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Abstract

We formulate a Stefan problem on an evolving hypersurface and study the well-
posedness of weak solutions given L1 data. To do this, we first develop function spaces
and results to handle equations on evolving surfaces in order to give a natural treatment
of the problem. Then we consider the existence of solutions for L∞ data; this is done
by regularisation of the nonlinearity. The regularised problem is solved by a fixed point
theorem and then uniform estimates are obtained in order to pass to the limit. By using
a duality method we show continuous dependence which allows us to extend the results
to L1 data.

1 Introduction

The Stefan problem is the prototypical time-dependent free boundary problem. It arises in
various forms in many models in the physical and biological sciences [11, 22, 33, 44]. In this paper
we present the theory of weak solutions associated with the so-called enthalpy approach [11]
to the Stefan problem on an evolving curved hypersurface.

Our interest is in the existence, uniqueness and continuous dependence of weak solutions
to the Stefan problem

∂•e(t)−∆Ω(t)u(t) + e(t)∇Ω(t) ·w(t) = f(t) in Ω(t)

e(0) = e0 on Ω(0)

e ∈ E(u)

(1)

posed on a moving compact hypersurface Ω(t) ⊂ Rn+1 evolving with (given) velocity field w,
where the energy E : R→ P(R) is defined by

E(r) =


r for r < 0

[0, 1] for r = 0

r + 1 for r > 0.
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Note that E is a maximal monotone graph in the sense of Brézis [55]. In (11), ∂•e means the
material derivative of e (which we shall also write as ė) and ∇Ω(t) and ∆Ω(t) are respectively
the surface gradient and Laplace–Beltrami operators on Ω(t). The novelty of this work is
that the Stefan problem itself is formulated on a moving hypersurface and our chosen method
to treat this problem, which we believe is naturally suited to equations on moving domains,
requires the use of some new function spaces and results that we shall introduce, building
upon the spaces and concepts presented in [66, 77]. There is, as alluded to above, a rich liter-
ature associated to Stefan-type problems [88, 99, 1010, 1111, 1212, 1313]. We will show that arguments
similar to those used in the standard setting are also amenable to our problem on a moving
hypersurface, thanks in part to the function spaces we decide to use. Let us remark that the
techniques and functional analysis we develop here can be directly applied to study many
other nonlinear PDE problems posed on moving domains.

Let us work out a possible pointwise formulation of (11). Start by supposing Ω(t) = Ωl(t)∪
Ωs(t)∪Γ(t) where Ωl(t) and Ωs(t) divide Ω(t) into a liquid and a solid phase (respectively) with
an a priori unknown interface Γ(t). The quantity of interest is the temperature u(t) : Ω(t)→
R, which we suppose satisfies 

u(t) > 0 in Ωl(t)

u(t) = 0 in Γ(t)

u(t) < 0 in Ωs(t),

and thus u = 0 is the critical temperature where the change of phase occurs. Define

Ql =
⋃

t∈(0,T )

Ωl(t)× {t}, S =
⋃

t∈(0,T )

Γ(t)× {t},

and Qs similarly. Given f and u0, we formally elucidate in Remark 2.122.12 the relationship
between (11) and the following model describing the temperature u:

∂•u−∆Ωu+ (u+ 1)∇Ω ·w = f in Ql

∂•u−∆Ωu+ u∇Ω ·w = f in Qs

−(∇Ωul −∇Ωus) · µ = V on S

u = 0 on S

u(0) = u0 on Ω(0),

(2)

where us denotes the trace of the restriction u|Ωs to the interface Γ (likewise with ul), V (t)
is the conormal velocity of Γ(t) and µ(t) is the unit conormal vector pointing into Ωl(t) (this
vector is tangential to Ω(t) and normal to ∂Ωl(t)).

We now introduce some notions of a weak solution, similar to [1010]. The function spaces LpX
below will be made precise in §22 but for now can be thought of as generalisations of Bochner
spaces Lp(0, T ;X0) where now u ∈ LpX implies u(t) ∈ X(t) for almost all t (for a suitable
family {X(t)}t∈[0,T ]).

1.1 Definition (Weak solution). Given f ∈ L1
L1 and e0 ∈ L1(Ω0), a weak solution of (11) is

a pair (u, e) ∈ L1
L1 × L1

L1 such that e ∈ E(u) and there holds

−
∫ T

0

∫
Ω(t)

η̇(t)e(t)−
∫ T

0

∫
Ω(t)

u(t)∆Ωη(t) =

∫ T

0

∫
Ω(t)

f(t)η(t) +

∫
Ω0

e0η(0)
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for all η ∈ W (L∞ ∩H2, L∞) with ∆Ωη ∈ L∞L∞ and η(T ) = 0.

1.2 Definition (Bounded weak solution). Given f ∈ L∞L∞ and e0 ∈ L∞(Ω0), a bounded
weak solution of (11) is a pair (u, e) ∈ L2

H1 × L∞L∞ such that (u, e) is a weak solution of (11)
satisfying

−
∫ T

0

∫
Ω(t)

η̇(t)e(t) +

∫ T

0

∫
Ω(t)

∇Ωu(t)∇Ωη(t) =

∫ T

0

∫
Ω(t)

f(t)η(t) +

∫
Ω0

e0η(0) (3)

for all η ∈ W (H1, L2) with η(T ) = 0.

We prove the following results.

Theorem 1.3 (Existence of bounded weak solutions). If f ∈ L∞L∞, e0 ∈ L∞(Ω0) and |Ω| :=
sups∈[0,T ] |Ω(s)| <∞, then there exists a bounded weak solution to (11).

Theorem 1.4 (Uniqueness and continuous dependence of bounded weak solutions). If for
i = 1, 2, (ui, ei) are two bounded weak solutions of (11) with data (f i, ei0) ∈ L∞L∞ × L∞(Ω0),
then

‖e1(t)− e2(t)‖L1(Ω(t)) ≤
∫ t

0

‖f 1(τ)− f 2(τ)‖L1(Ω(τ)) + ‖e1
0 − e2

0‖L1(Ω0)

for almost all t.

Theorem 1.5 (Well-posedness of weak solutions). If f ∈ L1
L1, e0 ∈ L1(Ω0) and |Ω| :=

sups∈[0,T ] |Ω(s)| < ∞, then there exists a unique weak solution to (11). Furthermore, if for
i = 1, 2, (ui, ei) ∈ L1

L1 ×L1
L1 are two weak solutions of (11) with data (f i, ei0) ∈ L1

L1 ×L1(Ω0),
then

‖e1 − e2‖L1
L1
≤ CT

(
‖f 1 − f 2‖L1

L1
+ ‖e1

0 − e2
0‖L1(Ω0)

)
.

Below, we shall use the notation ↪→ and
c
↪−→ to denote (respectively) a continuous embedding

and a compact embedding.

2 Preliminaries

2.1 Abstract evolving function spaces

In [66], we generalised some concepts from [1414] and defined the Hilbert space L2
H given a suffi-

ciently smooth parametrised family of Hilbert spaces {H(t)}t∈[0,T ]. We need a generalisation
of this theory to Banach spaces.

For each t ∈ [0, T ], let X(t) be a real Banach space with X0 := X(0). We informally
identify the family {X(t)}t∈[0,T ] with the symbol X. Let there be a linear homeomorphism
φt : X0 → X(t) for each t ∈ [0, T ] (with the inverse φ−t : X(t) → X0) such that φ0 is the
identity. We assume that there exists a constant CX independent of t ∈ [0, T ] such that

‖φtu‖X(t) ≤ CX ‖u‖X0
∀u ∈ X0

‖φ−tu‖X0
≤ CX ‖u‖X(t) ∀u ∈ X(t).

