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Leo Freitas Jim Woodcock
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Abstract

In this paper we describe the internal structures of FDR, the refinement model checker for Hoare’s Com-
municating Sequential Processes (CSP), as well as an Application Programming Interface (API) allowing
one to interact more closely with, and have fine grained control over, FDR’s behaviour and data structures.
With such information it is possible to create optimised CSP code to perform refinement checks that are
more space/time efficient, hence enabling the analysis of more complex and data intensive specifications.
This information is very valuable for both CSP users and tools that automatically generate CSP code, such
as those related to security analysis generating test-cases as CSP processes. We also present a simple exam-
ple of using the tool. Finally, we show how one can transform FDR’s graph format into a graph notation
(e.g., JGraph), hence enabling visualisation of Labelled Transition Systems (LTS) of CSP specifications.

Keywords: refinement, model checking, CSP, FDR, Labelled Transition Systems, Application
Programming Interface

1 Introduction

The soaring complexity in hardware and software systems has increased the demand

for reliability and correctness, most noticeably in the high-integrity and safety-

critical domains [1]. One effective way of achieving this goal is through the use

of formal specification and verification. Nevertheless, no matter how useful those

techniques might be, due to the sheer number of possible scenarios to investigate

resulting from the concurrent interaction of different components, tool support is an

imperative. For instance, the number of distinct behaviours to analyse can reach 107

distinct states on a parallel network of 1020 dinning philosophers and beyond [13].

In this paper, we are particularly interested in providing further tool support

for refinement model checking the process algebra CSP [15] using its automatic tool

FDR [7], hence we assume previous knowledge of both. CSP is a successful tech-

nology with industrial-strength tool support that has been used for two decades. In

1 We are grateful to QinetiQ Malvern for their long-term support of our research group.
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this scenario, all observable behaviours are characterised by a Labelled Transition

System (LTS) representing the (operational) semantics of CSP specifications [17,

Chapter 4]. FDR is then used to exhaustively analyse those LTSs for various pur-

poses, mainly refinement checking, determinism, and deadlock and livelock freedom.

Due to the high-level of automation of model checking when compared with other

formal verification techniques, such as theorem proving [2], the use of CSP and FDR

became very attractive in both academia and industry.

FDR compiles two CSP specifications into suitable LTSs in order to check

whether they from a refinement ordering (S ⊑m I ). These often are an abstract

specification (S ) of a system or some particular property of interest (represented

as a CSP process), and the intermediate design or more concrete implementation

(I ) one wishes to check for refinement over a given model (m), which defines the

granularity of detail. To perform a check, FDR exhaustively searches for pairs of

mutually reachable states from each compiled LTS. That is, the states that one

can reach by traversing both LTSs on the same trace, for all possible traces. More

precisely, a pair is mutually reachable in the search if, and only if, they follow from

the selection of a compatible transition on both LTSs with respect to the available

visible events. An incompatible behaviour is characterised by the violation of at

least one of the refinement criteria on the selected model. These criteria include

information for each mutually reachable pair, such as traces, acceptable (or refused)

behaviours, and divergence. Thus, if an incompatible pair is found, then the design

(I ) does not satisfy all the behaviours defined by the property or specification (S )

on the given model (m), hence the proposed refinement does not hold and debug-

ging information is available. The granularity on the chosen model (m) enables the

verification of different aspects of systems, such as safety properties on the traces

model (T ), nondeterminism on the failures model (F), and divergent (or catas-

trophic/unpredictable) behaviour on the failures-divergences model (FD). More

details on (refinement) model checking can be found in [14,6].

Nevertheless, this kind of push-button technology, which enables automatic for-

mal verification for correctness and refinement. This incurs quite some effort from

the user in writing the appropriate CSP for FDR, which usually implies abstrac-

tions towards bounded models. The problem is there is no thorough and definite

guidance source, to the extent of our knowledge. Instead, one needs to sift through

many different (and unrelated) sources. Assuming the user has good knowledge of

CSP, our tool can help the FDR user to generate more efficient CSP code, as well as

to find the cause of some obscure execution errors, such as communication outside

a channel data type. Perhaps it can be better exploited as bridge between FDR

and more high-level tools which write CSP code.

