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Abstract. We describe our experience with verifying the scheduler-
related functionality of FreeRTOS, a popular open-source embedded
real-time operating system. We propose a methodology for carrying out
refinement-based proofs of functional correctness of abstract data types
in the popular code-level verifier VCC. We then apply this methodology
to carry out a full machine-checked proof of the functional correctness of
the FreeRTOS scheduler. We describe the bugs found during this exer-
cise, the fixes made, and the effort involved.

1 Introduction

The verification of the FreeRTOS real-time kernel was proposed in 2008 as one of
the pilot projects of the Verified Software Initiative led by Hoare [19]. FreeRTOS
[14] is a priority-based real-time scheduler and is an open-source representative
of some of the commonly used kernels in the auto and aviation sectors, like the
OSEC and ARINC 653 real-time operating systems. The correctness of appli-
cations (many of them safety-critical) that run on such kernels, as well as the
analysis of such applications [25,30], crucially depend on the correctness of the
kernel and its specification model. With this motivation in mind, we took up
the goal of verifying the correctness of the scheduling-related functionality of
FreeRTOS. This paper describes the choices made, the methodology developed,
and the results achieved in this project.

The first choice to be made was about the kind of proof technique to adopt:
one based on the direct use of code-level contracts or one based on the notion of
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refinement. While recent verification efforts for functional correctness in the com-
munity [3,7,24,28] – with the prominent exception of the seL4 project [23] – have
favoured the use of code-level contracts (in the form of requires and ensures

annotations for methods in the program) over refinement-based approaches, we
felt that the latter have the potential to ease the verification effort and provide
stronger guarantees for verification.

In a refinement-based approach one views the system as an Abstract Data
Type (ADT), and begins with an abstract specification of the system’s function-
ality in a concise and mathematically precise modelling language. This specifi-
cation is then successively refined by adding implementation details to finally
obtain an implementation of the system which is guaranteed to “conform” to the
high-level specification. The exact meaning of what it means to conform to the
specification would vary according to the notion of refinement used, but it could
mean for instance that every execution of the concrete implementation can be
“matched” or “simulated” by an execution of the abstract model.

There were several reasons to favour a refinement-based approach. To begin
with, a refinement-based approach provides a standalone abstract specification
(say A) of the implementation (say C), with the guarantee that certain prop-
erties proved about a client program P that uses A as a library (which we
refer to as “P with A” and denote by “P [A]”) also carry over for P with C
(i.e. P [C]). Thus, to verify that P [C] satisfies a certain property, it may be suffi-
cient to check that P [A] satisfies the property. The latter check involves reasoning
about a simpler component (namely A) and can reduce the work of a prover by
an order of magnitude [22]. Finally, a refinement-based proof is more modular
and transparent, since it breaks down the task of reasoning about a complex
implementation into smaller tasks, each of which is more manageable for both a
human and a prover.

We chose to use a notion of refinement similar to that of VDM [8,20] and
Z [2,32], but adapted to a setting in which the client program interacts in a
“functional” manner with the ADT (see also [18]). The details of this theory are
spelt out in [11]. We propose a methodology for phrasing the refinement condi-
tions from this theory across different models ranging from abstract Z models
to concrete C implementations.

We then used this methodology to verify the FreeRTOS scheduler. We view
the scheduler-related functionality of the kernel as an ADT, specify its intended
behaviour in Z, and then verify that the implementation refines the high-level
ADT. We used four levels of models (two in Z and one in VCC [10] ghost
code, apart from the C implementation itself), and proved successive refine-
ments between them. Barring a few manual steps, all our refinement conditions
were phrased and proved in VCC, using its very useful ghost constructs.

We found a few subtle bugs which were acknowledged by the developers of
FreeRTOS [5]. These bugs were fixed with minimal changes to the source code,
and the verification of the fixed code was duly completed.

A natural question a VCC expert may ask is why we chose to build a “meta-
theory” of refinement on top of VCC, instead of using its internal style of data
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abstractions as illustrated in [9]. In the latter idiom, to prove an assertion about
a client program P with a concrete data type implementation C, one constructs a
joint data type AC which contains a ghost version of the data type called A, and
includes a coupling constraint between the states of A and C. One then proves
the assertion in P [AC]. By the restrictions imposed by VCC on ghost code, it
follows that the assertion must continue to hold on the original program P [C] as
well. While this style of verification has many of the advantages of a refinement-
based approach, it loses out in a couple of aspects. Firstly, VCC must reason
about P with the joint structure AC (instead of simply P [A] in a refinement-
based approach). While it is possible to control the portion of the joint state
exposed to the prover, this requires expert knowledge of VCC. Secondly, if we
want to prove a property of P [C], like a temporal logic specification, which is
not possible with VCC, this idiom is not of much use. On the other hand, using
a meta-theory of refinement, we could use VCC to prove that C refines A, prove
the required property about P [A] using non-VCC means, and then infer the
property for P [C].