(4)

We assume for all u ∈ X0 that the map t 7→ ‖φtu‖X(t) is measurable.
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2.1 Definition. Define the Banach spaces

LpX = {u : [0, T ]→
⋃

t∈[0,T ]

X(t)× {t}, t 7→ (û(t), t) | φ−(·)û(·) ∈ Lp(0, T ;X0)} for p ∈ [1,∞)

L∞X = {u ∈ L2
X | ess sup

t∈[0,T ]

‖u(t)‖X(t) <∞}

endowed with the norm

‖u‖LpX =


(∫ T

0
‖u(t)‖pX(t)

) 1
p

for p ∈ [1,∞)

ess supt∈[0,T ] ‖u(t)‖X(t) for p =∞.
(5)

Note that we made an abuse of notation after the definition of the first space and identified
u(t) = (û(t), t) with û(t). That (55) defines a norm is easy to see once one checks that the
integrals are well-defined (the case p =∞ is easy), which can be shown by a straightforward
adaptation of the proof of Theorem 2.8 in [66] for the case when each X(t) is separable (see
the appendix) and the proof of Lemma 3.5 in [1414] for the non-separable case. The fact that
LpX is a Banach space follows from Lemma 2.32.3 below.

2.2 Important Notation. Given a function u ∈ LpX , the notation ũ will be used to mean
the pullback ũ(·) := φ−(·)u(·) ∈ Lp(0, T ;X0), and vice-versa.

2.3 Lemma. The spaces Lp(0, T ;X0) and LpX are isomorphic via φ(·) with an equivalence of
norms:

1

CX
‖u‖LpX ≤

∥∥φ−(·)u(·)
∥∥
Lp(0,T ;X0)

≤ CX ‖u‖LpX for all u ∈ LpX .

Proof. We show the case p =∞ here; an adaptation of the p = 2 case done in [66] easily proves
the lemma for p ∈ [1,∞) (see the appendix). Let u ∈ L∞X . Measurability of ũ follows since
u ∈ L2

X . Now, by definition, we have that for all t ∈ [0, T ]\N , ‖u(t)‖X(t) ≤ A where N is a

null set and A = ‖u‖L∞X . This means that for all t ∈ [0, T ]\N , C−1
X ‖ũ(t)‖X0

≤ ‖u(t)‖X(t) ≤ A

by the assumption (44), i.e.,

‖ũ‖L∞(0,T ;X0) = ess sup
t∈[0,T ]

‖ũ(t)‖X0
≤ CXA = CX‖u‖L∞X ,

so ũ ∈ L∞(0, T ;X0). Similarly, we conclude that if ũ ∈ L∞(0, T ;X0) then u ∈ L∞X .

2.4 Remark. The dual operator φ∗−t : X
∗
0 → X∗(t) is also a linear homeomorphism with∥∥φ∗−t∥∥ = ‖φ−t‖ and (φ∗−t)

−1 = φ∗t [1515, Theorem 4.5-2 and §4.5], and if X0 is separable,

t 7→
∥∥φ∗−tf∥∥X∗(t) is measurable for f ∈ X∗0 ; thus, in the separable setting, the dual operator

also satisfies the same boundedness properties as φt. This means that the spaces LpX∗ are also
well-defined Banach spaces given separable {X(t)}t∈[0,T ] (the map φ∗−(·) plays the same role as

φ(·) did for the spaces LpX).

The following subspaces will be of use later:

Ck
X = {ξ ∈ L2

X | φ−(·)ξ(·) ∈ Ck([0, T ];X0)} for k ∈ {0, 1, ...}
DX = {η ∈ L2

X | φ−(·)η(·) ∈ D((0, T );X0)}.
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2.1.1 Dual spaces

In this subsection, we assume that {X(t)}t∈[0,T ] is reflexive. In order to retrieve weakly
convergent subsequences from sequences that are bounded in LpX , we need LpX to be reflexive.
This leads us to consider a characterisation of the dual spaces. We let p ∈ [1,∞) and (p, q)
be a conjugate pair in this section.

Theorem 2.5. The space (LpX)∗ is isometrically isomorphic to LqX∗, and hence we may iden-
tify (LpX)∗ ≡ LqX∗ and the duality pairing of f ∈ LqX∗ with u ∈ LpX is given by

〈f, u〉Lq
X∗ ,L

p
X

=

∫ T

0

〈f(t), u(t)〉X∗(t),X(t).

To prove this theorem, although we can exploit the fact that the pullback is in a Bochner
space, showing that the natural duality map is isometric is not so straightforward because
φ(·) is not assumed to be an isometry. In fact, we have to go back to the foundations and
emulate the proof for the dual space identification for Bochner spaces; see [1616, §IV].

2.6 Lemma. For every g ∈ LqX∗, the expression

l(f) =

∫ T

0

〈g(t), f(t)〉X∗(t),X(t) for all f ∈ LpX (6)

defines a functional l ∈ (LpX)∗ such that ‖l‖ = ‖g‖Lq
X∗
.

Proof. Let g ∈ LqX∗ and define l : LpX → R by (66); the integral is well-defined by similar reason-
ing as before (see Lemma 2.13 in [66]). By Hölder’s inequality, we have |l(f)| ≤ ‖g‖Lq

X∗
‖f‖LpX ,

so l ∈ (LpX)∗ and ‖l‖ ≤ ‖g‖Lq
X∗
. We now show the reverse inequality. First suppose g has the

form g(t) =
∑
x∗i,tχEi(t) where the x∗i,t ∈ X∗(t) and the Ei are measurable, pairwise disjoint

and partition [0, T ]. It is clear that ‖g(t)‖X∗(t) =
∑∥∥x∗i,t∥∥X∗(t) χEi(t). Let h(t) = ‖g(t)‖q/pX∗(t)/

‖g‖q/p
Lq
X∗

which satisfies ‖h‖pLp(0,T ) = 1 and
∫ T

0
‖g(t)‖X∗(t) h(t) = ‖g‖Lq

X∗
, hence for any ε > 0

we have ∫ T

0

‖g(t)‖X∗(t) h(t) ≥ ‖g‖Lq
X∗
− ε

2
. (7)

Now choose xi,t ∈ X(t), ‖xi,t‖X(t) = 1 such that∥∥x∗i,t∥∥X∗(t) − 〈x∗i,t, xi,t〉X∗(t),X(t) ≤
ε

2 ‖h‖L1(0,T )

. (8)

Define f ∈ LpX by f(t) =
∑
xi,th(t)χEi(t) and note that ‖f‖p

LpX
= ‖h‖pLp(0,T ) . We obtain

using (88) and (77) that l(f) ≥ ‖g‖Lq
X∗
− ε. This proves that ‖l‖ = ‖g‖Lq

X∗
whenever g(t) =∑

x∗i,tχEi(t) is of the stated form. Now suppose g ∈ LqX∗ is arbitrary. Then there exist
g̃n(t) =

∑
g̃i,nχEi(t) with g̃i,n ∈ X∗0 such that g̃n → g̃ in Lq(0, T ;X∗0 ) and so the sequence

gn(t) := φ∗−tg̃n(t) =
∑
φ∗−tg̃i,nχEi(t) satisfies gn → g in LqX∗ . Because the φ∗−tg̃i,n ∈ X∗(t), we

know by our efforts above that ln : LpX → R defined ln(f) =
∫ T

0
〈gn(t), f(t)〉X∗(t),X(t) has norm

‖ln‖ = ‖gn‖Lq
X∗

. We also have

‖ln − l‖ ≤ ‖gn − g‖Lq
X∗
→ 0

which implies limn→∞ ‖ln‖ = ‖l‖ and also limn→∞ ‖ln‖ = limn→∞ ‖gn‖Lq
X∗

= ‖g‖Lq
X∗
.
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We have shown that J : LqX∗ → (LpX)∗ defined by J (g) := l(·) =
∫ T

0
〈g(t), (·)(t)〉X∗(t),X(t)

is isometric: ‖J g‖(LqX)∗ = ‖l‖ = ‖g‖Lq
X∗

. We now show that J is onto. Given l ∈ (LpX)∗,

define L̃ : Lp(0, T ;X0)→ R by L̃(ṽ) = l(φ(·)ṽ(·)) = l(v) for all ṽ ∈ Lp(0, T ;X0). It is obvious

that L̃ ∈ Lp(0, T ;X0)∗, and by the dual space identification for Bochner spaces, there exists
an L̃∗ ∈ Lq(0, T ;X∗0 ) such that

〈l, v〉(LpX)∗,LpX
= 〈L̃, ṽ〉Lp(0,T ;X0)∗,Lp(0,T ;X0) =

∫ T

0

〈φ∗−tL̃∗(t), v(t)〉X∗(t),X(t),

so J (φ∗−(·)L̃
∗(·)) = l where φ∗−(·)L̃

∗(·) ∈ LqX∗ . Hence J is onto, and we have proved Theorem
2.52.5.