A thorough list of references for FDR (version 2.82) are: the manual [7], model

checking algorithms [14,12], and internal automata theory data structures [3]; ad-

ditional information on FDR’s transition system [13]; specialised deadlock checking

tool that invokes FDR in the background [11]; a tool that compiles security proto-

col descriptions as optimised CSP [10]; a PhD thesis on FDR [17]; and a book that

provides further insight on FDR’s internal operation [16, Chapter 4]. Provided one
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has fluency with FDR’s CSP, FDR is capable of automatically analysing quite huge

systems. Furthermore, if one explores the compositional properties of CSP opera-

tors, as an example in [13, p.198] shows, the possibility of reasoning about systems

reaches the staggering figure of 7101000

states. This is not the actual number of states

checked by FDR, but the total number of states of the combined system compo-

nents. It means that checking a fraction of the state space is as good as checking

the whole of it. By dealing with such a huge number of states, FDR is able to model

not only hardware, but also quite complex software designs, as shown in [16].

Therefore, the main aim of the exploratory tool we present is to provide better

guidance for the FDR user, and better integration with other external CSP tools.

This was achieved through thorough study, experimentation, and reconstruction of

available information from two sources in a sort of “software archaeology”. These

sources were FDR’s manual [7, Appendix C], and the available source code of a

deadlock checker tool that directly interacts with FDR [11]. As a result of such

“archaeological” investigations, hidden information from FDR’s LTS and debugging

information was revealed. Consequently, complex specifications can be analysed in

acceptable time scales, and improved operability for tools automatically generating

CSP scripts is provided. This tool integration trend follows the principles set out

in a grand challenge in computer research [1].

Our tool has been used in a great extent for the work presented in [4]. We

also know it has been used in a project in Brazil for the development of specialised

counter-example generation from automatically generated test-cases from various

testing techniques encoded in CSP. Yet another project in Brazil transforms the out-

put FDR Explorer into a specific format for the test-case generation tool TGV [20].

In the next Section, we describe the internal structures and object model of

FDR, which includes FDR’s API our tool interacts with. After that, Section 3

presents the functionalities we add by showing how it extends FDR’s API. Next,

in Section 4, we present a running example. Section 5 describes how to transform

the underlying FDR LTSs into a visual graph format with graph visualisation tool

support [8], and point some future directions on how to provide further integration

for FDR with graph tools. Finally, we conclude the paper and point to some future

directions in Section 6.

Related work.

There is little related work in this area. Brief information in FDR’s manual [7,

Appendix C] describes how one can use the Tcl/Tk script language [19] for direct

interaction. These scripts mimic some of FDR’s interfaces, hence allowing checks to

be performed in the background or over the network. To the extent of our knowl-

edge, there is only one tool that takes advantage of the scripting language FDR

provides [11]. It provides specialised forms of deadlock and livelock freedom based

on various strategies for recognition of patterns in graphs representing CSP specifi-

cations. This deadlock checking tool opens a connection with the FDR server and

uses available Tcl/Tk scripts to compile CSP specifications and perform specialised

checks, where debugging information is not processed. These scripts were the orig-
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inal source of inspiration for our work. Furthermore, Valmari’s approach [21] to

exhaustively analysing LTSs in general could also be encoded/explored in FDR via

Tcl/Tk scripts.

2 FDR’s object model

In this section we explain FDR’s architecture by describing its object model, which

comprises LTSs, file management, refinement algorithms, and debugging.

2.1 FDR’s architecture

FDR’s architecture is divided into two layers. The top layer is either a Graphical

User Interface (GUI) or a direct batch interface, where both are written using an

object-oriented version of Tcl/Tk. The FDR server at the bottom layer is a Tcl/Tk

interpreter written in C++. The interpreter has an object-model preloaded that pro-

vides: (i) parsing and compilation of machine readable CSP known as CSPM ; (ii) im-

plementation of various refinement model checking algorithms; and (iii) thorough

debugging information about refinement flaws.

