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Abstract

Contact stylus methods remain important tools in surface roughness measurement,
but as metrological capability increases there is growing need for better
understanding of the complex interactions between a stylus tip and a surface. For
example, questions arise about the smallest scales of topographic features that can
be described with acceptable uncertainty, or about how to compare results taken
with different types of probe. Thisthesis uses simulation methods to address some
aspects of this challenge. A new modelling and ssimulation program has been
developed and used to examine the measuring of the fine structure of the real and
simulated surfaces by the stylus method. Although ableto scan any arbitrary surface
with any arbitrary stylus shape, the majority of the results given here usesidealized
stylus shapes and ‘real’ ground steel surfaces. The simulation is not only used to
measure the roughness of the surface but also to show the contacts distribution on
the tip when scanning a surface. Surface maps of the fine structure of ground steel
surfaces were measured by Atomic Force Microscopy (AFM) to ensure high lateral
resolution compared to the capability of the target profilometry instruments. The
data collected by the AFM were checked for missing data and interpolated by the
scanning probe image processor (SPIP) software. Three basic computer generated
stylus tips with different shapes have been used: conical, pyramid and spherical
shapes. This work proposes and explores in detail the novel concept of
“thresholding” as an adjunct to kinematic contact modelling; the tip is incremented
downwards 'into’ the surface and resulting contact regions (or islands) compared to
the position of the initial kinematic contact. Essentially the research questions have
been inquiring into the effectiveness of so-called kinematic contact models by
modifying them in various ways and judging whether significantly different results
arise. Initial evidence shows that examination of the contact patterns as the
threshold increases can identify the intensity with which different asperity regions
interact with the stylus. In the context of sections of the ground surface with atotal
height variation in the order of 500 nm to 1 um, for example, a 5 nm threshold
caused little change in contact sizes from the kinematic point, but 50 nm caused
them to grow asymmetrically, eventually picking out the maor structures of the
surface. The simulations have naturally confirmed that the stylus geometry and size
can have asignificant effect on most roughness parameters of the measured surface
in 3D. Therefore the magjor contribution is an investigation of the inherent (finite
probe) distortions during topographic analysis using astylus-based instrument. The
surprising finding which is worthy of greater investigation, is how insensitive to
major changes in stylus condition some of the popular parameters are, even when
dealing with very fine structure within localized areas of aground surface. For these
reasons, it is concluded that thresholding is not likely to become a major tool in
analysis, although it can certainly be argued that it retains some practical valueasa
diagnostic of the measurement process. This research will ultimately allow better
inter-comparison between measurements from different instruments by allowing a
‘software trandator’ between them. Short of fully realizing this ambitious aim, the
study also contributes to improving uncertainty models for stylus instruments.

Xii



Chapter 1
1. Introduction

1.1. Overview
Despite the strong reasons for continuing to use contact stylus measurements of

micro-topography, we must recognise that they will impose highly non-linear and
practically undecipherable distortions into the measured geometry whenever the
effective radius of the tip becomes significant compared to the size of the smallest
features of interest on the surface being measured. While interest in smaller and
smaller features continues to grow, it is not possible to similarly reduce the stylus
tip size and retain arobust instrument. Thus, several concerns need to be addressed
with some urgency. Atits most basic, we wish to have good, reliable guidelinesfor
when it is safe, in the sense that the distortions introduced are tolerable, to use a
particular type of tip for a particular type and scale of topography. It must be
recognised that there are increasing risks that an inadequate tip on an existing
instrument will be used unthinkingly as the technical demands increase, leading to
dangerously inaccurate measurements. Thus, theideaof discovering practical ways
by which instruments might be able to warn of (if not strictly self-diagnose)
potentially misleading resultsisvery attractive. Extending thisidea, we might even
consider diagnosing the increased ‘radius’ of aworn tip. Thereis also increasing
concern within International Standards over the lateral uncertainty in topographic
measurements, expression of which depends directly on knowledge of how stylus
tips interact with rea topographies. Associated with, but distinct from, these
matters of measurement uncertainty, there is the question of predicting method
divergence between different types of topographic instrument. An understanding

of how a probe interacts with a surface is clearly crucia to any attempt to model



how the results from one type of instrument relate to those from another type. This

thesis aims to contribute to the longer term solution of these challenges.

As will become obvious from the reviews included here, it is amost impossible to
gain precise experimental information about the contact between a stylus and a
rough surface at the micrometre and smaller scales. Thereisno way to incorporate
sensors into the contact region that is actualy practicable in terms of precision,
robustness or cost. The only plausible approach, certainly in the early stages of the
research, for ranking rival methods and for setting the scope of what will ultimately
be needed is to use computer models validated to some extent by their producing
similar gross effects to those seen on real instruments. Hence, this work considers
only numerical experiments based around new extensions of modelling ideas
already demonstrated to have some physical relevance. Its starting point is the so-
called ‘kinematic model’, a purely geometrical consideration of the locus of a ball
rolling on a surface, or of how a suitably constrained stylus comes into initia
contact with a rough surface. However, it is now essentia to collect data on how
the physical contact points relate to the positions around the stylus, not just to
provide a map of how a modified surface might look, and to provide a software
implementation that enables systematic study of it. From this might arise various
inferences about lateral (and vertical) uncertainty and the sensitivity to changesin
the nominal size and shape of a stylus. It is perhaps intuitively obvious, but will
anyway be explored in some detail later, that the idealised *first contact’” might be
misleading. For example, it could be vulnerable to quite small amounts of
instrument noise. Even if it were not, a very narrow high-point could be selected

that would be of virtually no functional significance. At this point it is necessary



to recall that there is longer-term interest in diagnostic processes that could runin
closeto real timeon the limited computational power available within acommercial
instrument. This provides a strong motivation for exploring agorithmically
straightforward methods for responding to the potential oversensitivity of the
kinematic model. It appears that even such basic approaches as manipulating the
vertical quantisation, or applying threshold values, has not been studied in this
context. We might, for example, ask questions such as if the stylusis pushed some
distance into the surface, what size and position of contact would arise, in one or
more ‘islands’ of continuous lateral extent? This raises yet more questions about
whether such methods might have value as post-process diagnoses of the fitness of
the probe for the measurement made. In effect, this would require running some
type of stylus-surface simulation based on the actua instrument output and
attempting to infer whether areasonable model of the actual stylus would affect the
data. Almost inevitably, this seems to demand data at a higher latera resolution
than is actually available and so a fast, not too approximate, interpolation process
would be needed. It might be possible to exploit the common idea that surfaces

show fractal-like behaviour over a reasonable bandwidth.



1.2. Research Questions and Aims and Objectives

Given the complexity of rea surface data, and even more so if we alow for non-
ideal tip geometries, there is no way to know how effective any such approaches
might be other than to try them. This isthe spirit in which this thesis approaches

the challenges just discussed. S0, its mgjor objectives are to:

» Generate sophisticated and validated models for the interaction between
engineering rough surfaces and contact probe in order to guide the art of the
topographic instrument or high-tech surface.

» Review the basic kinematic model and suggest how statistically richer data
can be obtained. In addition to areview of early models reporting 3D stylus
simulations and their effect in a series of basic numerical experiments. Also
to ensure that the correct and anticipated metrology needs are adopted from
the available academic literature.

= Present a computational study of kinematic models in precision of real
measurement noise.

» |nvestigate “threshold” methods that might lead to relaxation approaches
and account for material properties (Non-Kinematic models).

= Provide a comprehensive study of measurement uncertainty in Nano-

topograhic metrology.

1.3. Contribution

The summary of my major contribution is an investigation of the inherent (finite
probe) distortions during topographic analysis using stylus-based instruments.
While continually aware of physical systems, the main study is purely in modelling

and simulation. Essentialy, this work investigate about the effectiveness of so-



called kinematic contact models by modifying them in various ways and judging
whether significantly different results arise. The motivation is ultimately to allow
better inter-comparison between measurements from different instruments by
allowing a ‘software trandator’ between them. Short of fully realizing this
ambitious aim, the study al so contributesto improving uncertainty modelsfor stylus

instruments.

A new modelling and simulation program has been devel oped and used to examine
the measuring of fine structure of the real and simulated surfaces by the stylus
method. Although able to scan any arbitrary surface with any arbitrary stylus shape,
the maority of the results given here usesidealized stylus shapesand ‘real’ ground
steel surfaces. The simulation is not only used to measure the roughness of the
surface but al so to show the contacts distribution on the tip when scanning asurface.
Surface maps of the fine structure of ground steel surfaces were measured by
Atomic Force Microscopy (AFM) to ensure high lateral resolution compared to the
capability of the target profilometry instruments. The data collected by the AFM
were checked for missing data and interpolated by the scanning probe image
processor (SPIP) software. Three basic computer generated stylus tips with
different shapes have been used: conical, pyramid and spherical shapes. Various

dimensions have been compared, ‘imperfection’ introduced and so on.

This work proposes and explores in detail the novel concept of “thresholding” as
an adjunct to kinematic contact modelling; the tip is incremented downwards ‘into’
the surface and resulting contact regions (or islands) compared to the position of
the initial kinematic contact. This work is the first to implement a version of

kinematic stylus contact simulation that includes full geometric recording of



behaviour at the stylus tip; thiswill interest other specialists in the field because it
is a step towards more complete uncertainty models. The *threshold’ concept was
also new in this context and was an ideaworth practical investigation to seeif it has

the sengitivity to be useful as a self-diagnostic tool within instruments.

Initial evidence shows that examination of the contact patterns as the threshold
increases can identify the intensity with which different asperity regions interact
with the stylus. In the context of sections of the ground surface with total height
variation in the order of 500 nmto 1 um, for example, a5 nm threshold caused little
change in contact size from the kinematic point, but 50 nm caused them to grow

asymmetrically, eventually picking out the major structures of the surface.

The simulations have naturally confirmed that stylus geometry and size can have a
significant effect on most roughness parameters of the measured surfacein 3D. The
surprising feature of these, worthy of greater investigation, is how insensitive to
major changes in stylus condition some of the popular parameters are, even when
dealing with very fine structure within localized areas of aground surface. For these
reasons, it is concluded that thresholding is not likely to become a magjor tool in
analysis, although can be argued that it retains some practical value as a diagnostic

of the measurement process.

Finally, the method works without gross errors, but is clearly approximate and
probably generates distortions rather larger than would be wise for a diagnostic -
given expected further increase in cost-speed effectiveness of the computers that

will go on future instruments, it may be best, on the evidence of results here, not to



further pursue this level of approach but to revisit the general ideain afew years

using more sophisticated algorithms.

1.4. ThesisOrganisation

The discussions of the ideas, implementations, simulation experiments and the
subsequent eval uation of methods and interpretation of results are set out asfollows.
Following this introduction, Chapter 2 provides essential background and critique
about the past development and modern demands in surface metrology, including a
little on the methods that will be used later to obtain data for the simulations.
Chapter 3 then introduces more specifically the background relevant to stylus
simulation upon which the new work will be built. Chapter 4 discusses more
technical details of the simulation method and its practical implementation and also
a basdline software tool for stylus contact Simulation. Chapter 5 presents
refinementsto 3D simulations of stylus effects in microtopography measurements.
It briefly reviews how statistically richer data can be obtained by extending basic
kinematic models, perhaps providing steps towards more sophisticated modelling
of the contact process. The results concentrate on idealized and non-idealized styli

operating beyond the limit of their expected resolving power.

Chapter 6 introduced the new and novel implementation of a suite of tools for
studying stylus-surfaceinteractionin simulation. A consistent pattern of dataflows
and archiving around a highly modular organization is advocated, allowing new
features to be introduced in small, independently testable, modules. In this respect,
the first features included and not previously reported concern the mapping of
contact extent and intensity across the probe surface and the use of thresholding to

investigate sensitivities to noise and instrument resolution.



Chapter 7 introduced more implications for stylus profilometer uncertainty and a
further set of carefully integrated numerical experiments by using the threshold
idea. Additionally, it give more details of how can we interpolate surface data in
order to work with higher resolution stylus images, and demonstrate the genera
validity of an interpolation method that makes some physical sense in the context
of surface metrology and tribology. Finally, chapter 8 givesthefinal conclusion and

proposal for recommendation and further work.
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Chapter 2
2. Literaturereview

2.1. Introduction
Industrial, commercial and academic interest in measuring surface roughness

continues to increase for several reasons. Efficiency, lubrication, corrosion stability
and probability of crack formation are examples of where the roughness of
produced surfaces influence their performance, although often there is only an
empirical understanding of the relationship. Roughness is also important to optics
and to the perception of consumer products. A process control measurement is often
used in manufacturing, even when its functional significance is less critical to the

final product.

The contact of a small probe-tip against a surface is crucial to stylus-based surface
roughness metrology, which remains a popular and important practical technique
for both industry use and basic research. A finite stylus reduces measurement
fidelity through direct geometrical effects, el astic distortion and often by interaction

with dynamic effects that vary the contact force, sometimes to lift-off.

It is difficult to determine precisely the complex interactions that occur between a
profilometer stylus and a surface. Aswill be discussed it is virtually impossible to
directly instrument sub-micrometre scale contacts and anaytic models are little
help for pheromones that are not merely non-linear but slope-discontinuous. This
thesis therefore focuses on simulation studies intended to improve metrological
insights into how small contacts develop on rough surfaces (although it might well

have other micro-tribology applications).



This study reports recent progress on extended studies into the contact regimes of
surface profilometer styli, with a view especially to better understanding the
uncertainty budgets. It ssimulates the 3D contact of an approaching (ideal or real)
stylus. Interest here is specifically with behaviour at the limits of instrument
capability and is studied by using AFM-derived data to represent small areas of
engineering surfaces at resolutionsto 1 nm vertically and 200 nm laterally. Typical
conventional profilometers have stylus tips with characteristic dimensions of the
order of micrometres and noise levels of tens of nanometres. Extending upon
conventional kinematic simulations, its novelties include (i) detailed analysis of
how contact points or patches scatter with respect to the normal axis and (ii) a
“threshold” function for exploring numerical and physical sensitivity to very small

surface features (potentially noise).

Discussion will summarize the main features of the software implementation (using
the commercia package MATLAB) and the rationale for statistical parameters to
summarize contact spatial distribution. The simplest form of thresholdingisroughly
equivalent to ideally pressing the probe into the surface. For the illustrations used
here the modified surfaces are largely unchanged other than in terms of a slight
vertical offset. Interest liesin how the shift interacts with additional surface features

to ater the probe contact patterns.

This presentation reports recent progress on extended studies into the contact
regimes of surface profilometer styli, with aview especially to better understanding
the uncertainty budgets. It ssimulatesthe 3D contact of an approaching (ideal or real)

stylus. Behaviour at the limits of instrument capability is studied by using AFM-

10



derived data to represent small areas of engineering surfaces at resolutionsto 1 nm
verticaly and 200 nm laterally. Extending upon conventional kinematic
simulations, its novelties include (i) detailed analysis of how contact points or
patches scatter with respect to the normal axis and (ii) a “threshold” function for
exploring numerical and physical sensitivity to very small surface features

(potentialy noise).

The discussion will summarise the main features of the software implementation
(using commercial packages MATLAB and SPIP), the rationale for statistical
parameters to summarize contact spatial distribution, and the use of these
parameters to demonstrate the in-plane uncertainty to be expected when scanning

fine ground surfaces with atypical (2 pum) stylus.

2.2. Surface Metrology
The science of measuring both the deviation of a workpiece from its ideal shape

and the machining marks left by a machining tool on the workpiece surface is a
good definition for surface metrology. Jiang et a. (20073, p. 2049) defined surface
metrology as “the science of measuring small-scale geometrical features on
surfaces: the topography of the surface”. The geometrical features of a surface can
be classified as Form, Waviness and Roughness (Whitehouse, 2011). Form is very
long waves caused by error in slide ways. Waviness is irregularities of a longer
wavelength caused by errors in the path of the tool due to, for example, vibration
between the workpiece and a grinding wheel on the tool path. Roughness is
irregularities often caused by the manufacturing process including the impression

left by grinding or polishing.
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The waviness and roughness features are known as surface texture, and the
measurement of surface texture can be used to control the manufacture and predict
the functional performance of the workpiece (Jiang and Whitehouse, 2012). For
example, the surface roughness can monitor tool wear condition and predict the

failure time of contact surfaces.

The surface roughness (for example Ra or Rq) is sensitive to the cutting time under
different cooling / lubrication conditions due to the running-in process of cutting
tools (Jiang et a., 2010) where Ra is the modulus of arithmetic mean of the
magnitude of the deviation of the profile from the mean.

Measuring the surface texture of thin filmsisalso vital in roll-to-roll manufacturing
processes. It can characterise the defects in the films, which are directly related to

the film performance and lifespan.

There are three stages for surface measurement (see Figure 2.1). First isacquisition
of information about surface topography by instrumentation. Secondly,
decomposition of this information into primary features (waviness, roughness and
form) by filtration. Finaly, there is characterisation of the surface by

parameterisation.

There have been several fairly recent publications that give good coverage of the
early and mainstream development of ideas and techniques for surface feature

measurement.

Thisthesis therefore restricts discussion of such issuesto abrief summary of issues
directly influencing the research approach used; it generally, therefore, does not cite

original sources but recommends the more accessible recent reviews.
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Figure 2.1 Surface measurement stages (Upper: Instrumentation, middle:
decomposition & filtration and Lower: parameterisation & characterisation

2.3. Instrumentation Development
Traditiondly, in the past, surfaces were assessed by either eye or thumbnail.

Tomlinson at the National Physics Laboratory (NPL) implemented the first contact
instrument as long ago as 1919 to measure the height of the roughness (Buice,

2007). However, the first practical instruments to measure axia profile were not
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designed until the 1930s using a stylus-based method. Carl Zeiss designed the first

non-contact optical instrument in Germany in1934 (Whitehouse, 2011).

In order to extract from the measured data the geometrical features of the surface
that are of primary (functional) concern in a particular situation, filters with
different wavelength cut-off boundaries have been developed. The first attempts at
separating waviness from roughness introduced two filter types, M-system (mean-
line filter) and E-system (envelope filter). Both were conceived of as generating a
“reference line” representing the local trend of the workpiece surface, with respect
to which other roughness features could then be described .The M-system and E-
system were an electrical RC filter (low frequency pass) and a mechanical rolling

circlefilter respectively.

In 1963, the phase distortion produced by the single RC filter was corrected by
adding a second RC circuit. The buffered 2CR (high pass to give roughness signal
relative to the reference line) was introduced earlier, giving a sharper cut-off, but

retaining phase distortion.

This filter was widely used in the 1960s and 70s especially after the filter was
digitised at the turn of 1970. DJW 1986 (IMechE) is the real start for a ‘phase
corrected’ version, which cannot beimplemented in real time or by simple analogue

circuitry.

They can, though, readily be emulated in digital computation. They only therefore

become economically practicable on standard instruments from the mid-1980s.
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Figure 2.2: simple RC-filter (low pass filter)

Even a fully “zero-phase’ digita filter with a 2RC characteristic showed some
undesirable characteristics in terms of discriminating features of functional
significance (and because different ways of implementing it could lead to marked
inconsistencies). Thiswas overcomein 1986 by introducing a Gaussian filter asa
standardised phase-corrected profile filter. Further development led to an 1SO
profile filtration toolbox which consists of five classes namely; linear filters,
morphological filters, robust filters and segmentation filters (Jiang et al.,2007a).
For area filtration, the scale-limited concept is now considered. This concept is
based on dividing the surface texture wavelengths into three scales namely: S-scale
(contains small-scale lateral component), L-Scale (contains large-scale
component), and form (contains the nomina form). Each scale has its own filter:
the SHilter, L-filter and F-operator respectively. The areafiltration is achieved by
some combination of these filters. For example, to filter out the unwanted small-
scale measurement noise and the nominal form, an (SF) filter can be used. Filters
such as those utilising wavelets are still under development as modern
manufacturing starts turning from traditional simple geometries toward free-form

geometries.
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2.3.1 Surface Characterization

The need to characterise surface topography was realised from the early pioneering
days of the development of measuring instruments. The birth of statistical methods
could be attributed to Abbott and Firestone when they proposed the use of the
bearing area curve (Abbott and Firestone, 1933). The bearing area curve is based
upon considering the contact properties of the surface; however it can be shown that
it is equivalent to the cumulative probability distribution of surface heights. The
most common parameter isthe centreline average (Ra) value, and iseasily obtained
by direct reading of a meter on most stylus based measuring instruments. Thomas
(1981) suggests that the Ra value has no physical significance and is used because
it is convenient for the instrument maker. It is true that most of the statistical
treatments of surface roughness are based upon the rms (Rq) value of the surface
heights; however the Ra value has found its way into widespread use and it would
be difficult to change this situation. For many surfaces, namely those having a
Gaussian distribution of surface heights, there exists a simple relationship between

the Rq and Ravalues:

K z" (%)
M~ (54 200) (21)
Ra = (%)E Rq (2.2)

Ra and Rq are examples of height-dependent parameters of which there are many
more; continental Europe favours a system based upon extreme value such as the
highest peaks and the lowest valleys. These methods have been well documented

elsewhere (Thomas, 1999) and are not discussed here. An important stage in the
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devel opment of surface characterization was the realization that surface topography
is not merely a height-dependent phenomenon but its variation in the horizontal
plane is also relevant. The variation of surface height with horizontal distance is
often referred to as the texture of the surface, an open-textured surface, being one

with alarger distance between peaks than a closely-textured surface.

Theinadequacy of Raand Rq values to define the texture of a surface can easily be
demonstrated by considering two sine waves of equal amplitude but different
wavelengths. In both cases Ra and Rq values would be the same, however the
waveforms have a visible difference and this observation is aso true for red
surfaces. The advent of random process methods alowed the height and spatia
variation of surface topography to be described. Random process methods have
been the bases of many of the published mathematicad models of surface
topography, a notable example being Nayak (1971); following on from the earlier
work of Longuet-Higgins (1957) on the properties of ocean waves. Early attempts
to quantify the spatial properties of surfaces confined themselves to analogue

techniques.

The use of digita computers in surface topography characterization has led to
almost limitless possibilities of defining new parameters. Indeed the extent of the
growth of new parameters has prompted one notable author to refer to the present
state of affairsasa"parameter rash” (Whitehouse, 1982). With the aid of computers
it is possible to calculate, within the confines of the discretization process, any of
the random process functions or height-dependent parameters that have gained

popular acceptance amongst research workers.
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Examples of numerical parameters used for surface profiles are amplitude
parameters such as, in the modern SO notation Ra (also called AA or CLA inthe
early years and Rq and spatial parameters e.g. Sm (see Figure 2.3). The Rq is the
root mean square value where, Ra is the mean modulus and they tend to closely
correspond on most realistic surface types. The Sm is the mean spacing between
profile peaks at the mean line (the mean of S values shown in Figure 2.3) (Smith

and Chetwynd, 1992).

The manufacturing processes devel oped in the 1990s shifted the surface metrology
from profile to areal characterisation. Areal parameters are known as field
parameters and are widely used for surface characterisation. Field parameters
consist of both S-parameters and V-parameters. The S-parameters describe both
amplitude and spatial information. The V-parameters give volumetric information

based on an areal material ratio curve (Jiang et a., 2007b).

Figure 2.3: Some numerical parameters to define surface profile
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2.3.2 Statistical Analysis

The mgjority of parameters are general and valid for any M x N rectangular image.
But, for some parameters related to the Fourier transform, it can be assumed that
the image is quadrangular (M=N). Before the calculation of the roughness
parameters, it is recommended to carry out a slope correction by a 2™ or 3" order
polynomial plane fit. Moreover, roughness values depend heavily on measurement
conditions especially scan range and sample density. Therefore, it isvery important
to include the measurement conditions when reporting roughness data
Furthermore, it is essential to note that these parameters based on local minimums
and/or local maximums may be more sensitive to noise than other parameters. The

parameters are divided into four groups as described in:

The Roughness Average (Ra) value can be written as:

1 M-1N-1
~ MN |2(xiy)| (2.3)

k=0 1=0

The Root Mean Square (RMS) parameter Rq, is defined as:

=
z

—-1N-1

1
Rg =N [2(xi;1)] 2 (2.4)

01

P
Il
Il

o

Both Rq and Ra require that the surface hei ghts are measured with respect to amean
line. In analogue systems a capacitor-resistor (C-R) filter removes the trend and
D.C. level from the profile signal before the parameters are calculated. With digital

methods it is necessary to fit mean line to the raw data.
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To describe the properties of a surface we may use standard statistical techniques.
These techniques can be applied to the raw data or to describing specific features
present in the profile record, e.g. heights, slopes, curvatures of the peaks etc. Such
results can then be plotted as a statistical distribution which characterizes the

surface.

