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Unifying Theories of Undefinedness in UTP

Jim Woodcock and Victor Bandur

The University of York

Abstract. In previous work, based on an original idea due to Saaltink,
we proposed a unifying theory of undefined expressions in logics used for
formally specifying software systems. In our current paper, we instantiate
these ideas in Hoare and He’s Unifying Theories of Programming, with
each different treatment of undefinedness formalized as a UTP theory. In
this setting, we show how to use classical logic to prove facts in a mono-
tonic partial logic with guards, and we describe the guards for several
different UTP theories. We show how classical logic can be used to prove
semi-classical facts. We apply these ideas to the COMPASS Modelling
Language (CML), which is an integration of VDM and CSP in the Circus

tradition. We link CML, which uses McCarthy’s left-to-right expression
evaluation, and to VDM, which uses Jones’s three-valued Logic of Partial
Functions.

1 Introduction

We consider the problem of potentially undefined expressions, which arise from
two language constructs: partial function application and definite description.

A simple example of the problem is in the expression (y = 1/0). Here, the
division operator is a partial function that is not defined for a zero divisor: it is
being applied outside its domain of definition. So what should we make of the
expression (1/0)? Does it denote a value? If so, then which value? If not, then
what do we make of the containing predicate (y = 1/0)? Is this defined? Does
it denote a truth value or not?

More generally, if we choose a specific treatment of undefined expressions,
then is it possible to use verification tools that employ different treatments?
For example, there are two different treatments of undefined expressions for
VDM: Jones’s VDM uses the Logic of Partial Functions (LPF), which has been
implemented in Isabelle [1], whilst Larsen’s VDM in Overture uses left-to-right
evaluation [8]. What is the relationship between these? Formal verification in
the increasingly popular setting of heterogeneous systems of systems demands
an answer to this question. In our own context of the COMPASS Modelling Lan-
guage (CML), the nature of the language suggests the use of several verification
tools, where the treatment of undefinedness must be taken into account. For
example, in the FDR implementation of CSPM [5], undefinedness is handled by
a combination of arithmetic overflow and boolean short-circuit expressions. In
the Circus tools, undefinedness is handled through the use of classical logic and
arbitrary undefined values. Furthermore, if CML is used for a system of systems
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with heterogeneous constituents using different formalisms with different solu-
tions to the undefined problem, this combination of tools must be able to cope
with these differences, for the sake of correctness as well as efficiency.

One possible solution to all these problems is to adopt a single treatment
of undefinedness, such as the one used in UTP [7], where the basic relational
calculus is classical: there is no undefinedness and every expression denotes a
value. There is an outline of a more specific treatment of undefined expressions
in UTP, but this is explored only briefly in the book by Hoare & He [7, Sect. 9.3].
There are several other possible treatments, and in this section we describe some
of them. In doing so we develop a unifying theory for monotonic partial logics
(we explain this term fully below).

This work is based on original ideas due to Mark Saaltink in his underpinnings
for the Z/Eves theorem prover [10]. Together we have published joint papers at
Marktoberdorf [11] and ICECCS 2007 [12].

In Sect. 2, we augment UTP’s alphabetised relational calculus with a basic
treatment of three-valued logic with possibly undefined expressions and predi-
cates. In Sect. 3, we give a treatment of first-order theories for monotonic partial
logics and prove a theorem about construct monotonicity (Theorem 1). In Sect. 4,
we formalise three theories of undefinedness: strict logic, McCarthy’s left-to-right
logic, and Kleene’s three-valued logic. In Sect. 5, we describe a theory of guard
systems for generating verification conditions for the definedness of expressions
and predicates. We present our main theorem that allows us to trade theorems
between different logics by proving facts about the guard in a stronger system
and guaranteeing that the construct is defined in a weaker logic (Theorem 2).
We also present a guard system for the definite McCarthy logic and state its
soundness (Theorem 3). Finally in Sect. 6, we draw some conclusions and plan
future work.

2 Three-Valued Logic in UTP

In this section we illustrate our approach to undefinedness by describing a re-
stricted semi-classical three-valued logic in UTP. The logic has a distinguished
semantic value for undefined expressions and predicates. Operators of the pred-
icate calculus are Bochvar’s strict internal operators [4], but equality is classical
(Bochvar’s external ≡ operator), allowing a fine control of undefinedness.

2.1 Basic Sets and Constructors

The set of boolean values is B = {true, false}. The universe of values, disjoint
from B, is U. We introduce a specific semantic undefined value: ⊥. Any set not
already equipped with an undefined value can be lifted to include it: X⊥ = X ∪
{⊥}. Notice that ⊥ is neither a tuple, nor a function, nor is it a designated value
from B or U.

For k , a natural number, X k is the set of k -tuples over X , with X 0 having
the single element: the 0-tuple (). X ∗ is the union of all X k s.
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As usual, we have two kinds of function space: X → Y , the set of total
functions, and X �→ Y , the set of partial functions.