2.2 Function spaces on evolving surfaces

We now make precise the assumptions on the evolving surface Ω(t) our Stefan problem is
posed on and we discuss function spaces in the context of the previous subsections. For
each t ∈ [0, T ], let Ω(t) ⊂ Rn+1 be an orientable compact (i.e., no boundary) n-dimensional
hypersurface of class C3, and assume the existence of a flow Φ: [0, T ] × Rn+1 → Rn+1 such
that for all t ∈ [0, T ], with Ω0 := Ω(0), the map Φ0

t (·) := Φ(t, ·) : Ω0 → Ω(t) is a C3-
diffeomorphism that satisfies d

dt
Φ0
t (·) = w(t,Φ0

t (·)) and Φ0
0(·) = Id(·) for a given C2 velocity

field w : [0, T ]×Rn+1 → Rn+1, which we assume satisfies the uniform bound |∇Ω(t) ·w(t)| ≤ C
for all t ∈ [0, T ]. A C2 normal vector field on the hypersurfaces is denoted by ν : [0, T ]×Rn+1 →
Rn+1. It follows that the Jacobian J0

t := det DΦ0
t is C2 and is uniformly bounded away from

zero and infinity.
For u : Ω0 → R and v : Ω(t) → R, define the pushforward φtu = u ◦ Φt

0 and pullback
φ−tv = v ◦ Φ0

t , where Φt
0 := (Φ0

t )
−1. We showed in [77] that φt : L

2(Ω0) → L2(Ω(t)) and
φt : H

1(Ω0) → H1(Ω(t)) are linear homeomorphisms (with uniform bounds) and (thus) with
L2 ≡ {L2(Ω(t))}t∈[0,T ], H

1 ≡ {H1(Ω(t))}t∈[0,T ] and H−1 ≡ {H−1(Ω(t))}t∈[0,T ], the spaces L2
L2 ,

L2
H1 and L2

H−1 are well-defined (see [77, 1717] for an overview of Lebesgue and Sobolev spaces on
hypersurfaces) and we let L2

H1 ⊂ L2
L2 ⊂ L2

H−1 be a Gelfand triple.
A function u ∈ C1

L2 has a strong material derivative defined by u̇(t) = φt
(
d
dt

(φ−tu(t))
)
.

Given a function u ∈ L2
H1 , we say that it has a weak material derivative g ∈ L2

H−1 if

(u, η̇)L2
L2

= −〈g, η〉L2
H−1 ,L

2
H1
− (u, η∇Ω ·w)L2

L2
∀η ∈ DH1

holds, and we write u̇ or ∂•u instead of g. Define the Hilbert spaces (see [66, 77] for more
details)

W(H1(Ω0), H−1(Ω0)) = {u ∈ L2(0, T ;H1(Ω0)) | u′ ∈ L2(0, T ;H−1(Ω0))}
W (H1, H−1) = {u ∈ L2

H1 | u̇ ∈ L2
H−1}

endowed with the natural inner products. For subspaces X ↪→ H1 and Y ↪→ H−1, we also
define the subset W (X, Y ) ⊂ W (H1, H−1) in the natural manner.

2.7 Lemma (See [66, 77]). Let either X = W (H1, H−1) and X0 = W(H1(Ω0), H−1(Ω0)), or
X = W (H1, L2) and X0 =W(H1(Ω0), L2(Ω0)). For such pairs, the space X is isomorphic to
X0 via φ−(·) with an equivalence of norms:

C1

∥∥φ−(·)v(·)
∥∥
X0
≤ ‖v‖X ≤ C2

∥∥φ−(·)v(·)
∥∥
X0
.
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We showed in [66, 77] that for u, v ∈ W (H1, H−1), the map t 7→ (u(t), v(t))L2(Ω(t)) is
absolutely continuous, and

d

dt

∫
Ω(t)

u(t)v(t) = 〈u̇(t), v(t)〉+ 〈v̇(t), u(t)〉+

∫
Ω(t)

u(t)v(t)∇Ω ·w(t)

holds for almost all t, where the duality pairing is between H−1(Ω(t)) and H1(Ω(t)).

2.2.1 Some useful results

In this subsection, p and q are not necessarily conjugate. The first part of the following lemma
is a particular realisation of Lemma 2.32.3.

2.8 Lemma. For p, q ∈ [1,∞], the spaces LpLq and Lp(0, T ;Lq(Ω0)) are isomorphic via the
map φ(·) with an equivalence of norms. If q = ∞ the spaces are isometrically isomorphic.
The embedding L∞L∞ ⊂ LpLq is continuous.

2.9 Lemma. The space W (H1, H−1) is compactly embedded in L2
L2.

Theorem 2.10 (Dominated convergence theorem for LpLq). Let p, q ∈ [1,∞). Let {wn} and
w be functions such that {w̃n} and w̃ are measurable (eg. membership of L1

L1 will suffice). If
for almost all t ∈ [0, T ],

wn(t)→ w(t) almost everywhere in Ω(t)

∃g ∈ LpLq : |wn(t)| ≤ g(t) almost everywhere in Ω(t) and for all n,

then wn → w in LpLq .

2.11 Lemma. If u ∈ W (H1, H−1), then

2

∫ T

0

〈u̇(t), u+(t)〉H−1(Ω(t)),H1(Ω(t)) =

∫
Ω(T )

u+(T )2 −
∫

Ω0

u+(0)2 −
∫ T

0

∫
Ω(t)

u+(t)2∇Ω ·w. (9)

Proof. By density, we can find {un} ⊂ W (H1, L2) with un → u in W (H1, H−1). It follows
that ∂•(u+

n ) = u̇nχun≥0 ∈ L2
L2 (this is sensible because w ∈ H1(Ω) implies w+ ∈ H1(Ω))

and therefore (99) holds for un. Since W (H1, H−1) ↪→ C0
L2 , it follows that u+

n (t) → u+(t) in
L2(Ω(t)) (for example see [1818, Lemma 2.88] or [1919, Lemma 1.22]). So we can pass to the limit
in the first two terms on the right hand side.

Now we just need to show that u+
n → u+ in L2

H1 . It is easy to show the convergence in
L2
L2 , so we need only to check the convergence of the gradient. Let g(r) = χ{r>0}. Then,

using g ≤ 1,

|∇Ωu
+
n (t, x)−∇Ωu

+(t, x)| ≤ |∇Ωun(t, x)−∇Ωu(t, x)|+ |g(un(t, x))− g(u(t, x))||∇Ωu(t, x)|.

For the second term, let us note that since un → u in L2
H1 , for almost all t, un(t, x)→ u(t, x)

almost everywhere in Ω(t) for a subsequence (which we have not relabelled). Let us fix t.
Then for almost every x ∈ Ω(t), it follows that g(un(t, x))∇Ωu(t, x) → g(u(t, x))∇Ωu(t, x)
pointwise. Because g ≤ 1, the dominated convergence theorem gives overall ∇Ωu

+
n → ∇Ωu

+

in L2
L2 .
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2.3 Preliminary results

2.12 Remark. It is well-known in the standard setting that a mushy region (the interior of
the set where the temperature is zero) can arise in the presence of heat sources [2020, 11]; with
no heat sources, the initial data may give rise to mushy regions. We will content ourselves
with the following heuristic calculations under the assumption that there is no mushy region.

