
http://wrap.warwick.ac.uk/  

 
 

 
 
 
 
 
 
Original citation: 
Gal, Shmuel, Alpern, Steve and Casas, Jérôme . (2015) Prey should hide more 
randomly when a predator attacks more persistently. Journal of The Royal Society 
Interface, 12 (113). 20150861. 
Permanent WRAP url: 
http://wrap.warwick.ac.uk/76215   
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge.  Provided that the authors, title and 
full bibliographic details are credited, a hyperlink and/or URL is given for the original 
metadata page and the content is not changed in any way. 
Publisher statement: 
First published by Royal Society of Publishing 2015 
http://dx.doi.org/10.1098/rsif.2015.0861  
A note on versions: 
The version presented here may differ from the published version or, version of record, if 
you wish to cite this item you are advised to consult the publisher’s version.  Please see 
the ‘permanent WRAP url’ above for details on accessing the published version and note 
that access may require a subscription. 
 
For more information, please contact the WRAP Team at: publications@warwick.ac.uk  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/42617479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/76215
http://dx.doi.org/10.1098/rsif.2015.0861
mailto:publications@warwick.ac.uk


Prey Should Hide More Randomly
When Predator Attacks More Persistently

1Shmuel Gal, 2Steve Alpern, 3Jérôme Casas

1Department of Statistics, University of Haifa, Israel.

2ORMS Group, Warwick Business School,
University of Warwick, Coventry CV4 7AL, UK

3Insitut Universitaire de France
& Insitut de Recherches en Biologie de l�Insecte,

Université of Tours, 37200 Tours, France.
email for corresponding author: jerome.casas@univ-tours.fr

October 26, 2015



Abstract

When being searched for and then (if found) pursued by a predator, a prey has a choice
between choosing very randomly among hiding locations so as to be hard to �nd or
alternatively choosing a location from which it is more likely to successfully �ee if found.
That is, the prey can choose to be hard to �nd or hard to catch, if found. In our model,
capture of the prey requires both �nding it and successfully persuing it. We model this
dilemma as a zero-sum repeated game between predator and prey, with the eventual
capture probability as the payo¤ to the predator. We �nd that the more random hiding
strategy is better when the chances of repeated pursuit, which are known to be related
to area topography, are high. Our results extend earlier results of Gal and Casas, where
there was at most only a single pursuit. In that model, hiding randomly was preferred
by the prey when the predator has only a few looks. Thus, our new multistage model
shows that the e¤ect of more potential looks is opposite. Our results can be viewed as
a generalization of search games to the repeated game context and are in accordance to
observed escape behavior of di¤erent animals.



1 Introduction

When a predator �nds its prey but is unsuccessful in its pursuit, it has two choices. It
can give up the attempt to again �nd and then catch this prey and move to another patch
or it can persist in its endeavor. We call the probability of the predator adopting the
second choice its persistence, which we label as parameter �: This persistence parameter
is related to the so called �give-up time�, and we view it as an exogenous, �xed, parameter
in our repeated game model of combined search for and pursuit of prey. Giving-up times
have been studied for decades within behavioral ecology as a speci�c case of economic
decisions at the individual level [1]) and shown to depend on both internal (satiation
level, number of ripe eggs, etc.) and external variables (number and quality of prey in
patches, predation risk) [2]. Persistence is known to be related to the topography of the
pursuit arena, for example it was found in [4] that "... compared with a �at surface, leaf
litter ... reduced the likelihood of secondary pursuits, after initial escape of the prey, to
nearly zero." With the inclusion of a persistence probability, this paper can be viewed as
a repeated game extension of the single stage game of [3], where an unsuccessful pursuit
ended the game. Our main result is that when the persistence probability is high, the
prey should hide more randomly (distributed over more potential locations) rather than
more concentrated on the best sites for �eeing.
From the point of view of the �eld of �search games�(see for example [5]), the im-

portance of this paper is the introduction of models and techniques from the area of
repeated games, which hitherto have not been part of the �eld. Such an extension of
existing models is required to analyze persistent attacks of a predator.

2 Search Games and Biological Contexts

This section places our work within the two contexts of search games (in the applied
mathematics and operational research literatures) and behavioral ecology.

