown together with experimental
measurements in Figure 6(a) and 6(b) for a silicon IGBT and
SiC MOSFET half-bridge power module respectively switched
with a gate resistance of 10 Ω and a dV/dt of up to 10
kV/µs. Figure 6(c) and 6(d) show the results of the model
with experimental measurements with a higher bottom side
gate resistance of 47 Ω but with the same switching dV/dt.
The ringing in the gate characteristics of the SiC module is
modulated by the parasitic inductances and the switching rates.
It can be seen from Figure 6 that the model is able to replicate
experimental measurements with good accuracy.

Fig. 6. Modeled and measured parasitic gate voltage transients for Si-IGBT
and SiC-MOSFET with (a,b) top bottom RG = 10 Ω and bottom RG = 47 Ω
and in (c,d) top RG = 47 Ω and bottom RG = 10 Ω.

III. EXPERIMENTAL MEASUREMENTS

To evaluate the temperature and switching rate dependence
of crosstalk in silicon IGBT and SiC MOSFET power
modules, a dedicated test rig has been developed and
equipped with a hot plate as well as temperature
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control and measurement equipment. Since crosstalk entails
short-circuiting a high voltage power supply, extra protection
has been applied to the test rig. In this section, first the details
of the set-up is presented, then the analysis of the switching
rate dependence of the crosstalk is discussed. This is done by
changing the range of RG on both top and bottom device to
vary the applied dV/dt and the induced voltage. The rate at
which the output voltage rises/falls (dVDS/dt for MOSFETs
and dVCE/dt for IGBTs) depends on the rate at which the
Miller capacitance is charged/discharged through the gate
resistance. Hence, dV/dt is inversely related to RGCGD [14]
through the Miller capacitance’s dependence on the output
voltage i.e. the Miller capacitance is partially comprised of
a depletion capacitance whose value depends on depletion
widths modulated by the output voltage. Therefore the value
of RG directly impacts the dV/dt and dI/dt rates [15]. The
temperature dependence of crosstalk is also analyzed by
mounting the modules of a thermal plate and ranging the
temperature from room temperature to 120 °C. It should be
noted that the SiC module has used 5 dies per device in
parallel, each die with an area of 16.6 mm2, resulting in a
total die are of approximately 83 mm2 (0.83 cm2), whereas
the Silicon module is a single die per device with a die
area of approximately 105 mm2 (1.05 cm2). Given that the
modules are of the same power rating, this shows that the
SiC module has a higher power density. In the next sections,
this information has been used to estimate the shoot-through
energy per die area of the devices for a comparable evaluation.

A. Set Up

The schematic of the test rig is shown in Figure 7. The
applied voltage is 650 Volts and the load is a 1 kΩ resistor
with a 1 kW power rating connected in parallel to the bottom
device. The top device is switched while the bottom device is
monitored for induced switching. The DC link capacitors have
a total capacitance of 320 µF with a voltage rating of 1.2 kV.
The silicon IGBT half bridge module is DM2G100SH12AE
with a Miller capacitance (CGD) of 0.15 nF and the SiC half
bridge module is CAS100H12AM1 with a Miller capacitance
of 0.08 nF. The threshold voltage of the silicon IGBTs range
from 5 to 8 V, whereas in the SiC MOSFET it ranges around
2 V. The gate signal is generated by Agilent AFG3022C
controller while the waveforms are captured by LeCroy
104MXs-B digital oscilloscope. The current and voltages
waveforms are also captured via calibrated current clamped
(Tektronix TCP303 15 MHz) and differential high voltage
probes (Rapid GDP-100 100 MHz) as shown in Figure 8.
The temperatures are ranged from room temperature to 120
°C while the switching rate is controlled by a range of RG

from 10 to 100 Ω. This range of RG is intentionally chosen
wide because, as will be analysed in the next sections, the
shoot-through current increase with the applied dV/dt on the
bottom device, the Miller capacitance of the bottom device and
the gate resistance on the bottom device. The peak parasitic
gate voltage is given by RG.CGD.dVDS/dt, hence, an increase
in any one of the parameters will affect the shoot-through
current in a similar way. While further increase of the dV/dt

or changing the device’s Miller capacitance has not been
an option, to investigate the performance of the device and
also the effectiveness of the mitigation techniques in higher
shoot-through currents, the bottom-side RG has been increased
from 10 to 100 Ω to replicate these situations [16]. The design
of the gate driver PCB’s is also shown in Figure 9.

