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Abstract. The complexity of concurrent systems can turn their devel-
opment into a very complex and error-prone task. The use of formal
methods like CSP considerably simplifies this task. Development, how-
ever, usually aims at reaching an executable program: a translation into
a programming language is still needed and can be challenging. In pre-
vious work, we presented a tool, csp2hc, that translates a subset of CSP
into Handel-C source code, which can itself be converted to produce files
to program FPGAs. This subset restricts parallel composition: multi-
synchronisation and interleaving on shared channels are not allowed. In
this paper, we present an extension to csp2hc that removes these restric-
tions. We provide a performance analysis of our code.

Keywords: concurrency, multi-synchronisation, compilation, protocols.

1 Introduction

Concurrent applications are normally complicated since they consist of many
components running in parallel. This usually yields to a complex and error-
prone development [I1]. In order to minimize these problems, formal methods
like CSP [I1] have been proposed. They are usually process algebras designed for
describing and reasoning about synchronisation between processes. Furthermore,
phenomena that are exclusive to the concurrent world, like deadlock and livelock,
can be much more easily understood and controlled using such formalisms. The
tools available for these languages increased their success. For CSP, the model-
checker FDR2 [3] provides an automatic check of finite state specifications for
correctness and properties like deadlock and divergence freedom. It accepts a
machine-processable version of CSP, called CSPy [L1], which combines an ASCII
representation with a functional language.

Using CSP, we can describe concurrent systems at various levels of abstrac-
tion: specifications, design, and implementation. This allows a stepwise
development in a single framework. Nevertheless, a translation into a practical
programming language is still needed. In order to minimize this gap, it is better
to target languages that directly support the CSP style of concurrency through
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channels, such as occam-2 [5] and Handel-dY, or packages that add these features
such as JCSP [13] for Java, CCSP [6] for C, and C++CSP [2] for C++.

This translation is usually non-trivial and rather problematic. In [9], we pre-
sented a methodology for developing verified concurrent applications in which
developers: (i) specify the system’s concurrent behaviour in CSP and wverify its
correctness and further properties using tools like FDR2; (ii) gradually refine it
verifying the correctness of the transformation (again, using tools like FDR2);
and finally, (iii) automatically translate the CSPy implementation into Handel-C
code, which can itself be compiled into a Hardware Description Language (HDL)
to program Field-Programmable Gate Arrays (FPGAs).

The tool that supports the translation from CSPy into Handel-C, csp2hc,
accepts a subset of CSPy that includes SKIP, STOP, sequential and parallel com-
position, recursion, prefixing, external and internal choice, alternation, guarded
processes, datatypes, constants, functions, and some expressions. The translation
of some of these constructs, however, was restricted. For instance, due to subtle
differences in Handel-C’s concurrency model, the translation of CSPy parallel
composition into Handel-C’s par construct was only possible if: (i) all channels
shared by the processes were in the synchronisation set (e.g. cs in the defini-
tion of sharing parallel composition at Page A8)); and (ii) there was no multi-
synchronisation (more than two processes synchronising on a given channel). In
this paper, we present an approach to remove these restrictions.

Translations of process algebras into programming languages have already
been presented. They target different programming languages like occam-2 [5],
Ada [1], Java and C. Some of them have no tool support, whilst others have
limited tool support. None of them, however, achieved a comprehensive support
of CSP parallel composition as we do here. For instance, [4] proposes an auto-
matic translation from CSP# [12] into code. They, however, only consider inter-
leaving: parallel composition and multi-synchronisation are left aside. In [§], we
presented a translation strategy from Circus [7] to Java. This strategy included
the treatment of multi-synchronisation and its basic ideas are used here.

In Section2] we introduce CSPy, Handel-C, and the previous version of csp2hc.
Section [3] describes the approach to implement CSP model of parallelism in
Handel-C. In Section [ we present a performance analysis of the translation and
generated code. Finally, our conclusions and future work are in Section [l

2 Background

In this section, we describe csp2hc’s previous version and the languages involved
in the translation focusing on the features used in the context of this paper.