The Surface Skewness (R, ) describes the irregularity of the height distribution

histogram, and is defined as:

M-1

R (xk N ] (2.5)
4k=01

2

1

I
o

If Rgx =0, a symmetric height distribution is indicated, for instance, a Gaussian
like. On the other hand, if R, <0, it can be abearing surface with holes or steps and,
if Ry, >0it can be aflat surface with peaks or plateau. However, values greater than

1.0 may indicate extreme holes or peaks on the surface.

The Surface Kurtosis (Ry,,), describes the “peakedness’ of the surface topography,

and is defined as:

Ryy = M]\tR Z [(Z(xk,yl))] * (2.6)

Asregards Gaussian, height distribution R),,, approaches three when increasing the
number of pixels. Moreover, smaler values indicate broader height distributions

and visaversafor values greater than three (SPIP Manual).
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The Peak-Peak Height (R,,) is defined as the height difference between theimage's

highest and lowest pixel.

Ry = Zmax — Zmin (2.7)

2.3.3 Random Process Methods

Theuse of purely height dependent parametersfailsto characterise variationsaong
the plane of a surface. Random process methods allow us to investigate the spatial
properties of random signals. These methods owe much of their development to the
communications industry which required techniques to describe complex signals.
For example, correlation techniques can be used to recover weak signals from a
source with ahigh level of background noise. Moreover, random process methods

are equally applicable to the description of the properties of surfaces.

2.4. Modern Instrumentation Developments

Surface topography information collection using an instrument is carried out by
either contact or non-contact methods. This section describes the basic principle of
stylus and scanning probe microscopy (SPM) contact methods as well as optical
non-contact methods (interferometry, laser triangulation, light scattering and

confocal microscopy).

2.4.1 Contact Method

Physically, the principle of the contact can be described as such: given two solid
bodies with known geometry pressed against each other with aforce (or a pressure
distribution) which caused deformations of the bodies. A theory of contact is
required to predict the shape of the contact area and how it grows in size with

increasing load, aswell asthe distribution of tractions, etc. Finally, it should enable
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the components of deformation and stress in bodies to be calculated in the vicinity
of the contact region. Before aproblem in el asticity can be formulated, a description
of the geometry of the contact surfacesis necessary. With assumptions of parabolic
surface profilesand linear elastic, frictionless materials, (Hertz, 1896) proposed the
first analytical solution for dry contact problems which laid the foundation for the
subject of contact mechanics. Since then, the developments of contact theories
mainly focus on eliminating assumptions made in the Hertz contact theory. Before
giving the general dry contact model, Hertz analytical results are provided for afirst

insight of contact mechanisms.

2.4.1.1. Hertz Contact Theory
Hertz introduced the simplification that, for the purpose of calculating local

deformations, each body can be regarded as an elastic half-space loaded over a
small region of its plane surface (for details, see any easticity textbook or, for a
summary in our context Smith and Chetwynd, 1992). By this simplification,
generaly followed in contact stress theory, the highly concentrated contact stresses
aretreated separately from the general distribution of stressin thetwo bodies, which
arises from their shape and the way in which they are supported. In order for this
simplification to be reasonable, two conditions should be satisfied: the dimensions
of the contact area must be small compared (@) with the dimensions of each body
and (b) with the relative radii of curvature of surfaces. The first condition is
necessary to ensure that the stress field calculated on the basis of a solid which is
infinite in extent is not unduly influenced by the proximity of its boundaries to the
highly stressed region. The second condition is to ensure firstly that the surfaces

just outside the contact region approximate roughly to the plane surface of a half-
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space, and second that the strains in the contact region are sufficiently small to lie
within the scope of the linear theory of elasticity. Hertz aso assumed the surfaces
to befrictionless so that only the normal pressureistransmitted between two bodies.
With those preparations, Hertz was able to give the analytical solution to contact
problems. The contact stress (pressure) and elastic approach (indent) can be

expressed as

- G

1 (1-v? A-v2)
i 29
E* E, + E, (29

where v4, v,, E; and E, are the Poisson's ratios and €lastic modulii of the two
surfacesand R isthe summit radius. For asmall stylustip, even with modest contact
forces the pressure can appear to exceed the nomina yield point of the bulk

material.

Surface layers are often not typical of the bulk and observations regularly show a
little damage in practice (Thomas, 1982), but this issue remains as a regular point

of controversy in the field.

2.4.1.2. Types of contact methods
Two types of contact methods are considered in this survey, the stylus method and

scanning probe microscopy.
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Stylus Based M ethods
The stylus instrument is widely used for surface profile measurement. It can cover

a large measurement range up to several millimetres with nanometre vertical
resolution. The stylus instrument measures the geometrical features of the surface
directly by a tactile method. The stylus tip is (usually) mounted on a cantilever
which is coupled to a sensor such as Linear Variable Differential Transformer
(LVDT). The LVDT detects the vertical movement as the stylus traverses the
sample surface at a constant speed. As such, the generated voltage represents the
convolution of the stylus tip with the surface profile. The output voltage from the
trandator is amplified and digitized in order to be manipulated by a computer (see

Figure 2.4).

Figure 2.4: Principle subsystems of a stylus instrument

The lateral resolution depends on the radius of curvature of the tip and slope of the
surface irregularities (Bennett and Dancy, 1981, Elson and Bennett, 1979). For
instance, Figure 2.5 shows that the stylustip contacts the sides of avalley in such a
way as to prevent it penetrating to the full depth of the valley if the radius of the

stylus, r or the amplitude of the sample, z increases.

The resolution issue just discussed is one of the main disadvantages. Another is

sometimes argued to be that the stylus tip can damage the surface to be measured if
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the contact stress exceeds the hardness of the surface. Therefore, the load of the
stylus is controlled to be as low as possible such as 0.05mg (Bhushan, 1999).
Furthermore, the measurement speed is relatively sow if a real surface
measurement isto be undertaken. The measurement speed and the contact approach
make stylus based methods inadequate for online/in-process measurement (Y oung

et al., 1980, Bhushan, 2001).

Figure 2.5: Snusoidal surface with a stylus [ EIson and Bennett (1979)]

Scanning Probe Microscopes (SPMs):

SPMs are commonly used for ultra-precision applications, right down to atomic
scal e resol ution in surface measurement. The SPM has much in common with stylus
instruments in the sense that a fine tip scans the sample surface to obtain rea
information. However, the main difference between the two methods lies in the
detection of parameters (see Figure 2.6). In contrast to the stylus, where the
geometry features are directly detected, the SPM detects, for example, charge
density or atomic forces (Alvarez and Siqueiros, 2010). The following briefly
describes two types of SPM probes, the scanning tunnelling microscopes (STM)
and atomic force microscope (AFM). Binning and Rohrer (1982) achieved atomic-
scal e measurement resol ution when they scanned a probe over asamplein avacuum

within a stabilised environment, which considered the first paper on STM.
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The probe tip and the measured sample are brought to within angstroms of
separation using a piezoelectric stage. Thus, the wave functions in the tip (i.e.
electron clouds) overlap the wave functions in the sample surface. By applying
voltage between the probetip and the sample surface, atunnelling effect is produced

and asmall current jumps the potential barrier across the tip and sample.

Figure 2.6: Principle of interaction between tip and sample

(Binnig and Rohrer, 1983, Chen, 2008).

Sensing thistunnelling current yieldsavery fine, but highly nonlinear measurement
resolution for the gap between the tip and surface. Scanning the tip across the
surface while servo-controlling its height to maintain constant current provides
from the servo signal a relatively linear measurement of the surface heights.
Because the effect is so localized to atoms at the very end of the stylustip, STM is
capable of sub-atomic resolution in all three axes. Their work led to a Nobel Prize

in 1986.

The STM invention was soon extended into AFM instrumentation (which is now
the most widely used SPM technique). The AFM basically consists of a tip of

several nanometres radius of curvature attached to a micron scale cantilever. In
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contrast to the STM, which uses the electron clouds as a measuring parameter, the
ATM uses the atomic forces that are generated when the tip contacts or isin close
proximity to a surface. The generated forces result in the bending of a cantilever to
which thetip is connected. This deformation in the cantilever is usually detected by
interferometry or optical deflection methods such as laser triangulation
(Thirunavukkarasu, 2007). The measuring technique is similar to that of the STM,
with constant bend of the cantilever (representing a constant interaction force) used
as the null-servo condition. Although special AFM can deliver atomic resolution,
most practical systems offer slightly less, but they have alarger range than STMs,
are considerably more robust and do not require electrically conducting surface.
There are several well-established variants of AFM, which need not be considered
here. Because of the slowness and sensitivity of the measurement procedure these
types of instruments do not fit usually with the industry environment for in-process

measurement applications (Bhushan, 2001).

2.4.2 Non-contact Methods

Optical methods are amost always preferred over non-optical (e.g. capacitive
methods) in non-contact surface texture measurement because of their fine vertical
and lateral resolution. Also, data acquisition in optical techniques is fast which
makes them suitable for online/in-process measurement applications. Furthermore,
the non-contact concept gives them the lead for non-destructive measurement
applications. The optical methods can be classified into interferometric and non-
interferometric techniques. The interferometric methods are based on the detection

of the interference of two beams of light. Non-interferometric methods are based
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instead on detecting non-interfered light (scattered, incoherent) reflecting from a

sample surface. The following sections describe some the main optical techniques.

2.4.3.1. Interferometry for Surface Metrology

Interferometry has enormous potential in surface metrology for in-process
measurement. Interference fringes were discovered in 1802 by Thomas Y oung.
However, Albert A. Michelson implemented the first interferometry instrument in
1882 (Michelson, 1982). From that time up until the 1970s these instruments were
used for dimensiona metrology rather than surface metrology. With the
development of the laser, charge-coupled device (CCD) and personal computers
(PC) interferometry found a place in surface metrology. Many a gorithms have been

devel oped to analyse interference fringes and hence reconstruct surface texture.

Nevertheless, it isimportant to mention here that optical interferometry techniques
are extremely sensitive to environmental noise such as mechanical vibration, air
turbulence and temperature drift (Adhikari, 2004). These noise sources cause errors

in surface measurement and can produce invalid results.

Surface topography assessment at the nanometre and micrometre scales needs
measurement instruments that can provide high vertical and lateral resolution. This
is possibleif microscope objective lenses are combined with interferometers so that
the lateral resolution depends on the objective lens while the vertical resolution
depends on the interferometer. When choosing an objective lens, trade-offs must be
made between: the required field of view, the working distance and depth of focus
of the objective lens, the amount of reflected light back through the objective lens,

the surface gradient of the measured sample, and the required lateral resolution. The

28



lateral resolution depends, among other factors, on the magnification factor of the
lens. High magnification lenses can provide micrometre and even sub-micrometre
resolutions. For example, a 10X type objective lens gives approximately 1.4 um of
lateral resolution for an illumination source having wavelength 683 nm and an

objective lens with numerical aperture 0.28.

Thislateral resolution is based on the Rayleigh criterion which identifies the | ateral

resolution as;

- 2
r=0.61-- (2.10)

Wherer isthe lateral resolution, 4 isthe wavelength of the illumination source and
NA is the numerical aperture. Vertical resolution depends mainly on the
interferometer, generaly ranging from sub-nanometre to a few microns based on
the measurement technique that is used within the interferometer (e.g. phase

shifting).

The four common interferometric objective configurations are Fizeau, Mirau,
Michelson and Linnik. All of these interferometers are based on the interfering of
two beams to obtain an interference fringe pattern, as represented by Equation 2.9.

Each type of objective configuration has its own applications.

I =1 +1,+2/1,1,]y| cos(Ap) (2.11)

This equation clarifies the fact that the interference pattern has a sinusoidal pattern

that represents the constructive and destructive interference fringes. Where 1, isthe

intensity of the interference pattern, I; and I, are the intensities of the first and
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second beams respectively. The coherence function |y| can be obtained practically

by atering the OPD and registering the corresponding drop in intensity.

Agp is the phase difference between them (i.e. ¢; — ¢,) where the phase ¢ can be

defined as

<p=2—” nz (2.12)
where, A is the wavelength of the light. The fringe visibility is defined as

p = Umax~Imin) (2.13)

(Imax‘l'lmin)

where, v is the fringe visibility, I,,4, 1Sthe maximum fringe contrast and I,,,;,iSthe

minimum fringe contrast.

The fringe visibility is constant at any point along the optical path when the light
beams are perfectly coherent (i.e. the emitted waves having the same frequency and
phase in asimilar manner to the waves emitted from lasers). White light, having a
mix of wavelengths, is inherently incoherent and, in principle, does not generate

interference fringes.

Phase Shifting Interferometry (PSI) is one of the most common and widely used
techniques to measure super polished and smooth surfaces. The measurement

resolution can be up to 1/1000 of afringe under optimum conditions (Kafri, 1989).

The fundamental principle of thisinterferometry isto modulate (i.e. shift) the phase

by physically moving one of the interferometer arms. Thisis often done by pushing
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the reference mirror using a Piezoelectric Trandator (PZT). After each phase shift
the light intensity is registered. These registered intensities are then processed by a
PSI algorithm in order to determine the original phase. It is necessary for the phase
shift to be known for each step and computationally much simpler if the phase is
shifted in equal stepsto be shifted equally ntimesthat isthe mirror should be moved
equal distances. This is because the interference pattern contains three unknown
variables: the DC intensity bias, l0; the visibility, v, and the original phase, ¢. As
such, the minimum requirement is three sets of intensity readings (i.e. n=3). The
following mathematical description isused for the case of n phase shifts (Schreiber

and Bruning, 2007).

(2.14)

where a is the induced phase shift. The most common algorithms to retrieve the
original phase value are the Carré algorithm, three shift algorithm, four shift
algorithm and five shift algorithm (Wyant et al., 1984, Carré, 1966, Schwider et al.,
1983, Hariharan et a., 1987). They all require a known amount of phase shift to be
applied except for the Carré algorithm. For instance, the three shift algorithm
requires a shift of 90°. In 1966, Carré introduced a technique for PSI that is

independent of the magnitude of the phase shift, thus it may be an arbitrary amount.
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In practice, whitelight sources are widely used with specia optical interferometers.
The spacing of the interference fringes depends on the wavel ength, except when the
Optical path difference (OPD) is zero (Wyant, 2002). Hence, maximum visibility
occurs when there is no OPD between the measured and reference paths, whereas
the vighility is reduced when the OPD increases (Basubramanian, 1980).
Generaly, the fringe visibility in white light interferometry is limited to a few
micrometres, and this can be explicated as a measurement tool (Muhamedsalih,

2013).

Coherence Scanning Interferometer (CSl) is a combination of the White Light
Interferometry with vertical scanning techniques. The CSI iswidely used to assess
surface topography by analysing the coherence function obtained from the
interfering light beams (Petzing et a., 2010). Subsequently, the white light has a
short coherence length, the maximum variation in the fringe visibility can be easily
monitored by capturing a sequence of surface images when the reference mirror is
scanned mechanically. An important point about all of these is that heights are

captured in parale for every pixe in the image (Muhamedsalih, 2013).

Wavelength Scanning Interferometry (WSI) is an interferometric method usually

used to measure large absolute distances without any 27 phase ambiguity problems.

In summary, Interferometry is based on analysing the fringes produced by
superposition of the beams which share a source, propagation axis and plane.

PSI is suitable for high precision measurement for super polished surfaces. When
the optical path difference exceeds A/2, CSI and WSI can be used for rough surfaces.

Coherence Scanning Interferometer (CSI) iswidely used for surfaces measurement,
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having a large measurement range with sub-nanometre resolution. Wavelength
Scanning Interferometry (WSI) is an alternative method to measure large
discontinuous surfaces, but requires no mechanically moving partsto perform phase

shifting operations (Muhamedsalih, 2013).

2.4.3.2. Laser Triangulation

Laser triangulation is widely used in dynamic measurement to determine the
distance of the surface from the photo-detector, R, then to extract the surface
texture. This method is based on trigonometric relationships between the incident
angle of a laser beam, 0 and two known distances. These are the distances of the
sample surface and the worktable plane from the photo-detector, R and H

respectively (Cui et al., 2010).

Figure 2.7 shows the principle of operation. The surface height, D from the

reference plane i.e. worktable, can be simply obtained by the equation

D =H — L cotf (2.15)

Figure 2.7; Laser triangulation method [adapted from (Groover, 2007)]
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2.4.3.3. Light Scattering

Light scattering techniques are widely used for applications that require rapid and
non-destructive surface roughness measurement (Vorburger et al., 1993). These
techniques are based on evaluating the scattering pattern obtained from a surface

illuminated by alaser light (see Figure 2.7).

The scattering pattern reflected from a surface illuminated by laser light depends
among other factors on the surface roughness. If the surface is perfectly smooth,
then 0i is equal to Or according to the law of reflection. However, increasing the
surface roughness will diffuse the light away from Or. By analysing the diffusion

angle, the surface roughness can be obtained.

This method has been the subject of much research (Church and Zavada, 1975,
Bennett and Mattsson, 1989). Persson (1998) presents light scattering instruments
for in-process measurement of surface roughness ranges of 0.09 < Ra < 0.16 pm.
The instrument used by Persson (1998) to illuminate a sample on a grinding
machining whilein operation was based on aHe-Nelaser. Thelight intensity of the
specular reflection was captured and analysed to determine the surface roughness.
It was found that the result was of the same order as when a stylus instrument is

used.

Figure 2.8: Principle of light scattering method



2.4.3.4. Confocal Microscopy

The enhanced image obtained using a confocal microscope when compared with a
conventional microscope is produced by a pinhole aperture placed in front of the
detector to reject out-of-focus light (see Figure 2.9). This concept was devel oped
by Marvin Minsky in 1955 into a working instrument (Semwogerere and Weeks,

2005).

Since only thelight that focused on the sample will pass through the pinhole, slices
along the axial direction need to be viewed to reconstruct areal information about
the surface. This can be achieved by capturing a set of images while the sampleis
scanned verticaly (Conchello et al., 1994). Tony Wilson (1990) was a pioneer in

devel oping the confocal microscope (Wilson T, 1990).

Figure 2.9: Schematic of confocal microscopy

Chromatic confocal microscopy introduced in 1994 by Tiziani and Uhde which has
the potential to be used for (3-D) three-dimensional embedded metrology
measurement. Colour impression was used to eval uate the intensity distribution and
to discriminate the surface height. Only threeimages, it hasbeen found, arerequired
for areal topography which significantly improved the measurement throughpuit.
Crucialy this advantage makes the instrument suitable for online measurement

applications (Tiziani and Uhde, 1994).
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2.5. Comparison between Instruments

Contact and non-contact instruments work on different physical principles. The
stylus measures the surface geometry, the optical interferometric techniques
generally measure the optical path length and SPM measures either charge density
or atomic forces. Besides surface measurement, the stylus can be used to measure
physical properties such as workpiece hardness in addition to surface topography;
film thickness can be obtained using some optical instruments (Stanford and Hagan,
2009). Therefore, even though al the instruments can retrieve surface topography

information, the measurement principle may decide the application.

Generally, the measurement speed for non-contact methodsisfaster than for contact
methods. The instruments have different measurement ranges and resolution
capabilities. In contrast to the optical methods, the stylus could damage the surface
and the measurement probe needs continuous wear condition monitoring.
Additionally, higher vertical resolution can be achieved with optical techniques but
the lateral resolution is not comparable. The highest vertical and lateral resolution

can be obtained by using AFM, but it has the smallest vertical range.

2.6. Summary

Surface metrology consist of three stages: instrumentation; filtration and
decomposition; characterisation and parameterisation. The geometrical features of
the surface can be categorised into three features: form, waviness and roughness.
M easurement of these features can be used to control the manufacture process and
predict the functional performance of the workpiece. The Instrumentation stage

acquires the surface topography information. Filtration decomposes the surface
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texture into its primary features. As a final stage the surface is characterised by

numerical parameters and functional curves.

Instrumentation can be divided into those using contact and non-contact methods.
The non-contact method, measures the optical path length. It is a non-destructive
method, has a relatively large measurement range up to 1 millimetre and sub-
nanometre vertical resolution and has much potential for embedded measurement.
The non-contact method can usually acquire the measurement data at high speed.

The contact method, on the other hand, measures the geometric features of the
surface physically. It can be destructive and is considered inadequate for embedded
measurement. The measurement speed is relatively slow for area surface

measurement.

In summary, optical methods, particularly interferometers, are the techniques that
have the most potential to be used for micro/Nano scale embedded surface
metrology. It is aso clear that al the techniques offer challenges when used near
the limits of the ranges. Trends in industrial production demand much more
measurement of small amplitude and small wavelength roughness. However,
whether a physical probe tip or a spot of light, all probes are in some sense finite
and of (dlightly) indeterminate characteristics, they will all introduce particul ar non-

linear distortion to fine surface detail.
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Chapter 3
3. History of Stylus simulation

3.1. Introduction

This chapter introduces more specifically the background relevant to stylus
simulation upon which the new work will be built.

Despite a growing divergence in surface metrology applications, there seemsto be
one element that is still common across the vast mgjority of instrumentation - a
stylus tip (typically spherical, at least nominally) which mechanically makes
contact with the surface. It is this "contact-based" approach which is used in
detecting any engineering surface features and remains so far the most popular
method despite the numerous alternative sensing approaches, including ultrasonic,

capacitance, pneumatic and optical (Whitehouse, 1994).

In many practical regards, the underlying convolution of a stylustip geometry over
asurfaceis perhapsthe most common or "unified" element among the vast majority
of today'sinstruments. It may be argued, however, that the term "convolution™ does
not apply here when taken in the strictest mathematical sense, although it has been

used in practice (Li, 1991).

3.2. StylusTip Convolution

In the stylus context, "convolution” is used to represent the generation of a surface
profile as determined by the geometric or physical relationships between the stylus
and surface. This "stylus convolution” differs from a pure mathematical
convolution in that the latter typically incorporates all data points and the former is

primarily based on peak interactions. Stylus or radius based convolutionisaprocess
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that causes a limitation on the surface wavelengths which are transmitted to the

instrument's transducer.

However, this wavelength limitation, or more correctly- wavelength modification,
cannot be generalized. Models have been developed to predict the transmission
behavior of tip geometries, however, these only apply to very limited classes of

surfaces.

The fundamental problem with predicting the transmission characteristics
associated with stylus tip convolution is the fact that the tip convolution process is
based primarily on peaks and thus varies from surface to surface. Mathematical
models of the effects of this convolution process are typically based on idealized
surfaces (such as sinusoidal or Gaussian) and generaly these models incorporate

all surface features, including valleys (Whitehouse, 2011, Raja 2009).

Although stylus tip convolution effects are not easily characterized or predicted
mathematically, the stylus tip radius can be afunctional and reproducible means of
limiting wavelengths in surface metrology assessments. One common example is
in the assessment of cam |obe geometry whereby, in application, aroller will follow
the surface. In this application, it is very important to control the dynamics of the
roller which ultimately generates the kinematics along the mechanism. To
understand the functionally important cam surface attributes, it is essential that the
surface be measured and analyzed from the roller's perspective - exploiting the

features which the roller would "se€" and ignoring those that it would not.

In so doing, the stylus acts as an artificial follower in the measurement process and
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thus generates adata set directly related to the motion that the follower will produce
in application. This "radius based" transmission is what is desired in order to
functionally assess the surface geometry. Historically, this approach has been
referred to as the envelope or e system, whereby the envelope of the stylus

convolution is deemed to be the surface of interest (Weingraber, 1956).

Despite the fact that radius based wavelength limitation is often difficult to predict
and can vary dramatically between profiles, it is a functionally important and
metrologically reproducible means of assessing surface features and has therefore
been included in the scheme for unification. In addition to the obvious importance
relating to "radius based" wavelength limitation, tip convolution effects must also
be understood in the context of wavelength limitations per the other approachesin

the unification scheme.

Given that most of today's surface metrology instrumentation incorporates a
nominaly spherical stylus, the understanding of these transmission effects is
necessary in selecting an appropriate tip radius when using Gaussian or ideal filters.
For example, when assessing a surface with a Gaussian band-pass, it is necessary
to utilize a stylus tip that does not significantly affect the surface wavelengths in

the desired range.

The mathematical approach involves collecting adataset with arelatively small tip
radius and subsequently performing a numerical convolution or simulation of a
larger tip radius over the data set (Scott, 1992a). This mathematical approach is
considerably more desirable in terms of factors such as the cost of purchasing and

maintaining styli of varying sizes and the flexibility of being able to alter the tip
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radius and not having to re-measure the component. Although similar results might
be expected between the methods for most surfaces, they may not be identical.
These divergences (although they are typicaly small) can be the result of many

factors. Two of the primary factors will be discussed in the following sections.