Fig. 7. Schematic of the measurement circuit.

Fig. 8. Measurement Test rig set-up.

B. Switching Rate Dependence

Figure 10 shows the results of the measurements for the
switching rate dependence of the crosstalk where the dV/dt is
modulated by a single gate resistance on the top side device
which is intentionally switched and the parasitic voltage is
measured on the bottom device by the connection of a range of
gate resistances. Figure 10(a) shows the induced gate voltage
on the bottom device in the silicon IGBT module while the
top device is switching with a high dV/dt modulated by a
gate resistance of 10 Ω. Figure 10(b) shows the corresponding
shoot-through current. It can be seen from these two figures
that increasing the bottom side RG at a constant dVDS/dt
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Fig. 9. The PCB design schematic of the gate drivers; top: Unipolar Driver,
bottom: Bipolar Driver with extra gate resistance slots for two resistive paths.

causes a corresponding increase in the induced voltage turn-on
duration although the peak is relatively the same at about
13 V which is well above the threshold voltage of 5 V.
Figure 10(c) shows the induced parasitic voltage on the
bottom side SiC MOSFET while Figure 10(d) shows the
corresponding shoot-through current. For the SiC MOSFET
power module, oscillations occur in the gate characteristic due
to the ringing in the bottom side VDS characteristics which
feedback to the gate drive through the Miller capacitance. The
ringing, which is due to RLC resonance, has an oscillation
frequency that is proportional to the switching dV/dt. It can
be seen from Figure 10 that the peak shoot-through current
is approximately 70% higher for the Si-IGBT power module
compared to the SiC power module. This is due to the 10 times
higher Miller capacitance in the Si-IGBT which according to 1
will cause a higher parasitic gate voltage.

The impact of shoot-through on the DC link voltage and
the diode voltage is shown in Figure 11. Figure 11(a) shows
the voltage measured across the bottom side Si-IGBT/PiN
diode for the different gate resistances while Figure 11(b)
shows the measured DC-link voltage during the short circuit.
Figure 11(c) shows the measured voltage across the bottom
side SiC-MOSFET/Schottky diode while Figure 11(d) shows
the corresponding DC link voltage. It is seen that the SiC
device exhibits ringing which is connected to the ringing in the
gate characteristics and shoot-through currents in Figure 10(c)
and 10(d). The significance of ringing is exacerbated by higher
dV/dt as was expected.

Figure 12(a) shows the shoot-through energy density for

Fig. 10. (a). The induced parasitic turn-on voltage on the gate of the Si-IGBT
power module at different gate resistances with a constant turn-on dV/dt. (b).
The corresponding shoot-through current through the Si-IGBTs at different
gate resistances. (c,d) The same figures for SiC device.

Fig. 11. Bottom diode and DC link voltage with measurements at 650 volts
and 25 °C, (a,b) Si-IGBT (c,d) SiC-MOSFET.

the Si-IGBT power module for a matrix of gate resistances
ranging from 10 Ω to 100 Ω while Figure 12(b) shows the
same for the SiC-MOSFET. The best combination to achieve
the smallest shoot-through energy density is to switch the
devices on more slowly than switching the devices off. The
shoot-through energy density is higher for the SiC power
module because of the diode turn-off voltage overshoot.

