
http://wrap.warwick.ac.uk   

 
 

 
 
 
 
 
 
Original citation: 
Lu, Yi, Higgins, Matthew D. and Leeson, Mark S.. (2015) Comparison of channel coding 
schemes for molecular communications systems. IEEE Transactions on 
Communications, 63 (11). pp. 3991-4001. 
 Permanent WRAP url: 
http://wrap.warwick.ac.uk/76406  
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for  
profit purposes without prior permission or charge.  Provided that the authors, title and 
full bibliographic details are credited, a hyperlink and/or URL is given for the original 
metadata page and the content is not changed in any way. 
 
Publisher’s statement: 
“© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting 
/republishing this material for advertising or promotional purposes, creating new 
collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works.” 
 
A note on versions: 
The version presented here may differ from the published version or, version of record, if 
you wish to cite this item you are advised to consult the publisher’s version.  Please see 
the ‘permanent WRAP url’ above for details on accessing the published version and note 
that access may require a subscription. 
 
For more information, please contact the WRAP Team at: publications@warwick.ac.uk  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/42617619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/76406
mailto:publications@warwick.ac.uk


IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION SUBMISSION 

 

 

1 

Abstract— Future applications for nano-machines, such as 

drug-delivery and health monitoring, will require robust 

communications and nanonetworking capabilities. This is likely to 

be enabled via the use of molecules, as opposed to electromagnetic 

waves, acting as the information carrier. To enhance the 

reliability of the transmitted data, Euclidean Geometry Low 

Density Parity Check (EG-LDPC) and Cyclic Reed-Muller 

(C-RM) codes are considered for use within a molecular 

communication system for the first time. These codes are 

compared against the Hamming code to show that an s = 4 LDPC 

(integer s ≥ 2) has a superior coding gain of 7.26dBs. Furthermore, 

the critical distance and energy cost for a coded system are also 

taken into account as two other performance metrics. It is shown 

that when considering the case of nano- to nano-machines 

communication, a Hamming code with m = 4, (integer m ≥ 2) is 

better for a system operating between 10-6 and 10-3 Bit Error Rate 

(BER) levels. Below these BERs, s = 2 LDPC codes are superior, 

exhibiting the lowest energy cost. For communication between 

nano- to macro-machines, and macro- to nano-machines, s = 3 

LDPC and s = 2 LDPC are the best options respectively. 

 

Index Terms—Molecular communication, diffusion channel, 

EG-LDPC codes, C-RM codes, Hamming codes, bioengineering.  

I. INTRODUCTION 

 HE communication between nano-machines, either by 

nano-mechanical, acoustic, electromagnetic, chemical or 

molecular channels is a rapidly growing research space with 

many unknowns [1]. At this point in time, the use of a 

molecular channel, whereby molecules are used to encode 

information, is becoming popular, in part, due to the fact that 

the molecules used have a size of the same order of magnitude 

as both the transmitter and receiver that emit and collect them 

[2].  

Within the broad field of molecular communications, the 

type of molecule used is largely dependent upon the required 

transmission range of the application. At the moment,  

microtubule communication is useful for very short ranges [3], 

ion signaling and diffusion via Brownian motion is useful for 

short to medium ranges [4], whilst spore and pollen-based 

diffusion is useful for the longer ranges [5]. There also exists 

some other methods like advection-diffusion and 

electrochemical transports which can be used in neuronal 

networks [6], [7]. Within the bioengineering field, there 

appears to be a drive to deploy systems at the short to medium 
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range [8] and so the focus here shall be on using the molecular 

diffusion channel as the link between the two communicating 

entities. 

Across all branches of communications, a major concern has 

always been on the reliability of the data at the receiver and 

being able to control or correct any errors introduced. The 

de-facto technique has been to employ Error Correction Codes 

(ECCs). In parallel to the work of researchers in the field of 

ECCs, a substantial amount of research is also being conducted 

on developing logic gates (or logical elements) at the molecular 

scale [9], [10]. Thus, it is becoming apparent that the 

mathematical basis of any ECC is soon to have a feasible route 

for implementation. 

There is only a small amount of work in the area of ECCs 

applied to molecular nano-communications, namely the work 

in [11] and [12], where the authors presented the use of 

Hamming codes as a candidate for future applications. The key 

results in the papers showed that the use of Hamming codes was 

beneficial to the performance of the system. Importantly though, 

the authors also considered the overall complexity of the 

encoding and decoding process such that the amount of energy 

that would be required was taken into account. The measure of 

energy chosen was atypical, considering the use of critical 

distance, a measure of the actual transmission distance, in µm, 

at which the use of coding becomes beneficial [13]. This was 

seen as more appropriate than an energy per bit type measure 

which could easily be taken out of context at the nano-scale. 

For example, a code with a low energy per bit may appear 

beneficial, but if its critical distance is longer than the length of 

an artery between two medical application based 

nano-machines, then in fact, the application of that code was 

inappropriate. 

Therefore, a context-aware consideration of energy within 

any nano-communications systems is likely to be the defining 

constraint of all future systems [14]. A system designer should 

therefore, not always assume that any well-known performance 

enhancement techniques can readily be transferred from the 

mega- or micro-domain into the nano-domain as the energy 

budget might not exist. 