2.1 CSP

CSP is a process algebra that can be used to describe systems composed by
interacting components, which are independent self-contained processes with

! Athttp://www.mentor.com/products/fpga/handel-c/
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--!!mainp SYSTEM

--!lint_bits 2

datatype ALPHA = a | b

datatype ID = Lt.ALPHA | unknown
channel enter, leave

channel cash, ticket, change : ID

--!!channel enter in within CUST
--!!channel leave in within CUST
--!!channel cash out within CUST
--!!channel ticket in within CUST
--!!channel change in within CUST
--!targ id ID within CUST
CUST(id) =
(enter -> cash!id —>
(ticket.id -> change.id -> SKIP
[Jchange.id -> ticket.id -> SKIP));
leave -> CUST(id)
CUSTOMERS =
CUST(Lt.a) ||| CUST(Lt.b) ||| CUST(unknown)
PAID_PARKING = (CUSTOMERS
[l1 {lcash,ticket,change,enter|} |]
MACHINE) \ {l|cash,ticket,changel}
SYSTEM = CAR [| {| enter,leave |} |] PAID_PARKING

--!!channel enter out within CAR
--!!channel leave out within CAR
CAR = enter -> leave -> CAR

--!!channel enter in within MACHINE
—--!!channel cash in within MACHINE
--!!channel ticket out within MACHINE
--!!channel change out within MACHINE
MACHINE =
enter -> cash?id -> ticket.id ->
change.id -> MACHINE

Fig. 1. CSPy Example: a Paid Car Park

interfaces that are used to interact with the environment [I1]. Most of the CSP
tools, like FDR2 and ProBE, accept a machine-processable CSP, called CSPy.

The two basic CSPy processes are STOP and SKIP; the former deadlocks, and
the latter does nothing but terminate. The prefixing a -> P is initially able to
perform only the event a; afterwards it behaves like process P. A boolean guard
may be associated with a process: g & P behaves like P if the predicate g is true;
it deadlocks otherwise. The operator P1;P2 combines P1 and P2 in sequence. The
external choice P1[1P2 initially offers events of both processes. The performance
of the first event or termination resolves the choice in favour of the process that
performs either of them. The environment has no control over the internal choice
P1|~|P2, in which the choice is resolved internally. The sharing parallel compo-
sition P1[lcs|]P2 synchronises P1 and P2 on the events in the synchronisation
set cs; events that are not listed occur independently. The alphabetised parallel
composition P1[lcs1lcs2|]1P2 allows P1 and P2 to communicate in the sets cs1
and cs2, respectively; however, they must agree on events in cs1Ncs2. Processes
composed in interleaving P1| | |P2 run independently. The event hiding operator
P\cs encapsulates the events that are in cs. Finally, P[[a<-b]] behaves like P ex-
cept all occurrences of a in P are replaced by b. The CSPy interruption, untimed
timeout, exceptions, linked parallel, and replicated operators are omitted here;
they are not accepted by csp2hc.

By way of illustration, Figure [Il presents the specification of a parking spot.
It contains special comments called directives (--!!), which give extra informa-
tion to csp2hc, such as: information on whether simple synchronisation channels
are input channels or output channels within a process; the types of processes
arguments; the main behaviour of the system; the length of integers used in the
system; and the moment in which internal choices should be resolved.

The process PAID_PARKING describes a parking spot with a pay and display
machine that accepts cash, and issues tickets and change. First, we declare a
datatype ALPHA: variables of type ALPHA can assume either value a or b. The
next datatype, ID, represents identifications: the constructor Lt receives an ALPHA
value and returns a value of ID (for example, Lt.a); another possibility is the
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unknown ID. After receiving the cash, the machine issues tickets and gives the
change. The process CUST models a customer: after entering the parking spot, a
customer must interact with the ticket machine: he inserts the cash into it, picks
the ticket and the change in any order, and finally, leaves the parking spot.
Customers have unique identification that guarantees that tickets and changes
are only issued to the customer who inserted the cash. The identifications are
used to instantiate each customer in process CUSTOMERS, which is defined as the
interleaving of all customers. The paid parking spot is modelled by PAID_PARKING
as a parallel composition of all customers and a machine; they synchronise on
cash, ticket, change, and enter; all but enter are encapsulated. Finally, the main
behaviour of the system, SYSTEM, is the parallel composition between the CAR and
the parking. Using FDR2, we can verify that the SYSTEM is deadlock free and
livelock free. Furthermore, using FDR2’s refinement check, we can also verify
that the SYSTEM satisfies the abstract specification that only requires that, after
entering, a customer must leave before the next customer enters.