Fig. 12. (a). The shoot-through energy density for different combinations of
gate resistances in the Si-IGBT power module (b). The shoot through energy
density for the SiC power module.
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C. Temperature Dependence

The temperature dependence of the shoot-through current
and energy has also been investigated experimentally
for both technologies. Figure 13(a,c) shows the parasitic
induced voltage on the gate of the Si-IGBT at different
temperatures and Figure 13(b,d) shows the corresponding
shoot-through current at different temperatures. As can be
seen in Figure 13(a), the parasitic voltage characteristics
are temperature invariant whereas in Figure 13(b), the peak
shoot-through current can be seen to increase by 60% (80 A to
130 A) as the temperature is increased from room temperature
to 120 °C. Figure 13(c) shows the induced parasitic voltage
in the SiC power module whereas Figure 13(d) shows
the corresponding shoot-through currents. The shoot-through
currents in the SiC power module are smaller and show more
temperature stability compared to the Si-IGBT module. For
the same temperature range, the peak shoot-through current in
the SiC power module increases from 40 A to 60 A. Figure 14
shows the bottom side diode voltage and its consequent DC
link voltage for both silicon and SiC power modules where
both devices are connected to low RG, resulting in high
switching rates. It is seen that they are nearly temperature
invariant at high switching rates. The reason is explained
in [?], [17], [18].

Fig. 13. (a). The induced parasitic turn-on voltage on the gate of the Si-IGBT
power module at different temperatures with constant turn-on/off dV/dt. (top
RG = 10 Ω, bottom RG = 100 Ω) (b). The corresponding shoot-through current
through the Si-IGBTs at different temperatures. (c,d) The same figures for SiC
device.

The shoot-through switching energy density is shown in
Figure 15 as a function of temperature for the 2 technologies
with different bottom side gate resistances. The SiC module
shows better temperature stability because the negative
temperature coefficient of the threshold voltage is lower in
SiC compared to silicon. Due to the wider bandgap in SiC, the
rate of threshold voltage decrease with temperature is lower
because the thermal energy needed to increase the intrinsic
carrier concentration by generating carriers is higher.

Crosstalk can be investigated by different approaches.
The direct approach is to evaluate it through shoot-through
current in the device. This shoot-through current can cause,
for example, the circuit protection to activate. However the
amplitude of the current is not a sufficient method for

Fig. 14. The impact of temperature on the diode and DC link voltage at high
switching rates (both top/bottom devices are connected to RG = 10 Ω) (a,b)
silicon devices (c,d) SiC devices showing invariance with temperature at high
switching rates.

Fig. 15. The shoot-through energy density at different temperatures and
bottom side gate resistances in (a) the Si-IGBT power module (b). the
SiC-MOSFET power module.

understating the consequences of crosstalk, since the duration
of the shoot-through current is also a critical parameter.
Hence, the shoot-through charge which incorporates both
the peak amplitude and the transient duration should
be used to understand the severity of the consequences.
Also the shoot-through energy density, as a result of the
dissipated power during crosstalk resulting from simultaneous
voltage/current per die should be analyzed, since reliability
issues and device failures are often caused by the excessive
heat generated within the device junction. Therefore the
shoot-through current measured at each temperature for
each technology has been integrated over time to get the
shoot-through charge. The shoot-through charge increases
approximately linearly with temperature as a result of the
corresponding decrease in the threshold voltage. That rate of
change of shoot-through charge with temperature has been
calculated so as to evaluate the temperature dependence for
both technologies. Figure 16 shows a comparison of the
shoot-through charge (integrated shoot-through current over
time) temperature coefficient for both technologies where it
can be seen that the SiC MOSFET module is more temperature
invariant. Figure 17 shows the corresponding shoot-through
energies. It can clearly be seen that the SiC module exhibits
better temperature stability compared to the Si-IGBT module.
A typical example of result of this shoot-through energy is
shown in Figure 18.
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Fig. 16. Shoot-through charge temperature coefficient (µC/°C) as a function
of the bottom-side gate resistances, showing that the silicon IGBT device is
more temperature variant compared with its SiC counterpart.