3.2.1. "Noise" in the Measurement:

Disturbances (whether mechanical or electronic) which are present in the
measurement process, trandate directly into the measured profile. In any physica
measurement, these effects will be present in the profile to some extent. Appling a
mathematical convolution to the measured data set will tend to smooth out random
noise. The geometrical transformation associates with stylus tip ‘convolution’
similarly smooth out many of these effects. If a physical measurement were made
with the same tip radius that was mathematically applied, we may find high
frequency attributes which are the result of the measuring process. The influence of

this measurement "noise” is depicted graphicaly in Figure 3. 1.

Figure 3.1: The influence of vibration in physical versus mathematical tip
convolution

Figure 3.1a demonstrates the ideal situation in that there is no "noise". In this case,
we would find that (apart from other influences) the mathematical convolution

duplicates the physical convolution. However, in rea applications, high frequency

41



noise will be present. If the surface were measured (physically) using the desired
(large) tip radius, we may see a data set as is shown in Figure 3.1b, whereby the
stylus path incorporates relatively high frequency changes as it moves over the
profile peaks. In the mathematical convolution, the surfaceis first measured with a
relatively small stylus (once again incorporating the noise) and then a circle is
mathematically convolved over the profile. Figure 3.1c demonstrates how the
convolution process tends to smooth out the high frequencies which were present
in the underlying profile measurement. It should be noted that the radius convolved
profile of Figure 3.1c is very similar to that of 3.1a, however the 3.1c profile may
well be based in part on the peaks of the noise rather than purely from the base

surface.

In a similar sense, irregularities in the stylus tip geometry (for example, from a
systematic deviation from ideal shape or from chips or other wear damage) can
introduce errors in the physically convolved data set. In a physical measurement
using arelatively large probe (as in functional relationshipsto a cam-follower) itis
probably right to ignore imperfections because it measured gross shape
characteristics of the workpiece, attempting to remove/ignore the small-scale
roughness. Larger-radius tips/followers can be made to close shape tolerance the
small ones and dlight wear damageisalso likely to be small compared to the overall
tip shape. In the case of a computational fitting process (be it stylus convolution,
other motif methods, or conventional fillers), it can be implicitly assumed that the
tip dimension is small compared to the shortest functionally significant wavelength
in the assessment (this is something made clear only in more recent standards —

early ones tended to, by default, allow the tip itself to define the short wavelength
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limit). If thisis so, error in the tip hardly matters. Hence this statement holds up or
atypica E-system uses similar processes where it cannot get a tip significantly
smaller than the functiona limit. The errors may then be of quite significant
magnitudes. Thisiswhat thisthesisis considering: what errors/uncertainties should

be specified because of tip effects, etc.

Another factor that can lead to a difference in assessments made via mathematical
convolution of a circle versus physical convolution of (nominally spherical) stylus
is the presence of peaks to the sides of the profile trace. When measuring a surface
with a stylus tip of finite dimension, the potentia for stylus-to-surface contact
occurs over an area. Larger stylus tips have a greater potential for interacting with
peaks that are to the sides of the trace. Thisis shown in Figure 3.2 where the high
peak in the center of trace #3 could influence measurements along trace #2

depending on the tip radius being used.

Trace 3
Trace 2

Trace 1

X

Figure 3.2 The presence of a "lateral” peak in trace 3 relative to trace 2.

The true convolution of a stylus tip in the presence of lateral peaks is best
predicted through the three dimensional or areal measurement of the surface and
the subsequent convolution of a sphere (Shunmugam and Rahadkrishnan, 1975).
However, in practice this is very time consuming and more mathematically

intensive than the simple measurement and analysis of single profiles.
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3.3. Filtering

In commercial systems profile characterization is carried out on filtered data. In
most cases a relatively simple capacitor-resistor network (2C-R) is used. This
technique has severa disadvantages, the roll-off characteristics are poor and some
features longer than the nominal cut-off length are retained in the filtered profile.
The most serious limitation is that there are only a few values of cut-off that may

be selected (Stout and Blunt, 2000).

Roughness exists over alarge range of spatial sizes. It isthereforeimportant to limit
the analysis to the range of sizes that are pertinent to the problem. To some extent
thisisachieved by a suitable choice of effective sampling interval. Systems that use
computersto datalog surface profiles have the advantage that sampling lengths and
intervalscan beeasily altered. A second advantageisthat digital filters can be used
to carefully control the size of features that are included in the characterization
process. Digital filters have different, usually sharper, roll-off characteristics than
the standard C-R filters, and can be designed to be free from phase distortion.
Unfortunately, it is not possible to compare results from digital filters with those
obtained from C-R filters, due to their different characteristics. The greater
flexibility of digital filters allows the choice of filter length to be tailored to the
problem being studied. The limited bandwidth of wear processes has already been
discussed; the same also applies for many other processes such as friction, contact
mechanics, EHL etc. Knowledge of the mechanics of the process involved can lead
to a choice of filter length that will highlight the topography of interest. Even the
simple parameters are sensitive to filter length, for example Ra is particularly

sensitive to the long wavelength components of topography. If these long



wavelengths are included in an analysis any changes in the shorter wavelengths

may go unnoticed.

The small scale geometrical features on engineering surfaces are usualy of
complex shape and surface profiles and are therefore composed of a wide range of
frequency components. As explained in previous sections on roughness and
waviness, roughness corresponds to high frequency or short wave components,
while, on the other hand, waviness has low frequency (long wave) components
which tend to present low changing rates in surface profiles (Chetwynd DG.,

2001), see Figure 3.3.

Figure 3.3: Long and Short wavelength components diagram

Filtering is applied as a procedure to separate out the surface-profile’ s frequency
range of importance to the analysis. The filtering operation is able to carry out the
following action: 1, in order to extract the roughness profile, alowing high
frequency component through. 2, letting low frequency component pass through,

thus the waviness profile is able to be extracted.

In sum, the filtering techniques act as a support or assistant tool which can help

further analysis and can also reduce errors during the probe measurement.
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3.3.1. Development history

The filtering operation has aways been a pivotal factor in surface metrology
analysis. Thefiltering operation as amodern technique has over 55 years of history
(Muralikrishnan and Raja, 2009). Electrical Filters, Envelope Filters and
Morphological Filters are the major members of the filtering operation family. The
introduction and discussion of these three filters will be given in subsequent sub-
sections, athough the main details will concentrate on Envelope filter and

Morphological filter systems.

3.3.2 Electrical Filter systems

Thisfilter system treats the profile as a voltage source and applied a two-resistor-
capacitor (2RC) network. The merit of thisnetwork isthat it has memory; therefore
the output value can be afunction of theinput at any instant and a function of prior
values. Digital evaluation providesawholerange of filter characteristics, including
those with no phase distortion. From (Muraikrishnan and Raga, 2009)
explanations, 2RC can provide reduced weights to the voltages by running

previous voltage and average current value.

The undesired phase would thrust into the output, when the network’s memory

assists averaging.

3.3.3 Envelope Filters system

The E-system which is short for Envelope Filters system was invented in the
1956's by Von Weingraber (Jiang et a., 1984). The basic clarification of this
method is to simulate the features important in contact between mating surfaces

and surface texture by determining the envelope traced by a ball rolling on this
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surface. According to the track when the ball isrolling through the object’ s surface,
the deviation from the envelope can be defined by the rolling track to see the
several trends of the roughness along the surface. The envelope line is generated

by the simulating process of the rolling ball. As shown in Figure 3.4

N /

—\

Wi

Figure 3.4: Envelope filters method, locus of the ball's centre when traverses the
surface (Adapted from: Muralikrishnan and Raja, 2009)

It presented as an example the ball rolling through a surface. The black line shown
on the track of therolling ball is the envelope line. Thisball is only doing vertical
trandations by assumption and making the peaks contact with the rough surface.
The reason that some peaks did not contact with the rolling ball will be classified

|ater in this sub-section.

Choosing a larger radius ball causes the envelope central locus to overlook the
narrower peaks and valleys of the profile, so the central locus would be shown to
be smoother. Otherwise, the centre line enters the narrow peaks and valleys when

asmall radius ball has been used.
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A physical implementation of the smoothing would require thought about materials
especially as regards stiffness and strength. But the underlying concept of the E-
system is acting as an ideal rigid ball (i.e. a piece of geometry). Thus the software

implementations in this thesis can be treated as an ideal material case.

3.3.4 Morphological Filters systems

Various concepts, from the E-system and its minor variants were linked formally
to the mathematics of morphology and image processing to introduce the
morphological filters in the late 1990's (Srinivasan, 1998) (Shan Lou, 2012).
Morphological filter systems are the upgrade and superset technology of early
envelope filters. More tools and capabilities were needed for morphological filters

operation which provided better performance than envelopefilters.

According to Scott (2000), morphological operations are able to be combined
together to achieve a superimposed effect. And also a technique named scale-
spaces can be a support tool by providing multi-resolution analysis to surface

texture.

The techniques of envelopefilters discussed in the previous section would be used
in morphological filter systems as the superset of E-systems. There are two filters

named as closing filters and opening filters.
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Figure 3.5: Closing and opening envel ope of an open profile by a disk (Scott,
2000)

The filter acts on the profile to produce different mean lines. Figure 3.5 presented
two examples of applying aclosing operation and the opening operation on an open

profile with the disk.

Achieving opening filter needs to place an infinite number of identical sizes and
material disks and make contact with the profile from below. However; the closing
filter can be gained by placing an infinite number of identical sizes and material
disks in contact with the profile on its upper surface and also taking the disks
lower boundary. These two types of operation are acting in opposition by making
comparison with each other which makes the efficiency in terms of surface
measurement better than the traditional envelope filter systems. Both the opening
and closing filters can be operated at the same time during the profile measuring
period. These opening and closing operations are the secondary morphological
operations produced by dilation and erosion which are the primary morphological
operations (Muralikrishnan and Raja, 2009). Erosion reference lines are generated

by a dilation followed by an erosion operation and referred to as a closing mean
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line; on the other hand there would be an opening mean line. Then the combination
of opening and closing filters can be made with various structuring element sizes

which are called aternating sequential filters (1SO16610-41, 2010).

The extraction of different scales of information of the testing surface can be

achieved by using scal e space techniquesto increase the structuring elements’ size.

3.4. Errorsin using contact-probe/stylus surface measur ements

3.4.1 Briefing on stylus

The contact-probe/stylus instruments have been widely used in the surface
metrology field. The first diamond stylus of 90° pyramid shape was developed in
the UK which obtained two dimensions 2um and 7um at the tips (Whitehouse,

2002).

This type of stylus worked well on surfaces with an appreciable lay. The US

subsequently invented a diamond cone which had an angle of 60° (Whitehouse,

1997).

Figure 3.6: Sylus shapes: cone (left), pyramid (right)

As Figure 3.6 presents: the two shapes of stylus are those of cone and pyramid.
Both of these stylus tip shapes have been suitable for a great many jobs. They are

able to report accurately on the structure of fairly coarse structures with ‘open’
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texture, however, they are not suited to the smaller scale texture more much more
commonly found in industry. So the stylus slope has to be considered, as regards
which the tip can be infinitely sharp so that the stylus can go into the valleysto get

more precise measurement results.

3.4.2 Noise and Vibration

Noise and vibration can be one of the major sources of interference for doing the
contact-probe/stylus measurement on rough surfaces. This can be caused by
inherent instrument noise, environment or by sound. For instance, when the
contact-probe through the roughness surface caused some vibration and electrical
noise in the pickup line. The most typical noise source is sinusoidal which has a
range from 50Hz to 60Hz inclusive, short noise peaks (Mainsha, 2001). Noise

contribution can be formally written as:

X X? nx(t)
[YI = C;Cs |y’ | + [ny(D
z 21 n,(0 (3.9)

N, Ny Nz are the noi se components, X, y and z presented the directions and t indicates
time. The first two noise components would influence length and height
measurement on x and y directions. And n; affects the height measurement on z
direction and a so provides an indirect influence on determining the length. Vaue
n; will be considered and added into this project topic as affecting the height
measurements. In sum, noise is clearly a critical major effect especially when
measuring small dimensions, because the dimension of the object being measured

is closer to the noise level.
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3.4.3 Stylus errors and distortion

Despite the points discussed previoudly, stylus methods still retain a most
significant role in surface metrology because of the more precise measuring and
the fact that they are relatively robust against dirt compared with optical methods
(non-contact ways). The probe stylus is one of the most critical and pivotal partsin
surface metrology (Mainsha, 2001). The probe has to be sharper than the
perturbation being measured. If a suitable probe is not selected for the rough
surface measuring, damage on the surface and on the probe itself might occur.
According to the work done by Church and Takacs (1990) because of effects on
tip size, smooth surfaces are likely to be reported as rough, while rough surfaces

are smoothed.

The stylus method is sometimes criticized because of claimsthat it can damage the
surface (Whitehouse, 2002). Whitehouse mentioned the drawbacks to the theories
algorithms method on stylus techniques, for example possible distortion and stylus
damage. He mentioned that there is a simple way to obtain a criterion for a stylus
to achieve no surface damage. Whitehouse's method was focused essentially on
kinematic theory not on the material of the stylus. Damage index 1 wasthe crucia
factor in thistheory in which it was defined that its value must be in the acceptable
range of no damage occurring. Whitehouse pointed out, drawing on (Schmalz,
1936), which itself used the well-known Hertz contact theory, that a damage index

1 can be used:

v=2() x5 <% (39)
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Where H is the material’ s hardness being measured, E is the elastic modulus, and
Ristheradius of the stylus’ tip, W isthe normal force applied to the surface by the
stylus, which is often taken as the basic (static) load from the instrument but should

really include dynamic (inertial) effects aswell. No damage should occur if Y < 1.

During the period when Whitehouse's research was mainly focused on the
kinematics theory the researches on different materials of stylus were aso in
progress. To follow on from the previous work, because of internal springs and
probe acceleration driven by the surface, forces tend to be larger near to the peaks.

So far there is no useful guideline beyond the simple damage index.

Drawing on analogy between aball contact (asin the E-system) and a stylustip, it
isobvious that any surface features characterised by adimension smaller or similar
to that of the tip will be distorted. Small valleys will be bridged, sharp peaks made
to appear non-rounded and so on. The stylus acts as a highly non-linear filter of

short-wavel ength features.

(McCool, 1984) was one of the first to study theoretically the influence of stylustip
radius on surface roughness measurements. One simulation model had been
devel oped by him that magnitude of distortion can be assessed as well as the effect
of record sampling frequency and length with tracing surface profiles. However,

these are realizations of random processes having an indicated spectrum and do not

apply generally.

These have been plenty of other attempts at modelling stylus contact since McCool,
but we still have little practical understanding of how to predict the level of

distortion in general.
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Severa publicationswere proposed that the measured surface could be * corrected”
for distortion based on knowledge of thetip size. Just asin work done by Schwarz
(Schwarz, 1994), the suggestion on different techniques for in-situ characterization
of probe was presented which can minimise the probe distortions (Whitehouse,
2000). While valid for afew special measurement conditions, it is at best dubious
for genera surface arrangement because (1) in the highly non-linear distortion
measuring there will not be a single inverse operation and (2) in practice the tip

size and shape are not known to good precision.



Chapter 4
4. Basdline softwaretool for stylus contact
simulation

4.1. Introduction

Interest in measuring surface roughness continues to increase for severa reasons.
Efficiency, lubrication, corrosion stability, and probability of crack formation are
examples of where the roughness of produced surfaces has significant influence on

their performance.

Surface micro-topography is measured most commonly by either a fine stylus
contact or by one of several optical probing methods. Debate continues on their
relative merits and demerits, but it is clear that both will be used for along while to
come. Thereis, therefore, aneed for reliable ways of comparing the output of these
methods. Thereisaso aneed for better guidelines or standards for applying styli to
the fine or delicate surface structures that are increasingly demanded by
applications across mechanical, electronic, optical and bio-medical engineering. As
part of continuing work towards such ends, this project is mainly to study the

geometrical interaction of styli with engineering surfaces.

The contact of asmall probe-tip against a surface is crucial to stylus-based surface
roughness metrology, which remains a popular and important practical technique
for both industry use and basic research. A finite stylus reduces measurement
fidelity through direct geometrical effects, elastic distortion and dynamic effects
that vary the contact force, sometimes to lift-off. It is difficult to determine directly

the complex interactions that occur between a profilometer stylus and a surface.

55



Obvioudly, surface features with dimensions, curvatures, etc. smaller than or even
somewhat larger than those of the tip will be distorted during measurement.
Therefore, ssimulations have concentrated on how the stylus contact modifies the
truly existing topography. Except for some statistics reported in Dowdier and
Chetwynd (2002), published work tendsto ignore the effects on the stylus tip itself.
Appropriate 3D simulations have awaited adequate low-cost computing power. It
is now practicable to run numerical experiments that may: cast light on questions
of in-plane uncertainty of stylus measurement; suggest improved ways to compare
different instrument probing technologies; or lead to methods for self-diagnosis of
stylus wear (Radhakrishnan, 1971, Althagafy and Chetwynd, 2011). Figure 4.1

shows a schematic of a stylus with radius R making a contact with arough surface.

Figure 4.1: Contact points of the stylus with rough surface

All scanning surface instruments record the topography based on the assumption
that contact isaways at the centreline of the stylustip at point b. They also in effect
report the local height as that of the lowest point, b. Thisis amost always the case
with very sharp tips, asin Atomic force Microscopy (AFM). In redlity, this doesn't
always happen with more general, robust instruments as the stylus could be
touching the surface elsewhere, such as at point a, and sometimes might touch the

surface simultaneously at more than one point. The likelihood of this happening
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will depend on the stylus geometry (shape and size, including wear damage) and

the roughness topography of the measured surface.

4.2. Kinematic and Threshold Modds

Previous stylus-surface interaction simulations have concentrated on how the
apparent (actually measured) topography is modified by the stylus contact from

what truly exists.

There appears to have been very little research using such simulation methods to
examine the effects on the stylustip itself. Thishasbeen viewed asalower priority
guestion, but also it only makes sense to study it as a 3D simulation and so it has

awaited the arrival of sufficient low-cost computing power.

It istimely, therefore, to give it more attention. For instance, it offers potential to
help build ssimple empirical models that might cast light on questions of lateral
uncertainty in stylus measurement, suggest ways to improve comparisons between

different instruments, or lead to methods for self-diagnosing stylus wear.

The vertical distance between points and a and b on figure 4.1 contributes directly
to the uncertainty of the height measurements and is often discussed in terms of a

nonlinear filtering characteristic.

Less commonly considered is that the expected value of the horizontal distance

between aand b isamajor factor in the lateral uncertaintiesin the measured height

maps.
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The current work builds upon the pioneering work of a previously reported 3D
stylus simulation (Althagafy and Chetwynd, 2011) that introduced a statistical

summary of the points upon the stylus surface at which actual contact occurs.

It allowed use of both ssmulated non-ideally-shaped tips and, particularly, the use
of high-resolution data from direct measurements of real styli (Radhakrishnan,
1971). Such extra data becomes important because (even with idealised stylus) the
contact is rarely directly along the (metrologically assumed) central axis of the
stylus system. The new simulation system introduces severa refinements to this
modelling approach. Firstly, it is clear that many simulations with subtle
differences will be necessary to generate astatistically valid summary that could be
compared to real instrument behaviour in order to infer the accuracy of the models.
A highly modularized software suite is used, with bespoke parts implemented in

MATLAB®.

Generating
Real-surface
profile
i.e. AFM)

Instruments
\ External Data
Surface Library 1

\
Core Process (: ] Stylus Library
[ )
Output <:| Statistics Library

Image processing
(SPIP)

Figure 4.2: Scheme for the software suite.



Extensive use is made of libraries of surface maps: in addition to ssimulated and
measured ‘original surfaces every ‘modified surface’ processed here is also
entered, so giving a complete record and also enabling study of multiple stylus
actions. Thereisasimilar library of ‘styli’. Every simulation runs by loading an
appropriate pair from the libraries, processing them by a core operation and
returning modified versions and statistical information. Higher level processing of
surface information (for parameterizations, comparisons, etc.) is performed by a
commercia package (in our case, SPIP®), which acts as an independent standard.
This approach both maximizes capabilities for inter-comparisons from different
sources and minimizes the size and complexity of the bespoke core routines,
thereby easing the task of verifying them. For the present, while developing and
evaluating the practicality of the new ideas, we are content to work with small maps,

up to around 128 points square, to limit computational costs.

The underlying starting point for modelling probe contact remains essentially the
kinematic model used previously: an agorithm is partially published in
(Muralikrishnan, Raja, 2009). It is often called the Kinematic model because it is
purely geometrical, assuming that: both stylus and surface are perfectly rigid; stylus
and surface maps have parallel z axes; the stylus motion is constrained to be
trandation along the zaxis; and asingle point of contact occurs on the stylus moves
towards the surface. The physical concept is that the central z-axis of a stylus map
is positioned in turn above each (X, y) position on a surface map and then lowered
along the z-axis until first contact is detected. The *height’ of this contact condition
is then taken as the position of a fixed reference point on the z-axis of the stylus,

e.g., point b on figure 4.1. This contact may not be on the stylus z-axis but its height
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is recorded as the modified surface point at (x, y) on the surface map: this
correspondsto whereareal instrument would report such apoint. Computationally,
this is a dilatation operation that reduces to an array addition and search for a

maximum.

The first enhancement is to record also the position(s) (note that there might be
more than one point of contact, e.g., where a sphere enters atriangular groove) of
the contact within the stylus array. This can be done compactly by simply building
a 2D histogram of contact numbers at each point (Dowidar and Chetwynd, 2002),
but it provides only a genera statistical summary. More vauable information is
gained by maintaining a history of contacts that correlates directly with the points
on the surface map. It isthen possible to revisit the same data sets using a separate
bespoke module to explore in detail, e.g., the latera error distribution between

actual and reported height positions on the modified surface.

The kinematic model is unrepresentative and over-prescriptive because, among
others, (i) real surface data is subject to instrument noise and so fine differences
associated with the very peaks will not repeat; and (ii) neither surfaces nor styli are
perfectly rigid and there will be elastic (possibly plastic) deformation at points of
contact. Furthermore, it might be over-sensitiveto the resol ution of the surface data
supplied by a specific instrument; a concern for measurement standards. A new
threshold feature has been added to the kinematic model to address such points. On
determining the kinematic condition, a search is made for other points which come
within a specified distance of the stylus. This has immediate, obvious application
in exploring how potential contacts might be lost or gained if resolution is reduced.

It can also identify how many ‘ contacts might be totally within the noise-floor of
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an instrument (physically the routine is one-sided, but the dilation has aready

effectively treated the noise as one-sided).

Thresholding can also provide a first step towards more sophisticated models for
approximating stiff but non-rigid contact. By atype of relaxation method, iterative
modifications to the threshold might illustrate how the stylus settles elastically onto
the surface. Each change of threshold would now be governed, e.g., by a force-
balance using localized Hertzian contacts. Further details of these ideas and their

practical implementation will be discussed later in chapters 5, 6 and 7.

4.3. Atomic Force Microscopy (AFM)

AFM is one type of arelatively new family of instruments called "scanning probe
microscopes’ (SPM). In the most general sense, these microscopes revea
information about the surface properties of materials by scanning the surface with
a small probe. Information about the interaction of the probe with the surface is
transmitted, via an Electronic Interface Unit, to a computer where an image of the

surface is generated.

The first invention of this kind of instrument was the scanning tunneling
microscope (STM), invented in the early 1980s. In the tunnelling microscope, a
sharp meta tip is brought to within a few angstroms of a conducting or semi
conducting surface. If a voltage is applied to the sample, an electron tunnelling
current flows between the tip and surface, which varies exponentialy with the

distance between them.

The surface topography is revealed by scanning the tip over the surface in parallel

lines while keeping the current constant (i.e., keep the tip-surface gap constant).
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The STM is most commonly used on conducting surfaces. The Atomic Force
Microscope or AFM was developed a few years after the STM. Unlike the STM,
the surface studied by the AFM need not be conducting. The surface is scanned by
a probe which may touch the surface or be a few angstroms away. The force

between the probe and sample is used to generate an image of the surface

topography.

The forces generated in an AFM are several orders of magnitude lower than in
conventional stylus surface topography instrument and, also, the contact area
between tip and surface is much smaller in an AFM. The net result is that whereas
"profilometry” often risks damage to the surface because of the large forces and
contact surface area, AFM reveals the surface topography and at the same time

leaves the surface undamaged.

The technigues being developed and investigated in thiswork focus strongly on the
application to conventional stylus instruments. They will have at most a slight

relevance to high lateral resolution techniques such as AFM.

However, aspecific challengefor simulation studiesisto obtain truly representative

data at high lateral resolution from surfaces with quite high roughness amplitudes.

AFM can provide this data but is not ideally studied to the target surfaces; thereis
a gignificantly increased risk of tip damage. On the other hand, the required

resolution does not approach the limits of AFM capability.