In the next few sections we describe our refinement conditions and proposed
methodology, before going on to the details of the FreeRTOS verification.

2 ADT’s and Refinement

The notion of refinement we use in this paper is essentially that of Z [16,32]. We
briefly recall this notion before describing the variant we use.

2.1 Refinement in Z

An ADT type is a finite set of operation names N along with a set of
“global” states G. An abstract data type (ADT) of type (N,G) is a struc-
ture A = (Q, init,fin, {opn}n∈N ), where Q is the set of states of the ADT,
init ⊆ G × Q is an initialization operation, fin ⊆ Q × G is a finalization opera-
tion, and each opn ⊆ Q × Q is a realization of operation n. All operations are
allowed to be non-deterministic. A program that makes use of an ADT of type
(N,G), called an (N,G)-client program, is a sequence of operations P of the
form init; n1; · · · ; nk; fin, with each ni ∈ N . Given an ADT A of type (N,G),
the program P with A, written P [A], induces a relation from G to G in a natural
way, obtained by composing the operations of A according to the sequence given
by P . Now given two ADT’s A and C of type (N,G), we say that C refines A if,
for each (N,G)-client program P , we have P [Ċ] ⊆ P [Ȧ], where the “˙” denotes
the “totalized” version of the relation in which, essentially, elements outside the
domain of the relation are related to all possible elements in the target set. Thus,
if C refines A, then when P uses C all the behaviours it could observe – in terms
of initial global states being transformed to final global states – are also possible
behaviours of P with A.

Let A = (Q, init,fin, {opn}n∈N ) and C = (Q′, init′,fin′, {op′
n}n∈N ) be two

ADT’s of type (N,G). Then a sufficient (and also necessary [16]) condition for
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C to refine A, called “upwards simulation” in [16], which we denote by (RCZ),
is that there should exist an “abstraction” relation ρ ⊆ Q′ × Q, satisfying

1. For each g ∈ G, p′ ∈ init′(g), and p ∈ Q such that (p′, p) ∈ ρ: we have
p ∈ init(g).

2. For each p′ ∈ Q′ and p ∈ Q, with (p′, p) ∈ ρ: we have fin′(p′) ⊆ fin(p).
3. For each n ∈ N , p′, q′ ∈ Q′, and p ∈ Q, with p ∈ dom(opn), (p′, p) ∈ ρ, and

(p′, q′) ∈ op′
n: we have there exists q ∈ Q such that q ∈ opn(p) and (q′, q) ∈ ρ.

2.2 Our Notion of Refinement

We would like to work in a setting where a client program interacts with an
ADT in a functional manner, by periodically calling operations of the ADT,
each time supplying an argument and using the value returned by the operation
to update its local state. Thus, we no longer need a global set of states G in
an ADT type, but instead require each operation name n to have an associated
input type In and an output type On. A realization opn of operation n in an ADT
with state set Q is now a subset of (Q× In)× (Q×On). An N -client program is
a transition system in which some transitions are labelled by local actions, and
some by calls to the ADT operations, of the form (n, a, b), representing the fact
that a call of operation n with argument a returned the value b. We use a notion
of refinement based on the sequences of operation calls supported by an ADT,
which essentially says that an ADT C refines an ADT A, written C � A, if the
sequences of operation calls allowed by C are contained in those allowed by A.
Once again, if C refines A, the “behaviours” seen by a client program using C
are guaranteed to be present when using A. The reader is referred to [11] for the
details of the theory.

In the rest of this paper, we restrict our attention to deterministic ADT’s.
One reason for this is that our case study makes use of only deterministic models
and implementations. Secondly, the presentation of our methodology is simpler
with this assumption, while retaining the essence of what is needed to handle the
general case. We model the deterministic operations as functions, by introducing
a special exceptional value, denoted by e, in each output type On, and mapping
a state-input pair which was undefined by the operation, to an exceptional state
E and return value e. We formally define this below.

A (deterministic) ADT of type N is a structure of the form

A = (Q,E, init, {opn}n∈N )

where Q is the set of states of the ADT, E ∈ Q is an exceptional state, init :
Iinit → (Q × Oinit), and each opn is a realisation of the operation n given by
opn : Q×In → Q×On such that opn(E,−) = (E, e) and opn(p, a) = (q, e) =⇒
q = E. Thus if an operation returns the exceptional value the ADT moves to
the exceptional state E, and all operations must keep it in E thereafter.