2.1 Search Games

There is an extensive literature on search games where the hider chooses to locate at
one of a �nite number of locations (called cells, boxes, etc.) and then the searcher looks
sequentially into these boxes to try to �nd the hider. These boxes may be heterogeneous
in the cost of searching and in the probability that a hider can be overlooked even if his
location is searched. The literature on this aspect of our model has been discussed in
[3]. A new aspect of search games that appears in this paper is that of persistence of
attacks �if the prey escapes, the predator may attempt to �nd it again. The closest to
this repetition of search is in the model of [6] and [7], where during the search the prey
(hider) may attempt to �ee the search region. The prey will succeed in this attempt if
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the predator is in a cruise search mode, but not if he is in an ambush mode. In those
models, a successful �ight by the prey is de�nitely followed by a renewed attempt by
the predator to �nd it. (We use the term ��ight�as �eeing from the hiding location, not
necessarily in the air.) So in our context, we would say that those models had maximum
persistence, a � value of 1:
The problem of where to hide food (in discrete packages such as nuts) rather than

where to hide oneself, has been analyzed in a search game played between a scatter
hoarder such as a squirrel and a pilferer in [8]. The squirrel has limited digging energy
and has to decide between placing nuts deeply hidden in one place or alternatively widely
scattered at shallower depths. This problem is somewhat analogous to the problem of
a prey hiding in a good location or randomly choosing among less good locations. Of
course the payo¤s are of a di¤erent kind as the prey either gets caught or not; while
the squirrel either has enough nuts left to survive the winter, or not. Also, there is no
pursuit phase in the squirrel�s problem.
The search game models in [6] and [7] had no pursuit phase, and the issue raised there

concerned the optimal alternation between cruise search and ambush search. Following
those papers, [9] and [10] advanced the theory of search games to include ambush. A
�silent predator�(whose approach is not observable by the prey) was considered in [11].
More biological models were considered by [12] and [13]. The only one of these papers
to touch on repeated games is the study [10]

2.2 Persistent attacks and prey escape tactics in the animal
world

There is a paucity of ethological studies reporting the �eeing behavior of prey under
persistent attacks by their natural enemies, in contrast to the well studied case of a
single attack, followed by escape [14]. In fact, the number of predator-prey interactions
with rapid sequence of repeated attacks on the same prey by the same predator abound
in nature, and older literature provides lengthy descriptions of such interactions, from
pompilid wasps pursuing spiders to falcons attacking passerine prey (see Fabre�descrip-
tion in [3] for the �rst case and [15] for the second case). These descriptions often lack
crucial information to formalize them as repeated games, and are not quanti�ed. In the
following, we �rst report the �ndings of a few studies, conducted mainly with lizards
[16] and grasshoppers [17] as prey and humans as predators. We then describe one bio-
logical interaction in more detail. We use this example to formalize the backbone of our
theoretical study and describe in less detail a further example in the discussion.
The survey of the less than a dozen studies on prey escape under persistent attack

show that prey switch tactics once they realize that the predator is repeatedly attacking
them [17]. The chosen tactics range from shorter �ight initiation distance (FID), longer
�ight distance, extended use of cover, use of more protective cover and higher latency
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to emerge from cover. Prey indeed adjusts continuously the costs and bene�ts of their
decisions, and switching to a di¤erent tactic has a price. For example, lizards running
into rock crevices rather than moving a bit further experience a thermal cost [16] and
grasshoppers hiding down the grass stems rather than chipping plant pieces and eating
them in the open do not have access to food [17]. Because these examples use humans
as predator, the experiments are conducted in a way to enable prey to escape. Also,
these studies do not provide a map of the environment and hence an appreciation of the
number of hiding places available to the prey. This aspect does matter as it de�nes the
number of possible hiding locations [3].
The most comprehensive knowledge of both the geometry of the spatial arena and

the occurrence of repeated attacks and �eeing displayed by both antagonists is available
for a leafminer larva-parasitic wasp interaction. This system has been studied in depth
and only the relevant information is provided here.
Movements by both wasp and host larva produce vibrations of the leaf tissues in

which the caterpillar lives, which may be sensed by both actors ([18]; [19]). The wasp
�ies toward the visual appearance of the mines due to the white spots, thereafter called
windows, which are feeding locations of a couple of mm2 where only the cuticle of the
leaf remains. The feeding larva is below the window, and can be seen through the
translucent cuticle. The number of windows increases during larval development [20].
The wasp lands on the leaf and starts the game. Leaf vibrations cause the larvae to
cease feeding and to become �alert.�On the one hand, vibrations produced by the host
during escape are useful to the parasitoid female, as a trigger to continue the hunt [19]).
On the other hand, vibrations produced by a hunting parasitoid at the leaf�s surface
are also useful to the host, which remains alert. The wasp tries to sting the larva by
inserting the ovipositor violently in one of the windows, the other areas of the mine
being too tough to penetrate. A successful search ends with the larva being parasitized
and the wasp laying an egg.
Let us now formalize that biological example as repeated search game. We consider

