
This is a repository copy of Cyber-Physical Systems Design: Formal Foundations,
Methods and Integrated Tool Chains.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/94517/

Version: Published Version

Conference or Workshop Item:
Woodcock, Jim orcid.org/0000-0001-7955-2702, Fitzgerald, John, Gamble, Carl et al. (2
more authors) (2015) Cyber-Physical Systems Design: Formal Foundations, Methods and
Integrated Tool Chains. In: UNSPECIFIED.

https://doi.org/10.1109/FormaliSE.2015.14

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Cyber-Physical Systems Design: Formal

Foundations, Methods and Integrated Tool Chains
(Invited Paper)

John Fitzgerald∗, Carl Gamble∗, Peter Gorm Larsen†, Kenneth Pierce∗, Jim Woodcock‡

∗School of Computing Science Newcastle University, Newcastle upon Tyne, UK

Email: John.Fitzgerald@ncl.ac.uk, Carl.Gamble@ncl.ac.uk, Kenneth.Pierce@ncl.ac.uk
†Dept. of Engineering, Aarhus University, Denmark

Email: pgl@eng.au.dk
‡Dept. of Computer Science, University of York, UK

Email: Jim.Woodcock@york.ac.uk

Abstract—The engineering of dependable cyber-physical sys-
tems (CPSs) is inherently collaborative, demanding cooperation
between diverse disciplines. A goal of current research is the
development of integrated tool chains for model-based CPS
design that support co-modelling, analysis, co-simulation, testing
and implementation. We discuss the role of formal methods in
addressing three key aspects of this goal: providing reasoning
support for semantically heterogeneous models, managing the
complexity and scale of design space exploration, and supporting
traceability and provenance in the CPS design set. We briefly
outline an approach to the development of such a tool chain
based on existing tools and discuss ongoing challenges and open
research questions in this area.

I. INTRODUCTION

Cyber-physical systems (CPSs) consist of interacting com-

puting and physical entities. Examples range from products

incorporating embedded systems to large-scale applications

such as distributed control of driverless vehicles. To the

CPS engineer, the system of interest includes both cyber

and physical elements. Consequently the foundations, methods

and tools of CPS engineering should incorporate both the

discrete models of computing hardware and software, and

the continuous-value formalisms of physical (e.g. mechanical,

electrical, electronic) engineering.

Since system-level dependability properties involve both

cyber and physical aspects, the verification of global be-

haviours must take account of the heterogeneity of models.

If diverse models are brought together only at the end of a

development process, emerging failures are likely to be hard

to both trace back to faults, and to remedy. Treating disciplines

separately within the design process thus has the potential to

slow innovation. If dependable CPSs are to be engineered

economically, the design process must be collaborative and

multi-disciplinary, while also permitting the assurance-raising

activities of simulation, testing and verification.

There is growing interest in sound methods and tools for

CPS engineering. There have been significant research invest-

ments by the National Science Foundation in the US1, and by

Horizon 2020 in the EU [1], as well as by community activities

1See http://www.cps-vo.org

such as a thriving CPS Week and numerous workshops. There

have been repeated calls for better notations for model-based

CPS engineering [2], [3], [4], [5], [6]. However, the nature of

CPS design raises many challenges not currently met [7].

In this paper we motivate the use of formal methods in

addressing three challenges that we believe must be met if

dependable CPSs are to be designed cost-effectively. First,

engineering disciplines have distinct cultures and formalisms.

For example, systems engineers work with notations such as

SysML [8], whereas control engineers use continuous-time

formalisms and software engineers use discrete-event nota-

tions; dialogue between disciplines is essential [9]. Second,

the design space for a CPS is large; we require firm semantic

foundations to allow exploration of trade-offs between phys-

ical components, hardware and software, rapidly modifying

and reevaluating designs. Third, support is needed to help

maintain traceability over the complex collections of artefacts

produced in a CPS development, allowing the provenance of

all elements to be recorded, and the final system linked to

the requirements. In considering the role of formal methods

in CPS design, we aim to adhere to principles identified for

their successful industrial deployment, including the carefully

targeted use of formalism, development of robust tools, and

a focus on the priorities of integration into established design

flows [10].

In Section II we identify some basic concepts of collab-

orative model-based design for cyber-physical systems and

review baseline technologies on which our current work builds.