Let A = (Q,E, init, {opn}n∈N ) and C = (Q′, E′, init′, {op′
n}n∈N ) be ADT’s

of type N . We say A and C satisfy condition (RC) if there exists a relation
ρ ⊆ Q′ × Q such that:
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(init) Let a ∈ Iinit and let (qa, b) and (q′
a, b′) be the resultant states and outputs

after an init(a) and init′(a) operation in A and C respectively, with b �= e.
Then we require that b = b′ and (q′

a, qa) ∈ ρ.
(sim) For each n ∈ N , a ∈ In, b ∈ On, and p′ ∈ Q′, with (p′, p) ∈ ρ, whenever

p
(n,a,b)
−−−−→ q with b �= e, then there exists q′ ∈ Q′ such that p′ (n,a,b)

−−−−→ q′

with (q′, q) ∈ ρ. This is illustrated in the Fig. 1 below.

=⇒

p

p′

q
(n, a, b)

p

p′

q
(n, a, b)

q′

ρρρ

(n, a, b)

Fig. 1. Illustrating the condition (RC-sim) for refinement.

Notice that this condition is essentially a specialization of the condition (RCZ)
above for deterministic ADT’s.

Finally, we will make use of a couple of properties of this notion of refinement
from [11]. Firstly, refinement is transitive: if C � B and B � A then C � A. Sec-
ondly, refinement is substitutive: if we have a client program U that implements
an ADT, and itself uses a sub-ADT of type M , and if B and C are ADT’s of
type M such that C � B. Then U [C] refines U [B].

3 Viewing Z and C Models as ADT’s

In this section we show how to view models specified in different modelling
languages as ADT’s in our setting. We also phrase the refinement condition
(RC) in a typical tool/environment for reasoning about these different models.

Z models. A specification M in the Z modelling language [32] essentially com-
prises the following: A finite set of variables VarM, with each v ∈ VarM having
a declared type (set of values) Tv. A state is a valuation s to these variables with
s(v) ∈ Tv for each v ∈ VarM, which satisfies a constraint CM given as a first-
order logic formula with free variables in VarM. The model has a finite set OpM

of operations. Each operation n ∈ OpM has (for simplicity) a single formal input
parameter xn of type XM

n , and a single output variable yn of type Y M
n ; and a

before-after-predicate BAPM
n with free-variables in VarM ∪ {xn, yn} ∪ VarM′

,
where for a set of variables Var we use the convention that Var′ denotes the set
of variables {v′ | v ∈ Var}. The set of operations OpM includes an initialization
operation called initM, whose BAP predicate is only on the input variable and
primed variables (i.e. it only constrains the post-state). We say the Z model is
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deterministic if for each operation n ∈ OpM, state p and input value a ∈ XM
n , we

have at most one state q and output value b ∈ Y M
n satisfying BAPM

n (p, a, q, b).
A deterministic Z model like M above defines an ADT

AM = (Q′, E, init, {opn}n∈N ),

of type N , where:

– N is the ADT type OpM with In = XM
n and On = Y M

n ∪ {e},
– Q′ = Q ∪ {E} where Q is the set of states of M, and E is a new exceptional

state;
– the init operation is given by init(a) = (q, b) iff BAPM

init(a, q, b); and
– for each n ∈ N , we have opn : (Q′ × In) → (Q′ × On) given by

opn(p, a) =

{

(q, b) if ∃(q, b) : BAPM
n (p, a, q, b)

(E, e) otherwise.

Thus we view an operation as returning an exceptional value whenever it is called
outside its pre-condition (namely pren which is the set of states and input pairs
(p, a) such that there exists a state q and output b satisfying BAPM

n (p, a, q, b)).
Given two deterministic Z models M1 and M2, we say M2 refines M1 iff

the induced ADT’s AM2
and AM1

are such that AM2
refines AM1

.

C implementations. We assume that an ADT implementation in C is a program
P that comprises a set of global variables Var with each v ∈ Var having a
declared type Tv. It has a finite set of function names F , with an associated
function definition funcn for each n ∈ F , which could contain local variables.
We can view P as an ADT in a natural way, as follows. A program state of P is
a valuation for its global variables and local variables that are in scope, together
with a location representing the statement number to be executed next. We use
a special location “0” to represent the fact that an operation has completed, and
the program is not in the middle of executing an operation. We call these program
states with location “0” the complete program states of P . The states of the ADT
induced by P is now the set of complete program states of P . As expected, we
view each implementation of an operation as starting in a complete program
state, taking an argument, transforming the program state – via a number of
intermediate steps – from one complete state to another, and returning a value.
If the function does not terminate (due to a buggy loop for example), or causes
an exception (due to a null dereference for example), we view the operation as
returning the exceptional value e.

Finally, we would also like to consider C implementations that have a precon-

dition for each operation. We assume that the precondition for operation n is a
predicate pren on the complete state and input of the operation. We view such
a C program as inducing an ADT as defined above, except that for complete
states and inputs that don’t satisfy pren the ADT transitions to a “dead” local
state.

With this view of Z and C ADT models we can phrase the refinement con-
ditions (RC) as theorems in tools like Z/Eves or Rodin, or as requires and
ensures clauses in a tool like VCC (see for instance [12]).
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4 Directed Refinement Methodology

We now propose a methodology based on our theory of refinement for proving
the functional correctness of an imperative language implementation P of an
ADT-like system.