We take inspiration from Rose’s standard encoding of three-valued logic [9],
which is reminiscent of Hoare & He’s UTP designs [7, Chap. 3], in modelling three
logical values using just a pair of predicates: (P ,Q). The intuitive meaning is that
P describes the region where the predicate (P ,Q) is true and Q describes the
region where (P ,Q) is defined. Just like Hoare & He designs, we can combine
the pair of predicates into a single predicate by introducing an observational
variable, in this case def : the observation that the predicate is defined. This
gives us a model for the pair.

Definition 1 (TVL predicate pair). The observation def is true exactly when
the pair is defined (Q) and, providing it is defined, then P determines whether
it is true or not.

(P ,Q) =̂ (def ⇒ P) ∧ (Q = def )

✷

The next example demonstrates that this definition accounts for all three logical
values.

Example 1 (TVL extreme points). Consider the four extreme points for the pair:

R = true = (true, true) = def
R = false = (false, true) = false

R = ⊥ =

{
(true, false)
(false, false)

}
= ¬ def

✷

It is noteworthy that if def and Q do not agree then the entire TVL predicate
is false, as expected.

Two lemmas follow immediately from Definition 1. The first shows how we
can make use of the definedness condition in the pair.

Lemma 1 (Definedness trading). The definedness condition can be traded
back and forth in a TVL predicate pair:

(P ∧ Q ,Q) = (P ,Q)

Proof

(P ∧ Q ,Q)

= (def ⇒ P ∧ Q) ∧ (Q = def )

= (def ⇒ P) ∧ (Q = def )

= (P ,Q)

✷
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The second lemma shows that every three-valued predicate can be expressed
as a TVL pair.

Lemma 2 (Canonical form of TVL predicates). Every three-valued predi-
cate has a canonical form:

R = (Rt ,¬ Rf ), where Rb = R[b/def ], and t and f abbreviate true and
false, respectively.

Proof

((P ,Q)t ,¬ (P ,Q)f )

= (((def ⇒ P) ∧ (Q = def ))t ,¬ ((def ⇒ P) ∧ (Q = def ))f )

= ((true ⇒ P) ∧ (Q = true),¬ ((false ⇒ P) ∧ (Q = false)))

= (P ∧ Q ,¬ (true ∧ ¬ Q))

= (P ∧ Q ,Q)

✷

Example 2 (Definedness of partial expressions). Consider the predicate (z = x/y)
interpreted as a three-valued predicate. It is defined exactly when (y 	= 0), and
when it is defined, it is true when (x = y ∗ z ), where ( ∗ ) is the total multi-
plication operator. So the three-valued predicate (z = x/y) is modelled by the
pair:

((x = y ∗ z ), (y 	= 0))

We can consider three examples with specific values for x , y, and z .

(3 = 6/2)

= ((6 = 2 ∗ 3), (2 	= 0))

= (true, true)

= def

(2 = 6/2)

= ((6 = 2 ∗ 2), (2 	= 0))

= (false, true)

= false

(2 = 6/0)

= ((6 = 0 ∗ 2), (0 	= 0))

= (false, false)

= ¬ def

✷

The model that we have chosen for three-valued predicates is not closed under
any of the propositional operators, so we must choose particular definitions for
them. There are plenty of choices: for two operands of three values, there are
nine possible results, each of three values, making a total of: 39

≏ 20, 000 combi-
nations, although as Bergstra et al. point out, only a very small number of these
are desirable [3]. In this section we choose strict interpretations of each operator.

2.2 Conjunction

The strict conjunction of two three-valued predicates is defined as follows.
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Definition 2 (TVL conjunction). T ∧3 U is defined exactly when both T
and U are defined; it is true exactly when both T and U are true.

(P ,Q) ∧3 (R,S ) =̂ (P ∧ R,Q ∧ S )

It is useful to see the truth table for conjunction:

∧3 def ¬ def false
def def ¬ def false
¬ def ¬ def ¬ def ¬ def
false false ¬ def false

This truth table looks a little better if we replace the values in the model by the
three truth values themselves:

∧3 true3 ⊥ false3

true3 true3 ⊥ false3

⊥ ⊥ ⊥ ⊥
false3 false3 ⊥ false3

✷

An example of the conjunction of the two three-valued predicates (y = 3) and
(z = x/y) helps clarify the separation between a predicate’s truth and defined-
ness conditions.

Example 3 (Partial conjunction).

(y = 3) ∧3 (z = x/y)

= ((y = 3), true) ∧3 ((x = y ∗ z ), (y 	= 0))

= ((y = 3) ∧ (x = y ∗ z ), true ∧ (y 	= 0))

= ((y = 3) ∧ (x = 3 ∗ z ), (y 	= 0))

✷

2.3 Negation

The strict negation of a three-valued predicate is defined as follows.

Definition 3 (TVL negation). The negation of a three-valued predicate R is
defined exactly when R is defined, and is true exactly when R is false:

¬3 (P ,Q) = (¬ P ,Q)

The truth table is:

¬3

def false
¬ def ¬ def
false def

¬3

true3 false3

⊥ ⊥
false3 true3

✷

An example illustrates how the negation of a three-valued predicate can be
simply pushed into the underlying representation.
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Example 4 (Partial negation).