We then consider the foundations required for heterogeneous

modelling and analysis (Section III), the exploration of the

design space (Section IV) and the need to support traceability

and provenance (Section V). Throughout, we refer to an

example based on a simple 2-wheeled personal transportation

device (the “ChessWay”). We conclude by identifying open

issues in the methods, tools and practice of model-based CPS

design (Section VI), and briefly describe the goals of our

current work in this area.

2015 IEEE/ACM 3rd FME Workshop on Formal Methods in Software Engineering

978-1-4673-7043-1/15 $31.00 © 2015 IEEE

DOI 10.1109/FormaliSE.2015.14

40

II. BASIC CONCEPTS

We regard a system as a combination of interacting el-

ements organised to achieve a stated purpose [11], and a

dependable system as one on which reliance may justifiably

be placed [12]. A CPS is a system in which some of the

elements are computational and some are physical [3]. The

verification of CPS dependability therefore entails analysis of

computational and physical processes, and their interactions.

The goal of our research is to free CPS engineers to explore

design alternatives, allocating and reallocating responsibilities

to cyber and physical elements in an effort to deliver the

functional and extra-functional behaviours required at the CPS

system level. We use the term design space exploration (DSE)

to refer to the construction and evaluation of a range of designs

in order to identify a preferred solution.

In our work, designs are represented as models. A model is

an abstract representation of a putative CPS. The abstractions

in the model should be guided by its declared purpose, but the

model should be competent in that it should contain features

sufficient to allow confidence to be placed in the outcome

of analyses conducted on it. The challenge that we address

in our work is that of creating methods and tools to support

multi-disciplinary model-based development. A collaborative

model (co-model) contains discrete-event (DE) models of CPS

cyber elements with continuous-time (CT) models of physical

elements (typically the environment and/or controlled plant).

We have developed and demonstrated methods and tools

for the construction of co-models, and their analysis through

co-simulation, using VDM [13] as the DE formalism and 20-

sim2 [14] as the CT framework. The approach, which has

been implemented in the Crescendo3 open tools platform [15],

has been applied in case studies that have demonstrated the

value of early co-modelling in reducing the number of physical

prototypes required in design [16]. However, the technology

is limited to co-models of single controllers and plant, rather

than networked controllers and multiple physical elements.

The approach has so far also been restricted to verification

by means of co-simulation.

The CPS concept is often used to refer to networked “smart”

devices interacting with their physical environment. In many

such applications, notably in areas such as transport and

infrastructure, the elements of the system of interest are them-

selves operationally and managerially independent systems,

often pre-existing, but brought together to deliver an emerging

collaborative behaviour. Such systems of systems (SoSs) share

CPS characteristics [17], and also merit holistic and collab-

orative design [18]. In our previous work on model-based

approaches to SoS engineering [19] we have sought to provide

common semantic foundations for heterogeneous SoS models

at the DE level only; there is potential to extend this to the

demands of CPS engineering.

2http://www.20sim.com
3http://www.crescendotool.org

III. HETEROGENEOUS MODELLING AND ANALYSIS

A. Current Capabilities

Semantic heterogeneity arises in two contexts. First, at a

given level of abstraction, we would expect co-models to

integrate diverse engineering formalisms. Second, while much

research in formal methods for model-based design focuses on

the delivery of individually effective tools, multi-disciplinary

CPS design requires coherent tool chains formed from diverse

tools, each optimised for a given purpose.

There have been calls for a science and technology foun-

dation for CPS design that is model-based, precise, and

predictable [20] while supporting integration of a range of

semantic bases [21]. The state of the art has been charac-

terised as almost exclusively involving discrete abstractions

of continuous behaviour [22], although several model-based

approaches, including that of Ptolemy [23], support heteroge-

neous modelling and simulation.

The state of the art is still some way from providing

generic life-cycle tool chains from requirements to mainte-

nance, especially with sound formal foundations. Such an

integrated tool chain for CPS requires that evidence supplied

by the different tools can be reconciled to produce coherent

analysis results. Different analysis tools are based on different

notations, for example a simulator may work at the level of

a transition relation described using Structural Operational

Semantics (SOS) rules (as is the case for the Crescendo

co-simulation tool), whilst a program verifier may use an

axiomatic Hoare calculus.