From the GUI, the user loads a specification, adds/performs refinement checks,

and investigates debugging information visually. From the batch interface, the user

could perform the same operations, but with textual feedback logged to the standard

output. The batch interface can be useful for noninteractive checks, or checks over

a network.

These functionalities that the top layer interfaces implement are Tcl/Tk scripts

arranged in such a way that the object-model methods in the underlying FDR server

are called appropriately. That is, with the right number of parameters, in the right

order, and at the right time. Therefore, by fiddling with these Tcl/Tk scripts (or

creating new ones), it is possible to fine-tune FDR for: (i) detailed investigation of

individual witnesses and behaviours at different points in the LTS; (ii) how to create

more space-time efficient CSP specifications; and (iii) translation of FDR’s LTS

format into graph formats of available libraries for layout and visualisation. That is

what our exploration tool does. It acts as another interface at the top of the batch

interface, which allows extended control over available debugging information, as

well as access to FDR’s LTS, both not available on other two interfaces.

The most important of these three points is the insight provided on how to op-

timise CSP specifications. This is possible because FDR separates CSP operators

into low- and high-level operators, according to the shape of the LTS they generate.

High-level operators are all those that generate compositional (and modular) LTSs,

which could be compressed with automata-theoretic techniques, such as bisimula-

tion. The most common high-level operators are hiding, parallelism, and renaming.

Low-level operators are all those that provide the core sequential language, and

generate LTSs that are not very compression sensitive. The most common low-level

operators are prefixing, choices, sequential composition, primitive processes, and re-

cursion. Thus, the more high-level the process, the more amenable to compression

the corresponding LTS will be. Obviously, it is not always possible to provide the
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most compact LTS due to the structure of the process being described. Neverthe-

less, bearing such structuring in mind proves very useful when checking complex or

data intensive specifications [16,10]. This information might be interesting not only

for the experienced CSP user handling complex specifications, but also for other

tools that automatically generate CSP code, such as security analysis tools that use

CSP for test-case generation [10,18]. By inspecting the object-model methods that

are hidden in both top level interfaces available, we are able to tell exactly how,

and under which circumstances, one can improve the compactness or efficiency of

compiled CSP LTSs.

2.2 Available functionality

The object-model provides four main functionalities: (i) session management rep-

resenting specification sources; (ii) Interpreted State Machines (ISMs) representing

compiled LTSs with embedded refinement check algorithms; (iii) hypothesis ob-

jects allowing the check of refinement claims on ISMs; and (iv) debugging objects

enabling precise interpretation of a failed refinement check. Apart from the brief

explanation in [7, Appendix C], the object-model details are undocumented, as far

as we know.

Session management.

It allows one to administer (a set of) loaded specification sources for a refine-

ment check sessions. It implements two functionalities: (i) script management; and

(ii) script evaluation. Script management allows file loading, and selective display

of various kinds of information within a specification, such as the loaded CSP pro-

cesses and channels, the assertions about refinement claims and property checks,

the list of expressions used throughout the specification script, and so on. Once the

specification has been loaded, script evaluation becomes the entry point for FDR’s

refinement algorithms and LTS. It enables the compilation of CSP processes as

LTSs, as well as evaluation of mathematical expressions and refinement assertions

representing property checks.

Interpreted state machines (ISM).

They represent a compiled state machine, and are the core functionality of

FDR: refinement checks of LTSs compiled via a session object, usually from a CSP

specification. That is, the underlying FDR server is generic enough to represent

and model check not only CSP, but a particular category of LTSs. Obviously, the

operational semantics of CSP fits into this category. Each ISM implements three

functionalities: (i) LTS description; (ii) LTS structure; and (iii) LTS analysis. The

LTS description is a database containing the process name, its original ASCII script,

and the calculated alphabet of events used by the process it describes. More interest-

ing is the LTS structure, which contains a detailed characterisation of the LTS, such

as the refinement search root node, the initial events of each LTS node representing

outgoing transitions, the next nodes reached through particular events, (minimal)

L. Freitas, J. Woodcock / Electronic Notes in Theoretical Computer Science 187 (2007) 19–34 23



acceptances and divergence calculations for each node used during some refinement

checks, advanced information about LTS compression, the way various CSP oper-

ators are treated as low-level or high-level, and so on. Finally, with LTS analysis

one can select from the various embedded algorithms, such as refinement checking,

deadlock and livelock freedom, or determinism characterisation of specifications.