A critical observation of the work based upon Hamming 

codes in [11] and [12], is that the encoding and decoding 

processes are of comparable complexity. That is to say, the 

energy required for encoding and decoding is of the same order 

of magnitude. Whilst this is perfectly viable for many 

applications, there may be future applications where the 

complexity of the transmitter and receiver are needed to be 

specifically different. For example, when considering future 
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medical applications, nano-scale position beacons might be 

used to transmit information that guides macro-scale 

drug-delivery robots around human blood vessels. Thus, in this 

potential application, the transmitter must be simpler than the 

receiver. Therefore, it logically follows that such an application 

also requires an ECC code that is easier to encode than 

Hamming, even if the penalty is a more complicated decoding 

process.  

In this paper, two ECCs, previously uninvestigated in the 

molecular domain, are introduced. One is from the Low 

Density Parity Check (LDPC) code family, and one is from the 

Reed-Muller (RM) code family.  

LDPC codes have an extensive taxonomy [15] [16] [17] [18], 

but at the highest level they have been broadly branched into 

either Random or Structured LDPC codes. The former are 

sometimes known as Gallager or Makay Random codes [15] 

[17]. The latter type, i.e. Structured LDPC codes, have two 

specific constructions, called Euclidean Geometry LDPC 

(EG-LDPC) codes and Projective Geometry LDPC (PG-LDPC) 

codes. Both of these constructions have several advantages 

over Random LDPC codes including the existence of several 

decoding algorithms (cyclic or quasi-cyclic), Tanner graphs 

that do not contain lengths of 4 (which leads to simpler 

decoding), and finally, the ability to extend (or shorten) the 

code in order to adapt to an application [19] [20] [21]. It has 

been shown in [18] that both EG-LPDC codes and PG-LDPC 

codes have almost identical error performance. Further to this, 

a comprehensive account of the implementation of a cyclic 

EG-LDPC code has been shown in [22] such that in this paper, 

the focus will be placed on one specific construction, namely 

the cyclic EG-LDPC code.   

RM codes [23] [24] are a class of linear codes over a Galois 

field of two (GF(2)), they are also a kind of code that can be 

easily decoded by majority decoding. In this work, an indirect 

construction of RM code as a cyclic code is given to show that 

the cyclic RM (C-RM) code is a subset of Bose, Chaudhuri and 

Hocquenghem (BCH) codes. In this case, the C-RM code can 

be easily encoded and decoded using the shift-register and 

majority logic decoding schemes respectively. The main 

advantage of these codes, from the perspective of energy, is that 

the encoder is simpler than the decoder, thus may hold benefits 

for the applications above noted so far [25] [26] [27].  

This paper presents a several key contributions to the area of 

molecular communications. Herein, for the first time, the viable 

implementations (with generalized circuit models) of an 

EG-LDPC code and a C-RM code are shown for use in the 

molecular communication channel. Then, considering an 

arbitrary length Inter Symbol Interference (ISI) memory 

channel, its effects upon the Bit Error Rate (BER) of an 

un-coded channel is considered. Next, the coding schemes are 

applied to the system, and their performance evaluated with 

regards to both coding gain and critical distance. This presents a 

system designer with two metrics upon which to evaluate the 

effectiveness of applying the code once, or if, the transmission 

distances of the target application are known. In situations 

where raw energy consumption is required, a third metric of 

absolute energy requirements for the codes is shown with

r

Transmitter

Diffusion Process

R
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R

 
Fig. 1.  The diffusion-based system considered in this work. 

 

associated target BERs.  

The remainder of the paper is organized as follows. Section 

II describes the communication and energy models used within 

the molecular communications systems considered here. The 

implementation aspects of Hamming codes, EG-LDPC codes 

and C-RM codes are then shown in Section III. This section 

also provides the reader with a definitive set of equations 

needed to calculate the energy requirements.  Section IV then 

provides the simulation results with regards to coding gain, 

energy cost for coded system and the critical distance, followed 

by the conclusions in Section V.  

II. COMMUNICATION CHANNEL AND ENERGY MODEL  

In this work, a three dimensional diffusion based 

communications system is considered where the transmission 

of molecules from transmitter to receiver is governed by the 

laws of Brownian motion. In this model, the receiver has a 

molecule capture probability Phit(r,t) shown to be equal to [12]: 

   
 

, erfc
2

 
  

 
hit

r RR
P r t

r Dt
, (1) 

where, as in Fig. 1, r is the distance between the initial position 

(the center of the transmitter) of the molecule and the receiver 

center, in µm, t is time in s, R is the radius of the transmitter and 

receiver, in µm, and D is the diffusion coefficient, in µm2s-1. In 

this paper, R = 5µm and D = 79.4µm2s-1 are assumed for ease of 

comparison with the work in [11] and [12].  

In agreement with the work in [28], the transmitted 

information is represented by a sequence of symbols with one 

symbol in each time slot, ts. In an intended time slot, if the 

number of information molecules arriving at the receiver 

exceeds a threshold τ, the symbol is denoted as ‘1’, otherwise it 

is denoted as ‘0’ [29]. Considering the ISI, the different error 

patterns can be obtained by the different permutations of the 

previous information symbols, so the number of error patterns 

is 2I, where I is the length of the ISI considered. 

Considering that N information molecules are released as an 

impulse at the start of the symbol duration time, and the number 

of molecules received among the N molecules that are sent in 

the current time slot N0 follow a binomial distribution given as 

[28]: 

   0 ~ , ,hit sN B N P r t . (2) 

If N is large enough, a binomial distribution B(N,Phit) can be 

approximated by a normal distribution N(NPhit,NPhit(1-Phit)), 
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thus: 

        0 ~ , , , 1 ,hit s hit s hit sN NP r t NP r t P r t   N . (3)                                     

The values of ts, for different distances r, can be selected by 

the time at which 60% molecules arrive at receiver [28]. 