Although comprehensive formal foundations are still re-

quired, there is progress on platforms to support key links

in tool chains, e.g. Cosimate4 is a backplane co-simulation

tool offering interfaces to tools like Simulink, Modelsim, and

Modelica [24], test automation, DSE and system description

in SysML. Canedo [25] has developed a multi-disciplinary,

integrated, design automation tool for automotive CPS that

evaluates system-level impact of domain-specific design deci-

sions using simulation.

B. Example: a Personal Transporter

We introduce a small example to illustrate the need for het-

erogenous modelling and analysis: a 2-wheeled self-balancing

personal transporter called the “ChessWay” (described in detail

elsewhere [16]). We refer to this example in describing further

challenges in Sections IV and Section V below.

The ChessWay (Fig. 1, left) consists of a platform, a

handlebar and two wheels. It has two powerful motors to

drive the wheels and keep the device upright— without active

control, the device will fall over. The rider stands on the

platform and holds the handlebar. By leaning forwards and

backwards, the rider can command the device to move for-

wards and backwards. The device has various sensors to allow

its position and movement to be detected, as well as on/off,

safety cut out and direction switches, shown in the simplified

schematic (Fig. 1, left). Active control is performed by two

4http://www.chiastek.com/products/cosimate.html

41

Fig. 1. Photograph of the ChessWay personal transporter (left) and a
schematic of its important components (right).

networked controllers that each control one wheel and have

access to different sets of sensors. Therefore the controllers

must communicate regularly to maintain safe operation.

The ChessWay was initially studied with a high-fidelity

physics model created in 20-sim using bond graphs. It was

also possible to design the low-level, discrete-time (DT) loop

controllers that balance the device. However, the ChessWay

requires much more than this loop controller can deliver,

including modal behaviours for safe startup and shutdown,

fault tolerance mechanisms such as a safety monitor, and

synchronisation between distributed controllers. These are

much better studied in a DE model, such as the one produced

for the ChessWay study in VDM. These two models were

combined using the Crescendo technologies [16] to produce a

co-model that better captures the ChessWay as a whole cyber-

physical system.

Other elements of the ChessWay system could be bet-

ter modelled in other formalisms, supported by other tools,

to create better system models. For example, the network

connection between the two controllers receives significant

electro-magnetic interference from the large motors, therefore

a realistic model of network loss and corruption is necessary to

truly demonstrate the control software’s suitability. On the CT

side, contact modelling and collision response are currently

not well supported in 20-sim or the bond graph formalism.

Other modelling tools could provide more realistic models to

enhance the physical model of the ChessWay.

In other cases it is not always clear where to model certain

behaviours. For example, the DT loop controller was originally

designed in the CT formalism, however in order to analyse the

potential system performance and distribution across multiple

controllers, it was necessary to move this behaviour to the

DE model in VDM. Consider also that the rider’s behaviour

has a profound effect on the system’s behaviour. They are

responsible for moving their centre of gravity around to

command the ChessWay where to go, and by acting erratically

—such as swinging back-and-forth at a resonant frequency—

can cause serious control problems. The question of where and

how to model human reactions is unresolved in the Crescendo

approach and has received limited attention in the context of

co-modelling.

C. New Challenges: well-founded integration via UTP

Even a dependable CPS as simple as the ChessWay illus-

trates the need for multi-paradigm modelling. In developing

dependable CPSs, we have therefore to achieve semantically

well-founded integration of models and tools across disciplines

and paradigms. We have also identified (and will illustrate in

Section V) the need for well-founded integration across whole

tool chains. In our current work we are exploring the use of

Unifying Theories of Programming (UTP) as a source for the

foundations of this integration.

UTP is originally the work of Hoare & He [26], who set

out an open-ended research programme to unify the different

paradigms for modelling and implementing computer systems.

Their motivation was to bridge the gap between the academic

and industrial cultures, where academic researchers propose

sound theories to underpin system development and industrial

practitioners propose pragmatic techniques to develop real

systems. Hoare & He’s programme was to study the links

between all paradigms, both academic and industrial, and in

UTP they developed a framework with three orthogonal axes:

1) Computational Paradigms: UTP groups modelling no-

tations according to their classification by computational

model; for example, this might be object-oriented, con-

current, synchronous, real-time, discrete, continuous or

hybrid. The technique used to give semantics to each

computational model is to identify common concepts

and deal separately with additions and variations. In

doing this, UTP exploits uses two of the most impor-

tant scientific principles: simplicity of presentation and

separation of concerns.