¬3 (z = x/y)

= ¬3 ((x = y ∗ z ), (y 	= 0))

= ((x 	= y ∗ z ), (y 	= 0))

✷

2.4 Disjunction

The strict disjunction of two three-valued predicates is defined as follows.

Definition 4 (TVL disjunction). The disjunction of two three-valued predi-
cates T ∨3 U is defined exactly when both T and U are defined; it is true when
either of them is true.

(P ,Q) ∨3 (R,S ) =̂ (P ∨ R,Q ∧ S )

The truth tables are:

∨3 def ¬ def false
def def ¬ def def
¬ def ¬ def ¬ def ¬ def
false def ¬ def false

∨3 true3 ⊥ false3

true3 true3 ⊥ true3

⊥ ⊥ ⊥ ⊥
false3 true3 ⊥ false3

✷

Example 5 (Partial disjunction). Define P ⇒3 Q as ¬3 (P ∨3 Q). Now suppose
that f is a partial function symbol, such that

(y = f (x )) = ((y = f (x )), x ∈ dom f )

Now consider the predicate (x ∈ dom f ⇒3 (y = f (x ))), which is reminiscent of a
precondition guarding the application of the partial function f . When interpreted
as a three-valued predicate we have,

x ∈ dom f ⇒3 (y = f (x ))

= ¬3 (x ∈ dom f ) ∨3 (y = f (x ))

= ¬3 (x ∈ dom f , true) ∨3 (y = f (x ))

= (x /∈ dom f , true) ∨3 (y = f (x ))

= (x /∈ dom f , true) ∨3 ((y = f (x )), x ∈ dom f )

= (x /∈ dom f ∨ (y = f (x )), true ∧ x ∈ dom f )

= (x ∈ dom f ⇒ (y = f (x )), x ∈ dom f )

= ((y = f (x )), x ∈ dom f )

It is defined exactly when (x ∈ dom f ), and when it is defined, it is true exactly
when (y = f (x )). ✷
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2.5 Equality

There is nothing special about equality in our treatment of undefined values: it
is just the existing classical equality in UTP. So, two three-valued predicates are
equal exactly when their representation as pairs are equal. This is the symmetric
closure of the following rules:

(def =3 ¬ def ) = false
(def =3 false) = false

(¬ def =3 false) = false

(true3 =3 ⊥) = false
(true3 =3 false3) = false

(⊥ =3 false3) = false

Equality over the lifted domain U
⊥ behaves similarly.

Example 6 (Partial equality). One of the definitions that we use later is a condi-
tional containing five equations between three-valued predicates and expressions:

(f (x , y) =3 ⊥)�(x = ⊥) ∨ (y = ⊥)�(f (x , y) =3 (x = y))

Each equation is by definition either true or false: it cannot be undefined. In this
way, UTP equality contains the use of three-valued logic. We also restrict our
use of quantifiers to avoid undefinedness. ✷

A very simple lemma is a consequence of these definitions.

Lemma 3 (Normality of TVL operators). When they are defined, the TVL
propositional operators behave exactly like their classical counterparts (sometimes
called “normality” [2]).

1. Q ⇒ (¬3 (P ,Q) = ¬ P)
2. Q ∧ S ⇒ ((P ,Q) ∧3 (R,S ) = P ∧ R)
3. Q ∧ S ⇒ ((P ,Q) ∨3 (R,S ) = P ∨ R)

✷

This justifies UTP with three-valued logic, and allows the definition of theories
in which definedness is elegantly available as a predicate, rather than appealing
to obtrusive comparison with an explicitly designated undefined value. What is
more, we will not introduce definite description or partial functions as funda-
mental concepts, so that it remains impossible to manufacture undefined values
at the level of the logical calculus of the UTP. But we can build logics that do
have these features, as we show later.

3 First-Order Theories

With the groundwork laid for a three-valued logical landscape in UTP, in this
section we develop theories for various types of three-valued logics encountered
in the literature and in the field. These theories depart from the classical world of
UTP by making use of the lifted domain U

⊥ and the lifted set of boolean values
B
⊥, soundly admitting the undefined value ⊥ through the approach presented

above.
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3.1 Contexts for First-Order Theories

We introduce a context theory CXT for our first-order theories, which will all
be subtheories of it. The alphabet of CXT contains two observational variables:

PShape : P((U⊥)∗ �→ B
⊥)

FShape : P((U⊥)∗ �→ U
⊥)

and its signature is:

=3 : U
⊥ × U

⊥ → B
⊥

¬3 : B
⊥ → B

⊥

∨3 : B
⊥ × B

⊥ → B
⊥

∀3 : (U �→ B
⊥) → B

⊥

ι3 : (U �→ B
⊥) → U

⊥

PShape describes all the possible denotations for the predicate symbols of this
theory. Every denotation is a partial function from some number of parameters,
each of which could be drawn from U or could be undefined, to a boolean result,
which could also be undefined. The purpose of PShape is to constrain all the the-
ory’s predicate symbols in a uniform way. FShape does the same job as PShape,
except that it describes the possible denotations of function symbols. The op-
erators =3, ¬3 , and ∨3 give the syntax for equality, negation, and disjunction,
respectively. Since they operate over lifted domains, they allow the construction
of TVL predicates.