1. To begin with we view P as implementing an ADT of a certain type N .
2. Based on a high-level understanding of the code, and documentation like

user manual and comments in code, construct an ADT M1 in a high-level
specification language like Z, that captures the intended behaviour of P.

3. In general P may use several sub-ADT’s, say B1, . . . ,Bn of type M1, . . . , Mn

respectively, and can be viewed as U [B1, . . . ,Bn], where U is an (M1, . . . , Mn)-
client program, itself providing an ADT of type N . We now replace each sub-
ADT implementation Bi by a version Ai of it expressed using the high-level
constructs like maps of the ghost language available in tools like VCC. We
refer to this abstraction U [A1, . . . ,An] of the implementation as P1.

4. Refine M1 towards the implementation P1, via a sequence of successively
refined Z models, that add increasing details of the implementation. Let M2

be the resulting Z model that is sufficiently “close” to P1. The refinement
conditions for the successive Z models could be checked in Z-Eves [29] or
other tools [1,26,27], or by a suitable encoding in VCC.

5. Check that P1 refines M2. We can do this by either using a ghost version M2

if one is available, or by directly importing the before-after predicates from
M2 (see [12] for example), and then checking the resulting annotations in a
tool like VCC. At the end of this step, we would have contracts in the form
of requires and ensures annotations, for each ghost implementation Ai of
the sub-ADT’s that were used to prove that P1 refines M2.

6. Check that each sub-ADT Ai along with its associated precondition (from
the requires clause of its contract), is refined by Bi.

If these checks are successful, we can conclude using the transitivity and sub-
stitutivity property of refinement, that P = U [B1, . . . ,Bn] � U [A1, . . . ,An] =
P1 � M2 � M1.

5 About FreeRTOS

In the next few sections we describe the case-study (FreeRTOS V6.1.1) on which
we apply our verification methodology. FreeRTOS [14] is a real-time kernel meant
for use in embedded applications that run on microcontrollers with small to
mid-sized memory. It allows an application to organise itself into multiple inde-
pendent tasks (or threads) that will be executed according to a priority-based
preemptive scheduling policy. It is implemented as a set of API functions writ-
ten in about 3,000 lines of C code, that an application programmer can include
with their code and invoke as function calls. These API’s provide the program-
mer ways to create and schedule tasks, communicate between tasks (via mes-
sage queues, semaphores, etc.), and carry out time-constrained blocking of tasks.
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It has been ported to 34 architectures and receives more than 100,000 downloads
a year.

Figure 2 shows a simple application that uses FreeRTOS. The application
creates two tasks “A1” and “B2” with priorities 1 and 2 respectively (a higher
number indicates a higher priority), and starts the FreeRTOS scheduler. We use
a naming convention that indicates the task’s priority in its name. The scheduler
then runs task B2, which immediately asks to be delayed for 2 time units. B2 is
now blocked and the lower priority task A1 gets to execute. After 2 time units,
B2 is ready to execute and preempts A1. This behaviour continues forever.

int main(void) {
xTaskCreate(foo, "A1", 1,...);
xTaskCreate(bar, "B2", 2,...);
vTaskStartScheduler();

}
void foo(void* params) {

for(;;) { }
}
void bar(void* params) {

for(;;) {
vTaskDelay(2);

}
} Time (tick interrupts)

Task B2

Task A1

t1 t2 t3 t4 t5

Fig. 2. An example FreeRTOS application and its timing diagram.

void vTaskDelay(portTickType xTicksToDelay){...
if(xTicksToDelay > (portTickType) 0){

xTimeToWake = xTickCount + xTicksToDelay;
vListRemove(&(pxCurrentTCB->xGenListItem));
listSET_LIST_ITEM_VALUE(
&(pxCurrentTCB->xGenListItem),xTimeToWake);

vListInsert(pxDelayedTaskList,
&(pxCurrentTCB->xGenListItem));

...
}

}

void vListInsert(xList *pxList,
xListItem *pxNewItem) {

...
xValOfInsertion = pxNewItem->xItemValue;
for(pxIterator = &(pxList->xListEnd);

pxIterator->pxNext->xItemValue
<= xValOfInsertion;

pxIterator = pxIterator->pxNext) {
}
pxNewItem->pxNext = pxIterator->pxNext;
pxNewItem->pxNext->pxPrevious = pxNewItem;
...

}

Fig. 3. Excerpts from the vTaskDelay API and the xList operation vListInsert.