Despite being a simple example, this example was not accepted by the previous
version of csp2hc. This is due to the existence of both (i) shared channels among
the customers (i.e enter) that are not in the synchronisation channel set since
customers are interleaved, and (ii) multi-synchronisation of a customer, the CAR
and the MACHINE on channels enter and leave.

2.2 Handel-C

Handel-C is a procedural language, rather like occam, but with a C-like syn-
tax. Its main purpose is the compilation into netlists to configure FPGAs or
ASICs (Application-Specific Integrated Circuits). Although targeting hardware,
it is a programming language with hardware output rather than a hardware
description language. This makes Handel-C different from VHDL. A hardware
design using Handel-C is more like programming than hardware engineering; this
language is developed for programmers who have no hardware knowledge at all.

Handel-C offers a subset of C that includes common constructs like structures,
functions, macros, arrays, pointers, logical operators (and their bitwise counter-
parts), and control flow constructs like while and for loops, if and switch. How-
ever, it does not include recursion and processor-oriented features like floating
point arithmetic, which is supported through external libraries.

Handel-C extends C by providing constructs for describing parallel behaviour.
The parallel construct par{P; Q;} executes instructions P and Q in parallel, which
may communicate via channels. Its semantics corresponds to the CSP alphabe-
tised parallel P [|a(P) || a(Q)1]1 Q, where a(P) and «(Q) denotes all communi-
cations of P and Q, respectively. The prialt statement selects one of the channels
that are ready to communicate, and communicates via this channel. The only
data type allowed in Handel-C is int, which can be declared with a fixed size.

By way of illustration, we present a simple BUFFER that receives an integer
value through a channel input and outputs it through channel output. This
buffer can be decomposed into a process IN that receives an integer value and
passes it through channel middle to another process 0UT that finally outputs this
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value. A possible CLIENT can interact with the BUFFER by sending an integer value
via channel input and receiving it back via channel output. The Handel-C code
presented below implements this interaction.

set clock = external "clockl";

chan int 8 input, output, middle;

void INO{ int 8 v; while(1) { input?v; middle!v; } }
void OUT(){ int 8 v; while(1) { middle?v; output!v; } }
void BUFFER(){ par{ IN(); OUT(Q); } }

void CLIENT(){ int 8 v; input!10; output?x; }

void main(){ par { BUFFER(); CLIENT(); } }

We define an external clock named clock1, and declare the channels used in
the system. The Handel-C function IN implements the process of same name. It
declares a local variable v and starts an infinite loop: in each iteration, it receives
a value via channel input, assigns it to v, and writes its value on middle. The
function QUT is very similar; however, it receives a value via middle and writes it
on output. The BUFFER is defined as the parallel composition of IN and 0UT. The
main function is the parallel composition of the BUFFER with the CLIENT.

2.3 The Translator csp2hc

The automatic translation from CSPy to Handel-C is straightforward for some
CSPwy constructs because Handel-C provides constructs that facilitate the de-
scription of parallel behaviour based on CSP concepts. The version of csp2hc
presented in [9] mechanised the translation of a subset of CSPy to Handel-C,
which included SKIP, STOP, sequential and parallel composition, recursion, pre-
fixing, external and internal choice, alternation, guarded processes, datatypes,
constants, functions, and some expressions. It, however, restricted the use of
some of these constructs like, for instance, parallel composition.

The implementation of concurrency in Handel-C differs from the CSP concepts.
Handel-C has a degenerate kind of multi-way synchronisation, in which one writer
and multiple readers can take part, but no participation control takes place: if
just one reader and the writer are ready for communicating the synchronisation
happens (the multi-synchronisation is not enforced like in CSP). For this reason,
the translation of CSPy parallel composition into Handel-C’s par construct was
restricted to cases in which there were no multi-way synchronisation, and shared
channels between two processes composed in parallel were in the synchronisation
channel set of the composition. This guaranteed that processes only synchronised
on multi-shared channels when all parts involved were willing to synchronise on
that channel, and that processes did not synchronise on channels that were not
in the synchronisation channel set.