The ∀3 function takes as its argument a function U �→ B
⊥ that describes a

binding for the universal quantifier that characterises the predicate that must be
universally true. The function considers each element of its domain in turn and
assigns to it one of the three logical values. The ∀3 function takes this binding
function and decides whether the universally quantified predicate is true, false, or
undefined. Notice that the binding function ranges only over defined values. This
means that we are excluding logics where bound variables may be undefined, as
is the case in LCF [6].

The ι3 function also takes a binding function as its argument. It decides
whether this binding is a definite description of a value in U or is undefined.
Once more, the bound variable must be everywhere defined.

We add a single healthiness condition to constrain the definite description
function:

CXT (P) = P ∧ (∀ f : U �→ B
⊥ • f 	= ∅ ⇒ ι3(f ) ∈ dom f ⊥)

This requires that the definite description of a non-empty binding function re-
turns either an undefined value or an element from the domain of the binding.
We require this result in Lemma 6, where we prove that theories are closed under
constructs over their signature.

Example 7 (Context). Consider a context with no predicate symbols and only
monadic and dyadic function symbols.

X1(P) = P ∧ (PShape = ∅) ∧ (FShape = (U⊥ ∪ (U⊥)2 �→ U
⊥))
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PShape and FShape are used to add type information: we use them to restrict
how predicate and function symbols behave, particularly, as we shall see later,
with respect to undefinedness. ✷

3.2 First-Order Theories

A first-order theory (FOT) is an enrichment of a particular context and acts
as its model. We add to the context six more alphabetical variables and three
healthiness conditions. The set of names A is partitioned into three sets: vari-
ables, predicate symbols, and function symbols.

〈Var ,Pred ,Fun〉 partition A

The set Dom : P U describes the domain of values for the first-order theory.
Finally, the rank function ρ : Pred∪Fun → N describes the number of parameters
that each predicate and function symbol can take.

The first healthiness condition requires that every variable is defined and has
a value drawn from Dom:

DV (P) = P ∧ (∀ v : Var • v ∈ Dom)

The second and third healthiness conditions require that every predicate and
function symbol ranges over arguments taken from Dom⊥ and produces results
in B

⊥ and U
⊥, respectively:

DP(P) = P ∧ (∀ p : Pred • p ∈ ((Dom⊥)ρ(p) → B
⊥) ∩ PShape)

DF (P) = P ∧ (∀ f : Fun • f ∈ ((Dom⊥)ρ(f ) → U
⊥) ∩ FShape)

Example 8 (First-order theory). Consider a theory T1 with context X1 that has
just a single function symbol for integer division:

T1(P) =
X1(P)
∧ Var = ∅
∧ Pred = ∅
∧ Fun = { / }
∧ Dom = N

∧ ρ = { / �→ 2}
∧ / ∈ (N⊥ × N

⊥ → N
⊥) ∩ FShape

✷

3.3 Information-Theoretic Ordering

Our whole approach to unifying the treatment of undefinedness in different log-
ics is built on a rather flat information-theoretic ordering. The goal is to allow
for the comparison of logics that are more or less discriminant in the presence
of undefinedness. This means that the undefined value is considered to be worse
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than every other value; these other values are themselves incomparable with each
other in this sense. The notion is captured below.

Definition 5 (Information-theoretic ordering). The information-theoretic
ordering ⊑ is defined as follows.
Elements: for any set X with a, b ∈ X

a ⊑ b =̂ (a 	= ⊥) ⇒ (a = b)

Pointwise extension to tuples: for x , y ∈ X k

x ⊑ y =̂ ∀ i : 1 . . k • xi ⊑ yi

Pointwise extension to functions: for f , g ∈ X → Y

f ⊑ g =̂ (dom f = dom g) ∧ (∀ x : dom f • f (x ) ⊑ g(x ))

Comparing sets of functions: for A,B : P X , the Hoare preorder is defined:

A ⊑H B =̂ ∀ a : A • ∃ b : B • a ⊑ b

✷

These definitions are illustrated in the following set of examples.

Example 9 (Ordering).

1. On elements:

⊥ ⊑ 1
1 ⊑ 1

¬ (1 ⊑ 2)

2. On tuples:

(0,⊥, 2) ⊑ (0, 1, 2)
() ⊑ ()

(1, 2) ⊑ (1, 2)
¬ ((1, 2) ⊑ (2, 2))

3. On functions:

(λ x , y : N • ⊥�(y = 0)� x/y) ⊑ (λ x , y : N • 0�(y = 0)� x/y)

(λ n : N • ⊥�(n mod 2 = 0)�n) ⊑ (λ n : N • n)

4. On sets of functions:

{(λ x , y : N • ⊥�(y = 0)� x/y),
(λn : N • ⊥�(n mod 2 = 0)�n),
(λn : N • n)}

⊑H

{(λ x , y : N • 0�(y = 0)� x/y),
(λn : N • n)}

✷
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We further generalise the ordering by lifting it to contexts.

Definition 6 (Ordering on contexts).