Figure 3 shows an excerpt from the code of the vTaskDelay API function.
It computes the time-to-awake, removes the current task from the ready queue,
updates its key value to the time-to-awake, and inserts it in the delayed queue.
The last 3 steps are done using calls to a list data-structure called xList which
is the core data-structure used in FreeRTOS. It is a circular doubly-linked list of
xListItem nodes each of which contains a key field called xItemValue. Based
on the invariants it satisfies an xList can be used as a priority queue, a FIFO
queue, or a generic list. It provides 13 different operations, including enqueue in
a priority queue (vListInsert), head of a FIFO/priority queue, and rotate left.
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pxNext

pxPrevious

pvContainer

xItemValue

pvOwner

uxNumberOfItems

xListEnd

3

10 15 18 Max

pxIndex

Fig. 4. An example xList representing a priority queue with values 10,15, and 18.

Figure 4 shows an instance of xList, that represents a (non-decreasing order)
priority queue with item values 10,15, and 18. The head of the queue is the node
pointed to by the pxNext field of the xListEnd node of the list header. The
second part of Fig. 3 shows part of the vListInsert operation of xList.

FreeRTOS is architected in a modular fashion. It has a portable part which
contains compiler/processor independent code, most of it in 3 C files tasks.c,
queue.c, and list.c. The port-specific part is present in a separate directory
associated with each compiler/processor pair, and is written in C and assembly.

6 Overview of FreeRTOS Verification

We view the system corresponding to a FreeRTOS application as conceptually
having two components: one is an interpreter for the application program, which
keeps track of the local states of each task, the currently running task, etc.; the
other is a component which we call the scheduler, whose job it is to maintain the
scheduling-related state of the FreeRTOS kernel (the set of tasks created and
their priorities, the contents of the ready and delayed queues, the current tick
count, etc.). The interpreter component makes calls to the operations (API’s)
provided by the scheduler (for example vTaskDelay(d)), and gets back a return
value which typically indicates the task to be run next. Thus, in the terminology
of Sect. 2 the interpreter is a scheduler-type-client program, that uses the sched-
uler component as an ADT.

While in an actual execution of an application API calls could be interleaved
in a non-atomic fashion (for example while the vTaskDelay function is running, a
tick interrupt might arrive causing the vTaskIncrementTick to execute before
the call to vTaskDelay finishes), we assume a limited form of preemption in
which interleaving happens only at API boundaries.

In this work our interest lies in this conceptual scheduler component. We
restrict ourselves to the task-related API’s in the file task.c of the FreeRTOS
code, and consider the relevant parts of this code to be the implementation P
of the scheduler component. Our aim is to specify and verify this ADT imple-
mentation using the methodology outlined in Sects. 2 and 4.



Refinement-Based Verification of the FreeRTOS Scheduler in VCC 179

C Implemention

of

Scheduler

Scheduler

ADT

Scheduler

ADT

C Implemention
of

Scheduler

xList

P

US

M2

M1

xListMap

P1

US

Following the methodology, we first build a high-
level deterministic model M1 of the scheduler in the
Z specification language. This model maintains the tick
count as a number bounded by maxNumVal and has
a single delayed list. Next we observe that the sched-
uler implementation P uses a sub-ADT, namely xList,
and thus is of the form US [xList] where US is a xList-
type-client program that itself implements an ADT. We
replace the sub-ADT xList by a ghost implementation
in VCC which we call xListMap. Thus P1 is a ver-
sion of the implementation of the form US [xListMap].
Next, we bring M1 closer to P1 by adding a sepa-
rate “overflow-delayed” list to store tasks whose time-to-
awake is beyond maxNumVal. We call this model M2.
The models M2 and P1 are very similar and hence
we can import the before-after-predicates from M2 to
P1, to phrase the refinement conditions. To check these
conditions in VCC we come up with pre-conditions in
xListMap. Finally we show that xList refines xListMap with its given pre-
conditions. The components in the methodology used to verify FreeRTOS are
shown in the figure alongside.

Provided we can check the associated verification conditions (which we
address in the next section), we can conclude that P refines M1, since P =
US [xList] � US [xListMap] � M2 � M1.

7 Details of Steps in the Verification of FreeRTOS

We now describe in some detail the main steps and results of our case-study. The
artifacts of this project are available at www.csa.iisc.ernet.in/∼deepakd/FreeRTOS/.

7.1 Z Models

We begin by describing our high-level models of the scheduler in Z. To begin
with, we tried to understand the “intended” behaviour of the FreeRTOS sched-
uler. The main input for this understanding was the FreeRTOS user guide [4].
For some API’s we had to look at the code and the comments therein to infer
the meaning. We also had to re-group some of the functionality in the implemen-
tation: for instance, FreeRTOS does not have an explicit API for initialization,
but initialization is done partly in the first call to vTaskCreate (calling a private
function) and partly in vTaskStartScheduler; so we collected this functionality
into a separate initialization API function.