2) Abstraction: An orthogonal concern involves studying

different levels of abstraction in the development pro-

cess. The highest level is a statement of requirements,

whilst the lowest level is the platform-specific technol-

ogy of an implementation. An idealised development

process runs through these levels of abstraction, bridging

various semantic gaps to show how the requirements

are correctly implemented. Interfaces are specified using

contracts to guarantee the correctness of moving a model

from one level to another. This mapping between levels

is based on a formal notion of refinement that provides

guarantees of correctness all the way from requirements

to code.

3) Presentation: The third classification is by the method

chosen to present a language definition. These are the

following:

a) Denotational, given by a function from syntax to

a single mathematical meaning: its denotation. A

specification is then just a set of denotations: the

permitted behaviours of a system. Refinement is

simply inclusion: every behaviour of the program

42

must also be a behaviour permitted by the specifi-

cation.

b) Algebraic, given by a collection of equations relat-

ing descriptions in the language.

c) Axiomatic, where the meaning of a command in

a program is described by its effect on assertions

about the program state. Axiomatic semantics un-

derpins the assertional technique, the most widely

used formal method in industry.

d) Operational, given by a set of rules describing how

the language is executed on an idealised abstract

mathematical machine.

As Hoare & He point out, a comprehensive account of

constructing systems in any theory needs all four kinds of

presentation. The UTP technique allows studies differences

and mutual embeddings, and derives each semantics from the

others by mathematical definition, calculation, and proof.

A practical and large-scale application of UTP is in the

definition of the COMPASS Modelling Language, CML [19],

which has been used to develop and verify systems of sys-

tems [27]. The approach is to create models of the constituent

systems being used, whether they are new systems under de-

velopment or existing systems. Naturally, a system of systems

tends to be composed of semantically heterogeneous con-

stituent systems. CPSs, for example, will have both discrete-

time controllers and continuous-time plant; there may may

be synchronous hardware and asynchronous message passing

over the internet between software components; some hard-

ware components may be deterministic, whilst some software

may be stochastic. Within these different paradigms, there

may be different levels of abstraction. For example, a socio-

technical cyber-physical system may have components that

operate at different granularities of time: patients may have

courses of treatment that last for several months, while their

personally prescribed medicines must be taken on a daily basis

and their adaptive pacemaker be accurate to 100ms. Each of

these different paradigms and levels of abstraction can be

formalised in UTP and the relationships between them can

be expressed.

Currently, CML contains a few paradigms relevant to CPS

modelling. These are largely “cyber-side” paradigms, but

nevertheless they demonstrate the compositional approach:

1) State-based description. The theory of designs in UTP

provides a nondeterministic programming language with

pre- and postcondition specifications as contracts. The

concrete realisation of this theory is the VDM language

with its type system and structuring mechanisms.

2) Concurrency and communication. The theory of re-

active processes in UTP provides a way of constructing

networks of processes that communicate by passing mes-

sages. The concrete realisation is the CSPM language

with its rich collection of process combinators.

3) Object orientation. The theory of object orientation

in UTP is build on top of the theory of designs and

provides a way of structuring state-based descriptions

through sub-typing, inheritance, and dynamic binding,

with mechanisms for object creation, type testing, type

casting, and state-component access.

4) Pointers. The theory of pointers in UTP provides a

way of modelling heap storage and its manipulations,

as found in implementations of object orientation. Cru-

cially, it supports modular reasoning about the heap.

5) Time. The theory of timed traces in UTP supports the

observation of events in discrete time. It is used in a

theory of Timed CSP.

Theories of continuous time, probability, and dynamic recon-

figuration are all under development.

IV. EXPLORING THE CPS DESIGN SPACE

A. Support for DSE

A key role of collaborative modelling is to permit systematic

exploration of the space of solutions to a given design problem.

DSE is the process of building and evaluating co-models in

order to reach a design from a set of requirements. in DSE,

there are important selection points when design alternatives

are selected on the basis of criteria that are important to the

developer (e.g. cost, performance). The alternative selected at

each point constrains the range of designs that may be viable

next steps forward from the current position. Support for DSE

permits the selection of a single design from a (possibly large)

set of alternatives. Ranges of values for co-model settings and

design parameters can be defined before co-simulations are run

for each combination of these settings. Results are stored for

each simulation and can be analysed. In the Crescendo tools,

we call this feature Automated Co-model Analysis (ACA). The

simulation results typically report upon multiple objectives

such as speed, accuracy and energy consumed and a method

for selecting the best designs must be employed. One way is to

define a ranking function on which to evaluate designs; another

is to compute a non-dominated set of designs to determine the

Pareto Optimal front [28].