S ⊑H T = ∀P : S; Q : T • P ⊑H Q

where

P ⊑H Q =

PShapeS ⊑H PShapeT

∧ FShapeS ⊑H FShapeT

∧ (=S) ⊑ (=T)
∧ (¬ S) ⊑ (¬ T)
∧ (∨S) ⊑ (∨T)
∧ (∀

S
) ⊑ (∀

T
)

∧ (ιS) ⊑ (ιT)

✷

Intuitively it can be seen that all functions and predicates admissible in S are
less discriminant of the undefined value than those admissible in T . We say that
undefinedness is more contagious in S.

Example 10 (Subtheory). Consider X2 , a subtheory of X1 , where the following
holds:

∀ f : FShapeX1 • zero ◦ f ∈ FShapeX2

and where the total function zero is defined:

zero(x ) =̂ (0�(x = ⊥)� x )

All other components remain unchanged. Then PX1 ⊑H PX2 , since

f ⊑ zero ◦ f

= (dom f = dom(zero ◦ f )) ∧ ∀ x : dom f • f (x ) ⊑ zero ◦ f (x )

and so we have FShapeX1 ⊑H FShapeX2.
✷

In the following sections, we introduce the three important notions of strictness,
definiteness, and monotonicity.

3.4 Strictness

The notion of strictness is a familiar one from the definition of programming
languages. A function f is strict if f (⊥) = ⊥, and it is usually used to denote
that a function loops forever or performs an illegal operation, such as division by
zero. Generally no distinction is made if the function in fact delivers a useable
result before this happens. We can interpret a strict function operationally as
one that always evaluates all of its arguments. A restricted notion considers
functions that are strict in one or more arguments.
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Definition 7 (Strict). Function f : (X⊥)ρ(f ) → Y ⊥ is strict if, whenever at
least one of its arguments is undefined, then the result is undefined:

strict(f ) = ∀ x : (X⊥)ρ(f ) • (∃ i : 1 . . ρ(f ) • (xi = ⊥)) ⇒ (f (x ) = ⊥)

✷

Example 11 (Strict function). Suppose that ∗ is the standard multiplication
operator on natural numbers: ∗ : N × N → N. We can define a strict version
of the operator:

∗3 : N
⊥ × N

⊥ → N
⊥

x ∗3 y = ⊥�(x = ⊥) ∨ (y = ⊥)� x ∗ y

✷

We can extend the notion of strictness to a context, where every predicate has
only strict denotations for its predicate and function symbols. We find it useful
to define a healthiness function strict() that is applied to a context (which of
course is a set of predicates).

Definition 8 (Strict contexts). We make a context T strict:

strict(T) = {P : T • strict(P) }

where strict(P) = ∃PShape0,FShape0 •
PShape = { p : PShape0 | strict(p) }
∧ FShape = { f : FShape0 | strict(f ) }
∧ P [PShape0,FShape0/PShape,FShape]

✷

3.5 Definiteness

Definiteness is, in a sense, a dual notion to strictness. If a function is definite,
then it cannot manufacture undefinedness. That is, if the function produces an
undefined result, then it must have had an undefined argument.

Definition 9 (Definite). Function f : (X⊥)ρ(f ) → Y ⊥ is definite:

definite(f ) = ∀ x : (X⊥)ρ(f ) • (f (x ) = ⊥) ⇒ (∃ i : 1 . . ρ(f ) • (xi = ⊥))

✷

Example 12 (Definite function). The function ∗3 above is definite. ✷

As for strictness, we define a healthiness function for contexts.

Definition 10 (Definite contexts). Making a context definite:

definite(T) = {P : T • definite(P) }

where definite(P) =
∃PShape0,FShape0 •

PShape = { p : PShape0 | definite(p) }
∧ FShape = { f : FShape0 | definite(f ) }
∧ P [PShape0,FShape0/PShape,FShape]

✷
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3.6 Monotonicity

A monotonic function on ordered sets is one that preserves that order. In our
unifying theory, we are interested in defined-monotonic functions, that is, ones
that preserve the definedness ordering.

Definition 11 (Monotonic). Function f : (X⊥)ρ(f ) → Y ⊥ is monotonic:

monotonic(f ) = ∀ x1, x2 : (X⊥)ρ(f ) • x1 ⊑ x2 ⇒ f (x1) ⊑ f (x2)

✷

Example 13 (Monotonic operator). The TVL negation operator ¬3 from Sect. 3
is monotonic:

¬3

true3 false3

⊥ ⊥
false3 true3

✷

Here also it is convenient to define a predicate that is true if a context is mono-
tonic.

Definition 12 (Monotonic contexts). T is a monotonic context:

monotonic(T) = ∀P : T • monotonic(P)
where monotonic(P) =

(∀ p : PredT • monotonic(p))
∧ (∀ f : FunT • monotonic(f ))
∧ monotonic(=T)
∧ monotonic(¬ T)
∧ monotonic(∨T)
∧ monotonic(∀

T
)

∧ monotonic(ιT)

✷

The following simple lemma is useful.

Lemma 4 (Strict monotonic). Every strict function is monotonic. ✷

3.7 Comparing First-Order Theories

In Definition 6, we lifted our information-theoretic ordering up to contexts; now
we lift it to first-order theories. This makes sense only if the two FOTs in question
have the same domain of values.