that the white spots on the mine are the locations under which the hider hides. This
number can reach easily over one hundred. For simplicity, we assume that the larva is
hiding under only one window. In reality, a large larva can be simultaneously under a few
windows. A look starts when the wasp explores a given window with its antenna. There
are then di¤erent possibilities depending on whether the larva is hiding there. If the hider
is somewhere else, the wasp moves to another window or inserts the ovipositor to explore
the location more carefully (these less frequent cases are classi�ed as searching). In either
of these cases the wasp the wasp then moves to another location. If the larva was under
the search window, either the wasp does not sense it and moves to another window or
the wasp pursues the larva by inserting violently its ovipositor. So, overlooking the hider
is a possibility which implies the end that look, as the wasp is changing location, but
its rare occurrence is not implemented in our model. For a given pursuit, there are two
possible events. First, the wasp might hit the larva and the game ends. Alternatively,
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the wasp might merely touch the larva or produce strong leaf vibrations. Both actions
lead to the escape of the larva, which relocates itself with uniform probability under
any of the windows. A change of windows by the larva terminates the look, irrespective
whether the wasp persists searching at the actual location. A change of window by the
wasp also terminates the look. If both remain in the same location, the behavioural
sequence starts anew, but within the same look. The game is of �nite duration T, either
because the wasp captures the larva or gives up.

3 Review of basic game G (k; 0)

All the games we study are zero-sum two person games. The payo¤ function is always
the probability that the Searcher eventually �nds and captures the Hider. Thus the
Searcher is the maximizer and the Hider is the minimizer. Such games have a value,
denoted by v; and optimal mixed strategies for each player. The optimal strategy for
the Searcher will guarantee that the capture probability (payo¤) is at least v and the
optimal strategy for the Hider will guarantee that the capture probability is at most v:
The pair of optimal strategies form a Nash equilibrium, though of a special type. The
details of the general form of search games can be found in [5].
Before describing the general game G (k; �) with persistence probability �; we review

what we call the basic game studied in [3]. There is no persistence of attack, the
persistence probability � is 0; which is why the second parameter (for �) describing the
game is 0: There are n locations i 2 f1; 2; : : : ; ng for the Hider to hide in. If the hider
stays at location i; then the probability of capture, in case that the searcher looks at
this location is pi; where p = (p1; : : : ; pn) is a known vector capture probabilities, with
the locations ordered so that p1 � p2 � � � � � pn: Thus location 1 is always the location
where it is hardest to catch the hider. The Searcher is limited to looking in k out of the
n possible locations of the Hider. Since the time that he �nds the Hider is not important
in our model, a pure strategy for the Searcher is simple a subset S � f1; 2; : : : ; ng of
cardinality k: If the Hider�s location i belongs to the searched set S; the Hider is captured
with probability pi; otherwise he is not captured. The payo¤ to the Searcher (Hider) is
1(0) if the Hider is captured and 0(1) otherwise.
In terms of pure strategies, where the Hider chooses location i and the Searcher looks

at each location in the set S; the payo¤ (probability of capture) is given by

Payo¤(S; i) =

�
0; if i 2 S; and
pi; if i 2 S: (1)

A mixed strategy for the Hider is a probability distribution h = (h1; : : : ; hn) over the
locations, so that 0 � hi � 1 and h1 + : : : hn = 1: For the Searcher, it is a probability
distribution over the subsets of f1; 2; : : : ; ng of cardinality k. A simpler representation of
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a search strategy, shown to be equivalent in [3], is an n-vector r = (r1; : : : ; rn) satisfying

nX
i=1

ri = k; 0 � ri � 1; (2)

where ri is the probability that i 2 S: (Note that the extreme points of the set of all
such points r have k coordinates equal to 1 and the rest equal to 0; and thus can be
identi�ed with particular k�sets S:)
It is useful to observe that in games of hide and seek (called search games in the