Consequently, it was convenient to use an elderly instrument of modest
performance (Quesant, Q-Scope™ 788). This section briefly reviews the use of

AFM in the context of the needs for thisthesis.
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Figure 4.3: AFM (right), Probe holder (left) (Quesant, Q-Scope™ 788)

In essence, the AFM (see figure 4.3) consists of asmall tip or probe mounted in a
scanner. A stage supporting the scanner, an Electronic Interface Unit (EIU) and a
computer complete the system. Asthe probeis "rastered” over the surface, the EIU
maintains a condition of constant force between surface and probe by adjusting the
height (z dimension) of the probe. The movement of the tip over the surface is
controlled by a piezoelectric ceramic (or “tube scanner”), which can movein the x,
y, and z directions in response to applied voltages. Movement of the piezo in the x
and y directions scan the sample. A feedback circuit controls voltage applied to the

z piezo so that the signal is held constant as the tip is scanned across the surface.
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Figure 4.4: Probe Cantilever (right), Probe Tip enlarged in (left)

In the AFM, the tip is attached to a spring in the form of a cantilever. As the tip
moves over the surface, the cantilever bends back and forth in the z direction. A
laser beam is directed onto the cantilever and as the cantilever bends, the movement
of the reflected beam is detected by a photo diode. In the usual mode of operation,
constant force is related to constant cantilever deflection and so the piezo servesto

keep a constant output from the photodetector.

The image of the surface is built up as a series of scan lines, each displaced in the
y direction from the previous one. Each individua line is a plot of the voltage
applied to the z piezo as a function of the voltage applied to the x piezo (Quesant,

Q-Scope™ 788).



4.3.1. AFM Scan Parameters
It isimportant to choose the most appropriate instrumental variablesfor the scanned
sample. The scan parameters are listed in table 4.1:

Table4.1: AFM Scan parameters

Parameter Range Used

Scan Size Max:20 pm 20 um

Scan Rate 0.5t0 20 Hz 2Hz

Z Dynamic Range | Max: 4.18 um 4.18 um

Scan Resolution 100 to 600 600

Scan Direction 0to 359 90°

Image Mode Z-height or Lateral Only Z-height

Scan Profile (Hills & Valleys) Hills& Valleys

Scan Size indicates the square root of the area scanned. Thus, a value of 20 um
means a 20 um x 20 um or 400 pm? area is scanned. The smaller the vaue, the

higher the magnification.

Scan Rate isthe number of horizontal scan lines per second. In sampleswith sharp
features a Slow scan rate, e.g. 0.5 Hz, may be advantageous because the probe tip
has more time to react to sharp image features. On the other hand, the slower the
scan rate the longer the time required to acquire the image and greater vulnerability

to thermal drift.

Scan Resol ution isthe number of data points per horizontal line, which isalso equal
to the number of lineswithin the scan. Higher scan resolutionsreveal greater image

detail but also take longer to acquire and process.
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Z Dynamic Range affects the maximum Z height and the resolution achievable in
Z. lts value depends on the type of scanning head used. The AFM used has a 40

pm head and the maximum Z height 4.18 pm.

Scan Direction isin degrees and is the direction of scan relative to the stage. The

90° setting scans from west to east and 0° scans from north to south.

Image Mode refers to the way Z height features are measured.

Scan Profile affects the relative partitioning above and below the sample plane of
the available Z Dynamic Range which has been selected. The approach used was
Hills and Valleys, which partitions Z equally above and below the sample plane.
For the AFM used the Z Dynamic Range was 4.18 um, and so Z can extend
maximally 2.09 umin each direction. Selecting Hillsallows more available Z range

above the sample plane, whereas Valleys do the opposite.

4.3.2. Approaching the Sample
The following procedure has been used to bring the probe tip to within half a

millimeter or less from the surface of the sample.

The sample has been placed on the stage so that it is roughly under the probe tip.
Thiswill be to the left of the laser spot on the stage. Then, the probetip is brought

down to within about 0.5 mm or less from the sample, controlled manually and by

eye.

From this point, using the soft touch feature in this AFM allows a fully automatic

approach to the surface to prevent damaging of the sample surface or the probe.
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4.3.3. Fourier Transforming Images

The objective of Fourier transformation is (in the present context) to remove
unwanted interference and noise from the image. Interference is usually seen as
periodic lines, whereas noise is often specks or dots scattered randomly throughout
the image. Two dimensional Fourier transformation performs a mathematical
operation on the image, allowing one to remove unwanted interference and noise
by separating them in terms of spatial frequencies from the information which

constitutes the image.

To process an image, a Fourier transform of the image should be applied. After the
image has been transformed there are severa ways to remove interfering

frequencies.

4.3.4. Removing Tilt and Low Frequency Interference
As the image shows broad bands suggesting low frequency interference, AFM tilt
removal feature has been used. Line by Line/H and Line by Line/V remove,

respectively, low frequency horizontal and vertical interference.

Line by Line/H calculates the average height of all of the points on each scan line
of the image and sets this value to zero. Line by Line/V calculates the average
height of image lines (starting from the left) formed by pixels in the vertica

direction.

Tilt in the image is caused by a deviation of the sample plane from the scanning
plane. In generd, it is desirable to remove tilt from an image, a process which is
also referred to as levelling. The instrument software provides several automatic or

semi-automatic levelling procedures; commonly, a least squares best-fit plane
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would be used. Generally the simulations in this thesis take data from either a

ground or lapped steel surface, see figures 4.5 to 4.8.

Figure 4.5: Samples used in this project

20um 0 |

Figure 4.6: 3D lapped surface profile by AFM (Sample 1)
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Figure 4.7: 3D Ground surface profile by AFM (sample 2A)
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Figure 4.8: 3D Ground surface profile by AFM (sample 2B)
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4.4. Numerical Simulation Process

In this chapter a numerical simulation process is used to gain data on the filtering
effects of the stylus and on the distribution of contact points. The aim is to inform
choices of stylus geometry (i.e. tip radius and cone angles) for the benefits of
instrument design and uses and especialy, for the information of standards
organizations. Longer term, the simulation may help the development of instrument

diagnostics for stylus wear and damage.

Figure 4.9 shows in 2D the effect of the stylus tip size on the measured profile of a
surface. When measuring the real profile with aspherical tip, the measuring system
will report the locus of a certain point of thetip normally the centre point. However,
if the surface profile is scanned with the small tip, the locus of the centre point of

the tip will represent the measured profile (locus 1).

Figure 4.9: The effect of stylus tip radius on the measured surface profile

Obvioudly, the measured profilewill be different from thereal profile asthe valleys

tend to be sharpened while the peaks tend to be flattened. Rescanning the same red
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profile with a bigger stylus tip produces another profile (locus 2) which is more
different from thereal profile. It is clear that locus 2 is more different from locus 1,
whichisof courselogica asthe smaller tip will be ableto go deeper into thevalleys

than the bigger tip.

Before discussing the details of the simulation method and its practical
implementation, it is useful to set the context by means of a qualitative physical
summary of the process:

1. Assume an array representing a uniformly distributed set of spot height
measurements that form a map of the surface topography and a much smaller map
representing the shape of the stylus by a set of heights;

2. Choose apoint on the surface map at which the styluswill be applied. In practical
terms this can be done by extracting a sub-map (partition of the array) of the same
Size asthe stylus array.

3. Set the ‘stylus' above the ‘surface’ and determine the gap between them. In
practical terms this amounts to taking the difference, point for point between the
stylus and sub-surface arrays,

4. The position at which this gap is smallest indicates where the stylus would first
make (kinematic) contact with the surface were it to be lowered vertically towards
It;

5. The height of the centre-point of the stylus tip will then be the height of the
surface contact point reduced by the difference between the heights of the stylus
contact point and the stylus central point;

6. Record this contact datafor later use and write the stylus height into the relevant

position of an array for the modified surface;
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7. Move to the next point of the surface by looping to 2 until the whole array is
processed;

8. Note also that various further analyses can be built into this scheme, such asthe
introduction of athresholding method proposed herefor thefirst timeto explorethe
sensitivity of the method to alternative surface features.”

The basic core of the numerical simulation method is a ssimple extension of that
used for many years to show how a circular (disc) 'stylus' filters (smooths) a
roughness profile (Radhakrishnan, 1971). The extension from these 2-D methods
to 3-D (real) surface modification is obvious, but appears to be hardly reported in
the literature. Perhaps computing costs for the perceived benefit have been
discouraging. It seems likely that a few investigations into statistical methods of
predicting stylus filtering effects may have used it for testing without fully

describing the techniques used (Wu, 1999).

The simulation is a kinematic process, based on the geometry of ideally rigid
materials, etc. Consider first the 2D vision of a disc scanning surface profile, which
iIseasy to visualize. A tipislowered vertically towards a nominally horizonta test
surface until a first contact point is encountered. The measured (reported) profile
point isthen recorded as the height of areference point on the stylus (e. g. centre of
spherical tip or lowest point) positioned at the lateral location of the centre of the
tip. We assume that rea styli are adequately constrained by their guiding
mechanisms to be modelled as single degree of freedom systems. The dightly
arcuate motion of many real profilometers is neglected. This is acceptable on
spherical tips and, although less rigorous, for other shapes over small deflections.

Effects such as contact friction are also ignored. Conventional instruments might

72



typically have a range of £50 um and use a 50 mm stylus arm, so the maximum
change of angle is only around (1 m radian). Some modern, long range profilers
cause more concern but angular deviation is still only a few hundredths of aradian

(Dowidar, 2003).

Figure 4.10 shows the principle of the simulation process of measuring a surface
with astylus. The height reported by the stylus at any point P of the surface will not
always represent the height of point (CL) unless the contact occurs exactly on the
top of point (CL) with the centre of the stylustip (point 5). The contact could happen
at any point of the surface within the size of the stylus tip. To find out the actual
height of the stylus at any point (CL) of the surface, the height of each point of the
stylus is added to the height of each opposite point of the surface. The maximum
value of the determined heights will represent actua height of the stylus when
measuring point (CL). It will also give which point of the stylus it is that makes

actual contact with the surface.

The stylus is then moved to the next point of the surface and its actual height is
determined as well as the points of the stylus which make contact with the surface.

This processis repeated on all surface points.

L -
7( Rough Surface

Figure 4.10: The principle of the simulation process of measuring a surface with
a stylus
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4.4.1. Simulation software technique

In this simulation, the surface could be any set of data representing a real or an
arbitrary simulated surface. Also, the stylus could be any set of data representing a
real or an arbitrary stylus shape. Both data sets of the surface and the stylus are dealt

with as arrays.

Figure 4.11 shows the main features of the algorithm used in the new
implementation of the simulation process. The surface and the stylus are
represented by two sampling gridsin arrays Z(N, M) and S(d,d) respectively, where
N isthe number of traces of the surface, M isthe number of pointsin each trace and
d isthetip diameter (for the ball, d=2r). In principle, Z isjust an array of regularly
spaced points representing x and y coordinates, with no preference of one over the
others. However, it remains the case that most stylus instruments do indeed scan
the surface in a series of parallel traces (‘fast’” and ‘slow’ axes!). Two new arrays
L(N, M) and C(d,d) are created. The array L(N, M) has the same size as the surface
array Z(N, M) and is used to report the locus of the stylus on each point of the
surface. The other array C(d,d) has the same size as the stylus array S(d,d) and is
used for counting the number of times that each point of the stylus has made contact
with the surface. The centra point of the stylus array Sis set, in turn, above each
point of the surface array Z(i, j). The actual height of the stylus is determined on
each point of the surface Z(i, j) and is stored into the array L(i, j). Stylus points
making contacts with the surface are determined. The counter C(a, b) of each point
making contact with the surface will be increased by one while other points
counters will remain the same. The output of the ssmulation process will be the

array L(N, M) representing the locus of the centre of the stylus S(d,d) when
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scanning the surface Z(N, M) and the array C(d,d) representing the number of times
that each point of the stylus has contacted the surface. The locus array will be
compared to the actual surface array, either graphically or quantitatively to show
the effect of the stylus geometry on the roughness parameters of the scanned
surface. The contact array will show which part of the stylusis most often making
contact with the surface and that hel ps in defining the appropriate stylus shapes for
scanning such surfaces. The algorithm is implemented in MATLAB for ease of
array handling, etc., at the expense of relatively poor computational speed.

Appendix A shows the Matlab program used for the simulation process.
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Figure4.11: Summary of the numerical simulation algorithm
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The way any particular software system (in the present case MATLAB) handles
array indexing can offer advantages to the implementation of the stylus simulation,
but can also place minor constraints on it. In the latter for example, it would be
physically intuitive to consider the stylus shape map moving out from a central (z-
axis) point identified as (0,0), but MATLAB indices two-dimensional arrays from
(1,1) at one corner (which its internal plotting routines treat as “bottom, left”). On
the other hand, its feature of enabling two-dimensional arrays to be handled
consistently through a single index allows a more compact way to store the extra
evaluation data that the new implementation provides. It is, therefore, worth

reviewing the indexing ideas that will be used in some detalil.

Generically, the description of the surface (or stylus) topography comprises a
collection of spot heights (h or z) at a specific position (X, y) inanominal reference
plane; full description requires real-valued triples (x, y, z). A maor ssimplification
is provided by forcing the height measurements to be regularly spaced on a
rectangular grid along the x and y-axes. Slightly greater ssmplification occursif this
spacing isforced to be the same aong both x and y. The map can then be treated as
a simple (real-valued) matrix, or 2D arrays, with integer indexing and with true
position recoverable from the specific index and sampling interval. Thus on explicit
triple for the spot height at a specific location (p, p, h;), which could also be
expressed h; (py ,py) Can be expressed, subject to nothing worse than an implied
and consistent shift of origin, in array terms as Z(i,j) where p,=i dx and p,=j dy.
Dx and dy are the real-valued sampling intervals along the axes, whilei and | are

integers.
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The sampling intervals dx and dy must be the same in both the stylus array (s) and

the surface array (z). They must represent values in the same units

The stylus shape isheld in asquare array S(d,d) for the common case where dx=dy,
which is used throughout the present work. For computational efficiency, d should
be kept small but it must nevertheless extend far enough to encompass all possible
points of contact between the stylus and surface; for example, for aball-tip of radius

r, we might take d.dx=2r.

The basic kinematic stylus ssimulation (dilation) proceeds by a process equivalent
to physically placing the centre-line of the stylus above each point of the surfacein
turn and each time recording the rel ative height of the stylus where it makes contact
with the surface. The array of these heights forms the map of amodified surface (or
stylus locus). The actual realization of this process used here is to extend from the
surface map a suitably positioned sub-array having the same dimensions as the
stylus array, compute the contact height for this sub-set, and record the height in
the equivalent location of the modified surface array. This particular approach has
two advantages. First, it allows effective exploitation of some in-built MATLAB
functionality. The second is more subtle: while recording a fully-modified surface
requires extracting a sub-array for each point of the original map, many statistical
studies can operate with evaluations taken at a much smaller number of positions,

which is made easy by this method.

The core algorithm has an outer structure that selects for processing appropriate
points within the surface map, Z. In the case of a full scan to generate a modified

surface, this will comprise nested loops incrementing through all index positions.
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Assume, then, that a sub-array ZZ, of the same size as the stylus array S, has been
extracted from Z at a position of interest Z(1,J). Since the kinematic model allows
stylus motion only along the z-axis, the physical intuition of the next step isto place
the stylus at an arbitrary distance directly above the extracted surface and then
evaluate the size of the gap between surface and stylus at each point; thefirst contact

will necessarily coincide with the position at which this gap is smallest.

For convenient visualisation (while noting that practical coding may benefit from
other conventions) assume that S and ZZ are indexed with (0,0) being their central
point. Since arbitrary shift on the z-axisis of no mathematical concern, we can then

compute simply
Gap=S2Z

Note that this might be asum or difference depending upon choice of plausible sign
conventions in describing stylus shape. The minimum value of gap is found to be

at position (i,j) and the reported stylus height will then be

heyp = ZZ (1, ) + (S0, ) — $(0,0))

This value is recorded as the surface output in the locus array at position L(1,J).
Meanwhile, element C(i,j) in a counter array having the same dimension as S is
incremented, therefore, building up a3D histogram of how often each point of Sis

contacted.

Finally, arelative contact location isrecorded in CL, having the same dimension as

L, at the relevant point, for example:

CL(I,J)=i+Nj
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where Sisof size NxN. Aslong as S and Z are retained, this suffices to reconstruct

any desired part of the contact history.

For visualization and for most parts of the coding, it is best to treat surface (and
stylus) arrays in terms of (i,j) indices, that is in orthogonal x and y coordinates.
However, it is sometimes convenient to think of the whole map as a linear array,

row following row, with asingle index P. Thus, we might use:

P=i+M(j-1)

If thel and j indices start at 1, MATLAB adopts this structure internally and either

indexing system can be used.

The Kinematic simulation of stylus contact used to date, essentially and once the
first contact (minimum gap) position is determined for each selected point on the
surface map and an equivalent map of the locus of the reference point on the stylus
logged into the same index position in the output (modified surface) array. While
being moderately informative of how a stylus might affect a specific measurement,
this kinematic model risks placing too much emphasis on an overly particular set
of conditions. For example, because of noise and other measurement uncertainties
any attempt to repeat the exercise on nominaly the same surface might yield rather
adifferent result even if the model stylusis exactly the same. Also, of course, real
surfaces are not perfectly rigid and areal styluswill always settle dightly below its

first contact through electric (and perhaps even plastic) deformation.

Consequently, a significant innovation within the present work is to introduce an
additional thresholding phase after the kinematic processis complete. While simple

to implement in software, it opens up a whole range of possibilities for exploring
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stability and sensitivity of the modelling and adds further depth to the investigation

of any proposed new stylus scheme.

The idealised physical intuition of the method is that once first contact is
established, the stylus is forced to move downwards by a small distance, the
threshold. The surface is treated as totally yielding to this operation, which might
(or might not), therefore load to larges areas of the stylus intersecting with the
original surface. By exploring the effects of the different threshold, we can evaluate
the degree to which the kinematic contact is representative, or even possibly

dominant.

Mathematically, the process involves only a slight extension. With the matrix gap

computed for any specific stylus and extracted surface sub-matrix, we can write:

thr - gap = gap — (My¢ + Ths)

where, Thsis athresholding constant. All pointsin (thr—gap) which have negative

or zero values are then regarded as a parts of the thresholded contact. ...

New challenges arise in providing ergonomically convenient ways to visualize the
growth of contact regions as the threshold distance is increased, and describing the
contact regions parametrically. One ssimple but effective way for handing the
contact over asingle stylus-sized patch is simply to define an array which has (one)
wherever thr-gap < 0 and (zero) elsewhere. (Actually, this is very easily achieved

inin MATLAB because of the way it handles conditioned and logic operations).

Theinbuilt plotting routines can then display an effective black and white plan map

of which pointsarein contact. Of course, it would equally be easy just to set to zero
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all positive gaps, leaving the negative values to reflect the relative weight of how
influential each point in the contact region is likely to be. Practical experience so
far suggests that this extra sophistication adds insufficient insight to be worth
including.

45. Summary

This study has introduced a new implementation of a suite of tools for studying
stylus-surface interaction in simulation. A consistent pattern of data flows and
archiving around ahighly modular organization is advocated, allowing new features
to be introduced in small, independently testable, modules. In thisrespect, the first
featuresincluded and not previously reported concern the mapping of contact extent
and intensity across the probe surface and the use of thresholding to investigate
sensitivities to noise and instrument resolution. The concepts are illustrated for
clarity by a highly artificia flat probe and large parameter values for which many
effects can be understood intuitively, aswell as being readily visible on small-scale
plots. However, even with this unrepresentative approach, the thresholds reveal
information about the surface geometry that may be of functional significance.
The system isnow being refined to add further features while simultaneously being
used with more representative probe models to investigate, for example, the

statistical significance of contact distributions.

The simulation program has been developed and used to simulate the real and non-
real surfaces roughness measuring process by the stylus method. It can be used to
scan any arbitrary surface with any arbitrary stylustips shape. The simulation is not

only used to measure the roughness of the surface but also to show the contacts
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distribution on the tip when scanning a surface, information not previously
considered. The theoretical results of the simulation in the following chapters have
confirmed that the stylus geometry can have a significant effect on most roughness
parameters of the measured surface in 3D. The contacts distribution on the tip has
shown that most contacts do not occur at the central point of the stylus in most

cases, even with idealized shapes
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Chapter 5
5. Sub-Micrometer contact of topography Styli

5.1. Introduction
Stylus-based surface roughness metrology remains a popular and important

practical technique for both industrial use and basic research, being complementary
to optical methods. The nature of the contact at asmall probe-tip is of clear concern
to the fidelity of measurement, both directly in terms of potentia distortion of
functionally important data and for the inter-comparison of results from different
instruments. Broadly similar concerns arise in some types of micro-tribology, but
this study concentrates on the former, while anticipating other more general
applications. It isintuitively obvious that any surface features having dimensions,
curvatures and so on smaller than or even somewhat larger than those of the stylus
tip will be distorted during measurement. Often regarded simply as a highly non-
linear low-pass filter having (at best) poorly determined parameters, the probe
interaction also has poorly understood effects on the measurement uncertainties,
both normal to the surface (often called ‘vertically’) and in the surface plane

(‘horizontally’ or ‘laterally’).

There are obvious, extreme challenges in attempting direct determinations of the
complex interactions that occur between a profilometer stylus and a surface during
ameasurement of surface micro-topography. Thereis more hope that comparisons
between real results and suitable numerical simulations might revea indirect
evidence about behaviour in the contact region. Thereisalong history (dating back
to the obsol ete E-system for generating measurement reference lines) of simulating

the loci of the centres of circles, and latterly spheres, rolling on rough topography



(see, for example, (Muralikrishnan , Raja, 2009 ) for a brief review). It has been
used primarily as an evaluation tool, but the concept also appears in attempts to
compensate for stylus distortion by ‘stylus deconvolution’. However, current
models lack the sophistication to properly address comparisons or uncertainty
analyses. They are, for example, purely kinematic, assuming perfect guide axes,
rigid probes and rigid surfaces. They are actualy a class of morphological filter:

specifically, the centre locusis dilatation operation (Muralikrishnan , Raja, 2009 ).

Previous stylus-surface interaction simulations have concentrated on how the
apparent (actually measured) topography is modified by the stylus contact from
what truly exists. There appears to have been very little research using such
simulation methods to examine the effects on the stylus tip itself. This has been
viewed as alower priority question, but also it only makes senseto study it asa 3D
simulation and so it has awaited the arrival of sufficient low-cost computing power.
It istimely, therefore, to give it more attention. For instance, it offers potential to
help build ssimple empirical models that might cast light on questions of lateral
uncertainty in stylus measurement, suggest ways to improve comparisons between

different instruments, or lead to methods for self-diagnosing stylus wear.

The current work builds upon a previously reported 3D stylus simulation (Dowidar
and Chetwynd, 2002) that introduced a statistical summary of the points upon the
stylus surface at which actual contact occurs. It alowed use of both simulated non-
ideally-shaped tips and, particularly, the use of high-resolution data from direct

measurements of real styli (Dowidar and Chetwynd, 2004). Such extra data

85



becomes important because the contact is rarely directly aong the (metrologically

assumed) central axis of the stylus system.

The new simulation system introduces severa refinements to this modelling
approach. Firstly, it is clear that many simulations with subtle differences will be
necessary to generate a statistically valid summary that could be compared to real
instrument behaviour in order to infer the accuracy of the models. A highly
modularized software suite is used, with bespoke parts implemented in
MATLAB®. Figureb5.1 illustrates the scheme. Extensive useis made of libraries
of surface maps. in addition to smulated and measured ‘original surfaces every
‘modified surface’ processed here is also entered, so giving a complete record and
also enabling study of multiple stylus actions. Thereisasimilar library of ‘styli’.
Every simulation runs by loading an appropriate pair from the libraries, processing
them by a core operation and returning modified versions and statistical
information. Higher processing of surface information (for parameterizations,
comparisons, etc.) is performed by a commercia package (in our case, SPIP®),
which acts as an independent standard. This approach both maximizes capabilities
for inter-comparisons from different sources and minimizesthe size and compl exity
of the bespoke core routines, thereby easing the task of verifying them. For the
present, we are content to work with small maps, up to around 128 points square,

to limit computationa costs.

The underlying starting point for modelling probe contact remains essentially the
kinematic model used previously: an agorithm published in (Dowidar and

Chetwynd, 2002). The physical concept is that the central z-axis of astylusmap is
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positioned in turn above each (X, y) position on a surface map and then lowered
along the z-axis until first contact is detected. This contact may not be on the z-
axisbut itsheight isrecorded asthe modified surface point at (X, y): this corresponds
to where a real instrument would report such a point. Computationaly, this

dilatation operation reduces to an array addition and search for a maximum.