Let the bounded weak solution of (11) (in the sense of Definition 1.21.2) have the additional
regularity u ∈ W (H1, L2) and ∆Ωu ∈ L2

L2 , and suppose that the sets Ωl(t) = {u > 0} and
Ωs(t) = {u < 0} divide Ω(t) with a common interface Γ(t), which we assume is a sufficiently
smooth n−dimensional hypersurface (of measure zero with respect to the surface measure on
Ω(t)). Then the bounded weak solution is also a classical solution in the sense of (22). To see
this, suppose that (u, e) is a weak solution satisfying the equality in (33). The integration by
parts formula on each subdomain of Ω implies∫ T

0

∫
Ω(t)

∇Ωu(t)∇Ωη(t) = −
∫ T

0

∫
Ω(t)

η(t)∆Ωu(t) +

∫ T

0

∫
Γ(t)

η(t)(∇Ωus(t)−∇Ωul(t)) · µ.

(10)

With e(t)η(t)∇Ω · w = ∇Ω · (e(t)η(t)w) − w · ∇Ω(e(t)η(t)) and the divergence theorem [1717,
§2.2],∫ T

0

∫
Ωs(t)

e(t)η(t)∇Ω ·w =

∫ T

0

∫
Γ(t)

e(t)η(t)w · µ+

∫ T

0

∫
Ωs(t)

w · (e(t)η(t)νH −∇Ω(e(t)η(t))).

We use this result in the formula for integration by parts over time over Ωs:∫ T

0

∫
Ωs(t)

η̇(t)e(t) =

∫ T

0

d

dt

∫
Ωs(t)

e(t)η(t)−
∫ T

0

∫
Ωs(t)

ė(t)η(t)−
∫ T

0

∫
Γ(t)

e(t)η(t)w · µ

−
∫ T

0

∫
Ωs(t)

e(t)η(t)w · νH +

∫ T

0

∫
Ωs(t)

w · ∇Ω(e(t)η(t)).

A similar expression over Ωl can also be derived this way, the difference being that the term
with µ has the opposite sign. Then, using ė = ∂•(E(u)) = u̇, es(t)|Γ(t) = 0, and el(t)|Γ(t) = 1,
we get ∫ T

0

∫
Ω(t)

η̇(t)e(t) =

∫ T

0

d

dt

∫
Ω(t)

e(t)η(t)−
∫ T

0

∫
Ω(t)

u̇(t)η(t) +

∫ T

0

∫
Γ(t)

η(t)w · µ

−
∫ T

0

∫
Ω(t)

e(t)η(t)w · νH +

∫ T

0

∫
Ω(t)

w · ∇Ω(e(t)η(t)). (11)

Since by the partial integration formula
∫

Ω(t)
Di(g) =

∫
Ω(t)

gHνi, we have (with g = wie(t)η(t))

that the fourth term in the right hand side of (1111) is∫
Ω(t)

e(t)η(t)w · νH =
∑
i

∫
Ω(t)

e(t)η(t)wiνiH =

∫
Ω(t)

∇Ω(e(t)η(t)) ·w +

∫
Ω(t)

η(t)e(t)∇Ω ·w.
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So the calculation (1111) becomes∫ T

0

∫
Ω(t)

η̇(t)e(t) =

∫ T

0

(
d

dt

∫
Ω(t)

e(t)η(t)−
∫

Ω(t)

(u̇(t)η(t) + η(t)e(t)∇Ω ·w) +

∫
Γ(t)

η(t)w · µ
)
.

(12)

Now, taking the weak formulation (33) and substituting (1212) together with the expression for
the spatial term (1010), we get for η with η(T ) = η(0) = 0∫ T

0

∫
Ω(t)

f(t)η(t) = −
∫ T

0

∫
Ω(t)

η̇(t)e(t) +

∫ T

0

∫
Ω(t)

∇Ωu(t)∇Ωη(t)

=

∫ T

0

∫
Ω(t)

(u̇(t) + e(t)∇Ω ·w −∆Ωu(t))η(t) +

∫
Γ(t)

η(t) ((∇Ωus(t)−∇Ωul(t)) · µ− (w · µ)) .

Taking η to be compactly supported in Qs, and afterwards taking η compactly supported in Ql,
we recover exactly the first two equations in (22). So we may drop the first integral on the left
and the right hand side. Then with a careful choice of η, we will obtain precisely the interface
condition in (22).

2.13 Lemma. Given ξ ∈ C1(Ω0) and α̃ ∈ C2([0, T ] × Ω0) satisfying 0 < ε ≤ α ≤ α0 a.e.,
there exists a unique solution ϕ ∈ W (H1, L2) with ∆Ωϕ ∈ L2

L2 to

ϕ̇− α(x, t)∆Ωϕ = 0 (13)

ϕ(x, 0) = ξ(x)

satisfying ‖ϕ‖L∞L∞ ≤ ‖ξ‖L∞(Ω0) and (cf. [2121, Chapter V, §9])∫ t

0

∫
Ω(τ)

(ϕ̇(τ))2 +

∫ t

0

∫
Ω(τ)

α|∆Ωϕ|2 +

∫
Ω(t)

|∇Ωϕ(t)|2 ≤ (1 + α0)(1 + e2Cw(1+α0)t)

∫
Ω0

|∇Ωξ|2.

(14)

Proof. Define the bilinear form a(t;ϕ, η) =
∫

Ω(t)
α(x, t)∇Ωϕ∇Ωη+

∫
Ω(t)
∇Ωα(x, t)∇Ωϕη which

is clearly bounded and coercive on H1(Ω(t)). Split a(t; ·, ·) into the forms as(t;ϕ, η) :=∫
Ω(t)

α(x, t)∇Ωϕ∇Ωη and an(t;ϕ, η) :=
∫

Ω(t)
∇Ωα(x, t)∇Ωϕη. One sees that as(t; η, η) ≥ 0 and

that both an(t; ·, ·) : H1(Ω(t)) × L2(Ω(t)) → R and as(t; ·, ·) : H1(Ω(t)) × H1(Ω(t)) → R are
bounded. Also, letting χtj := φtχ

0
j where χ0

j are the normalised eigenfunctions of −∆Ω0 , we

have for η ∈ C̃1
H1 := {u | u(t) =

∑m
j=1 αj(t)χ

t
j, m ∈ N, αj ∈ AC([0, T ]) and α′j ∈ L2(0, T )},

d

dt
as(t; η(t), η(t)) = 2as(t; η̇(t), η(t)) + r(t; η(t))

where r is such that |r(t; η(t))| ≤ C ‖η(t)‖2
H1(Ω(t)) (see [1717, Lemma 2.1], note that α̃ ∈

C1([0, T ];C1(Ω0)) and thus α ∈ C1
H1). Hence by [66, Theorem 3.13] we have the unique

existence of ϕ ∈ W (H1, L2). Rearranging the equation (1313) shows that α∆Ωϕ ∈ L2
L2 . Since

α is uniformly bounded by positive constants, it follows that ∆Ωϕ ∈ L2
L2 .
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The L∞ bound Let K := ‖ξ‖L∞(Ω0). Test the equation with (ϕ−K)+:

1

2

d

dt

∥∥(ϕ(t)−K)+
∥∥2

L2(Ω(t))
+

∫
Ω(t)

α(t)∇Ω((ϕ(t)−K)+)∇Ωϕ(t)

=
1

2

∫
Ω(t)

((ϕ(t)−K)+)2∇Ω ·w −
∫

Ω(t)

∇Ωα(t)∇Ωϕ(t)(ϕ(t)−K)+

which becomes, through the use of Young’s inequality with δ,

1

2

d

dt

∥∥(ϕ(t)−K)+
∥∥2

L2(Ω(t))
≤
(
Cw

2
+ ‖∇Ωα‖L∞ Cδ

)∥∥(ϕ(t)−K)+
∥∥2

L2(Ω(t))
.