Hypothesis objects.

Once one model checking algorithm has been selected for a compiled ISM, the

FDR server returns a hypothesis object. It represents an assertion about an ISM.

A hypothesis object generates debugging information (or success reports) allowing

the investigation of the cause of a refinement failure (or successful check). It also

contains simple state defining whether the check has been performed or not, what

the checking status is, and which parts of the LTS structure will affect the check.

Debugging information.

It has detailed descriptions of witness(es) for a refinement failure. This

information is separated in three functionalities: (i) debug context; (ii) debug

tree; and (iii) behaviour of LTS nodes and their children. A debug context is the re-

sult of testing the assertion a hypothesis object represents, and is present in the FDR

GUI as a separate debugging window. It contains three kinds of information: (i) par-

ticipant processes; (ii) debug trees of each participant; and (iii) witness(es) contain-

ing the flawed behaviour of each participant. A debug tree represents the LTS of

the flaw (or correct) process together with its characteristic behaviour. It is repre-

sented in the FDR GUI as tree views of the participant processes. Although debug

contexts can represent successful checks, behaviour objects are always related to

refinement failures, and they contain detailed information about the acceptances

(and refusals) of a particular LTS after some trace has taken place. They represent

the allowed behaviours a debug tree characterises. This appears in the FDR GUI

as small windows with contrasting information regarding acceptances (or refusals)

at particular debug tree nodes. For successful checks, no debugging information is

available to the user.

2.3 FDR’s API

Knowing FDR’s API can be very useful for understanding the information contained

in debugging witnesses, or how LTSs are composed (see Section 3).

As the complete FDR’s object-model has not been publicly documented before,

we provide it in the UML class diagram of Figure 1. In what follows we explain the

most relevant methods for each of these classes.

Session

load(Str, Str): loads a CSP script from the given directory and file names.

compile(Str,M): compiles the given process on the chosen semantic model.
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Fig. 1. UML class diagram of FDR object model

For returning an ISM object, the compile method requires that process names must

include actual parameters for every formal parameter declared. The available mod-

els are “-t” for traces (T ), “-f” for failures (F), and “-fd” for failures-divergences

(FD). It returns an ISM object.

ISM.

It represents a compiled CSP process as an LTS. They are based on the automata

theory described in [3]. Apart from the trivial methods about the textual script

this object represents, there are three sets of methods related to structure [17,

Chapters 4, 8], algorithms [14,12], and compression [13]. The structural methods

are given below:

root: returns the node index where the search starts.

alphabet: returns a list of full event names of the process (with channel name

and values) represented by this ISM.

event(int): returns the corresponding name of an event from the process alpha-

bet at the given index. It returns an empty string if the index is greater than

the size of elements. Every process has two predefined events in its alphabet for

internal communication (as “ tau” at index 0), and successful termination (as

“ tick” at index 1).

transitions: returns the LTS transitions. Each transition is represented by three

numbers between braces (e.g., {1 0 3}), where the source node index (1) reaches

the target node index (3) through an event number (0) placed between the two

node indexes. This event number can be used in the event method to retrieve
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the corresponding element from the process alphabet.

divergences: returns the divergences of each node index as a list of boolean

values. Thus, if the LTS contains four nodes, all of which are not divergent, the

method returns a list of 4 boolean values set to false (or 0). For checks outside

the failures-divergences (FD) model, this list is not calculated and every node

index is assumed as not divergent.