The first enhancement is to record also the position(s) (note that there might be
more than one contact, e.g., where asphere enters atriangular groove) of the contact
within the stylus array. This can be done compactly by ssmply building a 2D
histogram of contact numbers at each point (Althagafy and Chetwynd, 2011), but
more valuable information is gained by maintaining a history of contacts that
correlates with the points on the surface map. It isthen possible to revisit the same
data sets using a separate bespoke module to explore in detail, e.g., the lateral error

distribution between actual and reported height positions on the modified surface.

The kinematic model is unrepresentative and over-prescriptive because, among
others, (i) real surface data is subject to instrument noise and so fine differences
associated with the very peaks will not repeat; and (ii) neither surfaces nor styli are
perfectly rigid and there will be elastic (possibly plastic) deformation at points of
contact. Furthermore, it might be over-sensitiveto the resol ution of the surface data
supplied by a specific instrument; a concern for measurement standards. A new
threshold feature has been added to the kinematic model to address such points. On
determining the kinematic condition, a search is made for other points which come
within a specified distance of the stylus. This has immediate, obvious application

in exploring how potential contacts might be lost or gained if resolution is reduced.
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It can aso identify how many ‘ contacts might be totally within the noise-floor of
an instrument (physically the routine is one-sided, but the dilation has aready
effectively treated the noise as one-sided). Thresholding can also provide a first
step towards more sophisticated models for approximating stiff but non-rigid
contact. By a type of relaxation method, iterative modifications to the threshold
might illustrate how the stylus settles elastically onto the surface. Each change of
threshold would now be governed, e.g., by aforce-balance using localized Hertzian

contacts.

Instruments

@ I Image Analysis
(SPIP)

External Data
Surface Library | “
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Figure 5.1: Scheme for the software suite.

The basic smulation suite (figure 5.1) is now established for use in extensive
numerical experiments. Here, some early results are provided as a first
demonstration of its capacity and potential for further analyses. In attempting to

make the concepts more immediately obvious, this study shows only a physically
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unrepresentative simulated stylustip shape, involving anideal truncation (flat), and

arelatively large threshold.

5.2. Verification

The challenge of adequately verifying proper operation is greatly eased by the use
of small modules that are used sequentially.

Running many trials of basic stylus shapes over simple surfaces, including single
or clustered deltafunctions, rapidly identifies maor bugs and increases confidence
that no subtle errorsremain. Just one exampleisgiven here, Figure5.2. The pattern

of a flat scanning across a noise-free sinusoidal prism is readily recognizable.

Figure 5.2 Scanning across a noise-free sinusoidal surface

Itisalsointuitively obviousthat the contact pattern on the stylus has alow, uniform
count (matching the flat regions on the modified surface) but there are higher values
at the leading and trailing corner points (flank contact) and occasiona multi-point

contacts.
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5.3. Kinematic and Threshold Models
Figure 5.3a shows a small map (128 by 128 points on a 0.2 um sample grid) taken

by atomic force microscopy from atypical ground steel surface. Thefinedetail has
both sharply varying and plateau-like regions. For clarity of illustration, Figure 3b
shows the severe effect of applying a ~2 um sguare flat stylus (11 by 11 points)
under kinematic conditions. The serious distortion is no surprise, with high-points
being converted to plateaus, but, even so, the general structure is preserved: e.g.,

peak-to-valley amplitude has reduced merely from 758 nm to 746 nm.

Anaitude ()

Figure 5.3: Modification of a surface detail by a 2 mmflat: (a) AFM image; (b)
simulation

A typical profilometer set up to measure finish ground surfaces might have an
effective noise floor of the order of 10 nm to 20 nm peak. Its digitized resolution

might typically be 1 nm to 10 nm.
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Alternatively, noise-related issues could be handled in terms of afraction, say 0.5%
to 0.1%, of full range (maybe a few tens of micrometres, typically). Hence,
thresholds from 5 nm to 50 nm (for deliberate over-emphasis) seem relevant for
study here. The ssimplest form of thresholding is roughly equivalent to idealy
pressing the probe into the surface. For the illustrations used here the modified
surfaces are largely unchanged other than a dlight vertical offset. Interest liesin
how the shift interacts with additional surface features to alter the probe contact

patterns.

As an elementary illustration, Figure 5.4 shows the effects on the position of
contacts on the probe when adding a 50 nm threshold to the case shown in Figure

5.3b.

For clarity, the maps show simply the presence or absence of contact at each point.
Within the bounds of thisflat probe, the actual area detected as ‘in contact’ is then
highly analogous to the operation of the well-known bearing area. Note, though,
that the pattern varies as the probe scans over the whole surface and more complex

patterns will arise with more realistic probe shapes.

Centring the probe at (61, 66) — using ordinates, not dimensions, for simulations —
putsit on asteep flank and kinematic contact isat one corner. Even 50 nm threshold
causes only slight growth in the primary contact and the first signs of a second one
nearby.

By contrast, (61, 66) and (109, 120) are in plateau regions, they show large contact

growth, dominated by a single region and occasional secondaries.
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In both cases, the kinematic contact is far from the centre of the region. Even at

thissmall scale, growing the region devel ops ashapethat correlateswith the surface

lay.
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Figure 5.4: Positions of kinematic and 50 nm threshold contacts on
a flat probe for three selected places from Figure 5.3b

In al three cases, the ‘true’ contact is significantly displaced lateraly from the

nominal line of action of the probe, a result also seen elsewhere (Dowidar and
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Chetwynd, 2002) that has implications for measurement uncertainty of all

topographic parameters except the simplest amplitude measures.

Although Figure 5.4 shows only the regions of contact, the intensity of contact at
each point is of physical interest. One simpleindication (not shown here) of thisis
to plot the probe maps in terms of how far each point on the probe would have
encroached into the origina surface to settle at the specified height relative to the
kinematic condition. This gives, for example, a crude indication of the stress
intensities associated with each contact, and so of itslikely practical significancein

defining the reported surface height of areal instrument.

As a further experiment, figure 5.5 shows an ideal conica stylus and a map
indicating its contact against an ideal flat. The initial geometric contact is a single

point.

Conical Stylus

L hum

20

0o
Y furn A dum

Figure 5.5: Conical shape 60x60um
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With athreshold, al surface points sufficiently closeto thetip are considered to be
in contact: a large value generates a symmetrical patch of contact. Here, we get

effectively the same image as from an ideal indenter into a plastic material.

Figure 5.6: Map of contact points with 149 nm
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Figure 5.7 showsjust the tip of the 10X10 um conical stylus and contact with aflat
using amuch smaller threshold. The basic behavior isthe same, but resolution limits

within the geometry become apparent.

Figure5.7: (a) Conical shape Stylus 10x10 pm (b) Map of
contact points with 23nm threshold

95



Figure 5.8 shows a 20x20 pm small map (64 by 64 points on a 0.2 um sample grid)
taken by atomic force microscopy (AFM) from atypical ground steel surface. The

fine detail has both sharply varying and plateau-like regions.

Figure 5.9 shows the stylus in (figure 5.7a) contacting local features of ground
surface figure 5.8. Again using heavy threshold for clarity, key observations (fig
5.9b) are that the initial contact is not central and the patch grows asymmetrically,

eventually picking out the major structures of the surface.

The total local height variation over this 10 um by 10 pm is about 1000 nm, so
thresholding to afew percent of height suggests real working simulations should be

perhaps 10-20 nm.

1.1m

Scale in nm

10um 15um 20um

20um0 Sum

Figure 5.8: (a) 3D 20x20 um small map (AFM) image
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To measure such a surface we might expect to use an instrument range of perhaps 5000
nm, with inherent noise of up to 1% full scale. Thus thresholding to a few tens of

nanometersis also appropriate for modeling noise sensitivity.

(@)

(b)

(©)

Figure 5.9: 3D ground surface 10x10 um (b) Map of
contact with 149 nm threshold (c) with 40 nm threshold

For the particular condition illustrated, the map remains essentially the single point

(in blue at Figure 5.9b) for thresholds as high as 40 nm; thereisasingle, real peak
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that is likely to dominate local contact behavior at the scale of thistip. Figure 5.9c

shows the threshold up to 40 nm leaves single point, which is the first contact.

Comparing figure 5.9, and figure 5.10 (after moving the surface across and putting
the tip in the middle), by applying heavy threshold, the pattern is very heavy
threshold, and the pattern is very similar. It can be concluded that here is only
dominant peak and it is not noise sensitive. In figure 5.9, the lateral error is about
1.5 um. It aso showed that here (tip radius fairly large) little change in reported
contact under local movements. (i.e. not much different to flat stylus in actua

behavior).
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Figure 5.10: 3D Ground surface 8X8umwith tip at
the centre. (b) Map of contact with149 nm threshold.
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Chapter 6

6. Stylustip size and shape effectsin surface
contact profilometry

6.1. Stylus Simulation

This chapter presents refinements to 3D simulations of stylus effects in
microtopography measurements. It briefly reviews how statistically richer data can
be obtained by extending basic kinematic models, perhaps providing steps towards
more sophisticated modelling of the contact process. After a review of the new
simulation scheme, results and discussion concentrate on idealized styli operating

beyond the limit of their expected resolving power.

It is dmost impossible to determine directly the complex interactions that occur
between a profilometer stylus and a surface during a measurement of surface micro-
topography. Thereis, however, along history (dating back to the obsol ete E-system
of reference lines) of simulating the loci of circles, and latterly spheres, rolling on
rough topography both as an evaluation tool and in attempts a ‘stylus
deconvolution’. Comparison between real results and such simulations can reved
indirect evidence concerning behaviour in the contact region, although current
models are hardly sophisticated enough to make much impact. They are purely
kinematic models, assuming perfect guides and rigid objects and are actually aclass
of morphologica filter (specifically, the centre locus is dilation operation)
(Muralikrishnan , Raja, 2009 ). Published work concentrates heavily on the effect
of the ‘measured surface’, extended in one case to report some statistics on the
contact to the stylus (Dowidar and Chetwynd, 2002). The present research takes

this further, motivated by its potential to cast light on the in-plane uncertainty of
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stylus measurements, suggest ways to improve comparisons between instruments

or lead eventually to methods for self-diagnosis of stylus wear.

A new simulation gathers full data about stylus contact related to its location upon
the surface. It introduces a threshold process (Althagafy and Chetwynd, 2011) by
which the kinematic condition is violated in small increments and the growth of
resulting ‘ contact areas' recorded. Thisisintended to giveinsight into sensitivity to
instrument noise, repeatability, etc. It also has potential for modelling the contact
process, by approximating stiff but non-rigid contact using relaxation techniques.
The contact modelling is implemented in MATLAB® which isinterfaced with the
commercial topographic analysis software SPIP in order to provide a standard for
parameter eval uation and comparison, and to transl ate between different instrument
data formats and MATLAB arrays (Althagafy and Chetwynd, 2012). The surface
could be any set of data representing areal or an arbitrary surface. Also, the stylus
could be any set of data representing areal or an arbitrary stylus shape. Both data

sets are dealt with as arrays.

6.2. Styli and fine surface structure

This chapter concentrates on study of the sensitivity to stylus shape and condition
when detecting features of rea surfaces at the very limits of conventional
profilometer capabilities. It therefore uses relatively small arrays with a grid
sampling interval of 0.1 um. Three ideal computer generated stylus tips with
different shapes have been used: conical, pyramid and spherical (Figures 6.1, 6.2
and 6.3). The tip radius and heights (for the conical and pyramid shape) are 3 um

and 5 um. The tip angles of the conical and pyramid shapes are 90°. Each tip has
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been used in its perfect shape and with a quite severe truncation at 2um below the
original tip. The spherical tip offersafull hemisphere, not the more usual blend into

acone, alowing estimation of flank contact for different cone angles.

Height{urn)

Figure 6.1: (5um) Conical Stylustip shape

Figure 6.2: (5um) Spherical Sylustip shape
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Figure 6.3: (5um) Perfect Pyramid Stylustip shape

6.3. Results

Many trials were run of the basic stylus shapes over ssmple computer generated
surfaces, such as single or clustered delta functions. These can rapidly identify
major bugs and increase confidence that no subtle errors remain in the simulation

routines.

6.3.1. Verification

The challenge of adequately verifying proper operation is greatly eased by
implementing the model and ssimulation as a set of small modules that are used
sequentially. Running many trials of basic stylus shapes over simple surfaces,
including single or clustered delta functions, rapidly identifies mgor bugs and

increases confidence that no subtle errors remain.
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The output of scanning the random surface with a 10 pum perfect conical tip isshown
in figure 6.4. There is also a large visible difference between the origina surface
and the locus of the stylus. There is avisible difference from that generated by the

spherical tip.

Original Random surface (hottorm) and Stylus Perfect Conical tip locus (top)
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(b)

2D coss section of original Random profile and the traced Conical stylus locus
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Figure 6.4(a) Locus & original surface (b) 2D cross section
profile (c) Contacts distribution: of a 10pm conical tip on a
random surface
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Original Randorm surface (bottorm) and Stylus Tpm Truncated Hemisphere tip locus (top)
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Figure 6.5:(a) Locus and original surface (b) 2D cross
section profile (c) Contacts distribution: of a 10um
conical tip on a random surface
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6.3.2. Simulation on real surfaces

The simulation verification has shown that the technique is working properly and
giving significant results. The next stage is to apply the technique to a set of data
representing real surfaces. The surface roughness of the real samples have been
measured by Atomic Force Microscopy (AFM) and the data representing these
surfaces have been converted to readable format in Matlab by using the Scanning
Probe Image Processor (SPIP). The surface data have been scanned theoretically in
3D by the computer using the same tip shapes (pyramid, sphere and cone) with the
two radius size 3um and 5um. The sample is ground steel. The data collected by
AFM were checked for no missing data losses interpolation by SPIP software. The

value of the roughness parameters of the samples are shown in table 6.1.

1.1pm 1100 —

Scale in nm

20um
201m0 Bum 10pm 1l

Figure 6.6: AFM 3D image of a ground steel surface

105



Scales in lm

Figure 6.7: AFM 2D profile of a ground steel surface

Table 6.1: Real surface roughness parameter

Roughness R R R R R
Parameter ¢ 1 Y sk u
nm 458 481.5 920 1.135 1.37

6.3.3. Results discussion
The output of scanning the ground surface with the 5um radius perfect pyramid tip

is shown in figure 6.8. There is a little visible difference between the original
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surface and the locus of the stylus. But, the roughness parameters Ra and Rqg have
been reduced from the original values of the surface. The contacts distribution on

the tip shows all contacts. Moreover, the maximum number of contacts occurs on

the central point of the tip.

Height{prm)
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Figure 6.8: Original ground surface (Bottom) and perfect pyramid stylus tip locus
(top)
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2D coss section of original Ground profile and the traced Pyramid stylus locus
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Figure 6.9: 2D cross section of original ground surface profile and the traced
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Figure 6.10: Contact distribution on the perfect pyramid tip
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The output of scanning the ground surface with the 10 um radius perfect spherical
tipisshowninfigure 6.11. Thereisvisible difference between the original surface
and the locus of the stylus. Moreover, the roughness parameters Ra and Rq have

been reduced from the origina values of the surface.

The contacts distribution on the tip shows that al contacts occur on the central line

of thetip. Also the maximum number of contacts occurs on the central point of the

tip.

Criginal Ground surface (bottom) and Stylus Perdect Hemisphere tip locus (top)
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Figure 6.11: Original ground surface (Bottom) and perfect Hemisphere stylustip
locus (top)
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20 coss section of original Ground profile and the traced Hemisphere stylus locus
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Figure 6.12: 2D cross section of original ground surface profile and the traced
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Figure 6.13: Contact distribution on the perfect hemispheretip
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Original Ground surface (bottom) and Stylus Perfect Conical tip locus (top)
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Figure 6.14: Original ground surface (Bottom) and perfect conical stylustip locus
(top)

The output of scanning the ground surface with a 10 um perfect conical tipisshown
infigure 6.14. Thereisaso little visible difference between the origina surface and

the locus of the stylus.

The roughness parameters Ra and Rq are nearly the same as the original values of
the surface. The contacts distribution on the tip shows that all contacts occur on the

central point of thetip.
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2D coss section of original Ground profile and the traced conical stylus locus
0.9 T T T T T

Original surface
oak —#— locus

0.7

0.6

0.5

Height{urm)

0.4

0.3

0.2

D'] 1 1 1
0 10 20 30 40 a0 g0

¥ (Pxiel)

Figure 6.15: 2D cross section of original ground surface profile and the traced
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Figure 6.16: Contact distribution on the perfect conical tip
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The contacts distributions of the 1 and 2 pum truncated tips when scanning the
ground surface are shown in figure 6.18. It is clear that the ground surface gives
very similar shapes of the contacts distribution on the spherical tips to the ones of
the Sinusoidal surface as most contacts occur along the central line of the spherical

tip but with more contacts spread around the edges of the tip end.

Original Ground surface (bottom) and Stylus Tpum Truncated Hemisphere tip locus (top)
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Figure 6.17: Original ground surface (Bottom) and truncated Hemisphere stylus
tip locus (top)
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Figure 6.18: Contact distribution on the truncated Hemisphere tip
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In the conical tip are also shown dlightly different distributions as most contacts
occur around the corners of the tip. Thisis due to the existing irregularities on the
ground surface which don't exist on the perfect sinusoidal shape. It is also noticed

that the centre of all tips have the minimum number of contacts with the surface.

Additionally, itisvisiblethat scanning the ground surface with different dimensions

3um has shown nearly the same locus and contact distribution shape as the 5um

tips.
Original Ground surface (hottom) and Stylus 2pm Truncated Conical tip locus (top)
' B0
¥ {Pxiel) B0 . 10 70 30 40
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Figure 6.19: Original ground surface (Bottom) and truncated conical stylustip
locus (top)

The truncated pyramid tip shows a different result from the truncated conical tip

which shows the growth of contacts at the central point of thetip.
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Crriginal Ground surface (bottom) and Stylus 2Zpm Truncated Pyramid tip locus (top)
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Figure 6.20: Original ground surface (Bottom) and truncated pyramid stylustip

locus (top)
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Figure 6.21: Contact distribution on the truncated conical tip
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Contacts distribution on the 2pm Truncated Pyramid tip
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Figure 6.22: Contact distribution on the truncated pyramid tip

Table 6.2 shows the percentage error of the roughness parameters of different
outputs when scanning the ground shape with different tips. The maximum

deviation occurs when using the truncated 5 um spherical tip.
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Table 6.2: Roughness parametersErrors

Roughness 4858 4;45 95% S Sku

Parameter ' 1135 | 1.37
nm nm nm

Stylus _ %Error=100x(Measured Value - Actua
Tip Size Shape Value)

[ Actual Vaue
Pyramid | 3um Perfect 0.00 0.00 | 0.00 | 0.00 | 0.00
2u Worn 2.1 -15 -7 -1.8 -3.7

5um | Perfect 000 | 000 |y, | 000 | 0.00
2uWorn | -362 | -344 | oo | -0877 | -143
Sphere | 3um | Perfect -1.09 | -1.4 17'2 -0.88 | -0.72

21 Worn -34 -29 -11 | -7.96 | -16.7
Sum Perfect -6.76 | -6.76 | -1.6 | -184

0.877
2uWorn | -65.34 | -56.34 25;.9 -10.57 | -20
Cone | 3um | Perfect 0.00 | 0.00 | 0.00 | 0.00 | 0.00
2u Worn -2 -1.4 7_59 -1.7 | -3.64
5um | Perfect 0.00 | 0.00 | 0.00 | 0.00 | 0.00
21 Worn -3.38 | -3.34 -0.877 | -14

7.45

The 5 um spherical tip with 2 pm truncation has the worst effect on the roughness

parameters asit has highly reduced Ra and Rq from their actual values.

The initial verification of the computer simulation in this study was based on
computer-generated data, which are not rea in the surface roughness
measurements. This is to demonstrate the idea and show the extreme cases of the
effect of the stylus shape on the roughness of the measured surface. Tips have been
used in their perfect shapes, spherical, pyramid and conical. Even the worn tips
have been truncated uniformly producing a perfect worn shape where the top and

bottom of thetip aretotally flat and paralel. In addition, the tips have been used in
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their ideal orientations where the central line of the tip is vertical and the base of
thetip is horizontal. All other sources of error including mechanical and electrical

error have been neglected.

The simulation on the computer-generated surfaces has shown that the stylus
geometry has an effect on all measured roughness parameters. Even with the perfect
conical and pyramid tips where the contact with the scanned surface and the tip is
always at one point; there is an effect. This effect may not be too great on some
roughness parameters but it nevertheless exists. On the other side, demonstrating
the contacts distribution on the tip has shown a very good prediction of what could
be happening on that small area of the stylus contacting the surface. Scanning real
surfaces by computer-generated tips has pushed the simul ation one step toward the

real metrology.

The ssimulation program has scanned surfaces produced by different machining
processes (e.g. lapping and grinding). The actual vaues of the roughness
parameters of these surfaces have been previously determined by different software
(Scanning Probe Image Processor, SPIP™), The simulation has shown that the
stylus shape and size have affected all the surface roughness parameters of all
specimens. Generally, from the simulation on the real and non-real surfaces, it has
been noticed that the measured values of the roughness parameters Sa, Sq and Sy
are always less than the actual values of the surface. It has been also noticed that
the conical and pyramid tip shapes give closely similar results of the roughness
parameters and the contacts distribution. This is ssmply because the two types of

tips are very similar in shape and size at their ends.
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Additionally, the contacts distribution on the tip does not only depend on the tip
shape but also on the topography of the measured surface. When the sinusoidal
surface is scanned by the spherical tip, if the wavelength and the amplitude of the
surface are dlightly bigger than the tip, the tip will not be able to fully penetrate the
valleys and touch the surface and most contacts will occur on the sides of the tip.
The lowest point of the tip will only touch the surface at the highest points of the
peaks where the tip has the maximum contacts on its sides and the minimum
contacts on its central point. If the wavelength of the surface is much bigger than
the stylus tip and the amplitude is smaller, the contacts on the central point of the

tip will relatively increase and the contact area of the tip will decrease.

If the stylustip isbigger than the wavelength of the surface, the contactswill mainly

be concentrated on the central point of the tip and within asmall area around it.

From the simulation of scanning real and non-real surface, it has also been noticed
that if contacts distribution is typical of rea instruments, there is considerable
lateral uncertainty in where the repeated surface heights occur, perhaps approaching
the nominal tip dimension. This reduces doubt on the benefit of closely spaced

samples of surface.

As expected, the maximum deviation occurs when using the 5 um spherical tip with

2 um truncation, but many cases show only small errors.

The simulations show that in most cases contact does not occur at the central point
of the stylus, even with idealized shapes other than perfectly shaped ones. With the

spherical tip, the mean position of the contact is close to the centerline, while its
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standard deviation is about 0.5 um on 3 um radiuses. It tends to the radius of the

flat on truncated ones.

6.4. Summary
A new simulation program has been devel oped and used to examine the measuring

fine structure of real surfaces by the stylus method. Although able to scan any
arbitrary surface with any arbitrary stylus shape, the results given here use idealized

styli and ‘real’ ground stedl surfaces.

The simulations have naturally confirmed that stylus geometry and size can have a
significant effect on most roughness parameters of the measured surfacein 3D. The
surprising feature of these, worthy of greater investigation, is how insensitive to
major changes in stylus condition some of the popular parameters are, even when

dealing with very fine structure within localized areas of a ground surface.
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Chapter 7

7. Implicationsfor stylus profilometer uncertainty

7.1. Introduction

Basicaly, to avoid positional uncertainty in the presence of small tilts, It is better
to record what happens with various simulations using good input data (e.g.,
sampled from an original surface map that has been levelled by something like SPIP
software). The reasoning is that at the scales we are studying, there is no clear,
functionaly relevant way of distinguishing an overal tilt from aloca one, where
we happened to have a sample of the 'flank’ of some inherent waviness. If so, then
we can presume that al our datais valid for looking at overall uncertainty ranges

and so on.

Taking atypical Taysurf configuration, with 2 um radius hard tip and around 1 mN
contact force, basic Hertzian stresses (hard ball on softer flat, or possibly hard ball
on softer similar size ball to recognise asperity contact) give a rough idea of what
might happen with thresholds. Such calculationsare not very sensitiveto individual
parameter values because of all the fractional power relationships - which is good
for a rough guide! Reckoning the ball-on flat gives illustrative results for Stedl,

Brass and Aluminium, such as;

Table7.1: Exampleof illustrative resultsfor Steel, Brassand Aluminium

Material E C_ontact _Appr oach contact area
(GPa) radius (um) | distance (nm) (Um?)
Steel 210 0.2 19 0.12
Brass 120 0.23 27 0.17
Aluminium 70 0.27 37 0.28
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This suggests that if we are thinking in terms of whether loca compression
(approach) might pick up extra contact points, thresholds up to only 20-30 nm look
of any great physical significance - so possibly going occasionally as high as 50 nm
in simulation makes experimental sense, but we should concentrate effort at smaller
values. The used grids 0.2 um samples, in which case each point in area counts
represents 0.04 um”™2 (each spot represents an area above that value if it has only
just come into the map, but has that areaif it was already in the map at the previous
threshold step!). There is an expectation to accumulate 5-10 spots with thresholds
of 20-30 nm. Comparing such arguments to what happensin the simulation results
may eventually tell us abit more about local structure, noise etc., (Incidentally, the
Hertzian calculations show peak contact stresses between 5 and 12 GPa for the
above conditions, way above normal elastic limits and so stressing that, in the
absence of significant observed damage, the local ability to support the stylus must
be a great deal better than bulk-material predictions. Of course, this is relatively
well known, but it adds another complexity to thinking about what is going on

between real measurements and simulations.)