Definition 13 (Comparing FOTs). Comparing FOTs U and V: for P : U

and Q : V

P ⊑H Q = DomU = DomV ∧ PredU ⊑H PredV ∧ FunU ⊑H FunV

✷
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Using this definition, we can state an important lemma. If S and T are two
contexts, such that S is less defined than (or equal to) T , and we have a FOT
that models S , then there will also be a FOT that models T .

Lemma 5 (Models). Suppose that we have two CXTs S and T, where S ⊑H T.
Suppose further that U is a FOT extending S. Then there is a FOT V extending
T such that U ⊑ V. ✷

The proof of this lemma is quite straightforward. The relationship between S

and T shows where undefined values in the former have been replaced by defined
values in the latter. This is used as a guide to construct an appropriate model.

Example 14 (Application of Models lemma). Suppose that we have two contexts
S and T . Suppose further that S has only a single monadic function symbol
inc : U

⊥ �→ U
⊥. Define a simple model U for S that instantiates inc as a rather

trivial increment operation on binary digits. This operation is easy to define on
the argument 0, it returns the result 1. It is undefined otherwise. The context
T , on the other hand produces only defined results inc : U

⊥ �→ U. There must
be a model V for T , such that U ⊑ V . This is easy to construct. The domain of
values has to be the same as for U . The inc can return an arbitrary value for any
argument that returns ⊥. Note that this makes it non-strict: it must produce a
defined value for the argument ⊥. All this is summarised in the following table:

S T

PShape ∅ ∅
FShape strict(U⊥ �→ U

⊥) U
⊥ �→ U

U V

Dom {0, 1} {0, 1}
ρ {inc �→ 1} {inc �→ 1}
A inc(⊥) = ⊥

inc(0) = 1
inc(1) = ⊥

inc(⊥) = 0
inc(0) = 1
inc(1) = 1

✷

We state another important lemma about the closure of a FOT under the syntax
of expressions.

Lemma 6 (Expression consistency). Suppose that e is an expression over a
FOT U, then every U-healthy predicate P ensures:

P ⇒ e ∈ Dom⊥
U

✷

This lemma is proved by syntactic induction.
A third important result is the following theorem that states that constructs

(expressions or predicates) are monotonic.
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Theorem 1 (Construct monotonicity). Suppose S ⊑H T, that U extends S,
V extends T, and that either S or T is monotonic. Then, for any construct c,
we have

cU ⊑ cV

Proof (Construct monotonicity). The proof of the theorem is by induction on
the syntax of the construct c. To illustrate the proof, we consider only the second
induction case: application of a function symbol to actual parameters. This is
enough to demonstrate the role of monotonicity in one of the two contexts.

The induction hypothesis is that xS ⊑ xT.

Case 2.1: S is monotonic

(f (x ))U { interpretation }

= fU(xU) { hypothesis xU ⊑ xV + S monotonic, and so fU is monotonic }

⊑ fU(xV) { assumption: PU ⊑ QV, and so FunU ⊑ FunV and so fU ⊑ fV }

⊑ fV(xV) { interpretation }

= (f (x ))V

Case 2.2: T is monotonic

(f (x ))U { interpretation }

= fU(xU) { assumption: PS ⊑ PT }

⊑ fV(xU) { hypothesis + V monotonic }

⊑ fV(xV) { interpretation }

= (f (x ))V

✷

4 Specific First-Order Theories

In this section we consider three different theories of logic with undefined-
ness: strict logic, McCarthy’s logic and Kleene’s logic. In our definitions, we
demonstrate the differences between these three; in our theorems, we demon-
strate the similarities.

4.1 Strict Logic

Strict logic treats undefinedness as extremely contagious: whenever an undefined
value appears in an expression or predicate, the overall construct collapses to
become undefined. As we saw in Definition 7, this is strictness. First of all, every
predicate in this theory is strict (see Definition 8). This means that PShape and
FShape both contain only strict denotations.

S1(P) = strict(P)



16 J. Woodcock and V. Bandur

Next, equality is strict:

(=s(x , y) =3 ⊥)�(x = ⊥) ∨ (y = ⊥)�(=s(x , y) =3 (x = y))

Recall Example 6 for an explanation of the definedness of this definition. If either
argument is undefined, then the equality is undefined: otherwise, strict equality
depends on the underlying UTP equality.

Definite description is strict:

(ιs(f ) = x )�⊥ /∈ ran f ∧ (dom(f ⊲ {true}) = {x})�(ιs(f ) = ⊥)

The argument to ιs is a function f that binds elements of its domain to one of
three truth values. If this binding is everywhere defined and there is only one
element of f ’s domain that satisfies f ’s characteristic predicate, then the definite
description is exactly this element. Otherwise, it is undefined.

The universal quantifier is strict. Once more, the argument to ∀
s

is a bind-
ing. If this binding is anywhere undefined, then the universal quantifier is itself
undefined. Otherwise, it depends on whether every element evaluates to true or
not.