An application of Gronwall’s inequality and noticing (ϕ(0)−K)+ = (ξ − ‖ξ‖L∞)+ = 0 yields
ϕ(t) ≤ ‖ξ‖L∞(Ω0). Repeating this process with (−ϕ(t)−K)+ allows us to conclude.

The inequality (1414) Multiplying the equation (1313) by ∆Ωϕ and integrate: formally,∫ t

0

∫
Ω(τ)

α|∆Ωϕ|2 = −
∫ t

0

∫
Ω(τ)

∇Ωϕ̇∇Ωϕ

= −
∫ t

0

1

2

d

dτ

∫
Ω(τ)

|∇Ωϕ|2 +
1

2

∫ t

0

∫
Ω(τ)

|∇Ωϕ|2∇Ω ·w −
∫ t

0

∫
Ω(τ)

D(w)∇Ωϕ∇Ωϕ

≤ 1

2

∫
Ω0

|∇Ωξ|2 −
1

2

∫
Ω(t)

|∇Ωϕ(t)|2 + Cw

∫ t

0

∫
Ω(τ)

|∇Ωϕ|2. (15)

See [1717, Lemma 2.1] or [77] for the definition of the matrix D(w). This calculation is merely
formal because we have not shown that ϕ̇(t) ∈ H1(Ω(t)); however the end result of the
calculation is still valid by Lemma 2.142.14. We also have by squaring (1313), integrating and using
(1515): ∫ t

0

∫
Ω(τ)

(ϕ̇(τ))2 ≤ α0

∫ t

0

∫
Ω(τ)

α(∆Ωϕ)2 ≤ α0

2

∫
Ω0

|∇Ωξ|2 + α0Cw

∫ t

0

∫
Ω(τ)

|∇Ωϕ|2.

Adding the last two inequalities then we obtain∫ t

0

∫
Ω(τ)

(ϕ̇(τ))2 +

∫ t

0

∫
Ω(τ)

α|∆Ωϕ|2 +
1

2

∫
Ω(t)

|∇Ωϕ(t)|2 ≤ 1 + α0

2

∫
Ω0

|∇Ωξ|2

+ Cw(1 + α0)

∫ t

0

∫
Ω(τ)

|∇Ωϕ|2.

Gronwall’s inequality can be used to deal with the last term on the right hand side.

2.14 Lemma. With ϕ ∈ W (H1, L2) from the previous lemma, the following inequality holds:∫ t

0

∫
Ω(τ)

α|∆Ωϕ|2 ≤
1

2

∫
Ω0

|∇Ωξ|2 −
1

2

∫
Ω(t)

|∇Ωϕ(t)|2 + Cw

∫ t

0

∫
Ω(τ)

|∇Ωϕ|2. (16)
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Proof. Let C∞H2 := {η | φ−(·)η(·) ∈ C∞([0, T ];H2(Ω0))}. We start with a few preliminary
results. Let us show C∞H2 ⊂ W (H2, H1). Take η ∈ C∞H2 so that η̃ ∈ C∞([0, T ];H2(Ω0)) ⊂
W(H2, H1). By smoothness of Φ

(·)
0 , it follows that η = φ(·)η̃ ∈ L2

H2 , and η̇ = ∂•(φ(·)η̃) =
φ(·)(η̃

′) ∈ L2
H1 because η̃′ ∈ C∞([0, T ];H2(Ω0)) ⊂ L2(0, T ;H1(Ω0)). So η ∈ W (H2, H1).

Let us also prove that C∞H2 ⊂ W (H2, L2) is dense. Let w ∈ W (H2, L2); then w̃ ∈ W(H2, L2)

since w̃ ∈ L2(0, T ;H2(Ω0)) by smoothness of Φ
(·)
0 and since w̃′ = φ−(·)ẇ ∈ L2(0, T ;L2(Ω0))

(because ẇ ∈ L2
L2). By [2222, Lemma II.5.10] there exists w̃n ∈ C∞([0, T ];H2(Ω0)) with w̃n → w̃

in W(H2, L2). Then, wn := φ(·)w̃n ∈ C∞H2 (by definition) and

‖wn − w‖W (H2,L2) ≤ C
(
‖w̃n − w̃‖L2(0,T ;H2(Ω0)) + ‖w̃′n − w̃′‖L2(0,T ;L2(Ω0))

)
→ 0,

where we used the smoothness of Φ
(·)
0 and the reasoning behind Assumption 2.37 of [66] (see

also [66, Theorem 2.33]).
Given ϕ ∈ W (H2, L2), by the density result, there exists ϕn ∈ C∞H2 ⊂ W (H2, H1) such

that ϕn → ϕ in W (H2, L2) with ϕn satisfying (1616):∫ t

0

∫
Ω(τ)

α|∆Ωϕn|2 ≤
1

2

∫
Ω0

|∇Ωϕn(0)|2 − 1

2

∫
Ω(t)

|∇Ωϕn(t)|2 + Cw

∫ t

0

∫
Ω(τ)

|∇Ωϕn|2. (17)

We know that ϕ̃n → ϕ̃ in W(H2, L2) (this is just how we construct the sequence ϕn; see
above), and W(H2, L2) ↪→ C0([0, T ];H1(Ω0)) [2222, Lemma II.5.14] implies ϕn(t) → ϕ(t) in
H1(Ω(t)). Now we can pass to the limit in every term in (1717).

3 Well-posedness

We can approximate E by C∞ bi-Lipschitz functions Eε such that (for example see [1212, 1313])

Eε → E uniformly in the compact subsets of R\{0}
E−1
ε → E−1 uniformly in the compact subsets of R
Eε(0) = 0 and Eε = E on (−∞, 0) ∪ (ε,∞)

1 ≤ E ′ε(r) ≤ 1 + Lε and (1 + Lε)
−1 ≤ (E−1

ε (r))′ ≤ 1 for all r ∈ R

(where Lε = O(1/ε) is the Lipschitz constant of the approximation to the Heaviside function).
We write U := E−1 and Uε := E−1

ε . In order to prove Theorem 1.31.3, that of the well-posedness
of L∞ weak solutions given bounded data, we consider the following approximation of (11).

3.1 Definition. Find for each ε > 0 a function eε ∈ W (H1, H−1) such that

∂•eε −∆Ω(Uεeε) + eε∇Ω ·w = f in L2
H−1

eε(0) = e0.
(Pε)

Theorem 3.2. Given f ∈ L2
H−1 and e0 ∈ L2(Ω0), the problem (PεPε) has a weak solution

eε ∈ W (H1, H−1).
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Proof. Using the chain rule on the nonlinear term leads us to consider for fixed w ∈ W (H1, H−1)

〈∂•(Sw), η〉L2
H−1 ,L

2
H1

+ (U ′ε(w)∇Ω(Sw),∇Ωη)L2
L2

+ (Sw, η∇Ω ·w)L2
L2

= 〈f, η〉L2
H−1 ,L

2
H1

Sw(0) = e0.
(P(w))

If S denotes the solution map of (P(w)P(w)) that takes w 7→ Sw, then we seek a fixed point of
S. First, note that since the bilinear form involving the surface gradients is bounded and
coercive, the solution Sw ∈ W (H1, H−1) of (P(w)P(w)) does indeed exist by [66, Theorem 3.6],
and moreover, it satisfies the estimate

‖Sw‖W (H1,H−1) ≤ C
(
‖f‖L2

H−1
+ ‖u0‖L2(Ω0)

)
=: C∗ (18)

where the constant C does not depend on w because U ′ε(w(t)) is uniformly bounded from
below (in w). Then the set E := {w ∈ W (H1, H−1) | w(0) = e0, ‖w‖W (H1,H−1) ≤ C∗}, which

is a closed, convex, and bounded subset of X := W (H1, H−1), is such that S(E) ⊂ E by (1818).
We now show that S is weakly continuous. Let wn ⇀ w in W (H1, H−1) with wn ∈ E. From
the estimate (1818), we know that Swn is bounded in W (H1, H−1), so for a subsequence