The extension of csp2hc to accommodate multi-synchronisation and interleav-
ing on shared channels is not trivial. The former requires the implementation
of a centralised protocol in which a controller determines when the synchroni-
sation is allowed to happen and the latter requires the translation of renaming.
In the next section, we present the results that made it possible to deal with
multi-synchronisation and interleaving on shared channels within csp2hc.
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3 Parallelism in csp2hc

The CSP parallel composition cannot be directly translated into Handel-C’s par-
allel constructor, par, for two reasons: (1) par does not enforce synchronisation
between multiple parts (multi-synchronisation); and (2) par does not prevent
the synchronisation on a channel if processes have access to the channel. In our
example, such naive translation would contain the following Handel-C code.
void PATD_PARKING(){ par{ CUSTOMERS(); MACHINEQ); } }

void SYSTEM(){ par{ CAR(); PAID_PARKING(); } }
void main(){ SYSTEM(); }

This implementation, however, is wrong because it does not prevent customers
synchronising on enter and does not enforce the multi-synchronisation on enter
between the CAR, the MACHINE, and one of the customers. In this section, we
describe the approach used in csp2hc to accomplish this behaviour.

Our approach has two restrictions that are automatically verified by csp2hc.
The first restriction guarantees communications on synchronised channels by
requiring the existence of exactly one writer for every channel that is being shared
in parallel compositions. For example, c?x -> SKIP [I{Icl}|] c?y -> SKIP is not
accepted by the approach. Its translation would result in a code in which both
parallel branches are reading on a channel, hence, waiting to some other process
to write on it. This would characterise a deadlock in the implementation that
does not correspond to the specified behaviour in CSPy, which does not deadlock
and terminates. The second restriction guarantees that every parallel branch is
either a reader or a writer to every channel, but not both. By way of illustration,
c!0 > c?x -> SKIP [| {I c I} |1 ¢?x -> c?y -> SKIP is not accepted by the
approach. This process satisfies the first restriction but not the second restriction
because the left branch treats ¢ as both an output and an input. In this example,
a similar deadlock state is reached in the Handel-C code.

As we discuss in Section M the solution follows the expected performance
results discussed in [14]. The computational arrangements for allowing any of
the synchronising processes to back off (which CSP allows) is even more costly
than allowing both parties to back off during channel synchronisation. For this
reason, we only use the solutions presented here if there are multi-synchronised
channels or if we need to enforce interleaving of channels. Otherwise, the parallel
composition is directly translated as presented in [9].

The solution for multi-synchronisation is based on a protocol we presented
in [I5] that controls the accesses to the channels in a parallel composition and
the solution to enforce the interleaving is based on CSPy renaming. Both so-
lutions use the concept of parallel branch that we describe in the sequel. Their
application directly affects the translation of prefixing, external choice and the
arguments of the processes within the system, which are slightly changed.

3.1 Analysis of Parallel Compositions

Our tool starts the branch identification from the main process given in the
directive --!!mainp (in our example SYSTEM) and sets an identification to each



52 M.V.M. Oliveira, I.S. De Medeiros Junior, and J. Woodcock

I
PAID_PARKING {l enter, cash, ticket, change [} MACHINE
SYSTEM }— 4 enter save s LEUSTONERS)- 11 —(CUSTEa}-{BR_1

CUST(Ltb BR_2J
CUST(unknown BR_3

Fig. 2. Example Branches Identification

one of the running parallel branches. The result of this identification process in
our example is presented in Figure 21

The implementation of the concept of branch reuses the solution for datatypes
presented in [9] by considering an implicit datatype BRANCH = B_O | ... | B_4.
As a result, we have the following extra lines of code.

#define BRANCH unsigned int 3
#define BR_O 0

#define BR_4 4

The translation of a parallel branch considers the current identification of
the branch being translated: every process has an extra argument that identifies
the branch from which it has been invoked. Our tool translates the left branch
first and, before translating the right branch, it updates the current branch
identification (BR_ID) by incrementing it with the number of sub-branches of the
left branch. We have the following translation for the main process.

void main(){ BRANCH BR_ID; BR_ID = O; SYSTEM(BR_ID+0); }
inline void SYSTEM(BRANCH BR_ID){ par{ {CAR(BR_ID+0); }; { PAID_PARKING(BR_ID+1); } } }