literature [5]), pure strategies are generally not very good for either player. If the Hider
always goes to the same location, the Searcher will always look there �rst; If the Searcher
always searches locations in the same order, the Hider will choose a location not searched
or searched late (if capture time enters the payo¤). An exception to this is Type II
solution of Theorem 1, where the Hider always chooses location 1 (the best location for
escape) and the Searcher always looks there �rst (or in the �rst k looks). But in any
case the prevalence of mixed strategies as Nash equilibria (optimal strategies) in search
games is in stark contrast to the pure strategies which are su¢ cient as evolutionary
stable strategies in asymmetric animal contests [21]. It should be noted in any case that
the �pure�strategies in [21] are behavioural and involve randomization. In addition that
during any round of our game neither player knows about the choice made by the other
player so there is no asymmetry of knowledge.
In terms of mixed strategies r (for the Searcher) and h (for the Hider), the capture

probability (payo¤)is given by the following formula, which is however never explicitly
used in �nding the solution.

Payo¤ (r; h) =
nX
i=i

hiripi: (3)

That is, the Hider will be captured if for some location i : the Hider hides at location
i; the Searcher looks in location i and the Search successfully catches the Hider in the
pursuit stage at location i:
The solution to the basic game G (k; 0), as given [3], can be summarized in the

following result from [3], where

� = � (p) =
1P
1
pi

: (4)

Theorem 1 (Gal-Casas) The value of the game G (k; 0) is given by

v = min (k�; p1) : (5)

The optimal strategies come in two types, mixed (Type I) and pure (Type II).
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Type I solution If k < p1=� (that is, v = k�) then the unique optimal search strategy
satis�es ri = k�=pi, and the unique optimal hiding strategy satis�es hi = �=pi;
i = 1; : : : ; n (the Hider makes all locations equally attractive for the Searcher).

Type II solution If k � p1=� (that is, v = p1) then any optimal search strategy sat-
is�es r1 = 1 (1 2 S) and ri � k�=pi for i = 1; 2; : : : ; n and the uniquely optimal
hiding strategy is to hide at location 1; that is, h1 = 1:

4 The game with persistence of attack, G (k; �)

This section covers the more general game, G (k; �) ; with an arbitrary persistence prob-
ability �:

4.1 Framework

We now extend the game of [3] to multiple periods. When the persistence � is 1 we have
a repeated game, and when � < 1 the game is mathematically equivalent to a discounted
repeated game, where � plays the role of the discount factor.
The repeated game G (k; �) has an unlimited number of stages played at the same

n locations. In each stage the pure strategies are the same as in the basic game G (k; 0)
discussed in the previous section: the Hider chooses a location to hide in and the Searcher
chooses a subset S of cardinality k to inspect. There is no in�uence of previous play
in earlier stages, except in the variation discussed in the �nal section, where the Hider
cannot return to a location where he has previously hidden. There are three possible
outcomes:

1. If the Searcher does not �nd the Hider, then the game ends with zero payo¤ for
the Searcher and a payo¤ of one to the Hider. (Hider wins.)

2. If the Searcher �nds the Hider and successfully pursues it (captures it), then the
game ends with a payo¤ of one to the Searcher and a payo¤ of zero to the Hider.
(Searcher wins.)

3. If the Searcher �nds the Hider but does not catch it, then there are two possibilities.
With probability 1 � � the predator gives up and the game ends with a win for
the Hider. With the persistence probability � the process restarts with the Hider
�nding a new location.

The value v (0 � v � 1) is the probability that the Searcher eventually captures the
Hider, with best play on both sides. We will show that there exist optimal strategies for
both players which are usually unique. The dynamics of the game can be seen in Figure
1 below.
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Figure 1. Flowchart of the repeated game dynamics.

4.2 Basic lemmas for G(k; �)

The basic equation for the value v of the game G(k; �), with persistence �, will be later
shown to be

nX
1

v

pi + (1� pi) �v
= k: (6)

We now present several needed basic results.
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Lemma 2 The LHS of (6) is (continuous) strictly monotonic increasing in v:
Thus, equation (6) has a unique positive root v; 0 < v � 1:

Proof. The left hand side (LHS) of equation (6) can be written as

LHS =

nX
1

1

pi=v + (1� pi) �

so it is a strictly monotonic increasing function of v for v > 0: This function continuously
increases from 0 to at least n as v increases from 0 to 1: Since k � n; it follows by
continuity that there exists a unique root for equation (6).