Swnj ⇀ χ in W (H1, H−1)

Swnj → χ in L2
L2

by the compact embedding of Lemma 2.92.9. Now we show that χ = Sw. Due to W (H1, H−1) ↪→
C0
L2 , Swnj ⇀ χ in C0

L2 . This implies Swnj(0) ⇀ χ(0) in L2(Ω0) (to see this consider for
arbitrary f ∈ L2(Ω0) the functional G ∈ (C0

L2)∗ defined G(un) =
∫

Ω0
fun(0)). Since Swnj(0) =

e0, it follows that
χ(0) = e0. (19)

On the other hand, since wn are weakly convergent in W 1(H1, H−1), they are bounded in

the same space. Now, W (H1, H−1)
c
↪−→ L2

L2 , hence wn → w in L2
L2 . It follows that the

subsequence wnj → w in L2
L2 too, and so there is a subsequence such that for almost every

t ∈ [0, T ], wnjk (t) → w(t) a.e. in Ω(t). By continuity, for a.a. t, U ′ε(wnjk (t))∇Ωη(t) →
U ′ε(w(t))∇Ωη(t) a.e., and also we have |U ′ε(wnjk )∇Ωη| ≤ |∇Ωη| with the right hand side in

L2
L2 . Thus we can use the dominated convergence theorem (Theorem 2.102.10) which tells us that
U ′ε(wnjk )∇Ωη → U ′ε(w)∇Ωη in L2

L2 . Now we pass to the limit in the equation (P(w)P(w)) with w
replaced by wnjk to get∫ T

0

〈∂•χ(t), η(t)〉+

∫
Ω(t)

U ′ε(w(t))∇Ωχ(t)∇Ωη(t) +

∫
Ω(t)

χ(t)η(t)∇Ω ·w =

∫ T

0

〈f(t), η(t)〉

which, along with (1919), shows that χ = Sw, so Swnj ⇀ Sw. However, we have to show that
the whole sequence converges, not just a subsequence. Let xn = Swn and equip the space
X = W (H1, H−1) with the weak topology. Let xnm = Swnm be a subsequence. By the bound
of S, it follows that xnm is bounded, hence it has a subsequence such that

xnml ⇀ x∗ in X and xnml → x∗ in L2
L2 .

By similar reasoning as before, we identify x∗ = Sw, and Theorem 3.33.3 below tells us that
indeed xn = Swn ⇀ Sw. Then by the Schauder–Tikhonov fixed point theorem [2323, Theorem
1.4, p. 118], S has a fixed point.
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Theorem 3.3. Let xn be a sequence in a topological space X such that every subsequence xnj
has a subsequence xnjk converging to x ∈ X. Then the full sequence xn converges to x.

3.1 Uniform estimates

We set uε = Uε(eε). Below we denote by M a constant such that ‖u0‖L∞(Ω0) ≤M .

3.4 Lemma. The following bound holds independent of ε:

‖uε‖L∞L∞ + ‖Eε(uε)‖L∞L∞ ≤ 2e‖∇Ω·w‖∞T
(
T ‖f‖L∞L∞ + ‖u0‖L∞(Ω0) + 1

)
+ 1.

Proof. We substitute w(t) = e−λteε(t) in (PεPε) and use ∂•(eλtw(t)) = λeλtw(t) + eλtẇ(t) to get

ẇ(t)− e−λt∆Ω(U ε(eλtw(t))) + λw(t) + w(t)∇Ω ·w = e−λtf(t).

Let α = ‖f‖L∞L∞ and β = ‖e0‖L∞(Ω0) and define v(t) = αt + β. Note that v̇(t) = α and

v(0) = β. Subtracting v̇(t) from the above and testing with (w(t)− v(t))+, we get

〈ẇ(t)− v̇(t), (w(t)− v(t))+〉H−1(Ω(t)),H1(Ω(t)) +

∫
Ω(t)

e−λt∇Ω(U ε(eλtw(t)))∇Ω(w(t)− v(t))+

+

∫
Ω(t)

(λ+∇Ω ·w)w(t)(w(t)− v(t))+ =

∫
Ω(t)

(e−λtf(t)− α)(w(t)− v(t))+. (20)

Note that e−λt∇Ω(Uε(eλtw(t)))∇Ω(w(t) − v(t))+ = U ′ε(eλtw(t))|∇Ω(w(t) − v(t))+|2 because
∇Ωv(t) = 0. Set λ := ‖∇Ω ·w‖L∞ , then the last term on the LHS of (2020) is non-negative
because if w > v, w > 0 since v ≥ 0. So we can throw away that and the gradient term to
find

〈ẇ(t)− v̇(t), (w(t)− v(t))+〉H−1(Ω(t)),H1(Ω(t)) ≤
∫

Ω(t)

(e−λtf(t)− α)(w(t)− v(t))+.

Integrating this and using Lemma 2.112.11, we find

1

2

∫
Ω(T )

((w(t)− v(t))+)2 ≤ 1

2
‖∇Ω ·w‖

∫ T

0

∫
Ω(t)

((w(t)− v(t))+)2

since e−λtf(t) − α = e−λtf(t) − ‖f(t)‖L∞(Ω(t)) ≤ 0 and w(0) − v(0) = e0 − ‖e0‖L∞(Ω0) ≤ 0.
The use of Gronwall’s inequality gives w(t) ≤ T ‖f‖L∞L∞ + (1 + M) almost everywhere on

Ω(t). So we have shown that for all t ∈ [0, T ]\N1, w(t, x) ≤ C for all x ∈ Ω(t)\M t
1, where

µ(N1) = µ(M t
1) = 0. A similar argument yields for all t ∈ [0, T ]\N2, w(t, x) ≥ −C for all

x ∈ Ω(t)\M t
2, where µ(N2) = µ(M t

2) = 0. Taking these statements together tells us that for all
t ∈ [0, T ]\N , |w(t, x)| ≤ C on Ω(t)\M t where N = N1∪N2 and M t = M t

1∪M t
2 have measure

zero. This gives ‖w‖L∞L∞ ≤ T ‖f‖L∞L∞ + (1 + M). From this and uε = Uε(eλ(·)w(·)) ≤ eλT |w|,
we obtain the bound on uε. The bound on Eε(uε) follows from Eε(uε) ≤ 1 + |uε|.

3.5 Lemma. The following bound holds independent of ε:

‖∇Ωuε‖L2
L2

+ ‖∂•(Eεuε)‖L2
H−1
≤ C(T,Ω,M,w, f). (21)
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Proof. Testing with Eε(uε) in (PεPε), using ∇Ωuε∇Ω(Eε(uε)) = (Eε)′(uε)|∇Ωuε|2 ≥ |∇Ωuε|2,
integrating over time and using the previous estimate, we find

1

2
‖Eε(uε(T ))‖2

L2(Ω(T )) +

∫ T

0

∫
Ω(t)

|∇Ωuε(t)|2 ≤
1

2
(1 +M)2|Ω0|+ C1(T,M,w, f).

The bound on the time derivative follows by taking supremums.

3.6 Lemma. Define ũε = φ−(·)uε. The following limit holds uniformly in ε:

lim
h→0

∫ T−h

0

∫
Ω0

|ũε(t+ h)− ũε(t)| = 0.