The transmitted molecules cannot be guaranteed to reach the 

receiver within one time slot which causes ISI. The molecules 

emitted at the start of the ith time slot before the current one will 

still exist in the environment and the number of molecules 

received in the current slot among these remaining molecules is 

given by:  

 

     

           =

i i+1 i+1 i+1 i i i

i+1 i i+1 i+1 i i

N  ~ NP , NP 1 P NP ,NP 1 P

N P P , N P 1 P +P 1 P

  

 

   N N

N
, (4) 

where Pi =Phit(r,i·ts). 

Overall, the total number of molecules received in the 

current time slot Nc can be obtained by summing N0 and the 

number of remaining molecules which belong to the molecules 

sent from the start of all previous time slots:  

       

0

1 1 1

0

,      = 1 1

I

c c i i

i

I

c i i i i i i i

i

N a N

a N P P N P P P P





   





   



 N

, (5) 

where {ac-i,i=0,1,2,...,I} is the transmitted information symbol 

which includes current and all previous related I symbols. 

Errors occur when the symbol sent in the current time slot is 

different from the symbol received in the current time slot. 

They can be represented by two cases: firstly, when ‘0’ is 

transmitted, but ‘1’ is received; secondly, when ‘1’ is 

transmitted, but ‘0’ is received. 

The error probability for the first case shows that the 

received molecules exceed , which is: 

 

 01, ,1

, ,1
0

1
P

2

1
       = P

2

j c jI

I

c i j i jI
i

P N

a N










 

 
 

 


, (6) 

where j = 1,2,…,2I , is the error pattern index. Here the 

transmission probabilities of ‘0’ and ‘1’ are assumed as 0.5 and 

0.5 respectively. 

Conversely, the error probability for the second case can be 

obtained by: 

 

 10, ,1

, ,1
0

1
P

2

1
       = P

2

j c jI

I

c i j i jI
i

P N

a N










 

 
 

 


. (7) 

And thus, the error probability for an un-coded system is 

given as: 

  
2

01, 10,

1

I

uc j j

j

P P P


  . (8) 

As can be seen in Fig. 2, for a given distance r = 6μm, the 

longer the ISI length I, the higher the BER. It can also be noted 

that as the ISI length considered increases, the effect it has upon 

 
Fig. 2. BER for un-coded system at transmission distance r = 6μm for different 

ISI length, I = 1 to 10. 

 

the BER becomes less prominent, i.e. the BER value begins to 

converge. 

The energy model used here is based upon the energy 

consumption of the encoder and decoder circuits. The authors 

in [30] considered the protein-based signaling networks within 

biological cells. It was shown that the fundamental motif in all 

signaling networks is based upon the protein 

phosphorylation/dephosphorylation cycle, also called a cascade 

cycle. Thus it is possible to construct various control and 

computational analog and digital circuits by combining these 

cascade cycles which simply change one state to another. 

Coupled with the notion that these kinds of networks are of a 

similar scale to those needed for any future artificial 

nano-networks, they can also be used to estimate the energy 

requirements of the encoding and decoding circuits used here. 

Furthermore, using the fundamental signaling motif, it was 

further shown how a NAND gate could be formed, and that the 

suitable measure of energy required for the cycle to complete 

was equal to a single Adenosine triphosphate (ATP) reaction 

[31] [32].  

The energy cost from one ATP reaction, in Joules, is 

approximately equal to 20 KBT, where KB is the Boltzmann 

constant and it is assumed here that the system is operating at an 

absolute temperature, T = 300K. NAND gates are a universal 

gate, so it is clearly possible to build all further logic circuits 

from combinations of NAND gates based on the principles of 

Boolean algebra. In this work, the SR (set-reset) flip-flop is 

considered for each shift register unit. It can be constructed 

using four NAND gates, so each shift register unit requires four 

NAND gates. In addition, a NOT gate, and a two-input XOR 

gate can be formed using one and four NAND gates 

respectively 5]. Finally, the last energy assumption to be made 

is that for the work here, in agreement with the work in [28], the 

energy cost of synthesizing a molecule is approximately 2450 

KBT . In this work, the energy is worked in KBT.  
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III. ERROR CORRECTION CODING TECHNIQUES 

In this paper three kinds of block codes are considered as 

candidates to enhance the performance of molecular 

communication systems, namely, Hamming codes, EG-LDPC 

codes and C-RM codes. As the aim of this work is to compare 

the coded and un-coded system performance, the BER for the 

coded system needs to be determined. 

The channel model used for an un-coded molecular 

communication system was introduced in Section II. For the 

coded system, the information bits can be encoded within the 

nano-machines by multiplying the information polynomial with 

the generator polynomial [20], and then the information 

carrying molecule pulse is emitted into the channel. Aiming to 

use the same number of molecules as an un-coded system, the 

number of molecules used for calculation of the channel error 

probability for the coded system should be evaluated with a 

reduction of the number of molecules used for an un-coded 

system, (8), by multiplication with the coding rate. The BER 

can then be obtained after the different decoding schemes.  

The coding techniques and the energy consumption required 

by the encoder and decoder will be discussed in turn. Detailed 

mathematical explanations concerning the operation and 

behavior of each code have been placed in the Appendix.   

A. Hamming codes 

A Hamming code is a simple linear block code denoted as 

(nH,kH), where nH = 2m – 1, is the block length, and kH = nH –  

m, is the message length with m (m ≥ 2) parity check bits. 

Block codes can correct t errors in each block: 

  1 2Hmint d    , (9) 

where dHmin is the minimum distance and for Hamming codes 

dHmin equals to 3. Therefore, Hamming codes can correct one 

error in each block. Fig. 3 shows an example of encoder and 

decoder for an m = 5 Hamming code.  