There is another possible tilt-like effect that could be built into simulations.
Consider atypical (Talysurf) with an analogue pick-up. The pen-shift offset will
usually 'compensate’ for up to about 25 pum of positiona variation with respect to
the centre of the stylusrange. Thetipismounted onanarm of at least 50 mm length
to the pick-up pivot, so, depending on the pen-shift position, an ideal flat on astylus
might actually be 'tilted' by up to 0.5 mrad. (On very rough surfaces, thiswill be an
error source varying with profile height, but it will look almost 'systematic’ within

aspecific measurement of agood quality surface.) If, for example, aflat on astylus

122



isitself 2 um diameter, we have only about 1 nm of height uncertainty according to
where on theflat first contact happens. This seemstrivial enough not to be further
studied at present - but it should neverthel ess be recorded that it has been considered
and put to one side. For comparison, if we had a surface of about 5 mm across, we
might well proceed with atilt error equivalent to a couple of um height change form
side-to-side: thisis also atilt of odd tenths of a (mradian). The more ‘interesting’
thing to simulateis the difference between ideal spherical tips and those with ‘worn’
flats, either normal to the tip axis or deliberately inclined. The latter is justified
because measurement conditions can be asymmetric: the stylus lever arm action
means that there may be heavier |oads and more wear on the outer edge of the tip
(i.e., thetrailing side of the normal scan). However, if better instrumental technique
means that the stylus is lifted on the 'return’ strokes, the wear might become
somewhat more pronounced on the leading side of the normal scan. Overall, all
this goes into amost too much detail, because real styli have imperfect profiles and
the orientation of those 'fault features' will aimost certainly be dominated by how

the tip happened to be bonded onto the stylus arm.

7.2. Testing the threshold models

A further set of carefully integrated numerical experiments was carried out using
the threshold idea, to demonstrate why it was an ideaworth studying; and show its

real worth (or conversely show clearly why it should be ruled out).

While, in terms of its purpose, it is easiest to think of each ‘experiment’ as
independent, it is possible to save some work by setting up the actual execution so

that there is a useful level overlap (the same reference data sets, some conditions
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being common to more than one way of exploring a range of possibilities and so

on.).

The data presented can support decisions about which areas (if any) should have
priority for the larger-scale studies that could provide reliable answers. Each
experiment has been run on several different examples of real surfaces, each logged

viaAFM at 0.2 um high(ish) lateral resolution.

For a0.2 um fine grid, the stylus characteristic dimension will need to be around 2
pum for a decent practical compromise between resolution in the simulation and

overal array sizes.

Stylus: Cone

Threshold: 0.005, 0.05 pum, and 0.05 um respectively.
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Figure 7.1: Ground surface with Cone stylus (Sample 1)
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Figure 7.2: Map of contact with 5nm threshold (Sample 1)
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Figure 7.5: Ground surface with Cone stylus (Sample 2)
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Figure 7.11: Map of contact with 20nm threshold (Sample 4)
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Figure 7.12: Map of contact with 50nm threshold (Sample 4)

Figures 7.1, 7.5 and 7.9 show a small map (40 by 40 points on a 0.2 um sample
grid) taken originally by atomic force microscopy from a typical ground steel
surface and converted to Matlab©. The fine detail has both sharply varying and
plateau-like regions. Surface maps were scanned in simulation by a 2 um radius
ideal conical styluswith 90°. A typical profilometer set up to measure finish ground
surfaces might have an effective noise floor of the order of 10 nm to 20 nm peak.
Its digitized resolution might typically be 1 nm to 10 nm. Alternatively, noise-
related issues could be handled in terms of a fraction, say 0.5% to 0.1%, of full
range (maybe a few tens of micrometres, typically). Hence, thresholds from 5 nm
to 50 nm (for deliberate over-emphasis) seem relevant for study here. The simplest
form of thresholding is roughly equivalent to ideally pressing the probe into the

surface. For theillustrations used here the modified surfaces are largely unchanged
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other than a dlight vertical offset.

additional surface featuresto alter the probe contact patterns.

Interest lies in how the shift interacts with

Table 7.2: Kinematic/threshold contact points statistics for cone stylus

Surface\Cone Sa?p'e Sargp'e Sargp'e Sarzple
(+noise)
Kinematic contact — offset from centre 0.15 0 0.3 0.3
(Hm)
+ threshold @ 5 nm: Number of contact 1 1 1 1
points
Centroid position (dominant)/offset (um) 0.15 0 0.3 0.3
— Number of islands 1 1 1 1
+ threshold @ 20 nm: Number of contact 1 2 1 2
points
Centroid position (dominant)/offset (um) 0.15 0 0.3 0.3
— Number of islands 1 1 1 1
+ threshold @ 50 nm; Number of contact 3 4 1 5
points
Centroid position (dominant)/offset (um) 0.15 0 0.3 0.3
— Number of islands 1 1 1 1

The initial geometric kinematic contact is a single point which is offset from the
centreof anideal conical stylustip asshown by thedataintable 7.2. For al samples,
the different threshol ds cause the same of fset from the stylus centre for each sample.
With athreshold, contact points sufficiently close to the tip are considered to be in
contact. Both the kinematic contact point and the centroid position of the dominant
peak island (after threshold) have the same offset from the centre. Obviously
because of the ideal conical shape, the contact points occur (With a very high
probability) at the stylus centre, but some freak asperities could lead to an offset

first contact.
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Figure 7.13: Threshold Vs. Number of contacts for Conical stylus

Figure 7.13 shows the rel ationship between threshold and number of contacts when
scanning four different surfaces by using an ideal conical stylus. The graph shows
that there has been a noticeable increase in the number of contact points as the

threshold increases.

It shows that all four surfaces have the same growth of contact while applying up
to 5 nm threshold. Then, the number of contact points in three surfaces gradually
increased at 20 nm and 50 nm threshold except one surface (sample 3) which
remains at one single contact point based on the rough surface profile features.
Comparing sample 3 and sample 4 which is sample 3 plus noise, it can be noticed
that there is a significant increase in the number of contacts after adding random

noise to sample 3.
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Table 7.3: Kinematic/threshold contact points statisticsfor sphere stylus

Sample | Sample | Sample | Sample
Surface\Sphere 1 2 3 4
Kinematic contact — offset from centre (um) 0.3 0 0.46 0.46
+ threshold @ 5 nm: No. of contact points 4 2 2 1
Centroid position (dominant)/offset (um) 0.22 0 0.46 0.46
— Number of islands 1 1 1 1
+ threshold @ 20 nm: No. of contact points 21 8 3 2
Centroid position (dominant)/offset (um) 0.22 0 0.46 0.31
— Number of islands 1 2 1 1
+ threshold @ 50 nm: No. of contact points 37 19 7 3
Centroid position (dominant)/offset (um) 0 0.08 0.54 0.31
— Number of islands 2 2 2 2

The initial geometric kinematic contact is a single point which is offset from the
centre of the sperical stylus tip as shown by the data in table 7.3. For all samples,

the different thresholds cause the same offset for each sample.

Threshold Vs Mo. of contacts for spereical stylus
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Figure 7.14: Threshold Vs. Number of contacts for spherical stylus
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Figures 7.14 and 7.15 show the relationship between threshold and the number of

contacts in-crease when scanning four different surfaces by using an ideal sphere

and flat styli, respectively.

Table 7.4: Kinematic/threshold contact points statistics for flat stylus

Surface\Flat Sargple Sargple Sargple Sarzple

Kinematic contact — offset from centre 2.6 2.9 0 1.23
(pm)
+ threshold @ 5 nm: No. of contact points 2 2 1 4
Centroid position (dominant)/offset (um) 2.6 29 0 1.23

— Number of islands 1 1 1 2
+ threshold @ 20 nm: No. of contact points 15 2 1 5
Centroid position (dominant)/offset (um) 25 29 0 1.23

— Number of islands 1 1 1 3
+ threshold @ 50 nm: No. of contact points 63 7 3 10
Centroid position (dominant)/offset (um) 2.2 2.9 0 0.42

— Number of islands 3 2 3 4
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Figure 7.15: Threshold Vs. Number of contacts for Flat stylus
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Figure 7.16: Threshold Vs. Number of contacts for surface (sample 1)
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Figure 7.17: Threshold Vs. Number of contacts for surface (sample 2)
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Figure 7.18: Threshold Vs. Number of contacts for surface (sample 3)

Figures7.16 7.17, 7.18 and 7.19 show comparisons between threshold and number
of contactsincrease when scanning four different surfaces by usingideal flat, sphere

and conical styli.

Threshold Vs Mo. of contacts for surface (sample 4 "Noise”)
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Figure 7.19: Threshold vs. Number of contacts for surface (sample 4 -Noise)
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In figure 7.20 a contact between a rigid sphere and rough surface is shown
schematically. For illustration, there are the following examples of calculating the
contact offset and Z errors by using the Hertz contact theory (covered in chapter 2

and 3) to each contact spot;

For the Sphere:

Stylus centre has a coordinate point (20,20) on the stylus contact map.
While the Kinematic contact point at (18,19)

€1ac = 0.2 um , which g;,; isthe lateral uncertainty (roughly standard deviation

or could be an island centroid)

Model Z-uncertainty

Figure 7.20: Hemisphere stylus interact with rough surface
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Mathematically, calculated the Z error as (real Z contact height — reported height)

or Z error as (real Z nomina (centre) — reported height).

Figure 7.21: Map of contact points under kinematic condition (20 nm threshold)

Zrep = Zeone =~ 0.71
g, = 0.09um
g', =0.09um — thr
g', =0.09um — 0.05 =0.04 ym

. ac” _ (0.2)2  0.05
" 2R T 2x2 T 4

= 0.125um = 12.5nm

Sphere with (0.05 um) applied threshold appears to intercept the nominal contact

place. Therefore, after applying the Hertz Contact theory &, no more than 30 nm.
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Hertz Contact: Sphere vsflat

R
2= |16 R E*2

where R=2 pm=2x10"% m

E* is the Young's modulus which is the ratio of stress (pressure ‘pa’) to strain
(dimensionless), and so Y oung's modulus has units of pressurein Sl unit istherefore

the Pascal (Paor N/m2).

E* =~ 100 GPa= 1x10'! pa, and then E*? =1 x 1022 Pa (Assuming the material is

brass, the stainless steel is ~ 200 GPa

FEImN=1x10"°N

R
2= |16 R E*2

9x1076 _ 9x107°
(16)(2 x10-6)(1x1022) ~ 3.2 x 1017

&3 =2.8x10"%3m3

&, =30nm

For the conical stylus, as “practically” correct x= y=21 and z=0.62
Stylus centre has a coordinate of point (21,21) on the stylus contact map and the

Kinematic contact occurs at the same point.
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For the Flat stylus: Elqt = 2.2 um
Zrep = Zeone ~ 0.76
g, = 0.14pm
g', = 0.14pym — thr
¢', = 0.14pm — 0.05=0.09 ym

7.3. Surfaceinterpolation using 'fractal infill' methods

Thefollowing numerical experiment has been carried out to interpol ate surface data
in order to work with higher resolution stylusimages. Basicaly, it amsto develop
and demonstrate the general validity of an interpolation method that makes some
physical sense in the context of surface metrology and tribology. Better might be
to take a larger surface patch, sub-sample it by some reasonable factor (4 to 10),
interpolate to a new variant by the same factor and compare this to the original,
simply subtract them to show the differences. Some form of line interpolation is
probably a good starting point (illustrative algorithm outlined in the appendix).
Then, random or fractal-based small disturbances could be introduced on top of that

line interpolation.

An interpolator for surfaces sampled on regular grids has been used to consider a
representation of asurface asaset of point heights sampled on aregular rectangul ar
grid; for convenience, a square grid, sampled at spacing h in each direction, is used
here. The task is to superimpose these points within a finer grid, spacing o,
infilling the intermediate points of the fine grid with broadly representative values;
the exact heights of the real points areto be preserved. Asafirst stage a‘smooth’,

interpolation can be used, comprising aset of straight linesthat form awarped plane
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to indicate the genera trend between actual points (a true plane can fit only three

points, not the four here required).

The basic procedure is repetitive for infilling between any adjacent points.
Therefore we consider only four points at the corners of one square ‘cell’ of the
original grid, zi, z, zy, 2. Four slopes are defined to represent the trend along the

edges of thiscell,

Zyp—Zy Zy — Zyp Zj;p—Zy Zj) — Zyy
Ay=—— Bi=—— Ap=—7— Qy=—

Hence, height can be predicted for any position aong an edge by, e.g.,
Zy =z + A x €t

It has been chosen (arbitrarily) to construct the interpolation as lines parallel to x.
The interpolation is forced to be in terms of an integer factor n, so imposing the
constraint on parameter choices that h = ndh. (n-1) new points will be inserted
paralel to an axis between any two original ones. So, in thisnew grid, the original
corner points of the cell above will be at relative indices (0, 0), (0, n), (n, 0) and (n,
n) respectively. Using these relative coordinates for notational convenience, a set
of spot heights are now determined along the lines parallel to the y-axis from zoo to

Zon and from zno tO zn:

Zok = Zpo + A[](kah)
Z1k = Z10 + A]][(kah)

} k=0,1,---,n
Pairs of points has been connected, so generated for a given k by an intermediate
dlope (i.e. for astraight line parallel to the x-axis)

A= (z1x — Zox) /h

These dlopes can be used to fill in as many points as we wish along lines parallel to

X, specifically those for the n-by-n interpolation as
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Zjx = Zox + A (jOh)  j=0,1,-,n

This process preserves the original data at the cell corners; as presented above it
effectively overwrites them with the same values. The process as written allows
for thefinal interpolated array being a separately identified one, constructed only at
afinal step. A specific implementation could well write the cell corners and then
the edge lines into the output array at earlier stages and then the in-fill step need
only operate from index 1to (n-1). Aswritten, it overwritesthe whole of the edges

with their previous values.

The process has generated the set of zk heights as a quite ‘smooth’ patch of high
resolution data that in some sense represents the likely loca trend of the surface
between points of the original dataset. Thistrend (in the form of a‘twisted plane’)
could be perturbed in various ways. For example, a small random variation could
be added point-by-point to represent measurement noise, or we could add in any
other suitably scaled data set thought to have potential physical relevance. The
latter might, for example, involve drawing on ideas from fractals and self-similarity

to use a scaled-down version of some of the origina data.

Finally the line-based trends match smoothly as we progress around points of the
original grid, because the edge lines are common (indeed some time could be saved
at the cost of a more complex implementation by not repeating their computation
for each patch). However, where additive perturbations are included, later ones
may well overwrite previous ones on the cell edges, which might giveriseto larger
stepsthan are desirable; it would, of course be possible to blend these by some type

of average of all the perturbations relevant to application at any common point.
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Fractal Infill: Sphere styluson Zorig, Z, Zexpp and Zexpf respectively

SURFAGEFLOT

Z: 03313
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Figure 7.22: Ground original surface (Zorig) using Cone stylus
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Figure 7.23: Map of contact with 5nm threshold (Zorig)
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Figure 7.25: Map of contact with 50nm threshold (Zorig)
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Figure 7.30: expanded “ Patch” surface (Zexpp) using sphere stylus
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Figure 7.33: Map of contact with 50nm threshold (Zexpp)
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Figure 7.37: Map of contact with 50nm threshold (Zexpf)
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Figures 7.22, 7.26, 7.30 and 7.34 show small maps of square master array Zorig,

sub-sampled array Z, expanded interpolated ‘patch’ Zexpp and plane interpolated

patch plus fractal 'noise’ Zexpp, respectively.

Table 7.5: Kinematic/threshold contact points statistics by using sphere stylus

Sample | Sample | Sample | Sample
Surface\Sphere 1 2 3 4
(Zorig) (2) (Zexpp) | (Zexpf)
Kinematic contact — offset from centre 0 0.31 0 0.31
(pm)
+ threshold @ 5 nm: Number of contact 6 1 7 5
points
Centroid position (dominant)/offset (um) 0 0.31 0 0.31
— Number of islands 1 1 1 1
+ threshold @ 20 nm: Number of contact 26 1 26 20
points
Centroid position (dominant)/offset (um) 0 0.31 0.78 0.23
— Number of islands 1 1 1 1
+ threshold @ 50 nm: Number of contact 65 2 61 58
points
Centroid position (dominant)/offset (um) 0 0.39 0 0
— Number of islands 1 1 1 1

Threshold Vs Mo. of contacts (Fractal Infill)
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Figure 7.38: Threshold Vs. Number of contacts using spherical stylus
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Hence, thresholdsfrom 5 nm to 50 nm (for deliberate over-emphasis) seem relevant
for study here. The simplest form of thresholding as explained in earlier chapters
is roughly equivalent to ideally pressing the probe into the surface. For the
illustrations used here the modified surfaces are largely unchanged other than a
dlight vertical offset. Interest liesin how the shift interacts with additiona surface

features to alter the probe contact patterns.

Theinitial geometric kinematic contact of the original master surface Zorig and the
expanded interpolated ‘patch’ Zexpp are a single point at centre of the idea
spherical stylus tip and this is shown by the data in table 7.5. For all samples, the
different thresholds cause the same offset from the stylus centre for each sample.
With athreshold, contact points sufficiently close to thetip are considered to bein
contact. Both kinematic contact point and the centroid position of the dominant
peak island (after threshold) have the same offset from the centre. Obviously

because of the ideal conical shape, the contact points occur at the stylus centre.

Theinitial geometric kinematic contact of the sub-sampled array Z and the fractd
'noise’ Zexpp are a single point which is 0.31 um offset from the centre of the

sperical stylustip as shown by the datain table 7.5.

Table 7.6: Surfaceroughness parameters

Roughness

Para?meter sa & Y Szk Sku
Zorig/nm 92.549 126.35 | 1083.9 | 0.20741 | 4.0414
Z/nm 92.109 125.9 | 987.27 | 0.071706 | 4.2633
Zexpp/nm 78523 105.86 | 964.7 | 0.51802 | 4.2823
Zexpf/nm 78.458 105.95 | 964.74 | 0.5003 | 4.2931
Error_p = Zexpp-Z -0.1475 016 | -0023 | 622 | 0.0044
Error_f = Zexpt- -0.15 016 | -011 141 | 0.0623
Zorig
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where, Zorig is asguare master array of original data, Z is sub-sampled from the
original data Zorig. Zexp is an expanded array of same size of Zorig, Zexpp =

patch and Zexpf = patch+ filler.

Table 7.6 showsthe surface roughness parameters. It can be noticed that the Surface
Skewness Ssk is aways < 0 which meansiit can be a bearing surface with holes. If
Ssk = 0, asymmetric height distribution is indicated; while, if Ssk > 0 it can be a
flat surface with peaks. Vaues numerically greater than 1.0 may indicate extreme

holes or peaks on the surface.

It always recommended to subtract the mean before calculating the roughness
parameters. Thisisagentle way to assure that ahigh mean level does not contribute
to the roughness values. However in some cases it may need to preserve the height
values such that the bearing (dominating) height value is kept at zero to obtain a

better number for the skewness, Ssk parameter.

The Surface Kurtosis, Sku, describes the "peakedness’ of the surface topography,
the surface height distributions Sku approaches 4.0 when increasing the number of
pixels. Smaller valuesindicate broader height distributions and vice versafor values

greater than 4.0.

Many roughness parameters are extremely sensitive to plane distortions and it is
therefore important to have the surface image corrected as long wave structures
should be reduced by High Pass filtering before calculating the roughness

parameters.
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Chapter 8

8. Conclusion and further work

This study has introduced a new implementation of a suite of tools for studying
stylus-surface interaction in simulation. A consistent pattern of data flows and
archiving around ahighly modular organization is advocated, allowing new features
to be introduced in small, independently testable, modules. In thisrespect, the first
featuresincluded and not previously reported concern the mapping of contact extent
and intensity across the probe surface and the use of thresholding to investigate
sengitivities to noise and instrument resolution. The concepts are illustrated for
clarity by a highly artificial flat probe and large parameter values for which many
effects can be understood intuitively, aswell as being readily visible on small-scale
plots. However, even with this unrepresentative approach, the thresholds reveal

information about the surface geometry that may be of functional significance.

The system isnow being refined to add further features while simultaneously being
used with more representative probe models to investigate, for example, the

statistical significance of contact distributions.

The simulation program has been developed and used to simulate the real and non-
real surfaces’ roughness measuring process by the stylus method. It can be used to
scan any arbitrary surface with any arbitrary stylus tip shape. The simulation is not
only used to measure the roughness of the surface but also to show the contacts
distribution on the tip when scanning a surface, information not previously
considered. The theoretical results of the simulation have confirmed that the stylus

geometry can have a significant effect on most roughness parameters of the
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measured surface in 3D. The contacts distribution on the tip has shown that most
contacts do not occur at the central point of the stylus in most cases, even with

idealized shapes.

This work proposes and explores in detail the novel concept of “thresholding” as
an adjunct to kinematic contact modelling; the tip is incremented downwards 'into’
the surface and resulting contact regions (or islands) compared to the position of
the initial kinematic contact. This work is the first to implement a version of
kinematic stylus contact simulation that includes full geometric recording of
behaviour at the stylus tip; this will interest other specialists in the field because it
is a step towards more complete uncertainty models. The ‘threshold’ concept was
also new in this context and was an ideaworth practical investigation to seeif it has
the sengitivity to be useful as a self-diagnostic tool within instruments.

Evidence shows that examination of the contact patterns as the threshold increases
can identify the intensity with which different asperity regions interact with the
stylus. In the context of sections of the ground surface with total height variationin
the order of 500 nm to 1 um, for example, a5 nm threshold caused little change in
contact sizes from the kinematic point, but 50 nm caused them to grow

asymmetrically, eventually picking out the major structures of the surface.

The simulations have naturally confirmed that stylus geometry and size can have a
significant effect on most roughness parameters of the measured surfacein 3D. The
surprising feature of these, worthy of greater investigation, is how insensitive to
major changes in stylus condition, some of the popular parameters are, even when
dealing with very fine structure within localized areas of aground surface. For these

reasons, it is concluded that thresholding is not likely to become a magjor tool in
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analysis, although it is argued that it retains some practical value as a diagnostic of

the measurement process.

Finally, the method works without gross errors, but is clearly approximate and

probably generates distortions rather larger than would be wise for a diagnostic -

given expected further increase in cost-speed effectiveness of the computers that

will go on future instruments, it may be best, on results here, not to further pursue

this level of approach but to revisit the general idea in a few years using more

sophisticated algorithms.

Considerations for continuing this work could be as follows:

A large program of practical measurements and complementary simulation
should be undertaken in order to provide guidance on a useful value for
lateral uncertainty.

This project was mainly based on using computational software such as
MATLAB package for initiating the simulation process because of the time
limitation of thiswork. Most of the tests were aided by software systems. It
Is significant to test this simulation process by combining these with
hardware systems. Therefore real laboratory sessions need to be applied for
future works.