Fig. 17. Shoot-through energy of Silicon device compared with its SiC
counterpart, showing that the shoot-through energy of the silicon device is
more dependent on change of switching rate compared with SiC device.

IV. EVALUATION OF CROSSTALK MITIGATION
TECHNIQUES ON SI-IGBT AND SIC-MOSFET MODULES

To mitigate the induced parasitic voltage and its subsequent
consequences, including the shoot-through current and the
DC link voltage ripple, several correction techniques can
be employed [19]–[21]. However not all these techniques
are applicable for all cases. The correction techniques to be
analyzed for effectiveness include (i) the use of a bipolar gate
driver instead of a unipolar driver (negative voltage offset) (ii)
using two different gate resistors for turn-on and turn-off (iii)
using an external gate-source capacitor and (iv) using a DC
link snubber capacitor. Other correction techniques include the
use of the Miller clamp which is not suitable for SiC power
modules [21]. Several publications proposed advanced gate
drive techniques to mitigate the crosstalk. However the aim of
this paper is to compare the basic techniques applied to the
basic gate drivers.

A. Negative offset Gate Bias from Bipolar Gate Drives

The basic idea behind the negative gate bias is to increase
the margin required for current flow from the threshold voltage
VTH to the sum of the negative gate bias and the threshold
voltage (VGB+VTH). However, this requires gate driver circuits

Fig. 18. Thermal camera image of the SiC MOSFET module switching at 8
kHz with low RG of (top) 10 Ω and (bottom) 100 Ω with high side device
switched with 10 Ω, showing a typical example of temperature rise as a result
of continues occurrence of crosstalk in less than 8 minutes.

capable of providing negative bias (bipolar gate drivers) which
are more complicated and expensive compared to unipolar
gate drivers. Furthermore, subjecting SiC power MOSFETs
to negative stress across the gate oxide is a reliability concern
since threshold voltage shift can cause the devices to become
normally on. In this paper, the effectiveness of this correction
technique is evaluated for both technologies. The negative bias
voltage applied to both devices is equally set as -5 Volts
and the same unipolar and bipolar drives are used in both
cases to provide a fair comparison. This voltage is chosen
as it is the maximum negative gate voltage that SiC device
can withstand during continues operation based on the device
datasheet. Figure 19(a) shows the induced parasitic voltage on
the bottom side Si-IGBT for both unipolar and bipolar gate
drives whereas Figure 19(b) shows the shoot-through current.
Similar plots are shown for the SiC module in Figure 19(c)
and Figure 19(d). It can be seen that the induced voltage is
suppressed and the peak shoot-through current is significantly
reduced (from 80 A to 5 A) for the Si-IGBT module whereas
for the SiC module, the peak shoot-through current is reduced
from 45 A to 20 A. Hence, while the bipolar gate drive solves
the problem for the Si-IGBT module, it does not completely
solve it for the SiC module. This is thought to be due to the
higher dV/dt coupled with lower threshold voltage of the SiC
module.
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Fig. 19. Measurements in 25 °C with a RG = 10 Ω (top), RG = 100 Ω
(bottom) (a). Impact of the bipolar driver on the biasing the induced voltage
on Si-IGBT (b). Impact of the biased induced voltage on the shoot-through
current on Si-IGBT (c). The same figures for SiC device.

B. Use of two resistive paths for turn-on and turn-off

The basic concept behind this technique is using two
different resistive paths for the turn-on (RGON) and turn-off
(RGOFF) as shown in Figure 7. The result of applying this is
shown in Figure 20. As can be seen, the turn-on and turn-off
rates are controlled by the different resistances. A lower
parasitic voltage is induced by using a diode to ensure that
the capacitive Miller current flows through the lower RGOFF.
Looking at Figure 21(a) and (b) for Si-IGBT and Figure 21(c)
and (d) for SiC module, it is seen that this technique has
significantly lowered the shoot-through current.

Fig. 20. The gate signal for two resistive paths technique. As seen the turn-on
is done by different rates, while the turn-OFF is consistently fast.