In the main process, we declare BR_ID and initialise it to zero. The SYSTEM behaves
like a parallel composition between CAR and PAID_PARKING; they are parametrised
by the branch identification. The translation of CAR is the first one, hence, the
value BR_ID + 0 is used as argument. Nevertheless, this process itself is a branch;
hence, the value BR_ID + 1 is used as argument to invoke PAID_PARKING. The
translation of processes PAID_PARKING and CUSTOMERS though are slightly different
as we can see in the code below.

inline void PAID_PARKING(BRANCH BR_ID) {
par{ {CUSTOMERS(BR_ID+0);} ; {MACHINE(BR_ID+3);} } }
inline void CUSTOMERS(BRANCH BR_ID) {
par{ {CUST(BR_ID+0,ID_Lt_LUT[al);};
{par{ {CUST(BR_ID+1,ID_Lt_LUT[b]);}; {CUST(BR_ID+2,unknown);} };} } }

In the translation of PAID_PARKING, the process MACHINE is given the local vari-
able BR_ID incremented by three because the left branch, CUSTOMERS, has three
branches. In the translation of CUSTOMERS, the first invocation to CUSTOMER does
not increment the BR_ID; the following invocations, though, do increment it.
The branches identification is used in an analysis of the parallel structure
of the system that results on a list of synchronisation for each channel. In
our implementation, a synchronisation is a set that contains the identification
of all branches that take part in the synchronisation. By way of illustration,
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in our example, there are three possibilities of synchronisation on enter: the
CAR (BR_0) and the MACHINE (BR_4) take part in all of them; the third (and last)
element is one of the clients. The list of synchronisations for the channel enter
is ({Br_o,BR_4,BR 1}, {BRO,BR4,BR_2}, {BR_O, BR_4,BR_3}). Similar mappings are created
for each individual channel.

The branches identification and the synchronisation list play an important role
in both solutions presented in this paper: the multi-synchronisation protocol and
channel interleaving described in Sections and that follow. A synchroni-
sation whose cardinality is greater than two characterises a multi-synchronised
channel and a synchronisation list with more than one element indicates the
need to enforce the interleaving on that channel.

csp2hc’s analysis of the parallel structure is based on the channels rather than
on the events. For this reason, the translation of some specifications might use the
solutions presented in Sections and unnecessarily. For instance, the cus-
tomers are composed in interleaving and our strategy uses the solution presented
in Section B.3] to enforce the interleaving on ticket because all customers use
this channel. Nevertheless, this is not necessary because the synchronisation on
ticket is parameterised by the customers identification. The translation of such
channels uses an array of channels whose size is defined by the cardinality of the
channel type. Each element of the array is a different channel that corresponds
to a different value. Hence, despite using the same channel, different customers
never synchronise (CUST (unknown) and CUST(Lt.a) work on ticket [unknown] and
ticket[Lt_al). Although being semantically correct, the use of the protocol adds
performance costs (see Section [ unnecessarily. An optimisation to remove this
unneeded use of the protocol is in our research agenda. It requires a static analy-
sis of CSPy expressions that allows comparing events rather than only channels.

3.2 The Multi-synchronisation Protocol

In [I5], we used the Circus refinement calculus to develop a protocol that imple-
ments an abstract multi-way synchronisation using only pairwise synchronisa-
tion: each multi-synchronised channel has a central controller and references to
this channel are implemented as a client of this controller. In what follows, we
extend the protocol from [I5] by allowing both multi-synchronised channels and
interruptions (possibly carrying values) to take part in external choices.

Controllers. The controllers are implemented as an infinite loop in which it
iteratively runs a two-phase commitment protocol described later in this section.
Hence, termination of the controller needs to be guaranteed by external man-
agers. The first one, PManager, monitors the main behaviour of the system and
communicates its termination to the controllers’ manager using endManager.

inline void PManager () { BRANCH BR_ID; BR_ID = O; SYSTEM(BR_ID+0); endManager!syncout;}
The controllers’ manager (CManager) receives this communication and propa-

gates it to each controller MSyncController_: using channel end controller_i.
Each client receives message from the controller on channel fromSync and sends
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message to the controller on channel toSync. A controller has reference point-
ers to two arrays of channels fromSync[] and toSync[]. These arrays contain all
controller-client communication channels. They are used as argument in each
controller’s instantiation. We present below the controllers’ manager of a system
with two multi-synchronised channels A and B.
inline void CManager (){

chan SYNC end_controller_A; chan SYNC end_controller_B;

par{ seq{ endSystem?syncin;

par{ end_controller_A!syncout; end_controller_B!syncout; }; };