B. Example: a Wireless ChessWay?

The ChessWay pilot study offered several opportunities for

DSE. For example, it was necessary to determine how fast the

controllers could run to maintain safe balancing. Additionally,

the (higher) frequency for the safety monitor needed to be

determined. The monitor intervenes to cut power to the motors

in unsafe situations (for example, when the ChessWay leans

over too far) and therefore needs to react with sufficient speed

to minimise danger to the rider. Also, since the ChessWay

has two controllers with diverse sensor inputs, the distribution

of functionality was also considered. The design space was

explored by sweeping through various controller and moni-

tor frequencies, combined with functionality distributions, to

determine the optimal setup.

As mentioned above, the communication between con-

trollers is affected by electromagnetic interference from the

motors, causing data to be corrupted. This could be solved

in physics by adding more shielding, but this takes space

and increases weight. Alternatively, a software solution might

43

deal with corrupted data by sending it more often between

the controllers, or including some form of dead reckoning

until updated data comes in. To test the software solution,

the ChessWay engineers determined how much lost data the

controllers could tolerate and still function correctly. To do

this, lossy communications were added to the co-model in

Crescendo, with the percentage of lost messages as a pa-

rameter. Then a design sweep was performed with increasing

amounts of data loss, to find the safe threshold. At the selected

controller frequency, the ChessWay controller could handle

about 15% message loss (above the limit offered by the

existing shielding solution). In fact, the engineers were able

to demonstrate that a wireless ChessWay would be possible if

data loss (due to message collisions, for example) remained

under this threshold.

C. New Challenges

DSE is a systematic process, and tool performance remains

critical. For example, in the automotive domain, one can

imagine having tens or hundreds of thousands of parameters

that can be varied in a DSE campaign. The tacit knowledge

of engineers and their “gut instinct” is clearly vital in these

areas, but there are – at least on the surface – grounds to

suppose that formal analysis could help in taming the scale and

complexity of the design space to be explored. The properties

of interest in DSE may well be extra-functional, such as power

consumption or performance measures. Approaches have been

proposed to exploit constraint solving in support of static DSE

encompassing functional and extra-functional properties [29],

while control performance analysis has been explored using

co-simulation and DSE [30], and the results combined with

other trade-off factors such as monetary cost and energy

consumption.

The Crescendo tool enables the user to carry out DSE by

sweeping over model parameter values on both DE and CT

models [16], and this has been used to explore the design

space from an energy perspective [31]. Techniques from test

automation, while typically restricted to the discrete-event

domain, might also prove valuable in managing DSE.

V. TRACEABILITY AND PROVENANCE IN CPS DESIGN

A. The Role of Traceability and Provenance

The artefacts produced in CPS development will be diverse,

covering cyber and physical elements, including requirements

statements, models, records of DSE and analysis results, and

generated code. Further, they will change over time. In order

to understand the ramifications of change, and to obtain the

rationale for design decisions, it is necessary to record the

semantic relationships between elements of the design set.

The goal is to provide traceability, both up and down the

development chain, and through time during design evolution.

The maintenance of traceability documentation can be labour-

intensive and is often dropped under pressure [32]. While

many tools support basic traceability links, none of them yet do

this automatically [33], and there is limited semantic support.

The model management required to support the retrieval of

Fig. 2. A fragment of the PROV-N provenance graph for the ChessWay
example. It relates results generated by simulation (wgb) to the simulation
tools used (used), input models (used) and associated engineers (assoc.)

the multiple models and their respective parameters involved in

co-simulations is lacking in automated support and is therefore

performed manually.

Further motivation for structuring the design set comes from

the need for CPS technology in domains in which certification

is necessary. Hence, there is a need to record the provenance

of designs, and claims about system elements.

B. Example: Changing Independent Suppliers

Traceability is important to maintain the record of CPS

development, both internally for mapping requirements to

functionality, and externally for certification. Traceability al-

lows arguments of correctness to be rebuilt and determination

of how evidence of correctness was produced. For example,

imagine that the ChessWay was certified for use on public

roads in some jurisdiction. Then a few years later, a ChessWay

is involved in an accident. The investigation may look back

for the models to see the results that generated the evidence

for certification. In which case the correct versions of models

have to be retained and found, along with their parameters and

also the version of the tools that were used (Fig. 2).