acceptances: returns the (minimal) acceptances set for each node index men-

tioned in transitions. Each acceptance set looks like “{{4} {3}} {}”, which means

that the node index 0 has two acceptances sets, one containing the event labelled

4, and another labelled 3. Moreover, as node index 1 acceptances set is empty,

it represents internal transitions taking place. By inspecting the corresponding

divergence information for node 1, one can check whether this internal transition

causes divergence or not. Finally, acceptances sets containing the empty set (i.e.,

{{}}) represent deadlocked nodes. Once more, the event method can be used

here to retrieve the event name.

initials(int): returns a list of alphabet elements immediately available for a given

node index.

afters(int, Str): returns a list of target node indexes reached from the source

node index through the event name in the process alphabet. As LTSs are not

complete, this is a partial method because not every node has transitions through

every event. Thus, in such (partial) cases, the method returns an empty set of

nodes. The same empty result is returned for terminal nodes as well, such as

those representing deadlock (e.g., STOP), or successful termination (e.g., SKIP).

With these methods, one is able to understand how FDR represents CSP processes

as LTSs. This can be useful for finding adequate CSP specification patterns for FDR,

as well as to understand obscure issues of the operational semantics. For instance,

in Section 4, we show how the LTS of some peculiar processes are structured. Next,

there are the methods enabling the user to choose a refinement algorithm to perform.

They create Hypothesis objects as assertions:

refines(Str,M) : Hypothesis(“Str [M= this”).

refinedBy(Str,M) : Hypothesis(“this [M= Str”).

deadlockfree(M) : Hypothesis(“deadlock-free[M] this”).

livelockfree(M) : Hypothesis(“livelock-free[M] this”).

deterministic(M) : Hypothesis(“deterministic[M] this”).

Finally, there are more advanced methods, which describe how FDR encodes low-

and high-level processes, as well as entry points for compression techniques described

in [7, p.60] and [13].

cheap: returns whether the root node corresponds to a low- or high-level process.

As high-level processes are easier to decompose, hence explore the modular struc-

ture of CSP operators, this flag can be useful to adjust processes appropriately.

L. Freitas, J. Woodcock / Electronic Notes in Theoretical Computer Science 187 (2007) 19–3426



This is particularly useful when handling complex or data intensive specifications.

operator: returns the high-level operator name used as the composite repre-

sented by the root node, for instance, hiding or parallelism.

wiring: returns a set of event numbers associated with the composite operator

in a cheap ISM, such as those of a hiding set, or a synchronisation set.

parts: returns a list of subcomponent ISMs of the composite ISM the root node

index might represent.

DebugContext

actors: returns the number of nodes involved in a witness.

witnesses: returns the number of witnesses found.

actor(int): returns the process name of an actor index, which is bound by the

number of involved actors and points to a node index.

attribution(int,int): returns the behaviour object of the chosen witness at the

selected actor index.

debugtree: returns a debug tree containing behaviour information about a re-

finement failure.

Debug contexts also contain the behaviour of the search root node, together with

the involved process names and found witnesses. They describe FDR’s graphical

interface debugging window.

Behaviour

Instances of this class represent the most detailed level of debugging information

available. They contain information about acceptances (or refusals) after some trace

has taken place.

3 FDR Explorer

With this knowledge of how FDR works, we built an extended API as Tcl/Tk script

files to be loaded in FDR’s server. At the moment, we have a user friendly output

that is just plain text, and a translation from FDR LTS transitions to a graph

notation language with graph visualisation support [8]. The former is intended for

FDR’s users or automatic CSP code generating tools, whereas the latter is to be

passed to a graph visualisation tool, as explained in Section 5.