De�nition 3 Let v1 satisfy
v1 = p1 + (1� p1) �v1 (7)

so
v1 =

p1
1� � + p1�

: (8)

It immediately follows from Lemma 2 that

Lemma 4 As v increases from 0 to v1 , LHS of (6) continuously increases from 0 to
M given by

M =
nX
1

v1
pi + (1� pi) �v1

=
nX
1

p1
pi(1� �) + p1�

: (9)

Also, as persistence � increases from 0 to 1; M increases from
nP
1

p1=pi to n:

Lemma 5 If k < M; then for any i

v < pi + (1� pi) �v (10)

Proof. By Lemma 4 if k < M; then v < v1 so v < p1 + (1� p1) �v: Since the RHS
of (10) is a convex combination of 1,and �v � 1 and pi � p1; the result follows.

4.3 Type I solutions of G(k; �)

A Type I solution for G(k; �) is a pair (h�; r�) such that h� is the hiding strategy that
makes all locations equally attractive for the Searcher to visit for each stage indepen-
dently of history and r� is the search strategy that makes all locations equally attractive
to hide at for each stage independently of history. We now show that these strategies
are optimal if k is smaller than the threshold M:
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Theorem 6 (Type I) If k � M (see (9)), then the solution of the game G(k; �) is of
Type I:
The optimal strategies, unique for k < M; are

h�i =
v=k

pi + (1� pi) �v
for the Hider, and (11)

r�i =
v

pi + (1� pi) �v
for the Searcher. (12)

The value v of the game is the unique solution of equation (6), as guaranteed by Lemma
2.

nX
1

v

pi + (1� pi) �v
= k:

Proof. Assume that k < M: First note that for all i; r�i < 1 by Lemma 5.
We now show that r� = (r�1; :::; r

�
n) guarantees capture probability equal to v which

solves equation (6) against any hiding strategy. For obtaining the minimum probability
of capture, achievable by the Hider, if the searcher uses r� the Hider has to solve the
corresponding Markov Decision Process (MDP) [22] with just two states (a �free�state
and an absorbing state �capture�) and a �nite action space for the Hider. In this MDP
there are no costs involved except for a cost 1 which is paid by the Hider if the searcher
visits her location (and the process then enters into the absorbing state �capture�). By
the basic theory of MDP we need to take into account only deterministic stationary
strategies for the Hider, i.e., always hiding at the same location, say j: For any such j
the probability of capture if the Searcher uses r� is

1X
m=0

�
r�j (1� pj) �

�m�1
r�jpj =

r�jpj

1� r�j (1� pj) �
= v

by (12).
Next we show that h� = (h�1; :::; h

�
n) keeps the probability of capture to at most v

against any search strategy. In order to obtain the maximum probability of capture
achievable by the searcher if the hider uses h� we have to solve an analogous two state
MDP for the searcher. Again, we need to consider only deterministic stationary search
strategies of searching only a set of k locations, say i1; :::; ik: For any such set of locations
the probability of capture if the Hider uses h� is calculated as follows. The probability
of another round of the process is

B =
kX
j=1

h�ij
�
1� pij

�
�: (13)
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Thus, the overall probability of capture is

1X
m=0

Bm
kX
j=1

h�ijpij =

Pk
j=1 h

�
ij
pij

1�B =

Pk
j=1

v=k

pij+(1�pij)�v
pij

1�
Pk

j=1
v=k

pij+(1�pij)�v

�
1� pij

�
�

(14)

by (13) and (11).
In order to calculate (14) observe that for any dj > 0; j = 1; : : : ; k; with cj = y (1� dj) ;
we have P

j cj=k

1�
P

j dj=k
=

y
k

P
j (1� dj)

1
k

P
j 1� 1

k

P
j dj

= y

 
1
k

P
j (1� dj)

1
k

P
j (1� dj)

!
= y:

Denote now vpij
pij +

�
1� pij

�
�v
= cj

and �
1� pij

�
�v

pij +
�
1� pij

�
�v
= dj

then
cj

1� dj
= v

so the expression given by (14) is equal to v: Thus, the hiding strategy h� assures
probability of capture at most v given by equation (6). We have thus shown that v is
the value of the game and (h�; r�) is a Nash equilibrium.
We next show that r� = (r�1; :::; r

�
n) is the unique search strategy that guarantees the

payo¤ v given by (6). Assume that there exists a location j with rj < v
pj+(1�pj)�v : Then

by hiding at j the Hider would make the Searcher�s payo¤

rj[pj + (1� pj) �v] < v:

Thus, in order to guarantee payo¤ v all ri would have to satisfy

ri �
v

pi + (1� pi) �v
:

But r has to satisfy (2) so by (6) and Lemma 2 we must have equality. We have thus
proved the uniqueness of r�:
We now prove the uniqueness of h� :

If

hj >
v=k

pj + (1� pj) �v
; for some j; (15)
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then the Searcher can get more than v by using a vector r with ri = (1� �) v
pi+(1�pi)�v

for all i 6= j and rj = v
pj+(1�pj)�v +�

P
i6=j

v
pi+(1�pi)�v , where � is a small positive number.

Thus, the payo¤ for the Searcher using R is

(1� �) v+�
nX
i=1

v

pi + (1� pi) �v
hj [pj + (1� pj) �v] > (1� �) v+�

nX
i=1

v

pi + (1� pi) �v
v=k > v:

4.4 Type II solution for general � and k �M
Here we show that if k �M , whereM is given by (9), then the optimal solution is Type
II: always hide at the most favorable location i.e. at location 1 which has the smallest
pi:

Theorem 7 (Type II) Suppose k �M , where M is given by (9). Then v = v1 given
by (8), and an optimal solution for the Hider is to hide at location 1 (Type II). For the
Searcher it is optimal to use an r1 vector satisfying

r11 = 1; and

r1i � v1
pi + (1� pi) �v1

for i � 2:

Proof. By (7), hiding at location 1 guarantees v1 for the Hider. Also, the vector r1;
which guarantees v1 against any hiding location, is feasible by (9) which implies that

nX
i=1

v1
pi + (1� pi) �v1

=M � k:

4.5 The ranges of Type I and II solutions

Here we show that in general there is a cuto¤ value of the persistence probability �
above which the game G (k; �) has only Type I (mixed) solutions and below which it
has only Type II (pure) solutions. Sometimes there are only Type I solutions.

Theorem 8 For a given k � n; Let �k denote the solution of the equation

k = w (p; �) �
nX
1

p1
pi(1� �) + p1�

: (16)

Then
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1. If � > �k , then there are only Type I solutions to the game G (k; �) :

2. If � < �k , then there are only Type II solutions to the game G (k; �)

3. If the equation (16) has no solution, then there are only Type I solutions to the
game G (k; �) :

Proof. M given by (9) is monotonic increasing with �: Thus, � > �k implies that
k < M: Hence Theorem 6 implies that the unique solution of G(k; �) is of Type I.
Similarly � < �k implies that k > M so Theorem 8 implies that the solution of G(k; �)
is of Type II.
If (16) has no solution, then it must mean that the right hand side w1 of (16) is always
greater than k (because for � = 1 the w1 equals n) so there are always only Type I
solutions to the game G (k; �) :

Note that �1 � �2 � ::: � �n = 1; because the denominator of (9) is decreasing with
�:

Example 9 In order to illustrate both types of solution for G (k; �), we consider �rst
an example with four hiding location and take the capture probability vector to be �p =
(:2; :3; :4; :5) :

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1

2

3

4

 persistence beta

k

Type I

Type I

Type IType II

Figure 2. Plot of k = w (�) for capture probabilities �p:

Figure 2 shows which strategy type is optimal for p = �p: We plot the curve k = w (�)
which gives the least value of k; as a real number, for which Type II strategies are optimal.
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So for example when � = :1; Type II strategies are optimal for k > 2:6: But as k is always
an integer in our model (the number of searches), this e¤ectively means that for � = :1
Type II strategies are optimal only when k = 3 (or in the trivial case k = 4; where all
locations are searched). For k equal to 1 or 2, the �gure shows that Type I strategies are
optimal for any persistence probability �. If we �x k = 3; the line at height 3 intersects
w (�) at about �3 = 0:469, which is thus the cuto¤ value of � for Type II strategies and
Type I strategies. That is, when � < 0:469 the solution to G (3; �) is of Type II, while
for � > 0:469 the solution is of Type I.