Combining the ATP energy model introduced in Section 

II, a NOT, two-input XOR gate, and shift register unit will cost 

one, four, and four ATPs respectively. It will also be assumed 

that a multi-input NAND gate will require only one ATP [12]. 

Therefore, with reference to Fig. 3 for m = 3,4,5 Hamming 

codes, two two-input XOR gates and m shift registers are 

needed for each circuit of the encoder, which implies the energy 

cost of encoding is: 

    20 4  8 2450  encode H tx txE N m N    . (10) 

For m = 3,4,5 Hamming codes, three two-input XOR gates, 

(m + nH) shift registers, (m – 1) NOT gates and one multi-input 

NAND gate are needed for each decoder circuit, which implies 

the energy cost of the Meggit decoder is:  

  20 5 4 12 2450decode H rx H rxE N m n N     , (11) 

where Ntx and Nrx are the number of code generation molecules 

required to encode and decode the data as recommended in 

[34]. In this work, these molecules are considered as different 

to the information molecules, as they are internal molecules and 

are only used for the encoding and decoding process within the 

nano-machines and do not suffer from any effects caused by 

diffusion. In order to reduce the effects that come from the 

SR SR SR SR SR
Input

Output

Five bits shift register

31-stage Register

SR 

Output

SR SR SR 

(b)

Input

(a)

SR 

  
Fig. 3.  Nonsystematic encoder [35] (a) and Meggit decoder (b) [35] for m =  5 

Hamming code. 

 

biochemical intrinsic distortion, it is assumed that Ntx = Nrx = 

300 [12].  

B. EG-LDPC codes 

An EG-LDPC code can be constructed based on the lines and 

points of Euclidean geometry. In this paper, a special case: 

cyclic two dimensional EG-LDPC codes is considered [19] 

[36]. From this point onwards, to simplify the nomenclature, 

the LDPC codes mentioned below are all assumed to be cyclic 

and two dimensional [19] [37].  

In general terms, LDPC codes can be represented as (nL,kL), 

where nL = 22s –  1,(s ≥ 2) is the block length and kL = 22s – 3s is 

the message length [19]. This kind of code has the minimum 

distance dLmin = 2s +1. And finally, the number of 1’s for row 

and column also as the weights of the parity-check matrix 

which are given as ρ = 2s and γ = 2s respectively [19].  In this 

work, three LDPC codes are considered which are s = 2 LDPC 

code with dLmin = 5, s = 3 LDPC code with dLmin = 9 and s = 4 

LDPC codes with dLmin = 17. 

Considering the LDPC hardware requirements, as shown in 

Fig. 4, the encoding process can be achieved using simple 

feedback shift registers and subsequently decoded using a    

one-step majority logic decoding method. Fig. 5 shows an 

example of the majority logic gate (MLG) used in this decoding 

method where an output of one is produced when more than 

half of its inputs are equal to one, otherwise the output is zero. 

Using the same energy model as with the Hamming codes, 

for s = 2,3,4  LDPC codes, (nL – kL) shift registers are used and 

the number of two-input XOR gates in the circuits is dependent 

upon the generator polynomial of each code. The energy cost of 

encoding is therefore:  

   2 20 4 16 2450    encode s tx L L txE N n k N , (12) 

   3 20 4 40 2450    encode s tx L L txE N n k N , (13) 

   4 20 4 180 2450    encode s tx L L txE N n k N . (14) 

In addition, for different LDPC codes, the decoding circuits 

can be modified with ρ-input XOR gates, γ-input MLGs, and nL 

buffer registers. The multi-input XOR gate can be obtained by 

using the combination of multiple two-input XOR gates. Here 
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for s = 2,3,4 LDPC codes, the energy cost of decoding is 

therefore:  

  2 20 4 57 2450   decode s rx L rxE N n N , (15) 

  3 20 4 321 2450   decode s rx L rxE N n N , (16) 

  4 20 4 27297 2450   decode s rx L rxE N n N . (17)  

C. C-RM codes 

RM codes are a class of binary codes with multiple error 

correction capabilities. Here the way in which they are 

constructed as cyclic codes is introduced. This basis on cyclic 

codes means they are termed C-RM codes. The rth order C-RM 

codes can be represented as C-RM(r,l) with a block length nR = 

2l – 1, and the minimum distance dRmin = 2l-r – 1 [35] is exist for 

any integer, l ≥ 2 and 0 ≤ r < l – 1 . The message length kR can be 

calculated as: 

 
1

1

1 
1 2

l r

R R

z

k n
r

l l l l

z

 



       
             

       
 . (18) 

Considering the C-RM hardware requirements, as shown in 

Fig. 6, the encoding process can be achieved using simple 

feedback shift registers and subsequently decoded using a 

multiple-step majority logic method. For any 𝐽-input MLGs, 

the number of NAND gates 𝑁𝑁𝐴𝑁𝐷−𝑀𝐿𝐺𝑠 can be calculated as: 

 

1

2 1

1,   2

2,   2



 

  
   

   





J

i JNAND MLGs

J

J

J

iN . (19) 

Using the same energy model as with the Hamming and 

LDPC codes, for C-RM codes, (nR – kR) shift registers are used, 

and the number and the location of the two-input XOR gates in 

the circuits are dependent upon the generator polynomial of 

each code. The energy cost of encoding is therefore:  

     1,3
20 4 8 2450tx R R txencode RM

E N n k N


    , (20) 

     1,4
20 4 24 2450tx R R txencode RM

E N n k N


    , (21) 

     2,4
20 4 8 2450tx R R txencode RM

E N n k N


    , (22) 

     2,5
20 4 40 2450tx R R txencode RM

E N n k N


    , (23) 

     3,5
20 4 8 2450tx R R txencode RM

E N n k N


    . (24) 

In general, an rth order C-RM code can be decoded with a            

(r + 1)-step majority logic decoder. For these decoding circuits, 

the total number, NML, of the J-input MLGs used in the circuit 

can be analyzed as [38]:  

 2 11 L

MLN J J J      , (25) 

where J = dRmin – 1, and L = r + 1  is the number of steps used in 

the majority logic decoder. 