C. External CGS

An external gate-source capacitance can be used to reduce
the induced voltage as it will consume part of the current
through the Miller capacitance, resulting in lower currents
flowing through the gate resistance, causing lower induced
voltage. This method also causes a lower dV/dt on top device
turn-on as the external capacitance also consumes part of the
gate current and therefore slows down the device. As a result,
it is not preferable in SiC-MOSFETs where the switching rate
is aimed to high values. Looking at Figure 22(a) and (b) for

Fig. 21. Measurements in 25 °C with a unipolar driver (a). Impact of the
two resistive paths technique on the induced voltage on Si-IGBT (b). Impact
of the two resistive paths technique on the shoot-through current of Si-IGBT
(c,d) The same figures for the SiC device.

the Si-IGBT and (c) and (d) for the SiC-MOSFET, it is seen
that connecting a 10 nF external source-gate capacitance has
reduced the induced voltage and shoot-through current by a
small degree and the impact is relatively low compared with
other correction techniques examined. Increasing the external
CGS causes lower dV/dt and higher switching energies and
therefore is not recommended.

Fig. 22. Measurements in 25 °C with a bipolar driver (a). Impact of external
CGS on the induced voltage on Si-IGBT (b). Impact of external CGS on the
shoot-through current on Si-IGBT (c,d) The same figures for the SiC device.

D. Snubber Capacitor

The shoot-through current causes a significant voltage dip
on the DC link which destabilizes the voltage on the DC link
capacitors. Stabilizing the DC link voltage using a snubber
capacitor on the half bridge module can reduce the high
frequency ringing in the shoot-through current, resulting in
less oscillation in the induced voltage. This in turn will
reduce the shoot-through switching energy as well. As seen
in Figure 23, the snubber capacitor (here with a value of
100 nF) has stabilized the DC link and consequently, the
overshoot in the voltage of the silicon modules diode. The
snubber capacitor is particularly effective for the SiC power
module since as seen in Figure 14(c) and (d), the oscillation
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on the DC link voltage of the SiC power module is significant.
Figure 23(c) and (d) shows that the snubber capacitor filters
out the oscillations and stabilizes the DC link as well as
the bottom side SiC MOSFET/Schottky diode voltage. This
also stabilizes the induced parasitic voltage as well as the
shoot-through current as seen in Figure 24.

Fig. 23. The impact of the snubber capacitor on the voltage dip and
oscillations on the bottom diode voltage and DC link in silicon and SiC.

Fig. 24. Measurements in 25 °C with a bipolar driver (a). Impact of the
snubber capacitor on the induced voltage fluctuations on Si-IGBT (b). Impact
of the snubber capacitor on shoot-through current of Si-IGBT (c,d) The same
figures for the SiC device.

To provide a comprehensive and comparative analysis on
the effectiveness of the correction techniques, Figure 25 to 28
have been produced. Figure 25 shows the effectiveness of
using a (a) unipolar gate driver compared with the (b) bipolar
driver for two bottom side gate resistances (10 Ω and 100 Ω)
while the top switch is switched at a high rate with RG of
10 Ω. It is seen here that although the Si-IGBT module has a
higher shoot-through charge compared with the SiC MOSFET
module at bottom side RG = 100 Ω and it is lower at bottom
side RG = 10 Ω. It can also be seen that the shoot-through
charge of the SiC MOSFET module is less dependent on RG

as is expected due to its lower Miller capacitance. By applying
a bipolar gate driver as seen in Figure 25(b), the shoot-through
charge is reduced in both devices; however, the effectiveness
of the Bipolar gate drive is less in the SiC MOSFET module
as a result of its lower threshold voltage and higher dV/dt. As

can be seen from Figure 25(b), the shoot-through charge for
both RG cases is minimal in the Si-IGBT module with Bipolar
gate drive compared with the SiC MOSFET module. This is
shown in terms of charge reduction percentage for RG = 10
Ω.