Example 10 We now consider a larger arena with nine hiding locations, with capture
probabilities given by the vector p̂ = (:1; :2; :3; :4; :5; :6; :7:; :8; :9) : Figure 3 plots the curve
k = w (�) which again gives the least k; as a real number, for which Type II strategies
are optimal. Since in our model k is the integer giving the number of searches, Figure 3
only has implications for integer values of k; which are drawn as horizontal lines. The
intersection of the curve w (�) with the horizontal line at height k is called �k; and for
� � �k the solution for k searches is of Type II because there the line of height k is above
the curve k = w (�) : For � � �k; the solution for k searches is of Type I. Note that for
k = 1; 2 we only have Type I solutions, but for higher k we have both types.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1

2

3

4

5

6

7

8

9

persistence beta

k

Hide at best location: Type II

Randomize hiding over all locations: Type I

Figure 3. Plot of k = w (�) for capture probabilities p̂::

Remark 11 Note that in general if
nX
1

p1
pi
> j;
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(or, equivalently, p1 > j�) then G(k; �) has only Type I solutions for all k � j: This
follows from Theorem 9 because the RHS of (16) at � = 0 is greater then j so no solutions
for (16) exist if k � j: So for example if p = (0:5; 0:5; 1; 1) we have equality for j = 3
so we have only Type I solutions for k = 1 and 2; and if k = 3 only Type I solutions for
� > 0:

4.6 An alternative approach to the repeated game

An alternative way of obtaining some of the results about the game G (k; �) is to reduce
it to the one stage game by changing the capture probabilities. Suppose the value of the
game G (k; �) is known to be some number v: If the Hider hides at a location i and the
Searcher visits it then the payo¤ to the Searcher can be written as

q = pi + (1� pi) �v;

because the Searcher wins immediately (payo¤ 1) with probability pi and with probabil-
ity (1� pi) � he gets to play the game (with value v) again. The remaining probability
can be ignored as it gives him payo¤ 0. It follows that the multi-period game G (k; �)
is equivalent to the one stage game (� = 0) with capture probabilities qi:
Using (5) of Theorem 1 with qi replacing pi we get the implicit equation

v = min (k�; q1) = min (k�; p1 + (1� p1) �v) (17)

where
� =

1P
1
qi

.

The implicit equation (17) can be solved by using Lemmas 2 and 4. Solutions with
the minimum in the �rst coordinate give Type I solutions and those with the minimum
in the second coordinate give Type II solutions.

5 Discussion

We �rst address here the biological signi�cance of our �ndings and end up the paper
with an enhancement of our analysis by accounting for the possibility that prey do not
return to locations where they were previously found but escaped capture.
Persistence in the search leads to more randomization in the prey choice of hiding

locations. In the one stage game of Gal and Casas [3], a larger parameter k means more
potential searches. It also means that prey is more likely to hide at best location, in
other words there is less randomization in the hiding locations. The persistence game of
this paper implies, for k �xed, more potential searches for bigger beta. Therefore bigger
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beta means prey is more likely to be found �but in this case he is less likely to hide at
best location. This implies more randomization, so the e¤ect of more searches due to
persistence is the opposite. This can be seen in Figure 3, where increasing k (going up)
leads into the type II region whereas increasing beta (going right) leads into the type I
region.
Despite extensive search, we were unable to �nd descriptions of biological interactions

in which the arena was mapped with su¢ cient precision to identify hiding locations,
enabling us to test the predictions of the model. In the only case for which we have
su¢ cient information, the leafminer case detailed in the introduction, the very large
number of ovipositor insertions leads to a full randomization of the �eeing locations of
the caterpillar location (see [18] and [19]). By contrast, there is ample evidence that
persistence of attacks leads to increased randomness in other characteristics of prey
escape for several biological systems [23]. For example, the distribution of angle of
�eeing in cockroaches increases in variance with an increasing degree of persistence of
attacks [23]. In all cases, increasing randomness in prey escape hampers any learning
process in the persistent predator.
A predator-prey interaction for which several of the key ingredients of the game are