The multi-input XOR gates used in majority vote process can 

be obtained by using the combination of multiple two-input 

XOR gates and the number of inputs of the XOR gate is 

dependent on the check polynomial. In this work, the two-input 

MLGs are used in C-RM(1,3), C-RM(2,4) and C-RM(3,5) 

decoders’ design, six-input MLGs are used in the C-RM(1,4) 

and C-RM(2,5) decoders’ design. According to (19), the 

SR 

Input

Output

(a)

15 bits buffer register

MLG

Input Output

0 2 6 14   r r r r
7 8 10 14   r r r r 3 11 12 14   r r r r 1 5 13 14   r r r r

Majority Logic Gate

(b)

SR SR SR SR SR SR SR 

Fig. 4.  Nonsystematic encoding circuit (a) and one-step majority logic decoder 

(b) [22] for the s = 2 LDPC codes. 
A B C D

Majority 

output

Fig. 5.  Four-input MLG implementation circuit. 

SR SRSR
Input

Output

(a)

SR SR SR SR SR SR SR

0 1 2 4   r r r r
0 1 2 4   r r r r0 1 3 6   r r r r 0 2 5 6   r r r r

MLG MLG

MLG

Input
Output

(b)

First step

Second step

Majority 

vote 

process

Fig. 6.  (a) Non-systematic encoding circuit and (b) a two-step majority logic 

decoder for the C-RM(1,3) codes [39]. 

 

two-input MLG and the six-input MLG can be formed by 2 and 

22 NAND gates. 

In addition, nR-stage buffer registers and an extra two-input 

XOR gate are also needed. Here for C-RM codes, the energy 

cost of decoding is therefore:  

    1,3
20 4 58 2450


  rx R rxdecode RM

E N n N , (26)  

    1,4
20 4 590 2450


  rx R rxdecode RM

E N n N , (27) 



IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION SUBMISSION 

 

 

6 

 
   2,4

20 4 242 2450


  rx R rxdecode RM
E N n N , (28) 

 
   2,5

20 4 6998 2450


  rx R rxdecode RM
E N n N , (29)  

 
   3,5

20 4 994 2450


  rx R rxdecode RM
E N n N . (30) 

IV. SIMULATION 

In a binary channel, ISI is the biggest inhibitor to the 

performance of a system due to the overlap between the 

symbols sent in the current time slot, and the symbols sent from 

the previous time slots. Here, using (8) a binary channel with an 

ISI length of 10 is considered. Through the encoding and 

decoding process after 1011/(message length) consecutive 

blocks, the BER for the coded system can be obtained. 

The BER results for both un-coded and coded Hamming, 

LDPC and C-RM systems are shown in Fig. 7. At this stage, the 

idea of coding gain can be introduced as a more defined 

measure of the performance gain from the implementation of 

coding. It can be directly obtained as: 

 10 log uncoded
coding

coded

N
G

N

 
   

 
, (31)                            

where Nuncoded and Ncoded are the number of molecules for 

un-coded and coded system at a BER level. For example, at the 

BER level of say, 10-9, the coding gain of the m = 3,4,5 

Hamming codes, s = 2,3,4 LDPC codes and C-RM(1,3),(1,4), 

(2,4),(2,5),(3,5) are shown to be 1.59dB, 2.41dB, 2.77dB, 

2.89dB 5.56dB, 7.26dB, 1.58dB, 3.23dB, 2.40dB, 4.46dB and 

2.80dB respectively. Hence, of all these error correction 

schemes considered, the s = 4 LDPC code will provide the 

highest system performance. However, whilst these codes 

clearly show gains in the performance of molecular 

communication systems, there is an extra energy cost that was 

required to produce this improvement. The energy cost for an 

un-coded and a coded systems can be calculated as: 

 2450uncoded uncodedE N , (32) 

 2450coded coded encode decodeE N E E  . (33)         

The energy saving (or loss) ∆𝐸  for a coded molecular 

communication system is defined as [12]: 

 
      = 2450

uncoded coded

uncoded coded encode decode

E E E

N N E E

  

  
, (34) 

where Eencode and Edecode are the energy requirements for 

encoding and decoding process. It is therefore easy to see that 

when ΔE ≥ 0, the use of ECC is beneficial to the molecular 

communication system. Furthermore, the critical distance [13] 

is defined as the distance at which the coding gain was matched 

with the extra energy requirements introduced by the use of the 

ECC, that is ΔE = 0, such that (34) reduces to: 

 ( ) / 2450uncoded coded encode decodeN N E E   . (35) 

By substitution of the energy consumption values in (10) and 

(11), in (12) through (17), in (20) through (24) and in (26) 

through (30), the relationship of Nuncoded and Ncoded can be 

obtained for each code. 

Two ranking systems are shown in analyzing the 

performance of the ECCs. The main ranking system is the

 
Fig. 7.  BER comparison for coded and un-coded system with m = 3 to 5 
Hamming codes, s = 2 to 4 LDPC codes, C-RM(1,3),(1,4),(2,4),(2,5),(3,5) and 

r = 6μm, I = 10. 