3.1 Available functionality

The API we devised contains methods divided in five categories: (i) process inspec-

tion; (ii) process compilation; (iii) information extraction; (iv) helper methods; and

(v) auxiliary methods.
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The inspection methods are the main methods one usually calls at the beginning

of a refinement session. Firstly, the current session details, such as known processes

and assertions, is logged. Next, a given list of processes (with actual parameters

if needed) is compiled into ISMs, and detailed information about their structure

are logged. After that, three hypotheses for determinism, and deadlock and live-

lock freedom are automatically generated and checked. Finally, if these hypotheses

are false, then information about the debug context they contain is logged. This

includes not only the debugging context, but also all behaviours and debug trees

in case of a refinement failure. If the script contains assertions about refinement

checks, or if the user wants to perform any specific refinement, then the created

hypothesis objects can be inspected in the same way. Alternatively, if the script has

no parameterised process that demands actual parameters instantiation, no process

list is needed and all processes from the current session are inspected automatically.

The compilation methods can be used to generate ISMs in a chosen CSP model

for a list of processes one wants to inspect. They are called by the inspection meth-

ods, but the user (or another tool) could use them to perform specific compilation

tasks.

The extraction methods log information from all Tcl/Tk methods available for

each class from the FDR object-model (see Figure 1). That is, the LTS structure

of ISM objects, the debug context (if any) of the three automatically generated

hypothesis objects mentioned above, the debug trees of each debug context, and

the corresponding behaviours detailing the reason of failures.

The helper methods provide messages for every method of every class in FDR’s

object model of Figure 1. As this can be quite verbose, the default output is just for

ISM, Hypothesis, and DebugContext objects. Nevertheless, the user (or another

tool) could selectively call helper methods for available FDR classes.

Finally, the auxiliary methods provide help on how to use the FDR explorer API

itself, file loading, garbage collection of Tcl/Tk objects, and a main method that

hooks the tool into the FDR server.

3.2 FDR Explorer API

We detail below the most relevant methods for each category mentioned above.

Inspection methods

inspectProcs(File,List〈Str〉,Bool): inspects the given list of processes from a

file handle pointing to the CSP script file. The flag indicates whether the FDR

objects created should be deleted or not. For batch execution, such as those done

by tools, it should be set to true (or 1). For execution where further inspection

is required, it could be set to false (or 0).

inspectParameterless(File,Bool): inspects all processes from the given file.

It generates an error if any of the processes have parameters.

The results are logged into separate files for each process in the given list. Thus, if

a file named spec.csp and a list of processes {P(0) Q} are given, two files named
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spec.P(0).exp and spec.Q.exp are created, each containing the corresponding

process inspection. Moreover, if such files already exist, they are truncated (i.e.,

cleared) before being written.

Compilation methods

compileProcInModel(File,Session,Str,M): compiles the given process in the

given model from a FDR Session object printing the results on the given file

handle. Parameterised processes must be instantiated, otherwise the FDR server

crashes. It returns the created ISM object to the user.

compileProcs(File,Session,List〈Str〉): compiles the list of processes in the

failures-divergences model.

Extraction methods.

There is one extraction method for each class in the diagram of Figure 1. They

log the result of calling each method of the corresponding FDR class into the given

output file. They receive the file handle for logging the output, and the correspond-

ing FDR object. Moreover, there are some additional methods for ISM objects used

to create default hypotheses about determinism, and deadlock and livelock freedom.

Helper methods.

Similarly, there is one helper method defined for each FDR class as well. They

log a textual description of the role each method of each FDR class has. We also

group commonly used helper methods together.

Auxiliary methods

FDRExplorerHelp: provides a description about the FDR Explorer API.

load(Str): creates a FDR Session object and loads the given full file name.

deleteAll(File,List): releases the allocated memory from the objects in the

given list logging the results into the given file.

Finally, to integrate our tool into FDR, we hook the FDR Explorer API scripts into

FDR’s Tcl/Tk main method (see Section 4.1).

4 Running example

To illustrate the use of our tool, we provide a series of examples in the distribution,

as well as some extra help files and the complete class diagram model[5]. This

includes examples with both low- and high-level operators, as well as an industrial-

scale example from [9].