Proof. We follow the proof of Theorem A.1 in [88] here. Fix h ∈ (0, T ) and consider∫ T−h

0

(Eε(ũε(t+ h))− Eε(ũε(t)), ũε(t+ h)− ũε(t))L2(Ω0) dt

=

∫ T−h

0

∫ t+h

t

d

dτ
(Eε(ũε(τ)), ũε(t+ h)− ũε(t))L2(Ω0) dτ dt

≤
√
h ‖(Eε(ũε))′‖L2(0,T ;H−1(Ω0))

∫ T−h

0

(‖ũε(t+ h)‖H1(Ω0) + ‖ũε(t)‖H1(Ω0)) dt

≤ C1(T,Ω,M,w, f)
√
h ‖(Eε(ũε))′‖L2(0,T ;H−1(Ω0)) (by the uniform estimates)

≤ C2(T,Ω,M,w, f)
√
h ‖∂•(Eε(uε))‖L2

H−1
(see the proof of Theorem 2.33 in [66])

≤ C3(T,Ω,M,w, f)
√
h, (22)

with the last inequality by (2121). Now, since the U ′ε are uniformly bounded above, they are
uniformly equicontinuous. Therefore, for fixed δ, there is a σδ (depending solely on δ) such
that

if |y − z| < σδ, then |Uε(y)− Uε(z)| < δ for any ε. (23)

So in the set {|ũε(t + h) − ũε(t)| > δ} = {|Uε(Eε(ũε(t + h))) − Uε(Eε(ũε(t)))| > δ}, we must
have |Eε(ũε(t + h)) − Eε(ũε(t))| ≥ σδ (this is the contrapositive of (2323)). This implies from
(2222) that ∫ T−h

0

∫
Ω0

|ũε(t+ h)− ũε(t)|χ{|ũε(t+h)−ũε(t)|>δ} ≤
C3

√
h

σδ
.

Writing Id = χ{|ũε(t+h)−ũε(t)|>δ} + χ{|ũε(t+h)−ũε(t)|≤δ}, notice that∫ T−h

0

∫
Ω0

|ũε(t+ h)− ũε(t)| ≤
∫ T−h

0

∫
Ω0

|ũε(t+ h)− ũε(t)|χ{|ũε(t+h)−ũε(t)|>δ} + δ|Ω0|(T − h)

≤ C3

√
h

σδ
+ δ|Ω0|T.

Taking the limit as h → 0, using the arbitrariness of δ > 0 and the fact that the right hand
side of the above does not depend on ε gives us the result.
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3.2 Existence of bounded weak solutions

With all the uniform estimates acquired, we can extract (weakly) convergent subsequences.
In fact, we find (we have not relabelled subsequences)

uε → u in LpLq for any p, q ∈ [1,∞)

∇Ωuε ⇀ ∇Ωu in L2
L2

Eε(uε) ⇀ χ in L2
L2

(24)

where only the first strong convergence listed requires an explanation. Indeed, the point is

to apply [2424, Theorem 5] with H1(Ω0)
c
↪−→ L1(Ω0) ⊂ L1(Ω0), which gives us a subsequence

ũεj → ρ̃ strongly in L1(0, T ;L1(Ω0)). It follows that uεj → ρ in L1
L1 , whence for a.a. t,

uεjk (t)→ ρ(t) a.e. in Ω(t). We also know that for a.a. t, |uεjk (t)| ≤ C a.e. in Ω(t) by Lemma
3.43.4, and so for a.a. t, the limit satisfies |ρ(t)| ≤ C a.e. in Ω(t) too. By Theorem 2.102.10, uεjk → ρ
in LpLq for all p, q ∈ [1,∞). Since uεjk ⇀ u (subsequences have the same weak limit), it must
be the case that ρ = u.

Proof of Theorem 1.31.3. In (PεPε), we can test with a function η ∈ W (H1, L2) with η(T ) = 0,
integrate by parts and then pass to the limit to obtain

−
∫ T

0

∫
Ω(t)

η̇(t)χ(t) +

∫ T

0

∫
Ω(t)

∇Ωu(t)∇Ωη(t) =

∫ T

0

∫
Ω(t)

f(t)η(t) +

∫
Ω0

e0η(0)

and it remains to be seen that χ ∈ E(u) or equivalently u = U(χ). By monotonicity of Eε, we
have for any w ∈ L2

L2 ∫ T

0

∫
Ω(t)

(Eε(uε)− w)(uε − Uε(w)) ≥ 0.

Because Uε → U uniformly, for a.a. t, Uε(w(t)) → U(w(t)) a.e. in Ω(t), and |Uε(w)| ≤ |w|,
and the dominated convergence theorem shows that Uε(w) → U(w) in L2

L2 . Using this and
(2424), we can easily pass to the limit in this inequality and obtain∫ T

0

∫
Ω(t)

(χ− w)(u− Uw) ≥ 0 for all w ∈ L2
L2 .

By Minty’s trick we find u = U(χ). To see why χ ∈ L∞L∞ , we have from the estimate in Lemma

3.43.4 that for a.a. t ∈ [0, T ], ‖Eε(ũε(t))‖L∞(Ω0) ≤ C, giving Eε(ũε(t))
∗
⇀ ζ̃(t) in L∞(Ω(t)) and

(by weak-* lower semicontinuity) ‖ζ̃(t)‖L∞(Ω(t)) ≤ C for a.a. t, and we just need to identify

ζ̃ ∈ E(ũ). It follows from (2424) that Eε(uε)→ χ in L2
H−1 by Lions–Aubin, and so for a.e. t and

for a subsequence (not relabelled), Eε(uε(t))→ χ(t) in H−1(Ω(t)). This allows us to conclude
that χ = ζ (the weak-* convergence of Eε(ũε(t)) to ζ̃(t) also gives weak convergence in any
Lp(Ω(t)) to the same limit).

3.3 Continuous dependence and uniqueness of bounded weak so-
lutions

The next lemma allows us to drop the requirement for our test functions to vanish at time T .
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3.7 Lemma. If (u, e) is a bounded weak solution (satisfying (33)), then (u, e) also satisfies∫
Ω(T )

e(T )η(T )−
∫ T

0

∫
Ω(t)

η̇(t)e(t) +

∫ T

0

∫
Ω(t)

∇Ωu(t)∇Ωη(t) =

∫ T

0

∫
Ω(t)

f(t)η(t) +

∫
Ω0

e0η(0)

for all η ∈ W (H1, L2).

Proof. To see this, for s ∈ (0, T ], consider the function χε,s(t) = min (1, ε−1(s− t)+) which
has a weak derivative χ′ε,s(t) = −ε−1χ(s−ε,s)(t). Take the test function in (33) to be χε,Tη where
η ∈ W (H1, L2), send ε→ 0 and use the Lebesgue differentiation theorem.

We can finally prove Theorem 1.41.4.

Proof of Theorem 1.41.4. We can prove the continuous dependence like in [2121, Chapter V, §9].
As explained in Lemma 3.73.7, we drop the requirement η(T ) = 0 in our test functions and we
now suppose that ∆Ωη ∈ L2

L2 . Suppose for i = 1, 2 that (ui, ei) is the solution to the Stefan
problem with data (fi, u

i
0), so∫

Ω(t)

(ei(t)− e2(t))η(t)−
∫ t

0

∫
Ω(τ)

η̇(τ)(e1(τ)− e2(τ))−
∫ t

0

∫
Ω(τ)

(u1(τ)− u2(τ))∆Ωη(τ)

=

∫ t

0

∫
Ω(τ)

(f1(τ)− f2(τ))η(τ) +

∫
Ω0

(e1
0 − e2

0)η(0). (25)

Define a = (u1 − u2)/(e1 − e2) when e1 6= e2 and a = 0 otherwise, and note that 0 ≤ a(x, t) ≤
1. Let ηε solve in ∪τ∈(0,t){τ} × Ω(τ) the equation

∂•τηε(τ) + (aε(x, τ) + ε)∆Ωηε(τ) = 0

ηε(t) = ξ on Ω0

(26)

with ξ ∈ C1(Ω0) and where aε satisfies φ−(·)aε ∈ C2([0, T ] × Ω0) and 0 ≤ aε ≤ 1 a.e. and
‖aε − a‖L2(Q) ≤ ε. This is well-posed by Lemma 2.132.13. Equation (2525) can be written in terms
of aε, and if we choose η = ηε and use (2626), we find∫

Ω(t)