MSyncController_A(&toSync_A[0], &fromSync_A[0] , &end_controller_A);
MSyncController_B(&toSync_B[0], &fromSync_B[0] , &end_controller_B); }; }

The Handel-C main function is the parallel composition of both controllers.

void main(){ par{ {PManager();} ; {CManager();} } }

Handel-C’s prialt construct is used in the implementation of the controller
to offer a choice among various channels. This construct, however, cannot be
changed dynamically because Handel-C requires all choices to be statically de-
fined. For this reason, our Handel-C implementation of the protocol provides a dif-
ferent version of the controller for each possible number of multi-synchronisation
parts. The behaviours of these versions are almost identical; they only differ in
the number of elements in the arrays of channels that are offered in the choices.
This is due to the complexity and length. We refrain from presenting the de-
tails of the resulting code, which can be found at the project Webpageﬁ. In what
follows, we informally described the protocol workflow.

In Figure[3] we present the controllers’ activity diagram. It can be divided into
three phases whose composition is presented below: subscription, commitment
and synchronisation. Only in some of these phases, the controller allows clients
to withdraw from the synchronisation.

2 Project webpage at http://www.dimap.ufrn.br/~marcel/research/csp2hc/
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Subscribe The controller waits for the clients to indicate their intention to
synchronise on the channel (subscribe). A local countdown controls
the loop that implements the corresponding tail recursion in the
original CSP implementation of the protocol. When all clients have
subscribed, the controller moves to the commitment phase. While
receiving subscriptions, if the controller receives an indication to
terminate, it does so. The controller does not need to broadcast
the withdraw because a termination signal will only arrive when
the clients have terminated.

Commit The controller asks all clients to commit to the synchronisation and
receives answers from all of them. If all clients answer positively,
the controller broadcasts a confirmation to all clients and moves to
the synchronisation phase.

Sync The controller receives the communication value from the writer
and broadcasts this value to all other clients. The controller recurses
and goes back to the initial state of the subscription phase.

Withdraw During the subscription phase, if a client withdraws, the controller
acknowledges the signal, increments the countdown and keeps re-
ceiving signal from other clients. If, however, a client withdraws
in the commitment phase, the controller broadcasts the withdraw
and goes back to the subscription phase. Nevertheless, it expects
new signals only from those clients that have withdrawn. Hence,
the countdown is set to the difference between the total number of
clients and the number of clients that have withdrawn.

Clients. At the other end of the protocol, we have the multi-synchronisation
clients, which are used in the translation of the processes from the original CSP
specification. In this translation, however, communications and choices that in-
volve multi-synchronised channels are replaced by an invocation to a client’s
execution. The client offers all channels involved in the choice possibly inter-
acting with different controllers. Its execution terminates only when a success-
ful communication takes place. For simple communication, the termination of
the client’s execution indicates a successful multi-synchronisation. For external
choices, however, the termination of the client returns an identification of the
communication (either multi-synchronised or not) that happened. The behaviour
of the process after this communication depends on this information.

In Figured] we present the client’s activity diagram. Its behaviour can also be
divided into the phases of subscription, commitment and synchronisation. The
client’s phases are composed as follows.

Subscribe The client sends a subscription to the multi-synchronisation con-
troller. It is possible, though, that a client is involved in many
multi-synchronisations. In such cases, this signal is sent to all the
corresponding controllers. The client waits to receive a confirma-
tion request from one of the controllers. When such a signal arrives,
it moves to the next phase.
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Commit The client commits to communicating with the controller and re-
frains from communicating on other channels. The client is not
allowed to withdraw. It receives from the controller either a confir-
mation or a withdraw. If the former is received, the client moves to
the synchronisation phase.

Sync If the client is the writer, it sends the communication value to the
corresponding controller. If, however, the client is a reader, it re-
ceives this value from the controller. Finally, it sends a withdraw sig-
nal to all other controllers, terminates and returns an indication of a
successful communication on the corresponding multi-synchronised
channel.