(∀
s
(f ) =3 ⊥)�⊥ ∈ ran f �(∀

s
(f ) = (ran f =3 {true}))

Negation is strict and is modelled by the underlying strict UTP operator:

¬s(P) = ¬3 P

Similarly, disjunction is strict and is modelled by the underlying UTP strict
operator:

∨s (P ,Q) = P ∨3 Q

These are the two operators introduced in Sect. 2. Their definitions are perhaps
more appealing as truth tables.

¬ s

true3 false3

⊥ ⊥
false3 true3

∨s true3 ⊥ false3

true3 true3 ⊥ true3

⊥ ⊥ ⊥ ⊥
false3 true3 ⊥ false3

4.2 Kleene System

Kleene’s system makes the logical connectives as defined as possible, whilst still
being monotonic. So, every function is monotonic:

K1 (P) = P ∧ (∀ f : PShapek ∪ FShapek • monotonic(f ))

Equality and definite description are both strict:

(=k) = (=s)
(ιk) = (ιs)
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If the binding function f for the universal quantifier evaluates anywhere to false,
then this is enough information to constitute a counterexample, and so ∀

k
(f )

is also false. Otherwise, if it evaluates everywhere to true, then clearly it is
universally satisfied. Otherwise, it is undefined.

((∀
k
(f ) =3 false3)� false ∈ ran f �

((∀
k
(f ) =3 true3)�(ran f = {true})�(∀

k
(f ) =3 ⊥)))

Negation is strict:

¬k = ¬s

If either operand of a disjunction is true, then the disjunction is also true, re-
gardless of whether the other operand is defined or not. If both are false, then so
is the disjunction. Otherwise the disjunction is undefined. We end up with the
following refinement to the initial definition of strict disjunction.

((∨k(P ,Q) =3 true3)�(P =3 true3) ∨ (Q =3 true3)�
((∨k(P ,Q) =3 false3)�(P =3 false3) ∧ (Q =3 false3)�

(∨k(P ,Q) =3 ⊥)))

As usual, the truth table paints a clearer picture:

∨k true3 ⊥ false3

true3 true3 true3 true3

⊥ true3 ⊥ ⊥
false3 true3 ⊥ false3

4.3 McCarthy System

McCarthy’s system is very operational in flavour: it is assumed that there is an
interpreter working through the text of logical constructs from left to right. The
left-hand operand is evaluated first. The right-hand operand is evaluated only if
it is needed. Function and predicate symbols are monotonic, just like in Kleene’s
system.

M1 = K1

Equality and definite description are both strict.

(=m) = (=k)
ιm = ιk

In general, universal quantification in McCarthy’s system is just the same as in
Kleene’s system. However, Overture [8] uses a variant of McCarthy logic where
the binding function itself is executed from left to right, which distinguishes it
from Kleene logic.

∀
m

= ∀
k
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Negation is the same as Kleene’s.

¬m = ¬k

Finally, disjunction has a short-circuit semantics which induces the distinguish-
ing left-to-right evaluation order:

((∨m (P ,Q) =3 true3)�(P =3 true3) ∨ ((P =3 false3) ∧ (Q =3 true3))�
((∨m (P ,Q) =3 ⊥)�(P =3 ⊥) ∨ (Q =3 ⊥)�(∨m (P ,Q) =3 false3)))

The truth table has the following structure:

∨m true3 ⊥ false3

true3 true3 true3 true3

⊥ ⊥ ⊥ ⊥
false3 true3 ⊥ false3

All three systems are monotonic.

Lemma 7 (Strict-Kleene-McCarthy monotonicity).

1. The strict system is monotonic
2. The Kleene system is monotonic
3. The McCarthy system is monotonic

✷

There exists an interesting definedness order between the three systems. It shows
the relative resilience of the three logics to undefinedness:

Lemma 8 (Strict-McCarthy-Kleene ordering). For ρs = ρm = ρk and
Doms = Domm = Domk we have

FOTs ⊑ FOTm ⊑ FOTk

✷

This lemma allows us to relate theorems proved in the different systems. Suppose
that P is a theorem in the strict system; then it would also be true in the
McCarthy and Kleene systems. More concretely, if we prove a theorem in VDM
in Overture, then it would still be a theorem if we interpreted it in LPF, since
the former is a McCarthy system and the latter is a Kleene system.

5 Guard Systems

We turn our attention now to the proof obligations that different systems can
use to demonstrate the definedness of constructs.
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5.1 Validity

Suppose T is a CXT and P is a predicate. Then define P is valid in T :

T |= P =̂ for all U ,T ⊑H U implies PU = true

That is, any construct that is valid in a given logical system will also be valid in
a logical system that refines it in the definedness order.

5.2 Guards

Suppose that c is a construct. Then predicate G is a guard for c in CXTT

(denoted by G �T c) iff for every FOT V that extends CXTT we have

1. (GV 	= ⊥)
2. (GV = true) ⇒ (cV 	= ⊥)

G is a tight guard if we also have

3. (GV = false) ⇒ (cV = ⊥)

Now we are ready to state and prove our main result, which is due originally to
Saaltink.

Theorem 2 (Main theorem (Saaltink)). Suppose that CXTS ⊑ CXTT, that
either one is monotonic, and that G is a guard for P in CXTS. Then, if (T |= G)
and (T |= P), we have that (S |= P). ✷

The significance of this result is in trading theorems between provers, as shown
in the next example.