(e1(t)− e2(t))ξ ≤ ‖e1 − e2‖L∞L∞

∫ t

0

∫
Ω(τ)

(|a(x, τ)− aε(x, τ)|+ ε)|∆Ωηε(τ)|

+ ‖ξ‖L∞(Ω0)

∫ t

0

‖f1(τ)− f2(τ)‖L1(Ω(τ)) + ‖ξ‖L∞(Ω0)

∫
Ω0

|e1
0 − e2

0| (27)

using the L∞ bound from Lemma 2.132.13. We can estimate the first integral on the right hand
side:∫ t

0

∫
Ω(τ)

|a(x, τ)− aε(x, τ)||∆Ωηε(τ)| ≤
√
ε ‖a− aε‖L2

L2

√
(2 + ε)(1 + e2Cw(2+ε)t) ‖∇Ωξ‖L2(Ω0)

and ∫ t

0

∫
Ω(τ)

|ε∆Ωηε| ≤
√
t|Ω|ε(2 + ε)(1 + e2Cw(2+ε)t)

(∫
Ω0

|∇Ωξ|2
) 1

2
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by the results in Lemma 2.132.13. Sending ε→ 0 in (2727) gives us (recalling ξ ≤ 1),∫
Ω(t)

(e1(t)− e2(t))ξ ≤
∫ t

0

‖f1(τ)− f2(τ)‖L1(Ω(τ)) + ‖e1
0 − e2

0‖L1(Ω0).

Now pick ξ = ξn where ξn(x)→ sign(e1(t, x)− e2(t, x)) ∈ L2(Ω(t)) a.e. in Ω(t).

3.4 Well-posedness of weak solutions

Proof of Theorem 1.51.5. Suppose (e0, f) ∈ L1(Ω0)× L1
L1 are data and consider functions e0n ∈

L∞(Ω0) and fn ∈ L∞L∞ satisfying

(fn, e0n)→ (f, e0) in L1
L1 × L1(Ω0).

The existence of fn holds because by density, there exist f̃n ∈ C0([0, T ] × Ω0) such that
f̃n → f̃ in L1((0, T ) × Ω0) ≡ L1(0, T ;L1(Ω0)). Denote by (un, en) the respective (bounded
weak) solutions to the Stefan problem with the data (e0n, fn). By virtue of these solutions
satisfying the continuous dependence result, it follows that {en}n is a Cauchy sequence in L1

L1

and thus en → χ in L1
L1 for some χ. Recall that |un| = |U(en)| ≤ |en| so by consideration of

an appropriate Nemytskii map, we find un = U(en)→ U(χ). Now we can pass to the limit in

−
∫ T

0

∫
Ω(t)

η̇(t)en(t)−
∫ T

0

∫
Ω(t)

un(t)∆Ωη(t) =

∫ T

0

∫
Ω(t)

fn(t)η(t) +

∫
Ω0

en0η(0)

and doing so gives

−
∫ T

0

∫
Ω(t)

η̇(t)χ(t)−
∫ T

0

∫
Ω(t)

U(χ(t))∆Ωη(t) =

∫ T

0

∫
Ω(t)

f(t)η(t) +

∫
Ω0

e0η(0)

and overall this shows that there exists a pair (χ, E−1(χ)) ∈ L1
L1×L1

L1 which is a weak solution
of the Stefan problem. For these integrals to make sense, we need η ∈ W 1(L∞∩H2, L∞) with
∆Ωη ∈ L∞L∞ .

Now suppose that (u1, e1) and (u2, e2) are two weak solutions of class L1 to the Stefan
problem with data (f 1, e1

0) and (f 2, e2
0) in L1

L1 × L1(Ω0) respectively. We know that there
exist approximations (f 1

n, e
1
0n), (f 2

n, e
2
0n) ∈ L∞L∞ × L∞(Ω0) of the data satisfying

(f 1
n, e

1
0n)→ (f 1, e1

0) and (f 2
n, e

2
0n)→ (f 2, e2

0) in L1
L1 × L1(Ω0).

These approximate data give rise to the approximate solutions e1
n and e2

n both of which are
elements of L∞L∞ . It follows from above that e1

n → e1 and e2
n → e2 in L1

L1 . Now consider the
continuous dependence result that e1

n and e2
n satisfy:

‖e1
n − e2

n‖L1
L1
≤ T

(
‖f 1

n − f 2
n‖L1

L1
+ ‖e1

0n − e2
0n‖L1(Ω0)

)
. (28)

Regarding the right hand side, by writing e1
0n − e2

0n = e1
0n − e1

0 + e1
0 − e2

0 + e2
0 − e2

0n, (and
similarly for the f in) and using triangle inequality, along with the fact that e1

n − e2
n → e1 − e2

in L1
L1 , we can take the limit in (2828) as n→∞ and we are left with what we desired.
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A Proofs

Proof that LpX is a Banach space when X0 is separable. It is easy to verify that the expres-
sions in (55) define norms if the integrals on the right hand sides are well-defined, which we
now check. So let u ∈ LpX . Then ũ := φ−(·)u(·) ∈ Lp(0, T ;X0). Define F : [0, T ]×X0 → R by
F (t, x) = ‖φtx‖X(t). By assumption, t 7→ F (t, x) is measurable for all x ∈ X0, and if xn → x
in X0, then by the reverse triangle inequality,

|F (t, xn)− F (t, x)| ≤ ‖φt(xn − x)‖X(t) ≤ CX ‖xn − x‖X0
→ 0,

so x 7→ F (t, x) is continuous. Thus F is a Carathéodory function. Due to the condi-
tion |F (t, x)| ≤ CX ‖x‖X0

, by Remark 3.4.5 of [2525], the Nemytskii operator NF defined by
(NFx)(t) := F (t, x(t)) maps Lp(0, T ;X0)→ Lp(0, T ), so that

‖NF ũ‖pLp(0,T ) =

∫ T

0

‖u(t)‖pX(t) <∞.

Proof of Lemma 2.32.3. First we show that if u ∈ Lp(0, T ;X0), then φ(·)u(·) ∈ LpX .
Let u ∈ Lp(0, T ;X0) be arbitrary. By density, there exists a sequence of simple functions

un ∈ Lp(0, T ;X0) with
‖un − u‖Lp(0,T ;X0) → 0

and thus for almost every t,
‖un(t)− u(t)‖X0

→ 0

for a subsequence, which we relabelled. We have that φtun(t)→ φtu(t) in X(t) by continuity;
this implies

‖φtun(t)‖X(t) → ‖φtu(t)‖X(t) pointwise a.e. (29)

Write un(t) =
∑Mn

i=1 un,i1Bi(t) where the un,i ∈ X0 and the Bi are measurable, disjoint and
partition [0, T ]. Then

φtun(t) =
Mn∑
i=1

φt(un,i)1Bi(t) ∈ X(t).

Taking norms and exponentiating, we get

‖φtun(t)‖pX(t) =
Mn∑
i=1

‖φtun,i‖pX(t) 1pBi(t),

which is measurable (with respect to t) since, by assumption, the ‖φtun,i‖X(t) are continu-

ous and a finite sum of measurable functions is measurable. Thus, by (2929), ‖φtu(t)‖X(t), is
measurable. Finally,∫ T

0

‖φtu(t)‖pX(t) ≤
∫ T

0

Cp
X ‖u(t)‖pX0

= Cp
X ‖u‖

p
Lp(0,T ;X0) ,

so φ(·)u(·) ∈ LpX .
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So there is a map from Lp(0, T ;X0) to LpX and vice-versa from the definition of LpX . The
isomorphism between the spaces is T : Lp(0, T ;X0)→ LpX where

Tu = φ(·)u(·), and T−1v = φ−(·)v(·).

It is easy to check that T is linear and bijective. The equivalence of norms follows by the
bounds on φ−t : X(t)→ X0

1

CX
‖u(t)‖X(t) ≤ ‖φ−tu(t)‖X0

≤ CX ‖u(t)‖X(t) .
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