Withdraw During subscription, non-multi-synchronised channels (interrup-
tions) may also happen. In such cases the client sends a withdraw to
all controllers that are interacting with it, terminates, and returns
a successful communication on the interruption. In the commitment
phase, if the controllers sends withdraws, the client returns to the sub-
scription phase. It, however, does not send a new subscription because
the controller is already aware of its intention.

3.3 Forced Interleaving

As explained in Section [3] a naive translation of our example would result in an
incorrect implementation because it would not prevent customers to synchronise
on enter. In this section we present a strategy that transforms the specification
in a correct manner to enforce the interleaving on enter between the customers.

The strategy is based on the synchronisation information described in Sec-
tion B.1] and makes use of CSP renaming. The main idea is to apply the trans-
formation that follows at the source level before the actual compilation. The
transformation consists of the following phases: (1) Definition of each branch’s
renaming for each channel; (2) Creation of renamed copies of the branches;
(3) Translation of the extended specification. In what follows, we present a de-
tailed description of each of these phases.

In the definition of each branch’s renaming, csp2hc defines what re-
naming must be applied to each individual branch. Formally, for every channel ¢
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and branch b in the system, the renaming [[c¢ <- ¢_i]] must be applied to
b if, and only if, the i-th element of the synchronisation list contains b. For
instance, processes CAR (BR_0) and MACHINE (BR_4) take part in all synchronisation
of channel enter; the renaming [[enter <- enter_0, enter <- enter_1, enter
<- enter_2]] needs to be applied to them. On the other hand, each client takes
part in only one synchronisation on enter. For example, CUST(Lt.a) (BR_1) needs
to be renamed using [[enter <- enter_0]]. The renaming definition of each
branch is done in an identical manner for all other channels in the system.

In the creation of renamed copies of the branches, the original specifi-
cation is extended with the declaration of the new channels and the definition
of renamed copies of all processes. The copies are needed because a process may
be instantiated in different branches requiring different renamings. In our ex-
ample, we have three renamed copies of CUST (one for each instantiation), and
one renamed copy of every other process in the system. The new channels are
also included in the synchronisation channel sets in which the original channel
is present. For conciseness, we present below only the changes related to enter.
Our example, however, also renames channels leave, cash, ticket, and change.

CAR_RNO = CAR [[enter <- enter_0, enter <- enter_1, enter <- enter_2, ...]]
MACHINE_RNO = MACHINE [[enter <- enter_0, enter <- enter_1, enter <- enter_2, ...]]
CUST_RNO(id) = CUST(Lt.a)[[enter <- enter_0, ...]]
CUST_RN1(id) = CUST(Lt.b) [[enter <- enter_1, ...]]
CUST_RN2(id) = CUST(unknown) [[enter <- enter_2, ...]]
CUSTOMERS_RNO = CUST_RNO(Lt.a) ||| CUST_RN1(Lt.b) ||| CUST_RN2(unknown)
PAID_PARKING_RNO = (CUSTOMERS_RNO
[l {lenter,enter_0,enter_1,enter_2,cash,...,ticket,...,change,...|} |]
MACHINE_RNO) \ {lcash,...,ticket,...,change,...|}
SYSTEM_RNO = CAR_RNO [| {| enter,enter_0,enter_1,enter_2,leave,... |} |] PAID_PARKING_RNO

The extended specification is finally translated resulting in an implementation
that correctly implements multi-synchronisation and interleaving.

The translation of the extended specification follows the strategy from [9]
extended with multi-synchronisation as discussed in Section Hence, this
translation naturally deals with multi-synchronised channels like enter_0. A fur-
ther extension needed to the original strategy presented in [9] was the translation
of renaming explained below.

The translation of functional renaming (channels are renamed once) is rather
simple: the original channel is simply replaced by the new channel. For example,
CUST_RNO(id) is translated as CUST(id) but replaces enter to by enter_0.

The translation of non-functional renaming is slightly more elaborate. In these
cases, a channel is renamed to more than one new channel, like in CAR_RNO.
The result of such translations replaces references to the original channel to an
external choice between all new channels. By way of illustration, we present
below the specification that corresponds to the translation of CAR_RNO.