Provenance data can be necessary along with traceability

data, when external manufacturers are used as suppliers. For

example, consider that the ChessWay tyres would likely be

sourced from an external manufacturer, and that that man-

ufacturer provided models for simulation purposes during

development. Component suppliers may wish to keep certain

trade secrets and thus only be willing to supply models in

“black box” form, for instance as a compiled functional mock-

up unit (FMU) for use in a functional mock-up interface

(FMI) co-simulation. These models can then be used in co-

simulation, however sensitive data cannot be gathered. In the

case of an investigation into a ChessWay accident, it would be

necessary to record the provenance of the data on the tyres, in

order to determine on what authority their behaviour is trusted

(Fig. 2, top left).

C. New Challenges

Richer models of the design set could capture the rela-

tionship between co-models, co-simulations, DSE outcomes,

44

test information, etc. Features supporting this exist to some

extent already in the W3C provenance notation (PROV-N)

model [34]. However, we have not yet seen this integrated

with a model-based tool chain. While developed for a different

domain, PROV-N has been successfully mapped to a graph

database that could support large scale developments. From a

tool support perspective, graph queries and graph abstractions

are necessary to reduce the potentially very large provenance

graphs to smaller but still semantically correct versions [35].

Such graph reduction may be required to support information

hiding in the context of CPSs with elements procured exter-

nally.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have argued that there is a significant role

for formal methods in the model-based engineering of cyber-

physical systems. First, we have emphasised the need for a

rigorous approach to semantic heterogeneity. Second, formal

techniques have potential to help manage the complexity

of exploring the CPS design space, particularly if formal

theories can be sufficiently diverse to permit the analysis of

extra-functional properties. Third, effective traceability of the

complex design set that arises in model-based CPS engineer-

ing, and the management of provenance data, benefit from

semantically rich descriptions of the relationships between the

artefacts produced in design, DSE, test and maintenance.

The goal of our current work5 is to develop a well-founded

tool chain rather than a single “factotum” tool. Using founda-

tions defined using UTP, we aim to create a family of inter-

linked tools, supporting CPS development from requirements

and architectural modelling formalised using SysML, via FMI

interface definitions to co-models. The tool chain is intended to

permit static analysis of co-models, as well as co-simulation,

including co-simulation of models with implementations of

cyber and/or physical elements. We aim to allow these co-

simulations to be exploited in DSE and test automation. The

baseline technologies are Modelio6 for SysML, co-modelling

and co-simulation using VDM Overture, 20-sim7, and Open-

Modelica8. Co-simulation will build on Crescendo and the

TWT co-simulation engine9, and test automation builds on RT-

Tester10. We plan to evaluate the framework using applications

in railways, agriculture, automotive systems and building

automation.

There are ample opportunities for formal methods to play

a key role in enabling the cost-effective design of cyber-

physical systems. These arise not only because of the need for

dependability, but because they enable exploration and man-

agement of design spaces. The targeted application of formal

techniques, integrated with sound but established development

5http://into-cps.au.dk/
6http://www.modelio.org/
6http://overturetool.org/
7http://www.20sim.com/
8https://www.openmodelica.org/
9http://www.twt-gmbh.de/produkte/co-simulationen/

co-simulation-framework.html/
10http://www.verified.de/products/rt-tester/

practices, has the potential to deliver significant improvements

in this emerging and exciting engineering discipline.

ACKNOWLEDGMENT

The work presented here is partially supported by the INTO-

CPS project funded by the European Commission’s Horizon

2020 programme under grant agreement number 664047.

REFERENCES

[1] H. Thompson, Ed., Cyber-Physical Systems: Uplifting Europe’s Inno-

vation Capacity. European Commission Unit A3 - DG CONNECT,
December 2013.

[2] M. Broy, “Engineering Cyber-Physical Systems: Challenges and
Foundations,” in Complex Systems Design & Management, M. Aiguier,
Y. Caseau, D. Krob, and A. Rauzy, Eds. Springer Berlin
Heidelberg, 2013, pp. 1–13. [Online]. Available: http://dx.doi.org/
10.1007/978-3-642-34404-6 1

[3] E. A. Lee, “CPS foundations,” in Proceedings of the 47th Design

Automation Conference, ser. DAC ’10. New York, NY, USA: ACM,
2010, pp. 737–742.