 

critical distance as described so far. However, there are cases 

where there is no critical distance as in fact, in those cases, the 

use of ECC is always beneficial. In these cases, the ECC is 

ranked purely upon the total energy (33) use with the best being 

the one with the lowest overall energy consumption.  

The critical distance is affected by two, not necessarily linear 

factors. Firstly, an obvious relationship in the system 

performance exists for each of the different coding schemes at 

different distance, as shown in Fig. 7. Secondly, the encoder 

and decoder circuitry for each of the codes is different, with 

varying degrees of complexity such as those in Fig. 3, Fig. 4 

and Fig. 6. Fig. 8 provides our key critical distance results for 

the different Hamming, LDPC and C-RM codes over a BER 

range of 10-9 to 10-3. Fig. 8 (a) considers the critical distance 

when all energy within the system is accounted for. Clearly 

from the results shown, the critical distances of m = 4 Hamming 

and s = 2 LDPC codes exist in a small BER range from 10-6 to 

10-3, and the lowest critical distance is belongs to m = 4 

Hamming. Under the same communication architecture, Fig. 

9(a) shows the energy cost for coded system at those BER 

levels where the critical distance does not exist. It is clearly 

shows that s = 2 LDPC code gives the lowest energy cost of 

coded system from 10-9 to 10-7. So consider the communication 

system operate at 10-6 to 10-3 BER levels, m = 4 Hamming 

codes is the first choice with lowest critical distance from 

6.2μm at 10-9, otherwise, s = 2 LDPC code with the lowest 

energy cost from 5478200KBT at 10-7 should be selected. There 

also exists another nano-communications architecture that a 

nano-machine transmitting information to macro-machine 

which is not constrained by the same power budget. Therefore, 

if one considers such a system, and assumes the extra energy 

comes from the encoder only, i.e. that Edecode = 0, then the 

critical distance and energy cost results can be seen in Fig. 8(b) 

and Fig. 9(b). Here, the interesting observation is most of codes 

are beneficial for molecular communication system that 
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operating between 10-9 and 5×10-5 BER levels with any 

transmission distance except s = 4 LDPC code. In this case, the 

analysis should be focus on the energy cost shows in Fig. 9(b), 

when considering the system operating at 10-9 to 10-6 BERs, the 

s = 3 LDPC should be considered as the designer’s first choice 

with the lowest energy cost from 3113000 KBT at 10-6.  For 

BER levels from 10-4 to 10-3, the m = 4 Hamming and 

C-RM(3,5) have the same and also the lowest  critical distance 

from 6.1μm at 10-4. 

Similarly, there may be system designs whereby a 

macro-machine is communicating with a nano-machine, such 

that, it is critical to minimize the decoding energy costs with an 

assumption for now that the encoding costs can be contained 

within a larger energy budget. This scenario, setting,            

Eencode = 0, where only the energy cost of the decoder is 

considered as an extra energy, the results are shown in Fig. 8(c) 

and Fig. 9(c). Here, if the system is operating at 10-5 to     10-3 

BERs, then the s = 2 LDPC provides the shortest critical 

distance for which coding becomes beneficial. For operating 

BERs lower than 10-5, Fig. 9(c) shows that the lowest energy 

cost for coded system which is also belongs to s = 2 LDPC 

code, so in this case, the s = 2 LDPC code becomes the best 

choice for molecular communication system that operating 

between 10-9 and 10-3 BER levels. 

V. CONCLUSIONS 

In the paper, LDPC and C-RM codes have been introduced 

into a molecular communication system for the first time and 

the performance enhancements they bring have been compared 

against Hamming codes with respect to both coding gain and 

energy requirements. It has been shown that the coding gain for 

m = 5 Hamming and C-RM(2,5) can be as high as 2.77dB and 

4.46dB whilst s = 4 LDPC can be as high as 7.26dB at a BER of 

10-9. With a strong emphasis on not hiding the cost of this gain, 

this paper has further analyzed, under three different scenarios, 

how much energy these gains cost, by defining the distances at 

which the use of coding becomes beneficial. Furthermore, the 

energy costs for the coded systems under these scenarios are 

also taken into account when the critical distance does not exist. 

According to the results, the designer can determine which 

code should be employed by the critical distance and the energy 

cost for different operating BERs. It is shown that when 

considering a case of nano- to nano-machine communications 

operating between 10-9 and 10-7 BER levels, s = 2 LDPC code is 

the obvious choice which own the lowest energy cost 5478200 

KBT at a BER of 10-7, when operating BER level is larger than 

10-6, the m = 4 Hamming codes are the obvious choice over 

distances greater than 6.2µm. And if a nano-machine is 

communicating with a macro-machine, m = 4, 5 Hamming, s = 

1, 2 LDPC and C-RM(1,4),(2,4),(2,5),(3,5) are beneficial over 

all transmission distances when the working BER levels of the 

communication system is less than 10-4 , and based on this, the   

s = 3 LDPC code with the lowest energy consumption is worthy 

for the design when the system operate between 10-9 and 10-6. 

Inversely, considering the BER levels higher than 10-4, the m = 

4 Hamming and C-RM(3,5) are worthy for the design when the 

transmission distance higher than 6.1μm. When a 

 
(a) 

 
(b) 

 
(c) 

Fig. 8.  Critical distance r0 with BER for Hamming codes from m = 3 to m = 5, 

LDPC codes from  s = 2  to s = 4 and C-RM(1,3),(1,4),(2,4),(2,5),(3,5) when (a) 

the communication process energy consumption is considered (b) only the 

transmission process energy consumption is considered (c) only the receiving 

process energy consumption is considered.  
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macro-machine is communicating with a nano-machine, the  

s = 2 LDPC is the best choice for the designer when the system 

BER requirements from 10-9 to 10-3.  