Further study will need to use representative real surface data and study
effects over a wider range of roughness analysis tools. This is both to
reformat instrument datainto aMATLAB compatible file and to provide an
industry standard analysis suite that can be considered as a ‘ standard’, the

simulation should be interfaced to SPIP (Scanning Probe Image Processor)
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or asimilar commercial package. This possibility was explored within this
project and deemed plausible but too time-consuming to adopt immediately.
Most of the developments and tests on the simulation in this thesis did not
consider the materials of stylustips, MATLAB packageis currently not able
to process materials selection of stylustips for simulation. Thus, extending
the codes provided in this dissertation to various materials of stylus tips or
combining with other programming language need to be considered in
future works. This is in order to identify how the contact distribution is
affected by choosing different materials of stylus tips for the simulation

process.
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10. Appendix

10.1. Appendix 1: Simulation softwar e technique (Extra explanation)

The surface map that isto be processed by the stylusis stored in atwo dimensiona
array (or matrix). The studied samplesin thisthesishad amatrix dimension of either
64 X 64 or 128 x 128 depending on the selected resolution. The sample
dimensions are represented by L, and Ly ; for the cases covered in thisthesis Ly =
Ly, = 20um. Each cell in the matrix holds the value of a measured point elevation
on the studied surface the cell coordinates representing an x-y position. These
heights are stored in amatrix called A as shown in the following:
ac,y a2 Aed) (A1)

A=|3eD qe2 3@y
43,1 4@E2) 433)

The number of measured points in the x and y directions are referred to as M and
N. Since we use a fixed lateral range, the more points taken in the measurements

the higher the resolution is. The discrete distances in the x and y directions will be:

—

w2 (A-2)

dy = (A.3)

=[&

Knowing that each point has two coordinates, a point can be represented by:

P=iX]j (A.4)
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Thereforefor asample having aresolution of 128 x 128 thediscrete values ofdx =
dy = 0.15625um, while for a sample having a resolution of 64 x 64 the discrete
values are dx = dy = 0.3125um. So as an example for a matrix cell having the
coordinates of i =16 and j = 14 its numbering notation can be foundP = 16 =
14 = 224. By providing the i and ] matrix cell coordinates for the studied matrix
A;; the researcher can access the point of interest and based on the following two
equations can find the coordinates for the point of interest:

Xp = i.dx (A.5)
Whileiny direction:

yp =j.dy (A.6)
This means from equation (A.5) and (A.6) that

P (xp,yp) = PF;(i. dx,j. dy) (A.6)

Therefore for the previously studied point numbered 224 in a sample having a
resolution 128 x 128 the coordinates of the point of interest on the x axisis:

xp =16 X 0.15625 = 2.5um

While on the y axis coordinate the point coordinate is:

yp = 14 x 0.15625 = 2.2um
Meaning that point 224 has the coordinates of P,,,(2.5,2.2). The next step isto

know the height at that point or for any point of interest. This can be achieved by
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the user when he enters the i and j cell values for matrix A;; this will result in

retrieving the value of the measured surface height Hp:

ap (i, ]) = HP

Meaning for the previously studied point 224 that

(A7)

Hyz4 = a224(16,14) = 0.8 pm

Based on the fact that the matrix size is big, an idea was adopted which proposed

matrix A;; to be broken into mini matricesAA;;, b, these mini matrices represent

an area of the studied surface. This method helps the researcher to conduct analysis

on individual surface areas. The intended size of the matrix to be broken up to

depends on the resolution of the sample and is specified by the researcher in the

code input section. As an example the matrix cells in matrix A;; shown in red

represent the studied region

[3(1,1) a(1,2)
d2,1)  a(z2)
Ajj =3y agy
d(41) QAgg2)
d(51) A(s2)

a(1,3)
a(2,3)
4(3,3)
a(4,3)
4(5,3)

a(1,4)
a(2,4)
4(3,4)
d(4,4)
4(5,4)

|

(A.8)

Each broken matrix is represented in the following matrix called AA;;, bp, for the

purposes of the representation case here:
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ag,y Az Aws)

AAijbbb = |21 222 223 (A.9)
43y 4Bz 4@E3)

The broken up matrix has two new additional cells representing the two
dimensional coordinate system of each broken up area of the studied surface, while
thefirst two cells represent the cell numbers in the broken up matrices.

So as an example if the user wants to study a certain area of the studied surface
havingb = 14 and bb = 15 thefollowing matrix would be extracted from themain
onecalled A:

0.832 0.354 0.654
AA(:,:,14,15) = (0.338 0.563 0.238

0.344 0.298 0.452

If the researcher wantsto go into more detail and extract the data at a specific point
then by specifyingi = 2 j = 3 the obtained height at that point is
AA(2,3,14,15) = 0.298 um

There are two mapping matricesin the code, these are represented by quad for loops
the first two for loops are responsible for breaking up the main matrix into small
area regions in the XY plane while the second two for loops are responsible for
storing the broken matrices into the new matrix X;;, p, (X isageneral term given
to any broken matrix).

The Stylus matrix is represented by C;; this matrix is read into MATLAB for

anaysis:
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Clay Claz Clas Clae]
Clpy Clpz Cles Clea
Cli']' = C1(3,1) C1(3’2) C1(3’3) C1(3’4) (A]_O)
C1(4,1) Cluz) Clas) Clag
[Cls1) Clszy Clssy Clesgl

The power of such amatrix isthat it provides the researcher with modelling tools,
meaning that by modelling different stylus configurations new types of stylus
designs can be introduced into the field of research. Therefore when the required
stylus accuracy is not achieved design modifications are undertaken. This
modelling process is just the first step, once the required accuracy is obtained by
the numerical tests then the researcher can proceed to the second step of producing
the stylus in the workshops to conduct lab experiments at alater stage.

The second part of the code breaks matrix C1;; into specific surface regions then
assigns the areato amatrix called A1y, 1,1, for analysis; this matrix represents the
segmented area of the stylus surface.
algyy alaz alpg
Aljjppn = |alz1) alez algegs) (A.11)
31(3,1) 31(3,2) 31(3,3)
An intermediate matrix tool named pr;;y, 1, iS used in the code to handle data

processing for the measured surface segmented regionswhere pr;j, b, = Al bbb

therefore the intermedi ate matrix can be written as follows:
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Pry Praz  Prag
Prijbos = [Prey Prea) Pres (A.12)
Pr(3,1) Pr(3'2) Pr(3'3)
In previous steps it was stated that:
algy alaz alws
Clijppb = Aljjppp = (Al alpa aleg (A.13)
31(3’1) 31(3’2) 31(3’3)
Matrix atopr; 1,1, results from the algebraic addition process of the two broken
up surface segments for the stylus and the measured surface.
atopr;jbpb = C1ijbbb + PIijbbb (A.14)
Hence, the resulting matrix in (1.14) has come from the addition of the stylus and
measured surface heights at each point.
The next essential step isthe creation of matrix My, 1}, its role is to take reference
point height, this point islocated in the corner of the matrix areaat atopr; ; , by (&S

default).

My by = atopry 1 p by = Hrer (A.15)

Relying on the conditional statement during the matrix mapping process for the
segmented regions if this condition is satisfied then the point of the first contact is

found:

atopr;jp b > Mp b (A.16)
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Then at that point matrix My, ,, can be equated with matrix atopr;;y, pp:
M, pp = atopr;;y, pp (A.17)
From this conditional statement the first contact point isfound whereits coordinates

are located in the storage matrix for the x axis direction:

i = i0x (A.18)
Whilefor they axisdirectionitis:
J = Jmax (A.19)

So for example if the conditiona statement was satisfied during the two
dimensional mapping process of the matrix for apoint having i, .y = 45 andjpnax =
67 at area segment having the coordinates b = 13 and bb = 19 then it can be

written that:

firstcontact; p = firstcontact,s ¢7 1319 = 234 nm

maxJmax,b,b

Visualization matrix, where the first contact point is assigned avalue of 1 while the

cellsthat do not satisfy the conditional statement are assigned a value of O:

1 0 0
. 1 0 0
f irstcontact;j,,, = |0 o 0

(A.20)

The sample mapping process requires the use of the full contact matrix repeatedly

for each segmented area therefore resetting its cell values to zero is a requirement:

fullcontact; 1,1, = (4.21)

S OO O O
(o>l e New N e N an)
(el e New Neo Nen)
S OO O O
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An example of afull contact matrix with assigned values showing points, the red

part of the matrix shows the segmented region of study:

231 213 214 209

fullcontact; ;},,, = atopr;;, p, = 1345 347 345 315/
l234 312 301 313J

231 345 305 301

112 453 209 211]

Then through the following algebraic operation with the use the of the previously
found matrices atopri,]-'b,bb and Mi,j:

fullcontact;;;,,,, = atopr;;y,p, = M;; — atoprp, b (A.22)

thr;; = constant (A.23)
In previous steps the matrices atopr;;, M;; and thr;; had been found. The gap is
calculated through the following algebraic operation for al the surface segmented
regions:
gap;jpbp = atopr;; — (M;; + thryy) (A.24)
Finally the gap matrix for each area segment is calcul ated:

gap(1,1) 83Pa2) 8aP@3)

8apijbbb = [8aP21) 8aP(22) 8aP(23) (A.25)
gapi,1 8aP@2) 83aP(3,3)
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Table A-1 Code variable description.

Variable name

Description

Number_of matricies x

Broken Matrix number on the x axis

Number_of _matricies y

Broken Matrix number on they axis

Number_of cells in x

Range of cellsin the x direction

Number_of cells in y

Range of cellsin they direction

X loop number

M
N

Y loop number

X loop variable

j

Y loop variable
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10.2. Appendix 2: Extra Resultsfor Chapter 7
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Figure A.1: 3D Ground surface with Flat stylus (Sample 1)
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Figure A.5: 3D Ground surface with Flat stylus (Sample 2)
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Figure A.6: Map of contact
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Figure A.9: 3D Ground surface with Flat stylus (Sample 3)
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Figure A.13: 3D Ground surface with Flat stylus (Sample 4- Noise)
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Figure A.17: 3D Ground surface with Sphere stylus (Sample 1)
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Figure A.21: 3D Ground surface with Sphere stylus (Sample 2)
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Figure A.29: 3D Ground surface with Sphere stylus (Sample 4 - Noise)
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Stylus: Cone

Threshold: 0.005, 0.05 um, and 0.075 um respectively.
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Figure A.33: Ground surface with Cone stylus (Sample 1)

’ H I ‘ : UNEEE:IEE : : 0 H H : . UHE: Es u . 0 o]
0 e A s s e
e A 0 Y
L T a 0 . 4 20 s
R N
n . 30
) e S i S B b 35
R A A 40 : ] d ! : i ] i 40
o s 10 15 20 2 =0 3% 40 0 s 0 15w ® % o 0 5 10 15 20 25 30 31 40

Figure A.34: Map of contact  Figure A.35: Map of contact Figure A.36: Map of contact
with 5nm threshold (Sample 1) with Snm threshold (Sample 1) with Snmthreshold (Sample

o 5 10 15 20 25 30 35 40 45

% (pixel)

Figure A.37: Ground surface with Cone stylus (Sample 2)

" Figure A38: Map of contact ~ Figure A.39: Map of contact Figure A.40: Map of contact
with 5nm threshold (Sample 2) Wwith 20nm threshold (Sample 2)  \ith 50nm threshold (Samole 2)

177



Height (urm)

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

nz=1 nz=1 nz =1
Figure A.42: Map of contact with  Figure A.43: Map of contact with 20n  Figure A.44: Map of contact with
5nmthreshold (Sample 3) threshold (Sample 3) 50nm threshold (Sample 3)

Height {urm)

0 5 10 % 20 25 30 B4 0 5 10 15 20 25 30 3540 0 5 10 15 20 25 30 35 40

nz=1 nz=1 n7=1
Figure A.46: Map of contact with  Figure A.47: Map of contact with Figure A.48: Map of contact with 50nm
5nmthreshold (Sample 4) 20nm threshold (Sample 4) threshold (Sample 4)

178



10.3. Appendix 3: Matlab Codes

A3.1 The main Matlab Code:

clc
cl ear

tic

%Constants | nput Section

Sanpl eDi nensi ons

% ab Data | nput

Dat aLoadSect i on

% ab Data Assigned a nane by user

%Assi gni ng_nanmes_to_Matricies

%Breaking Main Matrix to Parts

%vai n_Matri x_Break_Up

% Cal cul ati ng Average of Each Single Matrix Created
%MV ni n_Matrix_Averagi ng

UDOATA ANALYSI S

%Assi ngi ng_the_values_into_a new matrix_for_visulization
%-i ndi ng Surface Conatct Matrix

%-i ndi ng_Surface_Conatct_Matrix

%/i ewi ng Surface Contact

%/i ew ng_Sur face_Cont act

% ndvi dual Matrix Analysis for full and first contact
%shi pw eck

%Mol e Matrix first and full contacts

Whol eMatri x

whos

%o Wite Later

%vesh_generation_for_Total Matrix

%V ni Matrix Mesh

%vesh_generation_for_Mni_Matrix

%Cent roi d_of Cont act

toc

% md Matrix cell nunber in x direction'

Nunber _of matricies_x =M (al pha+l);

% md Matrix cell nunber in y direction'

Nunber _of _matrici es_y=N (al pha+1);

% ' The Total Nunmber of Matricies in x direction'
Nunmber of matri cies_x;

% ' The Total Nunmber of Matricies in y direction'
Number _of _matri cies_y;

% Matrix cell nunber in x direction'
Nunmber _of cel I s_i n_x=M Nunber _of matri ci es_x;
% Matrix cell nunber in vy direction'
Nunber _of cells_in_y=N Nunber _of matricies_y;

%vatrix Break Up to Mni Matrcies

% and bb refers to the coordinate of the small matrix
b=0;

for ii=1:Nunber_of matricies_x;
b=b+1;
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bb=0;
for jj=1:Nunber_of _matricies_y;

bb=bb+1;
xX=b;
for iii=1:Nunber_of cells_ in_x;
XX=XX+1;
yy=bb;
for jjj=1:Nunmber_of cells_in_y;
yy=yy+1;
aa(iii,jjj,b,bb )=a(xx,yy);
end
end
end
end
b=0;
for ii=1:Nunber_of matricies_x;
b=b+1;
bb=0;
for jj=1:Nunber_of natricies_y;
bb=bb+1;
XX=Db;
for iii=1:Nunber of cells_in_x;
XX=XX+1;
yy=bb;
for jjj=1:Nunber_of cells_ in_y;
yy=yy+1;
aal(iii,jjj,b,bb )=al(xx,yy);
end
end
end
end

%%%%%%%% %% %% %% % %% %% %% % %% %% % %% %%

%MV ni n_Matri x_Averagi ng

b=0;
for ii=1:Nunber_of matricies_x;
b=b+1;
bb=0;
for jj=1:Nunber_of natricies_y;
bb=bb+1;
c=size(aa(:,:, b, bb));
cc=si ze(aa(:,:, b, bb));
aaa(:,:,b,bb )=sun(sunm(aa(:,:,b,bb )))/(c(1)*cc(2));
end
end

%V nin Matrix Averaging 1
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b=0;

for ii=1:Nunber_of matricies_x;
b=b+1;
bb=0;
for jj=1:Nunber_of natricies_y;
bb=bb+1;

cl=size(aal(:,:, b, bb));
ccl=size(aal(:,:, b, bb));
aaal(:,:,b,bb )=sum(sum(aal(:,:,b,bb )))/(cl(1)*ccl(2));
end
end

%09%%%%%%%%%%%% %% %% % %%

% finding contact points

clc
b=0;
for ii=1:Nunber_of natricies_x;
b=b+1;
bb=0;
for jj=1:Nunber_of matricies_y;
bb=bb+1;
aa(:,:,b, bb);

cl=ans(:,:);
thr(:,:,b, bb)=threshol d;
%pr=zeros(10, 10);
pr=aal(:,:, b, bb);
pr(:,:,b,bb)=aal(:,:,b, bb);

atopr(1:10,1:10,b,bb)=c1(:,:)+pr(:,:,b, bb);
% nt eraction function

%80
M b, bb) =at opr (1, 1, b, bb) ;
for i=istart:iend;

for j=jstart:jend,
if atopr(i,j,b,bb)>Mb, bb)

M b, bb) =atopr(i,j,b, bb); %ol di ng nmax vdm
i max=i; % index of the current nmax
j max=j ;
end
end
end
firstcontact(1:10,1:10, b, bb)= zeros(size(atopr(i,j,b,bb)));
firstcontact (i max,jmax, b, bb) =1; % Map of tip, all zero

except sinple contact point

full contact(1: 10, 1: 10, b, bb) =zer os(si ze(at opr (1: 10, 1: 10, b, bb)));
full contact(1: 10, 1: 10, b, bb) =at opr (1: 10, 1: 10, b, bb) >=M b, bb) -
thr(:,:, b, bb);
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gap(:,:, b, bb)=atopr(1: 10, 1: 10, b, bb) - (M b, bb)-thr(:,:, b, bb));
end
end

%%%%%%%%%%%%% %% %% %% %%

clc

clear al
close all
format short;

traces=64; % Nunber of scanned traces
n=64; %unber of pints in each
trace

%surface in three D nensiona
%Creating sinewave pattern surface

% angl e=0: pi / 30: 10* pi ; % for 300X300 %angl e=0:pi/6.3:10*pi; for
64X64

% z= sin(angle);

%for i=1: traces-1

% z=[z; sin(angle)];

% end

%Creating randum surface
for surface=1:3;

o%surface in three D nensiona

%Creating sinewave pattern surface
if surface==1 ;

angl e=0: pi / 6. 3;: 10* pi

z= sin(angl e);

for i=1: traces-1
z=[z; sin(angle)];
zsi nori gi nal =z;

end

end

Ctxt;

if surface==2 %sanple2(l)
z=randn(64);
z=z/ (max(max(z)));

zr andori gi nal =z;
end
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if surface==3 %sanpl e3(m
z=xl sread(' KALOOROV_AFM xl sx");
z=z7'
wWoZ=m
pl=1. 0583;
rt3=pl,;
zreal ori gi nal =z;

end

pl=1. 099; % Maxi mum peak to valley
of the surface (to nmake the height the sane as the AFM

r 1=5; %l p base 2*r1l

h=5; % Conpl ete tip height

a=si ze(z);
traces=a(1l,1);
n=a(1, 2);
z=z-mn(mn(z));
z=z/ (max(max(z)));
z=(z*pl);

V=z;
% | nput s

for tipshape=1: 3;
f =0;

% Creating Pyram d Tip shape

if tipshape==1
b=r1;
styl us=ones(2*r1+1);
for x=0 : h;
[stylus(r1-b+1:r1+b+1,r1-b+1:r1+b+1)]=x;
b=b- 1;
end
end
% Creating Henmi sphere Tip shape

if tipshape==2

styl us=zeros(2*r1+1);
for y=-rl:rl,
for x=-rl:r1l,
xbar =x+r 1+1;
ybar =y+r 1+1;
factor=r1r2-x"2-y"2
if factor<0
styl us(xbar, ybar) =styl us(xbar, ybar);
el se
styl us(xbar, ybar)=sqrt(factor);
end
end
end
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%end
%end

% Creating Conical Tip shape
el se

b=r1;

stylus=zeros(2*r1+1);

for x=0 : h;

for y=-b:b,
for k=-b:b,
xbar =y+b
ybar =k+b
fact or=b"2-yn2-k"2
if factor>0
styl us(xbar +x+1, ybar +x+1) =x;

end

end

g=si ze(stylus);

for g=1: 3,
zZ=v;
for u=1l:9g(1,1),
for k=1:9g(1, 2),
if stylus(u,k)>h-f;
stylus(u, k) =h-f;
end
end
end

oCal cul ati ons the | ocus

cont act =zeros(2*r1+1);
for i=ril+l:traces-rl,
for j=ri1+l:n-rl,
xy=z(i-rl:i+rl, j-rl:j+rl);
posi ti on=styl us+xy;
maxi =max( max(posi tion));
loc(i-rl,j-rl)=nmaxi
for k=-rl:r1,
for me-rl:rl,
kbar =k+r 1+1;
nmbar =mtr 1+1;
i f position(kbar, mbar) < maxi
cont act (kbar, nbar) =cont act (kbar, nmbar) ;
el se
cont act (kbar, nbar) =1+cont act (kbar, nmbar) ;
end
end
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end
end
end
%Cal cul ati on of roughness paraneters

z=z(r1+1l:traces-rl1, ril+l:n-rl);

z=z-(mn(mn(z)));
raa=sunm(sun{abs(z)))/((n-(2*r1+1))*(traces-(2*r1+l)));
| oc=l oc-(mn(mn(loc)));

ra=sunm(sum(abs(loc)))/ ((n-(2*r1+1))*(traces-(2*ri1+l1)));

i f surface==1,
i f tipshape==1,

if f==
| ocgpl=l oc;
cont act gpl=cont act;
styl usgpl=styl us;
raag=r aa;
ragpl=ra
Zsi ngpl=z;

end

if f==
| ocgp2=l oc;
cont act gp2=cont act ;
styl usgp2=styl us;
ragp2=ra;
Zsi ngp2=z;

end

if f==
| ocgp3=l oc;
cont act gp3=cont act ;
styl usgp3=styl us;
ragp3=ra;
Zsi ngp3=z;

end

end

if tipshape==2,

if f==
| ocghl=l oc;
cont act ghl=cont act ;
styl usghl=styl us;
raghl=ra;
zsi nghl=z;

end

if f==
| ocgh2=l oc;
cont act gh2=cont act ;
styl usgh2=styl us;
ragh2=ra;
zsi ngh2=z;

end

if f==
| ocgh3=l oc;
cont act gh3=cont act ;
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styl usgh3=styl us;
ragh3=ra;
zsi ngh3=z;

end

end

i f tipshape==3,

if f==0,
| ocgcl=l oc;
cont act gcl=cont act ;
styl usgcl=styl us;
ragcl=ra;
Zsi ngcl=z;

end

if f==
| ocgc2=l oc;
cont act gc2=cont act ;
styl usgc2=styl us;
ragc2=ra;
Zsi ngc2=z;

end

if f==
| ocgc3=l oc;
cont act gc3=cont act;
styl usgc3=styl us;
ragc3=ra;
Zsi ngc3=z;

end

end
end
i f surface==2;
i f tipshape==1;

if f==
I ocl pl1=l oc;
contactl pl=contact;
styl usl pl=styl us;
raal =r aa;
ral pl=ra
zr and=z;
zrandl pl=z;

end

if f==
I ocl p2=l oc;
cont actl p2=cont act ;
styl usl p2=styl us;
ral p2=ra;
zr andl p2=z;

end

if f==
| ocl p3=l oc;
cont act | p3=cont act;
styl usl p3=styl us;
ral p3=ra;
zr andl p3=z;

end
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end

if tipshape==2;

if f==0;
| ocl hl=l oc;
cont actl hl=cont act;
styl usl hl=styl us;
ral hl=ra;
zrandl hl=z;

end

if f==
| ocl h2=l oc;
cont act| h2=cont act ;
styl usl h2=st yl us;
ral h2=r a;
zrandl h2=z;

end

if f==2;
| ocl h3=l oc;
cont act | h3=cont act;
styl usl h3=st yl us;
ral h3=ra;
zr andl h3=z;

end

end

if tipshape==3;

if f==0;
| ocl c1=l oc;
cont actl cl=cont act;
styl usl cl1=styl us;
ralcl=ra
zrandl cl=z;

end

if f==
| ocl c2=l oc;
cont actl| c2=cont act ;
styl usl c2=styl us;
ral c2=ra
zrandl c2=z;

end

if f==2;
| ocl ¢3=l oc;
cont act| c3=cont act ;
styl usl c3=styl us;
ral c3=ra
zr andl ¢c3=z;

end

end
end
i f surface==3;
i f tipshape==1;
if f==
| ocnpl=l oc;
cont act npl=cont act;
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styl usnpl=styl us;
r aan¥r aa;
ranpl=ra;,
zreal =z;
zreal npl=z;
end
if f==
| ocnp2=l oc;
cont act np2=cont act ;
styl usnp2=styl us;
ranp2=ra
zr eal mp2=z;
end
if f==2;
| ocnp3=l oc;
cont act np3=cont act ;
styl usnp3=styl us;
ranp3=ra
zr eal np3=z;
end

end

i f tipshape==2;

if f==
| ocmhl=l oc;
cont act mthl=cont act ;
styl usmhl=styl us;
ramhl=ra;
zreal mhl=z;

end

if f==1;
| ocmh2=l oc;
cont act mh2=cont act;
styl usmh2=st yl us;
ramh2=ra
zr eal mh2=z;

end

if f==
| ocmh3=l oc;
cont act th3=cont act ;
styl usmh3=st yl us;
ramh3=ra
zr eal mh3=z;

end

end

if tipshape==3;

if f==
| ocntl=l oc;
contact ncl=cont act;
styl usntl=styl us;
rancl=ra,;
zreal ntl=z;

end

if f==

188



| ocnt2=l oc;
cont act nc2=cont act ;
styl usnt2=styl us;
ranc2=ra
zreal nt2=z;

end

if f==2,
| ocnt3=l oc;
cont act nc3=cont act ;
styl usnt3=styl us;

ranc3=ra
zreal nt3=z;
end
end
end
f=f+1;
end
end

end
save khalid
%l otting data

% surf(z)
% hol d on
% surf (l oc+pl)