[4] K. Wan, D. Hughes, K. L. Man, and T. Krilavicius, “Composition
Challenges and Approaches for Cyber Physical Systems,” in Networked

Embedded Systems for Enterprise Applications (NESEA), 2010 IEEE

International Conference on, 2010, pp. 1–7.
[5] P. Derler, E. A. Lee, and A. Sangiovanni-Vincentelli, “Modeling

Cyber-Physical Systems,” Proceedings of the IEEE (special issue on

CPS), vol. 100, no. 1, pp. 13 – 28, January 2012. [Online]. Available:
http://chess.eecs.berkeley.edu/pubs/843.html

[6] I. Horvath and B. H. Gerritsen, “Outlining nine Major Design Challenges
of Open, Decentralized, Adaptive Cyber-Physical Systems,” in Proceed-

ings of the ASME 2013 International Design Engineering Technical

Conferences and Computers and Information in Engineering Conference

IDETC/CIE 2013, Portland, Oregon, USA, August 2013.
[7] M. Törngren, S. Bensalem, M. V. Cengarle, D.-J. Chen, J. McDermid,

R. Passerone, A. Sangiovanni-Vincentelli, and T. Runkler, “CPS State
of the Art,” EC FP7 Project 611430 CyPhERS, Tech. Rep. Deliverable
D5.1, 2014.

[8] “OMG Systems Modeling Language (OMG SysMLTM),”
SysML Modelling team, Tech. Rep. Version 1.3, June 2012,
http://www.omg.org/spec/SysML/1.3/.

[9] Thomas A. Henzinger and Joseph Sifakis, “The Embedded Systems
Design Challenge,” in FM 2006: Formal Methods, 14th International

Symposium on Formal Methods, Hamilton, Canada, August 21-27, 2006,

Proceedings, 2006, pp. 1–15.
[10] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, “Formal

Methods: Practice and Experience,” ACM Computing Surveys, vol. 41,
no. 4, pp. 1–36, October 2009.

[11] INCOSE, “Systems Engineering Handbook. A Guide for System Life
Cycle Processes and Activities, Version 3.2.2.” International Council
on Systems Engineering (INCOSE), Tech. Rep. INCOSE-TP-2003-002-
03.2.2, October 2011.

[12] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic Con-
cepts and Taxonomy of Dependable and Secure Computing,” IEEE

Transactions on Dependable and Secure Computing, vol. 1, pp. 11–33,
2004.

[13] J. Fitzgerald, P. G. Larsen, P. Mukherjee, N. Plat, and M. Verhoef,
Validated Designs for Object–oriented Systems. Springer, New York,
2005. [Online]. Available: http://www.vdmbook.com

[14] J. van Amerongen, Dynamical Systems for Creative Technology. Con-
trollab Products, Enschede, Netherlands, 2010.

[15] J. Fitzgerald, K. Pierce, and P. G. Larsen, Industry and Research

Perspectives on Embedded System Design. IGI Global, 2014, ch.
Collaborative Development of Dependable Cyber-Physical Systems by
Co-modelling and Co-simulation.

[16] J. Fitzgerald, P. G. Larsen, and M. Verhoef, Eds., Collaborative

Design for Embedded Systems – Co-modelling and Co-simulation.
Springer, 2014. [Online]. Available: http://link.springer.com/book/10.
1007/978-3-642-54118-6

[17] H. Thompson, R. Paulen, M. Reniers, C. Sonntag, and S. Engell,
“Analysis of the State-of-the-Art and Future Challenges in Cyber-
physical Systems of Systems,” EC FP7 project 611115 CPSoS, Tech.
Rep. D2.4, February 2015. [Online]. Available: http://www.cpsos.eu

45

[18] J. Fitzgerald, J. Bryans, P. G. Larsen, and H. Salim, “Collaborative
systems of systems need collaborative design,” in PRO-VE 2014 – 15th

Working Conference on Virtual Enterprises, October 2014.
[19] J. Fitzgerald, P. G. Larsen, and J. Woodcock, “Foundations for Model-

based Engineering of Systems of Systems,” in Complex Systems Design

and Management, M. A. et al., Ed. Springer, January 2014, pp. 1–19.
[20] J. Sztipanovits, X. Koutsoukos, G. Karsai, N. Kottenstette, P. Antsaklis,

V. Gupta, B. Goodwine, J. Baras, and S. Wang, “Toward a Science of
Cyber-Physical System Integration,” Proceedings of the IEEE, vol. 100,
no. 1, pp. 29–44, 2012.