In this paper, we have chosen a simple example to show how the knowledge of

FDR’s LTS structures can give insight into how FDR works. The purpose is to
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understand how FDR encodes the presence of termination (SKIP) in an external

choice. In [15, p.141], laws about this situation are given as

P ✷ SKIP = P � SKIP = (SKIP ⊓ (P ✷ SKIP)) = ((P ⊓ STOP) ✷ SKIP)

But how does FDR encode these processes? To find out, let us load the machine

readable version of these CSP processes from the skip.csp file in the tool distribu-

tion package:

channel c

P = c -> P

A = P [] SKIP

B = P [> SKIP

C = SKIP |~| (P [] SKIP)

D = (P |~| STOP) [] SKIP

The result is given in Table 1. It is clear that FDR’s encoding of (P ✷ SKIP) is

more efficient than the other versions, as the number of nodes and transitions are

different in each representation. Process A has 3 transitions and 3 nodes, processes

B and C have the same LTS with 6 transitions and 5 nodes, and process D has the

worst LTS with 7 transitions and 5 nodes. As the alphabet of these processes are the

same, so are the results from event. In process A, node 0 reaches node 1 through

event 1 ( tick) with one acceptances set containing events 1 and 2 ( tick c), where

all nodes are divergence-free. The other transitions can be interpreted similarly.

To investigate the matter further, we added assertions checking how these dif-

ferent representations relate to each other. Processes B , C , and D are equivalent

in the failures-divergences model as they refine each other. Process A refines both

processes B , C , and D , but is refined by neither of them. This shows the rationale

for the most space-efficient encoding of termination (SKIP) on external choices to

use in FDR.

Furthermore, as we execute by default a deadlock freedom check, let us inspect

the output for process D . The hypothesis object contains one witness with one

debug tree and the following behaviour:

Performs: 〈 tick〉

Accepts : {} Could accept: { tick} {c}

Refuses : { tick c} Could refuse : {c} { tick}

That means, after performing the event tick, D is refusing both tick and c,

whereas the specification for deadlock freedom (see DF in [15, p.375]) could refuse

either event but not both. From FDR’s debugging window, this can be viewed by

pressing the button labelled Acc. (or Ref.).

4.1 Calling the APIs

Now, let us show how one could perform the check explained above using the FDR

Explorer API. Assuming that the directory $FDRHOME/bin is in the Unix $PATH,
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LTS for process A

alphabet = tick c event(0)= tau

transitions = {0 1 1} {0 2 2} {2 2 2} event(1)= tick

acceptances = {{1 2}} {{}} {{2}} event(2)= c

divergences = 0 0 0

LTS for process B

alphabet = tick c

transitions = {0 0 1} {0 0 2} {1 1 3} {1 2 4} {2 1 3} {4 2 4}

acceptances = {} {{1 2}} {{1}} {{}} {{2}}

divergences = 0 0 0 0 0

LTS for process C

alphabet = tick c

transitions = {0 0 1} {0 0 2} {1 1 3} {1 2 4} {2 1 3} {4 2 4}

acceptances = {} {{1 2}} {{1}} {{}} {{2}}

divergences = 0 0 0 0 0

LTS for process D

alphabet = tick c

transitions = {0 0 1} {0 0 2} {0 1 3} {1 1 3}

{1 2 4} {2 1 3} {4 2 4}

acceptances = {} {{1 2}} {{1}} {{}} {{2}}

divergences = 0 0 0 0 0

Table 1
FDR LTS for processes A, B, C, and D from file skip.csp

and that FDRExploerer.tcl is in $FDRHOME/lib, we start the FDR server with the

following command from the shell prompt:

venice$ fdr2tix -insecure -nowindow

Now the FDR server is running, we load the FDR Explorer interface using

% source lib/FDRExplorer.tcl

After that, the extended API is available and we can start inspecting processes.
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Assuming the file skip.csp is in the current directory, we could ask for the LTS

structures of all 4 processes without deleting the generated objects using

% set lprocs {A B C D}

% inspectProcs ‘‘./skip.csp’’ $lprocs 0

As no process in the file has parameters, we could also use the command

% inspectParameterless ‘‘./skip.csp’’ 0

As a result of executing the inspection methods, four files are created and named

skipX.csp.exp, where X will be either A, B, C, or D. They contain detailed infor-

mation about each process ISM, as well as the 3 default hypothesis about determin-

ism, and deadlock and livelock freedom already checked. If any of those checks fail,

additional information about debug contexts, debug trees, and behaviours are also

logged. Finally, if one wants to perform operations over the FDR objects returned,

it can be done directly by manually calling methods. The object name to use is the

one FDR returns. Thus, we could type a command, such as

% session 1 compile D -t

if we wanted FDR to recompile process D on the traces model on the current session.