Next we specified this behaviour in a Z model which we call M1. To represent
the state of the scheduler we adopted the basic design of the FreeRTOS imple-
mentation, in particular we chose to represent the ready queue as a sequence of
sequences resembling the array of FIFO queues (indexed by priorities) used in

www.csa.iisc.ernet.in/~deepakd/FreeRTOS/


180 S. Divakaran et al.

FreeRTOS. Figure 5 shows the main elements of the data state of the scheduler
and invariants on the state. The variable maxPrio represents the maximum pri-
ority, and maxNumVal represents a common bound on values like tick count and
time-to-delay, as well as the maximum length of queues like the ready queues.
These variables represent corresponding configurable constants in FreeRTOS,
and are initialized in the model as shown in Fig. 5.

Scheduler

maxPrio, maxNumVal, tickCount, topReadyPriority : N

tasks : P TASK
priority : TASK N

running task , idle : TASK
ready : seq (iseqTASK )
delayed : seqTASK × N

blocked : seqTASK
. . .

idle ∈ tasks ∧ idle ∈ ran �/(ran ready)
running task ∈ tasks ∧ topReadyPriority ∈ dom ready
∀ i, j : dom delayed | (i < j ) • delayed(i).2 ≤ delayed(j ).2
∀ tcn : ran delayed | tcn.2 > tickCount
running task = head ready(topReadyPriority)
dom priority = tasks ∧ tickCount ≤ maxNumVal
∀ i, j : dom blocked | (i < j ) =⇒ priority(blocked(i)) ≥ priority(blocked(j ))
. . .

Init

maxP? : N

maxN? : N

maxN? > 0
maxN? ≥ maxP? > 0
maxPrio′ = maxP?
maxNumVal′ = maxN?
tasks′ = {idle}
running task ′ = idle

tickCount′ = 0
ready′(1) = 〈idle〉
. . .

Fig. 5. Data and invariants of the Scheduler and Init schema.

Figure 6 shows the schema for the vTaskDelay API, for the case when there
is another ready task of the top ready priority, apart from the running task.
The argument delay to the operation is required to be at most maxNumVal.
Since the value of tick count is bounded by maxNumVal the time-to-awake for
the running task will be in the range [0, 2 · maxNumV al]. The operation for
increment-tick increments the value of the tick count modulo (maxNumVal +1).
When it resets the tick count to 0, it reduces the time-to-awake values of the
delayed tasks by maxNumVal + 1.

The model M2 refines M1 by adding two details from the FreeRTOS imple-
mentation. FreeRTOS maintains a separate list called “overflow-delayed” for
tasks whose time-to-awake values are beyond maxNumVal. These tasks are stored
in this list with time-to-awake values reduced by maxNumVal + 1. This is mod-
elled in M2 by adding a corresponding list called oDelayed. Secondly, the set of
tasks blocked on an event (like message arrival in a queue) is modeled in M1 as
a list blocked in which tasks are stored in decreasing order of their priority. In
FreeRTOS however they are enqueued with a key value that is the complement

of their priority in maxPrio. This is done so that a single insert operation of
xList can be used for both the delayed and blocked lists. M2 models this by
changing the invariant on the blocked list.

We checked that M2 is a refinement of M1 using the refinement condition of
Sect. 2. The abstraction relation is as follows: the delayed list in M1 is obtained
by increasing the time-to-awake values in oDelayed by maxNumVal + 1 and
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TaskDelay

∆Scheduler
delay? : N

delayedPrefix , delayedSuffix : seqTASK × N

running! : TASK

delay > 0 ∧ delay ≤ maxNumVal ∧ running task �= idle
#delayed < maxNumVal

tail ready(topReadyPriority) �= 〈〉 ∧ delayed = delayedPrefix � delayedSuffix
∀ tcn : ran delayedPrefix | tcn.2 ≤ (tickCount + delay?)
delayedSuffix �= 〈〉 =⇒ (head delayedSuffix).2 > (tickCount + delay?)
running task ′ = head tail ready(topReadyPriority)
ready′ = ready ⊕ { ( topReadyPriority �→ tail ready(topReadyPriority) ) }

delayed′ = delayedPrefix � 〈(running task , (tickCount + delay?))〉 � delayedSuffix
. . .

Fig. 6. Operation schema for API vTaskDelay when another ready task of same priority
is available.

appending it to delayedM2
. The corresponding verification conditions for the

affected operations were checked using VCC by modelling the relevant parts of
M1 and M2 in VCC.