known is the attack behavior of polar bears and Inuits Eskimos on seals at breathing
holes. Polar bears (Ursus maritiums) hunting ringed seals (Phoca hispida) use di¤erent
approaches at di¤erent times of the year with still-hunts, also called sit and wait preda-
tion, being a common occurrence [24]. Hunting seals with harpoons at breathing holes
belongs to the traditional way of hunting for the Inuits Eskimos, and is very similar to
the technique used by bears [25]. Both polar bears and Inuits may wait quietly seals
at their breathing holes for hours, making a minimum of movements, as sound is quite
well transmitted through ice in water. Seals do not use holes if they hear noises at the
surface. Just before surfacing, seals are also producing �phantom�signals by exhaling air.
The bubbles move the water surface and a misled hunter might then launch a premature
attack and miss the wary prey. The attacked seal then avoids using that hole due to
potential danger but needs to swim rapidly to another, safer hole before oxygen deple-
tion. Alternatively, it can wait to reuse the same hole until the predator gives up and
moves away. In summer, the number of breathing holes is large. In winter, the number
of breathing holes is reduced as each hole has to be maintained actively and maintaining
all the holes of summer requires too much e¤ort. Indeed, a hole is excavated through
ice which can exceed 2 m in thickness [26] and a thick cap can be formed within a few
hours. The home range of ringed seals overlap extensively and multiple seals use the
breathing holes [26]. From the map produced by [26] one can estimate the density of
breathing holes at about approximately 2-3 breathing holes per km2. Finding a hole of
several tens cm diameter at such low density in a nearly featureless landscape is not an
easy task for bears, nor for humans. Information about rapid changes of hunting holes
by bears and humans is very scant in the literature, so that this example cannot be
further used, despite containing all major ingredients, as basis for modelling persistent
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search and attack.

5.1 Improving the realism of the repeated search model

Our model includes two assumptions that might be relaxed. The �rst is that the available
hiding locations do not change over time and the second is that once the prey successfully
evades the predator, he will not be captured before he �nds a new hiding location.
Up to now we have been assuming that in the multi stage games the available hiding

locations remain the same over time. However we now consider the implications of the
opposite assumption, namely that if the prey successfully escapes after being found at
location j; he may not return to that location in the next stage game. This restriction
on prey strategies is in accordance with two biological examples from the introduction:
a wary seal might prefer to swim to a di¤erent breathing hole and a wary caterpillar
might have jerked in its mine and relocated itself somewhere else. As this restriction
is a complicating feature, we explore the consequences of the �no return�assumption
in the simplest setting, a two stage game four locations with full persistence � = 1 in
the �rst stage. We consider the example where the capture probability vector is �p =
(:2; :3; :4; :5) :In the version with the no-return assumption, the optimal hiding strategy
in stage 1 is given by ĥ = (0:331; 0:268; 0:218; 0:183) : In the unrestricted version (where
the hider can return to a previously occupied location) the optimal hiding strategy in
stage 1 is given by ~h = (0:355; 0:263; 0:209; 0:173) : Note that when return is prohibited,
the optimal probability of hiding at the best location, location 1; goes down from :355
(in the unrestricted case) to :331: The intuition for this decreased probability is that
hiding at location 1 in the �rst stage now has the disadvantage that this good location is
no longer available in the second stage. Of course if the probability of hiding at location
1 goes down, this must be compensated by increasing some of the other probabilities.
But it is interesting to note, in this respect, that the ratios ĥi=~hi form an increasing
sequence, (0:931; 1:018; 1:046; 1:058). In terms of the value (probability that predator
wins), it goes up from ~v = � (~q) = :093 in the unrestricted game to v̂ = � (q̂) = :100
in the game where the prey is restricted to no-return strategies. Of course it is well
known that, in zero sum games, restricting the strategies of one player results in a lower
expected payo¤ for that player, so the direction of change is not surprising.
The second assumption that might be relaxed concerns the ability of the prey to

safely reach any new hiding location once he has escaped pursuit by the predator at
location i: This models the situation where the prey is only vulnerable to capture while
in one of the hiding locations (perhaps these are places to feed and out in the open).
This is the same as in the model of [10]. However it is possible in theory to incorporate a
probability pij that the prey will be captured when changing from location i to location j:
This could model the cover in the region between the hiding locations. Clearly locations
i where the numbers pij and pji are high would then become less attractive to hide at.
Another version of this type of modelling could be to impose a network structure on the
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hiding locations, so that if hiding in location i in one period the prey could only move
to an adjacent location i0 in the next period.
Both these altered models could be investigated in future research, and we thank an

anonymous referee for suggesting modi�cations of our model in such directions.

5.2 Conclusion

This work is the �rst to extend search games to repeated games. It thus expands greatly
the number of observed searcher-hider interactions played repeatedly by the same pair of
agents in the same environment and also highlights the opposite inferences drawn when
incorporating multiple bouts of search and escape, in comparison with the ones obtained
in one stage games. Our next goal is to further increase the realism of search games by
developing stochastic search games to deal with the giving up time of persistent, learning
predators.
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