This will result in a new ISM that one can call any of the other available methods

in a similar way.

5 Graph visualisation

At the moment, the translation strategy from FDR LTS transitions to an available

graph format [8] is indeed very simple. For every transition from FDR’s LTS,

we swap the event and target node indexes, so that we have source and target

node indexes followed by the event number, instead of the format presented in

Table 1, where the event number is between the node indexes. The purpose of this

extension to our tool is to prove the concept that one can visualise CSP LTSs and

debugging information generated by FDR, hence improving the user friendliness for

CSP related tools. To perform such operation, one needs to load the script from

the fdr2jgraph.tcl file into the FDR server, and call the fdr2jgraph method

passing the input CSP file name, the process name and an output file to generate

the JGraph compatible code.

An open possibility is to develop a more thorough translation strategy taking

advantage of the various features many graph visualisation libraries have. For in-

stance, graph layout algorithms for rendering big LTSs, or annotations support on

nodes for inclusion of acceptances and divergence information.

Another interesting possibility would be to manipulate the generated graph,

trying to find specific patterns, hence allowing a deeper understanding of the be-

haviour of the represented machine, or suggestions for further compression that FDR
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couldn’t foresee. Later on, with such information, one could try adjusting/adapting

the original CSP script in order to perform quicker and smoother checks. Such

a strategy of fiddling with the CSP script has been successfully achieved through

different CSP specification patterns via the CASPER tool [10], which translates

security protocol notation into highly optimised CSP code. These investigations

could also serve as the basis for a diagrammatic tool that would formally represent

the CSP semantics, hence allowing users to formally draw concurrent processes!

6 Conclusion

In this paper we present a new interface to the CSP [15] refinement model checker

FDR [7], which extends one of the available user interface APIs. It allows extended

control over debugging information, as well as investigation of hidden features of

the LTS data structure used to represent compiled CSP specifications for refinement

model checking. With this tool it was possible to carefully study the operational

semantics of CSP, hence develop an operational semantics for a concurrent language

similar to CSP [4]. It has also been used by other people in test case generation using

CSP and FDR, and Java code generation tools for this new concurrent language.

The main contribution of the FDR Explorer API is that it enables better inte-

gration between CSP script generation tools [18], as well as improved information

to the user. This appears as the ability to investigate witness information at dif-

ferent points of the LTS, or reasoning about more space-efficient representations

of CSP processes. These functionalities are not available from the original FDR

interfaces. This also follows the trend of tool integration set out by one of the UK

Grand Challenges in Computer Research [1].

We also show an example of running the tool for finding out how FDR represents

the presence of termination (SKIP) in an external choice, which we found quite

illuminating.

Finally, we explain how we transformed the available CSP LTS transitions into

a graph notation format with visualisation tool support [8]. This is the first step

towards integration with a visualisation tool for CSP. Going further, one could

provide the translation the other way round, hence enabling drawing graphs that

would formally represent CSP specifications and could be directly passed to FDR

for refinement checks.

As future work, we envisage to provide an object-oriented version of the Tcl/Tk

script. This would enable to provide integration of the FDR Explorer API into

FDR’s GUI. Another interesting idea is to provide support from graph notation

formats back to FDR LTS format. This would enable one to characterise general

graphs (or graph patterns) as interesting CSP processes amenable for refinement

checking. Furthermore, with such a bi-directional link with graph notations, it might

be possible to integrate FDR with clever set-theoretic compression techniques over

LTS structures, as presented by Valmari in [21].
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