7.2 Verifying that P1 Refines M2

We now address the task of showing that P1 (namely the FreeRTOS scheduler C
code, with the xList library replaced by the VCC ghost library xListMap) refines
M2, the Z model of the scheduler. As mentioned in Sect. 6, we define a simple
list ADT using the ghost programming constructs of VCC, called xListMap, that
provides the same intended functionality of xList. Figure 7 shows a part of its
definition. Like xList it maintains a list of pointers to xListItem nodes, but
as a mathematical “map” from integers to xListItem pointers. The component
length records the number of items in the list. The element type keeps track of
whether the list is meant to be a FIFO or priority queue. The figure also shows
the definition of the operation vListInsert using a lambda construct provided
by VCC’s ghost language.

typedef struct xListMap { void vListInsert(xListMap *mlist, xListItem *xli)
_(ghost xListItem *list[unsigned]) _(requires \wrapped(mlist))
_(ghost unsigned length) _(requires mlist->length < maxNumVal) {
_(ghost enum xListType type) unsigned index;
_(invariant length <= maxNumVal) _(ghost mlist->list = \lambda unsigned i;
_(invariant (type==PQ)==> (\forall (i<=mlist->length)?

unsigned i,j; (j<length && i<j) ((i<index)? mlist->list[i] : ((i == index)?
==> (list[i]->xItemValue xli: mlist->list[i-1])) : (xListItem*) NULL)

<= list[j]->xItemValue))) _(ghost mlist->length++)
... ...

} xListMap; }

Fig. 7. Excerpts from xListMap and vListInsert. The ghost variable index is con-
strained to be the required position of xli.
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As described in Sect. 3, to check that P1 refines M2 we directly import
the before-after-conditions from M2 as requires and ensures conditions on
the API functions in P1. We manually simplified these conditions to remove
the existential quantifiers making use of the fact that M2 and P1 were closely
related. VCC was able to check most of the annotations in the API’s in P1, except
for the xTaskCreate API, and a couple of other API’s we mention in Sect. 7.4.
The problem with xTaskCreate was as follows. FreeRTOS follows a convention
of keeping the running task at the end of the ready queue corresponding to
its priority. However this convention leads to inconsistencies like the following.
Consider the scenario where tasks A1, B1 (both of priority 1) are ready, with A1
currently executing. By the FreeRTOS convention, the ready queue is the list
〈B1,A1〉. Now suppose A1 creates a task C1. The xTaskCreate function uses
the xList operation vListInsertEnd to add C1 to the end of the queue, to get
〈B1,A1,C1〉. Thus the running task A1 is no longer at the end of the queue. If
a couple of tick interrupts now arrive, causing A1 and then B1 to be preempted,
it will be A1 that runs again (instead of C1!).

We chose to fix this problem in the design of FreeRTOS by following the
convention of the Z models to keep the running task at the head of its ready
queue. However to do this we needed to add two new functions to the xList (and
xListMap) library: list-rotate-left and list GET FIRST ENTRY that respec-
tively rotate a FIFO queue by one position to the left, and return the node at the
head of the list. The function list-rotate-left is used in the case of preemp-
tion (time slicing within tasks of the top priority), while list GET FIRST ENTRY

is used to find the next running task.

With these changes and other fixes mentioned in Sect. 7.4 VCC verifies all
the API functions of P1. This part of the proof required considerable effort, as
shown in the table of Fig. 8. As described in Sect. 3 we also need to check that
the operations in P1 all terminate in state-input pairs that satisfy their precon-
ditions. In P1 all calls to the sub-ADT namely xListMap terminate since they are
defined declaratively. Further, the only loops present in the P1 code are in the
call to the function vTaskSwitchContext whose job is to find the new top ready
priority, and consequently the new running task. To verify termination of this
function we used a simple ranking function (the value of the topReadyPriority
variable), and proved that its value decreases in each iteration of the loop, using
VCC.

7.3 Verifying that xList Refines xListMap

We now focus on showing that xList is a refinement of xListMap. Recall that
the preconditions of the xListMap operations are derived from the contract (see
Fig. 7) used to prove the correctness of P1 in the previous section. It is sufficient
to consider a single pair of instances of xList and xListMap, and phrase the
refinement conditions (RC) on it. We first create a joint structure containing
the state components of both xList and xListMap, and their invariants. In
addition we add “gluing” invariants that represent the abstraction map between
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the two components. These invariants crucially use the type field of the xListMap
component to say how the elements in the two lists correspond. For example,
for a non-empty list of type FIFO, pxIndex points to the end of the list, and
hence the first element of the list is the one pointed to by pxIndex->pxNext. For
a priority queue however, the first item is the one after xListEnd. In addition,
a node in the i-th position of list has its pxNext field pointing to the one at
position i + 1 in list:

_(invariant ((type == FIFO) && (length > 0) && (pxIndex->pxNext != (&xListEnd)) ==>
(list[0] == pxIndex->pxNext)))

_(invariant ((type == PQ) && (length > 0)) ==> (list[0] == ((&xListEnd)->pxNext)))
_(invariant (\forall unsigned i; (i < (length-1) ==> (list[i+1] == list[i]->pxNext)))

Next, for each list operation we create a joint version of the operation, con-
taining the updates for both xListMap and xList. The precondition for this
operation is inherited from the xListMap version, and additionally requires the
joint list argument to be “wrapped” (that the invariants on the structure hold).
The ensures clause simply asks for the joint structure to be wrapped at the
end and return values to be equal. All the assertions were successfully proved by
VCC.