Example 15 (Trading theorems). Suppose that we want a proof of P in Larsen’s
VDM, as implemented in the Overture toolset [8], but the only theorem prover
we have is for Jones’s VDM. Overture uses a form of McCarthy’s logic, whilst
Jones’s VDM uses LPF, a form of Kleene’s logic. By Lemma 8, we have Overture
⊑ LPF. We could find a guard G for P in Overture (McCarthy logic), and then
can carry out the proof of both G and P in Jones’s logic (Kleene). Our Main
Theorem then tells us that P is a theorem in Overture. All proofs are carried
out in the stronger logic, but hold in weaker one. Perhaps more interestingly, a
similar theorem holds for using classical logic instead of Kleene’s logic. In this
way, classical logic could be used to prove results in Overture. ✷

Proof (Main theorem).

1. From the Models Lemma 5, since CXTS ⊑ CXTT and FOTU extends CXTS ,
then there exists FOTV that extends CXTT and for which we have FOTU ⊑
FOTV .

2. Since G �S P , know that (GU 	= ⊥) ∧ ((GU = true) ⇒ (PU 	= ⊥)) from the
definition of a guard.
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3. Now, from construct monotonicity (since S is monotonic) we have that
GU ⊑ GV . But because (GU 	= ⊥), it must be that (GU = GV ). We are
assuming that G is valid in T (T |= G), so we have that (GV = true) and
so (GU = true). Now, from the definition of a guard, we must have that
(PU 	= ⊥)

4. We now repeat this argument for P . By construct monotonicity, (S mono-
tonic), we have PU ⊑ PV , therefore (PU = PV ). But T |= P , so (PV = true)
and therefore (PU = true).

✷
5.3 Definedness Guards

Suppose that e is an expression. We use the notation De to define the circum-
stances under which e is defined.

Example 16 (Definedness guard)

D((x + y)/z ) = z 	= 0

✷

The definedness guards that we are interested in are all first order; that is, the
guards themselves are always defined.

Definition 14 (First-order definedness). The definedness function is first
order:

D1(DΦ) =̂ DΦ ∧ D(DΦ)

✷

If we define a system of guards for every construct in our language, then we can
use this system inductively to generate verification conditions for the definedness
of all constructs. In the next section we demonstrate this for the case of the
definite McCarthy system.

5.4 Guards for Definite McCarthy System

Assuming we have a theory T of McCarthy logic, we can develop the following
recursive definedness conditions for constructs c of that theory.

Dmx = true
Dm(p(e)) = ∀ i : 1 . . ρ(P) • Dmei
Dm(f (e)) = ∀ i : 1 . . ρ(f ) • Dmei

Dm(e1 = e2) = Dme1 ∧ Dme2

Dm(¬ P) = DmP
Dm(P ∨ Q) = DmP ∧ (P ∨ DmQ)
Dm(∀ x • P) = ∀ x • DmP
Dm(ιx • P) = (∀ x • DmP) ∧ (∃1 x • P)

A theorem follows immediately, which has a Kleene analogue and (trivially) a
strict analogue as well.

Theorem 3 (McCarthy guards). If c is a construct, then Dm(c) is a guard
for c in definite(T), and a tight guard for c in strict(definite(T)). ✷
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No analogue of this theorem exists for indefinite systems, but the partitioning
of predicates into TVL pairs (P ,Q) allows us to extract the guard condition
immediately from Q . The advantage is that Q may be tailored to be either a
plain or a tight guard, depending on the application.

6 Conclusions

The notion of undefinedness has played a prominent role in the study of logic,
and continues to be a relevant research problem. With tools emerging that em-
ploy more than simple classical logic, and their use being adopted for verification
in the heterogeneous landscape of systems of systems, a treatment of the rela-
tionships among different logics becomes necessary. In this section we summarize
our specific contributions and prospects in this direction.

6.1 Contributions

We have presented a unifying theory for monotonic partial logics with unde-
fined expressions, as a foundation for exploring the formal basis for migrat-
ing theorems between tools and methods that employ different types of logic
and treatments of undefinedness. The aim is to support the forthcoming COM-
PASS Modelling Language. Based closely on Saaltink’s original work, but cast
in Hoare & He’s Unifying Theories of Programming, we have demonstrated an
information-theoretic unification for three logical systems: strict, McCarthy, and
Kleene. Other approaches are possible and are under investigation.

6.2 Future Work

In this paper we have told only part of the story, since CML is not restricted
to definite constructs: precondition predicates are needed for handling indefinite
expressions and predicates. Our next step will be to extend our work in this way,
thus developing a comprehensive treatment of undefined expressions for CML.

Fortunately we see many avenues of research starting here. Can our unify-
ing theory cope with every treatment of undefinedness, such as (i) the Alloy
paradigm, where there is no function application; (ii) the logic of LCF, where
quantifiers also range over undefined values; (iii) second-order undefinedness;
(iv) logics with more than three values. These are all important contemporary
logical treatments of undefinedness that can not be excluded from such an uni-
fication effort.
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