[21] X. Zheng, C. Julien, M. Kim, and S. Khurshid, “On the State of the
Art in Verification and Validation in Cyber Physical Systems,” The
University of Texas at Austin, The Center for Advanced Research in
Software Engineering, Tech. Rep. TR-ARiSE-2014-001, 2014.

[22] M. Sanwal and O. Hasan, “Formal Verification of Cyber-Physical Sys-
tems: Coping with Continuous Elements,” in Computational Science and

Its Applications – ICCSA 2013, ser. Lecture Notes in Computer Science,
B. Murgante, S. Misra, M. Carlini, C. Torre, H.-Q. Nguyen, D. Taniar,
B. Apduhan, and O. Gervasi, Eds. Springer Berlin Heidelberg, 2013,
vol. 7971, pp. 358–371.

[23] J. Davis, R. Galicia, M. Goel, C. Hylands, E. Lee, J. Liu, X. Liu,
L. Muliadi, S. Neuendorffer, J. Reekie, N. Smyth, J. Tsay, and Y. Xiong,
“Ptolemy-II: Heterogeneous concurrent modeling and design in Java,”
University of California at Berkeley, Technical Memorandum UCB/ERL
No. M99/40, July 1999.

[24] S. S. Phatak, D. McCune, and G. Saikalis, “Cyber Physical System: A
Virtual CPU Based Mechatronic Simulation,” in 5th IFAC Symposium on

Mechatronic Systems, G. T.-C. Chiu and K. Youcef-Toumi, Eds., IFAC.
Elsevier, 2010, pp. 405–410.

[25] A. Canedo, M. A. A. Faruque, and J. Richter, “Multi-disciplinary inte-
grated design automation tool for automotive cyber-physical systems,” in

IEEE/ACM Design Automation and Test in Europe (DATE’14), Dresden,

Germany, 2014, pp. 1–2.
[26] T. Hoare and H. Jifeng, Unifying Theories of Programming. Prentice

Hall, April 1998.
[27] J. Woodcock, “Engineering UToPiA - Formal Semantics for CML,” in

FM 2014: Formal Methods, ser. Lecture Notes in Computer Science,
C. Jones, P. Pihlajasaari, and J. Sun, Eds., vol. 8442. Springer, 2014,
pp. 22–41.

[28] K. Deb, Multi-objective optimization using evolutionary algorithms.
John Wiley & Sons, 2001, vol. 16.

[29] B. Hockner, P. Hofstedt, S. Kaltschmidt, P. Sauer, and T. Vörtler,
“Design space exploration for cyber physical system design using
constraint solving,” in Proceedings of the 2013 Forum on specification

and Design Languages, FDL 2013, Paris, France, September 24–26,

2013. IEEE, 2013, pp. 1–4.
[30] N. Mühleis, M. Glaß, L. Zhang, and J. Teich, “A co-simulation approach

for control performance analysis during design space exploration of
cyber-physical systems,” SIGBED Review, vol. 8, no. 2, pp. 23–26, 2011.

[31] J. A. E. Isasa, P. W. Jørgensen, and P. G. Larsen, “Hardware In
the Loop for VDM-Real Time Modelling of Embedded Systems,” in
MODELSWARD 2014, Second International Conference on Model-

Driven Engineering and Software Development, January 2014.
[32] M. Jarke, “Requirements tracing,” vol. 41, no. 12, pp. 32–36, December

1998.
[33] P. Mäder, Rule-based Maintenance of Post-requirements Traceability,

ser. MV Wissenschaft. MV-Verlag, 2010.
[34] “PROV-DM: The PROV Data Model,” World Wide Web Consortium,

Tech. Rep., 2012. [Online]. Available: http://www.w3.org/TR/prov-dm/
[35] P. Missier, J. Bryans, C. Gamble, V. Curcin, and R. Danger, “ProvAbs:

model, policy, and tooling for abstracting PROV graphs,” in Procs. IPAW

2014 (Provenance and Annotations). Springer, 2014.

46