APPENDIX  

CODING TECHNIQUES 

A. Hamming codes 

Here the Hamming codes are considered as cyclic 

Hamming codes [35] which the generator polynomials of m 

= 3,4,5 are given by g(x) = x3 + x + 1, g(x) = x4 + x + 1, and 

g(x) = x5 + x2 + 1respectively, so the encoded message can be 

obtained by multiplying the information polynomial with the 

generator polynomial. This encoding process can be realized 

using a nonsystematic encoder where the output code-word 

does not contain the information sequence [40], whilst the 

encoded message can be easily decoded using a Meggit 

decoder [35]. The syndromes required for testing the error 

patterns for m = 3,4,5 Hamming codes are configured as s(x) 

= x2 + 1, s(x) = x3 + 1 and s(x) = x4 + x respectively. The 

Meggit decoder is considered for Hamming codes. 

B. EG-LDPC codes  

Before fully describing EG-LDPC codes, finite field is 

introduced. Finite field, also called Galois Field (GF) is a finite 

set of elements which can be added, multiplied and divided 

with the results being an element of the set. The reason they are 

important here is that ECCs based upon these fields can be 

efficiently encoded and decoded [36], which for molecular 

communications, is a major concern.   

EG(m,q) is the m - dimensional Euclidean geometry over 

GF(q), where 𝑚 is a positive integer greater than one, q = pt, t ≥ 

1 and p is a prime number [39]. An EG-LDPC code can be 

constructed based on the lines and points of Euclidean 

geometry. In this paper, a special case: cyclic two dimensional 

EG-LDPC codes is considered [19], [36].  

Considering that EG(2,2s) is a Euclidean geometry on GF(2s), 

where each point is a 2-tuple over GF(2s) and where an all zero 

2-tuples can be called the origin, there are 22s points and  2s(22s 

– 1)/(2s – 1) lines. GF(22s) is an extended field GF(2s) so each 

element in GF(22s) can be referred as a 2-tuple over GF(2s), 

which means that 22s elements in GF(22s) can be regarded as 22s 

points in EG(2,2s) [19], [41], [42]. Assuming α is a primitive 

element of GF(22s) means all the non-zero elements in GF(22s)  

can be represented as αi, where i is positive integer. Let αj be a 

non-origin point, so a line in EG(2,2s) can be formed from the 2s 

points in EG(2,2s), shown as: 

     : 2j j sηα ηα η GF . (36) 

Then let αi and αj be two independent points, so a line passing 

through αj can be formed as:   

     : 2  i j i j sα ηα α ηα η GF . (37)     

Each line in EG(2,2s) can be indicated as a vector of length 

22s. For this LDPC code, the rows of the parity check matrix 

HEG(2,s) correspond with the 22s – 1 lines that do not pass 

through the origin in EG(2,2s), and the columns correspond 

with the 22s – 1 non-origin points in EG(2,2s). 

 
(a) 

 
(b) 

 
(c) 

Fig. 9. Energy cost for coded system with BER for Hamming codes from m = 3 

to m = 5, LDPC codes from s = 2 to s = 4 and C-RM(1,3),(1,4),(2,4),(2,5),(3,5) 

when (a) the communication process energy consumption is considered (b) 

only the transmission process energy consumption is considered (c) only the 

receiving process energy consumption is considered.   

1e-9 1e-8 1e-7 5e-7
5

5.5

6

6.5

7

7.5

8

x 10
6

Bit Error Rate (BER)

E
n
e
rg

y
 c

o
st

 f
o

r 
c
o

d
e
d

 s
y

st
em

 (
 K

B
T

)

 

 

m = 3 Hamming code

m = 4 Hamming code

m = 5 Hamming code

s = 2 LDPC code

s = 3 LDPC code

C-RM(1,3)

C-RM(2,4)

1e-9 1e-8 1e-7 1e-6 5e-5
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

6

Bit Error Rate (BER)

E
n
e
rg

y
 c

o
st

 f
o

r 
c
o

d
e
d

 s
y

st
em

 (
 K

B
T

)

 

 

m = 3 Hamming code

m = 4 Hamming code

m = 5 Hamming code

s = 2 LDPC code

s = 3 LDPC code

s = 4 LDPC code

C-RM(1,3)

C-RM(2,4)

C-RM(2,5)

C-RM(3,5)

1e-9 1e-8 1e-7 1e-6 5e-6
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5
x 10

6

Bit Error Rate (BER)

E
n
e
rg

y
 c

o
st

 f
o

r 
c
o

d
e
d

 s
y

st
em

 (
 K

B
T

)

 

 

m = 3 Hamming code

m = 4 Hamming code

m = 5 Hamming code

s = 2 LDPC code

s = 3 LDPC code

C-RM(1,3)

C-RM(2,4)



IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION SUBMISSION 

 

 

9 

Therefore the parity check matrix, HEG(2,s) is a (22s – 1) × 

(22s – 1) square matrix and it can be constructed easily by taking 

the incidence vector of a line in EG(2,2s) that does not pass 

through the origin and then cyclically shifting this vector 22s – 2 

times. This LDPC code is a kind of cyclic code [19], so the 

generator polynomial gEG(x) can be obtained from the roots in 

GF(22s). h can be expressed in radix – 2s form as: 

 
0 12  sh δ δ , (38) 

where h < 22s and 0 ≤ δ < 2s, 0 ≤ i < 2. W2
s(h) denotes the 2s 

weight of h, shown as: 

   0 12
 sW h δ δ . (39) 

For a nonzero integer l, let h(l) be the remainder of 2lh/(22s – 

1), where 0 ≤ h(l) < 22s – 1 then αh is a root of gEG(x) if and only 

if: 

 
  20

0 max 2 1s

l s

l s
W h

 
   . (40) 

For the s = 2 LDPC code, consider EG(2,2s) and let α and β 

be the primitive elements of GF(22×2)  and GF(22) respectively. 