Fig. 25. Shoot-through charge of different RG on bottom device, with (a)
Unipolar and (b) Bipolar Gate drivers in Silicon and SiC devices.

Figure 26 shows the percentage reduction of shoot-through
charge from the use of the bipolar gate drive for both
technologies i.e. a measure of its effectiveness.

Fig. 26. Percentage reduction of shoot-through charge in both silicon and
SiC device with RG = 10 Ω showing that using a bipolar driver has a better
impact on silicon IGBT device than the SiC device.

It can be seen from this figure that reduction of charge in
Si-IGBT module is higher than the SiC MOSFET module.
This can be seen by comparing Figure 19(b) and 19(d).
Figure 27 and Figure 28 show the results of all correction
techniques applied to each device technology at 25 °C and
120 °C using the shoot-through energy density as the indicator.
As was explained in the previous sections, to provide a fair
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comparison the shoot-through is represented by the energy
density (mJ/cm2) instead of energy (mJ). As can be seen
from Figure 25, although the Si-IGBT module initially exhibits
a higher shoot-through charge, using a Bipolar gate drive
is more effective in reducing the shoot-through charge and
energy. In Figure 27 and 28, it can be seen that applying
a snubber capacitor does not have a considerable impact
on reduction of the shoot-through energy density, although
as it was seen previously, the use of the snubber capacitor
mainly in the SiC MOSFET module is required for preventing
ringing/oscillations in the turn-on of the bottom device. As
these Figures show, the use of two resistive paths results in a
very significant reduction of the shoot-through energy density
and has the same effectiveness as a the use of a Bipolar gate
drive in the Si-IGBT module. However, for the SiC MOSFET
module, both techniques together the use of a snubber across
the DC link is required.

Fig. 27. Shoot-through energy density as a result of crosstalk in bottom device
in 25 °C with RG = 10 Ω (or its equivalent) in top and bottom devices.

Fig. 28. Shoot-through energy density as a result of crosstalk in bottom device
in 120 °C with RG = 10 Ω (or its equivalent) in top and bottom devices.

V. CONCLUSION

Crosstalk has been modeled and experimentally
characterized for SiC MOSFET and Si-IGBT power modules.
It has been experimentally demonstrated that SiC devices
normally have a lower shoot-through charge although often
exhibit higher shoot-through energy. The lower shoot-through

charge is due to a considerably smaller Miller capacitance in
SiC MOSFETs compared with Si-IGBTs in spite of switching
with higher dV/dt and having a lower threshold voltage.
However, the higher shoot-through energy in SiC MOSFET
modules is due to the ringing in the Schottky diode turn-off
transient resulting in oscillations in the DC link voltage. It
has also been demonstrated that the shoot-through charge
in Si-IGBT module has a higher temperature coefficient
for all conditions, meaning that it is more sensitive to
ambient temperature rise. The temperature coefficient of the
shoot-through charge in SiC is lower as a result of the lower
threshold voltage temperature coefficient resulting from the
wide-bandgap characteristics. Various correction techniques
have been examined to mitigate the problem. For the Si-IGBT
modules, the traditional solutions of negative gate bias and/or
2 resistive paths are sufficient in mitigating the problem.
However, for the SiC MOSFET modules, the bipolar gate
driver is not sufficient to completely solve the crosstalk
problem since the threshold voltage of SiC devices is low and
the dV/dt remains high. Furthermore, negative bias rating of
the SiC MOSFET is lower than that of Si-IGBTs, hence, the
margins for negative bias are smaller. It has also been shown
that the presence of the snubber capacitor is required to damp
the high frequency oscillations in the DC link resulting from
diode ringing, in the case of SiC devices. Therefore, for the
Si-IGBT modules, the bipolar gate driver with a negative
bias value of at least five Volts should suffice to mitigate the
possibility of shoot-through, whereas for SiC devices, due to
the restrictions over the negative bias gate voltage, the two
resistive path method in conjunction with the bipolar gate
driver and the snubber capacitor are recommended.
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