Z Model M1 Z Model M2 API funcs in P
Schemas LOC Schemas LOC Funcs LOC LOA

50 766 60 1239 17 361 2347

xListMap xList

Funcs LOC LOA Funcs LOC LOA (xListJoint)
15 306 1033 15 121 1450

Fig. 8. Size of artifacts in FreeRTOS verification

The table alongside sum-
marises the number of lines
of code (LOC) and annotation
effort (LOA) in our case study.
The numbers reported exclude
comments and blank lines. Of
the 2514 LOC in the portable
code of FreeRTOS, we have ver-
ified 482 LOC mainly from the
files list.c and task.c. This includes 17 core API’s from task.c (many of the
remaining 20 task API’s are to do with tracing and other non-core functionality).

7.4 Bugs Found

Apart from the previously mentioned problem with xTaskCreate, another
related problem is that if the main program creates tasks A1 followed by B1,
and then starts the scheduler, the task that runs is B1 (instead of A1). This is
due to a problem with the way the pxCurrentTCB (the running task) is updated.

A more serious bug was in the vTaskPrioritySet function which changes
the priority of a given task. When the given task is in the blocked queue (say
waiting to receive a message from a message queue), then its priority is updated
but its position in the event queue (which is a priority queue) is not adjusted.
A similar bug exists in the vTaskPriorityInherit API function which is used
to increase the priority of a task holding a mutex, when a higher priority task
wants the mutex. The idea is that the lower priority task temporarily inherits the
priority of the higher priority task that is waiting for a resource it is holding, so
that it can complete sooner and release the resource for the higher priority task.
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These functions in turn call list SET ITEM VALUE, which however does not have
the desired effect when the lower priority task is in the blocked queue. A simple
fix is to implement these API’s by first removing the concerned node from the
blocked queue, update its priority using list SET ITEM VALUE, and then insert
it back in the queue using vListInsert.

We communicated these issues to the developers of FreeRTOS who acknowl-
edged that our understanding of the intended behaviour was correct and that
the said behaviours were indeed deviations [5]. They would like to make the
proposed fixes provided they do not conflict with other design choices in FreeR-
TOS: for example a time-consuming priority-based insert operation is ok to do
in a lightweight critical section where the scheduler is suspended, but not when
interrupts are disabled. Finally, the fixes made to obtain the fully verified version
of the API’s involved only a small part of the code: 19 lines in the API code
were modified and 7 lines added to xList.

8 Related Work

We discuss some of the OS verification projects in the literature that are most
closely related to ours. In the design-for-verification projects, the most promi-
nent work is the seL4 project [23], where a formally verified microkernel was
developed. The scope of their work is larger than ours, addressing among other
things memory allocation and interrupts. They also use a refinement-based app-
roach to prove functional correctness of the C implementation with respect to
a high-level specification, in Isabelle/HOL. The translation of the C semantics
to Isabelle/HOL is validated by checking that the compiled kernel refines the
translation to Isabelle/HOL [31]. In contrast, our verification – though far more
modest in scope – is “post-facto,” and is built on an existing code verification tool
like VCC, which has a large user base and hence provides a different dimension
of confidence in the verification.

Among the works in post-facto verification, the most related is the Verisoft
XT project [7,33] at Microsoft, where the goal was proving the functional cor-
rectness of the Hyper-V hypervisor and PikeOS operating systems. While details
of the Hyper-V effort are not publicly available (see [21,24]) PikeOS [6] is an
embedded OS, similar in nature to FreeRTOS though with a few more features
like virtualization. The verification uses VCC and specifications are annotations
and correctness is in terms of conformance to ghost code. In contrast, we use a
refinement-based approach, and as a result have a standalone abstract specifica-
tion that can be used to verify clients in other environments.

In a recent and closely related piece of work, Ferreira et al. [13] prove func-
tional correctness and memory safety of some of the FreeRTOS list and task
API’s, in the HIP/SLEEK verification tool. Their specifications are pre/post
annotations on the API code. In contrast we verify all the list API’s and the
core task API’s. We use an abstract specification and correctness is in terms of
conformance to the abstract specification. As part of this conformance proof we
prove all the functional and safety properties mentioned in [13].
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Gotsman and Yang [15] propose a modular way of reasoning about preemp-
tive kernel code by separately arguing correctness of the context-switching and
the uninterrupted kernel code. We currently do not model context-switching
since this is part of the “interpreter” component that we don’t model, but this
would be a useful approach in extending this work to a concurrent setting.

In work related to phrasing refinement conditions in code-level verifiers, the
work in [17] translates refinement conditions to annotations in C code for the
purpose of proving a separation property for an embedded device. Finally, in
recent work [12] we propose an efficient 2-step approach to phrasing refinement
checks in VCC, and evaluate it against the two approaches proposed here, on a
simplified version of FreeRTOS.
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