Given p(x) = x4 + x + 1 is the primitive polynomial of GF(22×2),   

it is easy to prove that β = α5 because of β3 = α15 = 1. Therefore 

η ϵ {0,1,β,β2} or {0,1,α5,α10} constitute GF(22) Let αi = α14 and 

αj = α, so one of the lines of EG(2,22) can be obtained from (37) 

as: 

     7 8 10 14 14 5 10, , , : 0,1, ,  α α α α α ηα η α α . (41) 

These four points in a line do not pass through the origin, so 

the parity check matrix HEG can be formed using the 

corresponding binary incidence vector (0 0 0 0 0 0 0 1 1 0 1 0 0 

0 1) and its 22s – 2 = 14 circulations. 

From (38), (39) and (40), the roots of the generator 

polynomial can be obtained as:{α1,α2,α3,α4,α6,α8,α9,α12}. 

α1,α2,α4,α8 all have the same minimal polynomial: m1(x) = x4+ 

x+1, whilst α3,α6,α9,α12 all have the same minimal polynomial: 

m2(x) = x4 + x3 + x2 + x + 1, then the lowest common multiple 

(LCM) can be obtained as the generator polynomial: gEG(x) = 

LCM[m1(x),m2(x)] = x8 + x7 + x6 + x4 +1. In the same way, the 

generator polynomials for the  s = 3,4 LDPC codes are given by 

gEG(x) = x26 + x24 + x16 + x15 + x14 + x13 + x12 + x10 + x + 1 and 

gEG(x) = x80 + x78 + x76 + x74 + x71 + x69 + x68 + x67 + x66 + x64 + 

x63 + x61 + x59 + x58 + x55 + x54 + x51 + x49  + x47 + x45 + x42 + x40 

+ x39 + x38 + x37 + x36 + x27 +  x26 + x25 + x23 + x22 + x21 + x19 + 

x18 + x17 + x16 + x15 + x14 + x13 + x11 + x10 + x9 + x7 + x6 + x3 + 

1. 

The majority logic decoding scheme is considered using for 

the LDPC decoder design. 

C. C-RM codes 

Given a nonnegative integer s, where 1 ≤ s ≤ 2m – 2, the 

number of 1’s in the binary expansion of s can be denoted as 

w2(s), then αs are the roots of the generator polynomial g(x) if 

and only if [39]: 

  21 1w s m r    . (42) 

αs are the roots of the check polynomial h(x) if and only if: 

  2 1m r w s m    . (43) 

Therefore, the generator and check polynomials for the 

C-RM codes are: 

  
 

   
21 1

1 2 2m

s

w s m r

s

g x M x
   

  

  , (44) 

    
 

   
2 1

1 2 2

1

m

s

m r w s m

s

h x x M x
   

  

   ,  (45) 

where M(s)(x) is the minimal polynomial of αs.  

Considering the C-RM(1,4) code, all integers s satisfying (42) 

are {1, 2, 3, 4, 5, 6, 8, 9, 10, 12} and the integers s which satisfy 

(43) are {7, 11, 13, 14}, so the roots of the generator 

polynomial can be obtained as:{α1,α2,α3,α4,α5,α6,α8,α9,α10,α12}, 

where α1,α2,α4,α8 have the same minimal polynomial: m1 (x) = 

x4 + x + 1, and α3,α6,α9,α12 have the same minimal polynomial: 

m2 (x) = x4 + x3 + x2 + x + 1, and the minimal polynomial of α5 

and α10 is m3 (x) = x2 + x + 1. According to (44), the generator 

polynomial can be obtained as: g(1,4) (x) = m1· m2·m3 =  x10 + x8 

+ x5 + x4 + x2 + x + 1. Similarly, the roots of the check 

polynomial can be obtained as: {α7,α11,α13,α14}, where 

α7,α11,α13,α14 have the same minimal polynomial: m1 (x) = x4 + 

x3 + 1. According to (45), the check polynomial is given as: 

h(1,4) (x) = (x + 1)·(x4 + x3 + 1) =  x5 + x3 + x + 1.  

In the same way, the generator and check polynomials for the 

C-RM(1,3), (2,4), (2,5), and (3,5) codes are given by: g(1,3) (x) = 

x3 + x + 1, h(1,3) (x)  =  x4 + x2 + x +1, g(2,4) (x) = x4 + x + 1, h(2,4) 

(x)  =  x11 + x8 + x7 + x5 + x3 + x2 + x +1,  g(2,5) (x)  =  x15 + x11 + 

x10 + x9 + x8 + x7 + x5 + x3 + x2 + x +1, h(2,5) (x)  =  x16 + x12 + x11 

+ x10 + x9 + x4 + x +1, and g(3,5) (x) = x5 + x2 + 1, h(3,5) (x)  =  x26 

+ x25 + x24 + x23 + x22 + x21 + x18 + x14 + x13 + x12 + x8 + x7 + x6 

+ x5 + x2 +1. 

In this work, the majority logic decoder is used for C-RM 

code. 
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