CAR_RNO = (enter_0 -> SKIP [] enter_1 -> SKIP [] enter_2 -> SKIP);
(leave_0 -> SKIP [] leave_1 -> SKIP [] leave_2 -> SKIP); CAR_RNO

It is important to emphasize that, as expected, the external environment is
oblivious of the renaming used in our strategy. This is achieved by forbidding
channels that are used to communicate with the environment (marked as buses
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using directives) to be interleaved. Hence, the interleaved channels are not visible
to the environment and their renaming does not affect the system’s interface.
The overall resulting code can be found at the project’s webpage.

3.4 Formalisation

In [I5], we presented a calculational approach to prove the correctness of a
protocol for multi-synchronised channels that are not part of an external choice
and do not communicate values. The protocol extension presented here accepts
both multi-synchronised channels and interruptions (possibly carrying values) in
external choices. A relatively simple adaptation of the proof from [I5] guarantees
the validity of our extension.

Using FDR2, we also verified that a specification with multi-synchronised
channels and interruptions being offered in a choice is refined by its correspond-
ing instance of the multi-synchronisation protocol. This verification ensures the
correctness of the protocol for a comprehensive instance of the problem with
bounded channel types. The same approach was used to ensure the correctness
of the translation of interleaved channels.

4 Experiments

In our experiments, we translated simple CSPy specifications containing multi-
synchronised and interleaved channels and compiled the resulting Handel-C code.
The experiments were executed on an Intel i3, 2.53GHz, with 3GB RAM, run-
ning Windows 7 (64 bits). We considered the translation time and dimensions
of the compiled code like number of lines of code (in thousands - KLOC) and
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the number of NAND gates (NANDs) and Flip Flops (FFs). The experiments
were executed with an increasing number of processes taking part in the multi-
synchronisation and interleaving, and we monitored the growth rate of the col-
lected data. These rates were almost identical for the number of NANDs and
FFs; hence, we omit below the results on the number of FF's.

Figure [l presents the results of the experiment. For multi-synchronisation,
they presented an exponential growth in the translation time, which enforces
csp2hc users to make limited use of this feature. The growth rate of the gener-
ated code and its compilation, however, proved to be linear. This indicates the
practical usefulness of the protocol on a large scale. Nevertheless, optimisation
in the translation process is essential. The results for interleaving presented a
linear growth rate and allowed us to consider a much larger number of processes.
In these experiments, the growth rates of the generated code and its compilation
were linear indicating the scalability of our solution.

5 Conclusions

In [9], we presented a translation from CSPy to Handel-C and a tool that au-
tomates this translation. They foster a methodology that starts from a CSPy
specification, which is verified, gradually refined, and automatically translated
into Handel-C code. The results presented here provide a further step towards
providing a framework that fully supports the development of verified hardware.

Previous versions of csp2hc supported a useful subset of CSP, but imposed
restrictions on parallel composition: its translation was allowed only if channels
shared between the processes were in the synchronisation set and not multi-
synchronised. In this paper, we present translation strategies to both limitations.
Although some conditions are still required, we considerably extend the trans-
lation strategy of csp2hc by providing means to translate multi-synchronisation
and interleaving as those of the example presented in Figure [Il

A relatively simple adaptation of the proof of the protocol we used as a basis
presented in [I5] guarantees the validity of our extensions. We have also veri-
fied that an abstract specification with various multi-synchronised channels and
interruptions being offered in a choice is refined by its instance of the multi-
synchronisation protocol. The same approach has been used to ensure the cor-
rectness of the translation strategy of interleaved channels.

Using csp2hc, we are able to translate some of the classical CSPy prob-
lems (e.g. the dining philosophers) including many of the examples provided
with the FDR2 distribution and a complex specification provided by our in-
dustrial partner that involves multi-synchronisation and interleaving. There are,
however, still optimisations and extensions to be done in csp2hc.

The experiments demonstrated the feasibility of the multi-synchronisation
protocol for large networks. The translation, however, presented an exponential
growth in time. For this reason, the current translation of multi-synchronisation
is feasible only for small networks (up to 11 in our example). An optimisation in
the translation process is essential and left as future work. The investigation of
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the performance of a purely distributed protocol [10] is in our research agenda.
Furthermore, in a near future, we will also address an optimisation to remove
the unneeded use of the extensions discussed in this paper.

Specifications not accepted by csp2hc need to be manually transformed. This

transformation is often possible and can be verified using FDR2. A complete
automatic translation from CSPy to Handel-C requires the translation of further
CSPwm constructs and expressions, which includes FDR2’s functional language.
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