% shading interp
% col ormap copper
Y%PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

surf(zsingpl); hold on; surf(locgpl+l);
x|l abel (" X (Pxiel)");
yl abel (" Y(Pxiel)");
zl abel (' Hei ght (pm ")
title(' Oiginal Sinosoidal surface (bottom and Stylus Perfect
Pyramd tip locus (top)');

figure;
pl ot (zsi ngp1(28,:),'b"); hold on; plot(locgpl(28,:), ' r--*");
legend (' Original surface','locus');

x|l abel (" X (Pxiel)");

yl abel (' Hei ght (um ")

title(' 2D coss section of original Sinosoidal profile and the
traced Pyramid stylus locus');

figure(1111);

surf(contactgpl);

xlabel (" X (pm");

ylabel (" Y(pm)");

zl abel (" No. of Contact Points');

title(' Contacts distribution on the Perfect Pyramd tip');
figure;

surf (zsingp2); hold on; surf(locgp2+1);

x|l abel (" X (Pxiel)");

ylabel (" Y(Pxiel)");

zl abel (' Hei ght (pm ")

title(' Oiginal Sinosoidal surface (bottom and Stylus 1lum
Truncated Pyramid tip locus (top)');
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figure(2222);

surf (contactgp2);

xlabel (" X (pm");

ylabel (" Y(pm)");

zl abel (' No. of Contact Points');

title(' Contacts distribution on the 1um Truncated Pyramid tip');
figure;

surf (zsingp3); hold on; surf(locgp3+1);

xlabel (" X (Pxiel)");

yl abel (" Y(Pxiel)");

zl abel (" Hei ght (pm ")

title(' Oiginal Sinosoidal surface (botton) and Stylus 2um
Truncated Pyramid tip locus (top)');

figure(3333);

surf (contactgp3);

xlabel (" X (pm");

ylabel (" Y(pm");

zl abel (' No. of Contact Points');

title(' Contacts distribution on the 2um Truncated Pyranmd tip');

figure;
surf(zrandl pl); hold on; surf(loclpl+l);
xl abel (" X (Pxiel)");
ylabel (" Y(Pxiel)");
zl abel (" Hei ght (pm ")
title(' Oiginal Random surface (botton) and Stylus Perfect Pyramd
tip locus (top)');
figure(666);
pl ot (zrandl p1(:,28),"b"); hold on; plot(loclpl(:,28), r--*");
legend (' Original surface','locus');
xl abel (" X (Pxiel)");
yl abel (' Hei ght (um ")
title(' 2D coss section of original Randomprofile and the traced
Pyram d stylus |ocus');
figure(4444);
surf(contactl pl);
xlabel (" X (pm");
ylabel (" Y(pm)");
zl abel (" No. of Contact Points');
title(' Contacts distribution on the Perfect Pyramd tip');
figure;
surf(zrandl p2); hold on; surf(loclp2+l);
x|l abel (" X (Pxiel)");
yl abel (" Y(Pxiel)");
zl abel (" Hei ght (pm ")
title(' Oiginal Random surface (botton) and Stylus 1um Truncated
Pyramd tip locus (top)');
figure(5555);
surf(contactl p2);
xlabel (" X (pm");
ylabel (" Y(pm)");
zl abel (' No. of Contact Points');
title(' Contacts distribution on the 1um Truncated Pyranmd tip');
figure;
surf (zrandl p3); hold on; surf(loclp3+1);
x|l abel (" X (Pxiel)");
yl abel (" Y(Pxiel)");
zIl abel (' Hei ght (pm ")
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title(' Oiginal Random surface (botton) and Stylus 1pm Truncated
Pyramid tip locus (top)');

figure(6666);

surf(contactl p3);

xlabel (" X (pm");

ylabel (* Y(pm " );

zl abel (" No. of Contact Points');

title(' Contacts distribution on the 2um Truncated Pyranmd tip');

figure;

surf(zreal mpl); hold on; surf(locnpl+2);

x|l abel (" X (Pxiel)");
yl abel (" Y(Pxiel)");

zl abel (" Hei ght (pm ")
title(' Oiginal Gound surface (botton) and Stylus Perfect Pyrand
tip locus (top)');

figure;
pl ot (zreal npl(:,28),"'b"); hold on; plot(locnpl(:,28), r--*");
legend (' Original surface','locus');

xl abel (" X (Pxiel)");

yl abel (' Hei ght (um ")

title(' 2D coss section of original Gound profile and the traced
Pyram d stylus |ocus');

figure(7777);

surf (contact npl);

xlabel (" X (pm");

ylabel (" Y(pm)");

zl abel (' No. of Contact Points');

title(' Contacts distribution on the Perfect Pyramd tip');
figure;

surf(zreal mp2); hold on; surf(locnp2+2);

xl abel (" X (Pxiel)");

yl abel (" Y(Pxiel)");

zl abel (" Hei ght (pm ")

title(' Oiginal Ground surface (botton) and Stylus 1pm Truncated
Pyramd tip locus (top)');

figure(8888);

surf (contact np2);
xlabel (" X (pm");
ylabel (" Y(pm");

zl abel (' No. of Contact Points');
title(' Contacts distribution on the 1um Truncated Pyranmd tip');
figure;

surf(zreal mp3); hold on; surf(locnmp3+2);

xl abel (" X (Pxiel)");
yl abel (" Y(Pxiel)");

zIl abel (' Hei ght (pm ")
title(' Oiginal Gound surface (botton) and Stylus 2um Truncat ed
Pyramid tip locus (top)');
figure(9999);

surf (contact np3);
xlabel (" X (pm");
ylabel (" Y(pm)");

zl abel (' No. of Contact Points');
title(' Contacts distribution on the 2um Truncated Pyramid tip');

Yhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
surf (zsinghl); hold on; surf(locghl+l);
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xl abel (" X (Pxiel)");

yl abel (" Y(Pxiel)");

zIl abel (' Hei ght (pm ")

title(' Oiginal Sinosoidal surface (bottom and Stylus Perfect
Hem sphere tip locus (top)');

figure;
pl ot (zsinghl(28,:),"'b"); hold on; plot(locghl(28,:), 'r--*");
| egend (' Original surface','locus');

xlabel (" X (Pxiel)");

yl abel (' Hei ght (um ")

title(' 2D coss section of original Sinosoidal profile and the
traced Hem sphere stylus |ocus');

figure(1000);

surf (contactghl);

xlabel (" X (pm");

ylabel (" Y(pm");

z|l abel (" No. of Contact Points)');

title(' Contacts distribution on the Perfect Hem sphere tip');
figure;

surf(zsingh2); hold on; surf(locgh2+1);

xl abel (" X (Pxiel)");

ylabel (" Y(Pxiel)");

zIl abel (' Hei ght (pm ")

title(' Oiginal Sinosoidal surface (bottom and Stylus 1um
Truncat ed Heni sphere tip locus (top)');

figure(1100);

surf (contact gh2);

xlabel (" X (pm");

ylabel (" Y(pm)");

zl abel (' No. of Contact Points');

title(' Contacts distribution on the 1um Truncated Heni sphere
tip ),

figure;

surf(zsingh3); hold on; surf(locgh3+1);

x|l abel (" X (Pxiel)");

yl abel (" Y(Pxiel)");

zl abel (' Hei ght (pm ")

title(' Oiginal Sinosoidal surface (bottom and Stylus 2um
Truncat ed Heni sphere tip locus (top)');

figure(1200);

surf (cont act gh3);

xlabel (" X (pm");

ylabel (" Y(pm)");

zl abel (' No. of Contact Points');

title(' Contacts distribution on the 2um Truncat ed Hemni sphere

tip');

figure;
surf (zrandl hl); hold on; surf(loclhl+l);
xl abel (" X (Pxiel)");
yl abel (" Y(Pxiel)");
zIl abel (' Hei ght (pm ")
title(' Oiginal Random surface (botton) and Stylus Perfect
Hem sphere tip locus (top)');
figure(777);
pl ot (zrandl hl(:,28),"'b"); hold on; plot(loclhl(:,28)+0.35,"'r--*");
% 0.22 to draw the | ocus above the original surface
| egend (' Original surface','locus');
xl abel (" X (Pxiel)");

192



yl abel (" Hei ght (um ")

title(' 2D coss section of original Random profile and the traced
Hem sphere stylus |ocus');

figure(1300);

surf(contactl hl);

xlabel (" X (pm");

ylabel (" Y(pm " );

zl abel (' No. of Contact Points');

title(' Contacts distribution on the Perfect Hem sphere tip');
figure;

surf (zrandl h2); hold on; surf(loclh2+1);

xl abel (" X (Pxiel)");

yl abel (" Y(Pxiel)");

zIl abel (' Hei ght (pm ")

title(' Oiginal Random surface (botton) and Stylus 1um Truncated
Hem sphere tip locus (top)');

figure(1400);

surf(contactl h2);
xlabel (" X (pm");
ylabel (" Y(pm)");

zl abel (" No. of Contact Points)');
title(' Contacts distribution on the 1um Truncated Heni sphere
tip');

figure;

surf(zrandl h3); hold on; surf(loclh3+1);

xl abel (" X (Pxiel)");
ylabel (" Y(Pxiel)");

zIl abel (' Hei ght (pm ")
title(' Oiginal Random surface (botton) and Stylus 2um Truncat ed
Hem sphere tip locus (top)');
figure(1500);

surf (contact!| h3);
xlabel (" X (pm");
ylabel (" Y(pm)");

zl abel (' No. of Contact Points');
title(' Contacts distribution on the 2um Truncat ed Heni sphere

tip');

figure;

surf (zreal mhl); hold on; surf(locmhl+2);

x|l abel (" X (Pxiel)");
yl abel (" Y(Pxiel)");

zIl abel (' Hei ght (pm ")
title(' Oiginal Ground surface (botton) and Stylus Perfect
Hem sphere tip locus (top)');

figure;
pl ot (zreal mhl(:,28),"'b"); hold on; plot(locmhl(:,28)+0.07, r--*");
| egend (' Original surface','locus');

xl abel (" X (Pxiel)");

yl abel (" Hei ght (um ")

title(' 2D coss section of original Gound profile and the traced
Hem sphere stylus |ocus');

figure(1500);

surf (contact mhl);

xlabel (" X (pm");

ylabel (" Y(pm)");

zl abel (' No. of Contact Points');

title(' Contacts distribution on the Perfect Hem sphere tip');
figure;
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surf (zreal mh2); hold on; surf(locmh2+2);

xl abel (" X (Pxiel)");

yl abel (" Y(Pxiel)");

zIl abel (' Hei ght (pm ")

title(' Oiginal Gound surface (botton) and Stylus 1um Truncated
Hem sphere tip locus (top)');

figure(1600);

surf (contact mh2);

xlabel (" X (pm");

ylabel (" Y(pm)");

zl abel (" No. of Contact Points');

title(' Contacts distribution on the 1um Truncated Heni sphere
tip');

figure;

surf(zreal m3); hold on; surf(locmh3+2);

xl abel (" X (Pxiel)");
ylabel (" Y(Pxiel)");

zIl abel (' Hei ght (pm ")
title(' Oiginal Gound surface (botton) and Stylus 2um Truncat ed
Hem sphere tip locus (top)');
figure(1700);

surf (cont act mh3);
xlabel (" X (pm");
ylabel (" Y(pm)");

zl abel (' No. of Contact Points');
title(' Contacts distribution on the 2um Truncat ed Heni sphere

tip');

%tcccecececeeceecccececcecccccececcccccccecccccccceccccccccee
surf(zsingcl); hold on; surf(locgcl+l);

xl abel (" X (Pxiel)");

yl abel (" Y(Pxiel)");

zIl abel (' Hei ght (pm ")

title(' Oiginal Sinosoidal surface (botton) and Stylus Perfect
Conical tip locus (top)');

figure;
pl ot (zsingc1(28,:),'b"); hold on; plot(locgcl(28,:), r--*");
| egend (' Original surface','locus');

xl abel (" X (Pxiel)");

yl abel (" Hei ght (um ")

title(' 2D coss section of original Sinosoidal profile and the
traced Conical stylus locus');

figure(1800);

surf(contactgcl);

xlabel (" X (pm");

ylabel (" Y(pm)");

zl abel (' No. of Contact Points');

title(' Contacts distribution on the Perfect Conical tip');
figure;

surf(zsingc2); hold on; surf(locgc2+1);

x|l abel (" X (Pxiel)");

yl abel (" Y(Pxiel)");

zIl abel (' Hei ght (pm ")

title(' Oiginal Sinosoidal surface (botton) and Stylus 1pm
Truncated Conical tip locus (top)');

figure(1900);

surf(contactgc2);

xlabel (" X (pm");

ylabel (" Y(pm " );
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zl abel (" No. of Contact Points');

title(' Contacts distribution on the 1um Truncated Conical tip');
figure;

surf(zsingc3); hold on; surf(locgc3+1);

x|l abel (" X (Pxiel)");

ylabel (" Y(Pxiel)");

zl abel (" Hei ght (pm ")

title(' Oiginal Sinosoidal surface (bottom and Stylus 2um
Truncated Conical tip locus (top)');

figure(1900);

surf (contactgc3);

xlabel (" X (pm");

ylabel (" Y(pm)");

zl abel (' No. of Contact Points');

title(' Contacts distribution on the 2um Truncated Conical tip');

figure;

surf(zrandl cl); hold on; surf(loclcl+l);

xl abel (" X (Pxiel)");
yl abel (" Y(Pxiel)");

zIl abel (' Hei ght (pm ")
title(' Oiginal Random surface (botton) and Stylus Perfect Conica
tip locus (top)');
figure(888);

plot(zrandlcl(:,28),"b"); hold on; plot(loclcl(:,28), r--*");

| egend (' Original surface','locus');
x|l abel (" X (Pxiel)");
yl abel (' Hei ght (um ")
title(' 2D coss section of original Random profile and the traced
Coni cal stylus locus');
figure(2000);

surf(contactlcl);
xlabel (" X (pm");
ylabel (" Y(pm " );

zl abel (" No. of Contact Points');
title(' Contacts distribution on the Perfect Conical tip');
figure;

surf(zrandl c2); hold on; surf(loclc2+l);

xl abel (" X (Pxiel)");
ylabel (" Y(Pxiel)");

zIl abel (' Hei ght (pm ")
title(' Oiginal Random surface (botton) and Stylus 1um Truncated
Conical tip locus (top)');
figure(2100);

surf(contactl c2);
xlabel (" X (pm");
ylabel (" Y(pm)");

zl abel (' No. of Contact Points');
title(' Contacts distribution on the 1um Truncated Conical tip');
figure;

surf(zrandl ¢c3); hold on; surf(loclc3+1);

x|l abel (" X (Pxiel)");
yl abel (" Y(Pxiel)");

zl abel (" Hei ght (pm ")
title(' Oiginal Random surface (botton) and Stylus 2pum Truncated
Conical tip locus (top)');
figure(2200);

surf(contactl c3);
xlabel (" X (pm");
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ylabel (" Y(um ") ;
zl abel (" No. of Contact Points');
title(' Contacts distribution on the 2um Truncated Conical tip');

figure;

surf(zreal ncl); hold on; surf(locncl+2);

x|l abel (" X (Pxiel)");
yl abel (" Y(Pxiel)");

zl abel (" Hei ght (pm ")
title('Oiginal Gound surface (botton) and Stylus Perfect Conica
tip locus (top)');

figure;
plot(zreal ntl(:,28),'b"); hold on; plot(locncl(:,28), r--*");
legend (' Original surface','locus');

xl abel (" X (Pxiel)");
yl abel (' Hei ght (um ")
title(' 2D coss section of original Gound profile and the traced
coni cal stylus locus');
figure(2300);

surf(contactncl);
xlabel (" X (pm");
ylabel (" Y(pm)");

zl abel (' No. of Contact Points');
title(' Contacts distribution on the Perfect Conical tip');
figure;

surf(zreal nc2); hold on; surf(locnc2+2);

x|l abel (" X (Pxiel)");
yl abel (" Y(Pxiel)");

zl abel (" Hei ght (pm ")
title(' Oiginal Ground surface (botton) and Stylus 1pm Truncated
Conical tip locus (top)');
figure(2400);

surf (contactnc2);
xlabel (" X (pm");
ylabel (" Y(pm");

zl abel (' No. of Contact Points');
title(' Contacts distribution on the 1um Truncated Conical tip');
figure;

surf(zreal nc3); hold on; surf(locnc3+2);

xl abel (" X (Pxiel)");
yl abel (" Y(Pxiel)");

zIl abel (' Hei ght (pm ")
title(' Oiginal Gound surface (botton) and Stylus 2um Truncat ed
Conical tip locus (top)');
figure(2500);

surf (contactnc3);
xlabel (" X (pm");
ylabel (" Y(pm)");

zl abel (' No. of Contact Points');
title(' Contacts distribution on the 2um Truncated Conical tip');
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A3.2 The second Matlab Code:

clc

clear al

close all

% Deno code fragment for testing 'fractal infill

% NOT EXECUTABLE - mainly psuedo-code nade up of conmments

% Assune square master array Zorig, that will be sub-sanpled into
Z.

% For each version of Z, use ideas from FractalInfill Denpl. m
%to reconstruct expanded array Zexp of sane size as Zorig.
% Then conpare Zexp to Zorig to see effectiveness of the
"prediction'.

nzorig = 601, Y%say, 'binary' width easy to divide up

mag = 14; %or 2 or 8: sub-sanpler and | ater expansion factor
%or i g=ones(nzorig);

%Zori g=xl sread(' z. xl sx");

%ori g=xl sread(' KALOOROV_Filter Result_ AFM asc. x| sx');
%ODDDD=i npor t dat a(' KALO9OROV_Fi |l ter _Result _AFM asc');

Zorig = inportdata(' KAL9OROV_Filter_Result_AFM asc');

% Zorig=Zorig-mn(mn(Zorig)); % To scal e the values to be
bet ween [0-nmax-nin)] (Mking the m n=0)
%  Zorig=Zorig/ (max(max(Zorig))); % nmensi onl ess: scaling the

values to be in the range of (0-1)

% pl=0.925;

%  Zorig=(Zorig*pl);

Z = Zorig(1l:mag:nzorig, 1l:mag:nzorig); % sub-sanpled every mag
poi nt s.

nz=fix(nzorig/ mag)+1; % points in reduced Z

nf =mag+1; % size of interpolation patch needed for re-expandi ng
ns=nzori g; % ull size of expanded (stylus) map

%

% Build plane and fractal infill expansions of Z:

%this section is essentially sanme ideas as in Fractallnfill Denpl.
%

%grab a bit of surface for infill, nf square, taken from nm ddle
of Z

centrepoi nt=fix(nz/2)+1; hal fsize=fix(nf/2); % o define region

t op=cent r epoi nt +hal f si ze; | ow=centrepoi nt - hal fsi ze

filler=Z(low top,low top); %

frac_scale = 1/nf; %o scale infill heights to width scales
Y%use TwistPlane in its 'leveling node (zero the corners)
C=[filler(1,1), filler(1,nf); filler(nf,1), filler(nf,nf)];
fitplane=Twi stPlane(C, nf); %et tw sted plane matching four
corners

filler=filler-fitplane; % evel i ng operation
filler=frac_scale*filler; % educed height, |eveled

% end of building infill (not nost effciient - spelled out for
clarity)

%

% Now expand each foursone of Z into a Zexp* with tw sted plane
% interpolation and superposed | eveled fractal infill each tine
% (usi ng al ways sanme one here!!l)

Zexpp=zer os(ns); %l acehol der full array to allow easy index
not at i ons.

Zexpf =zeros(ns);
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%mor k through rows and columms from1 to nz-1
% nefficient becuase of ovverlaps on edges in ZS, but easy to
fol |l ow
ii=1; % owindex points in expanded array
for i=1:(nz-1);
jj=1; %ol index points in expanded array
for j=1:(nz-1);
C[Z(i,j), Z(i,j+1); Z(1+1,j), Z(i+1,j+1)]; %orners
pat ch=Twi st Pl ane(C, nf);
iil=ii+(nf-1); jjl=jj+(nf-1); Ywpper lints of patch

Zexpp(ii:iil,jj:jjl)=patch; 9%l ane interpolated
Zexpf (ii:iil,jj:jjl)=patch+filler; %and with fracta
' noi se'
ii=ij+nf; % ncrenent the outer index col count
end
ii=ii+nf; % ncrenent the outer row index
end

figure (1);surf (Zorig);

shading interp

col ormap copper

figure (2);surf (2);

shading interp

col ormap copper

figure (3);surf (Zexpp);

shading interp

col ormap copper

figure (4);surf (Zexpf);

shading interp

col ormap copper

% Zexp* now preserves orignal points of Z in correct places as in
Zorig

%

%et estimate of how nmuch tinme this process takes (conpared to
stylus sim

%

% Next phase is to run various conparisons

% Save data files and pass t, say, SPIP to evalaute differences in
% paraneters from Zorig, ZZexpp and Zexpf.

% Si nply pl ot graphs to show variations?

YError_p = Zexpp-Z; %nd plot, express rns , etc.

Y%Error_f = Zexpf-Zorig; %litto

% Al so, apply stylus to each with small threshold steps to see
whet her

% they show different patterns of kinematic contact, island
growt h, etc.

%If not, e.g., extra effort is proven not worthwhile in our
cont ext .

%eRoughness for Zorig:
SaZorig=sun(sun(Zorig(:,:)))/ (nzorig*nzorig);
% meanl evel =SaZori g;

% Zori g=Zorig-neanl evel ; % eaving tilt
ff=sum(sum(Zorig(:,:)));
fff=ffnr2;

ffff=fff/(nzorig*nzorig);
SqZorig=(ffff)"0.5
SskZori g=(sum(sum( Zorig(:,:)))"3)/(nzorig*nzorig*(SqgZori g"3))
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SkuZori g=(sun(sum(Zorig(:,:)))"4)/(nzorig*nzorig*(SqZorigh4))
SzZorig=max(max(Zorig(:,:)))-mn(mn(Zorig(:,:)))
%8MRoughness for Z:

SaZ=sunm(sun(Z(:,:)))/ (nz*nz);

% neanl evel =Saz,

% Z=Z-neanl evel ; %eaving tilt
ff=sum(sum(Z(:,:)));
fff=ffn2;

ffff=fff/(nz*nz);

Sqz=(ffff)~0.5

SskZz=(sum(sunm(Z(:,:)))"3)/ (nz*nz*(SqZ"3))
Skuz=(sum(sunm( Z(:,:)))"4)/ (nz*nz*(SqZ"4))
SzZ=max(max(Z(:,:)))-mn(mn(Z(:,:)))
%88oughness for Zexpp:
SaZexpp=sun{sunm(Zexpp(:,:)))/ (ns*ns);

% meanl evel =SaZexpp

% Zexpp=Zexpp- neanl evel ; %eaving tilt
ff=sum(sum( Zexpp(:,:)));
fff=ffn2;

ffff=fff/(ns*ns);

SqZexpp=(ffff)"0.5

SskzZexpp=(sun(sum( Zexpp(:,:)))"3)/ (ns*ns*(SqZexpp”3))
SkuZexpp=(sunm(sun( Zexpp(:,:)))"4)/ (ns*ns*(SqZexpp"4))
SzZexpp=max(max(Zexpp(:,:)))-m n(m n(Zexpp(:,:)))
%88oughness for Zexpf:

SaZexpf =sum(sum( Zexpf(:,:)))/(ns*ns);

% meanl evel =SaZexpf ;

% Zexpf =Zexpf-neanl evel ; %eaving tilt
ff=sum(sum(Zexpf(:,:)));
fff=ffnr2;

ffff=fff/(ns*ns);

SqZexpf=(ffff)"0.5

SskZexpf =(sum(sunm( Zexpf (:,:)))"3)/ (ns*ns*(SqzZexpf"3))
SkuZexpf =(sum(sun( Zexpf (:,:)))"4)/ (ns*ns*( SqzZexpf"4))
SzZexpf =max(max(Zexpf (:,:)))-m n(m n(Zexpf(:,:)))

%

Error_pSa = SaZexpp-SaZ %and plot, express rns , etc.
Error_pSq = SqZexpp-SqZ %and plot, express rns , etc.
Error_pSsk SskZexpp- SskzZz %and plot, express rns , etc.
Error_pSsz SzZexpp-SzZ Y%and plot, express rnms , etc.

Error_fSa = SaZexpf-SaZorig; %litto
Error_fSq = SqZexpf-SqZorig %and plot, express rns , etc.
Error_f Ssk SskzZexpf - SskZori g %and plot, express rns , etc.

Error fSsz SzZexpf-SzzZorig %and plot, express rns , etc.

save (' Zorig','-ascii')
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A3.3 Thethird Matlab Code:

clc

clear al

cl ose all

% Denp code fragnment for crude 'fractal infill

% Assune naster array Z, sanpled at hz=1 um of nz=17 points
square

% Bui | d expanded surface ZS to match stylus grid at hs=0.25 um
% scaling factor is x4, but infill is then on a grid of 5x5 points
% conventional |l y al ways use odd nunbers of points, to allow
centre-zero

nz=17; Z=ones(nz); hz=1.0; hs=0.25; %l acehol der val ues!

nf =hz/ hs+1; %i ze of interpolation patch

ns=(nz-1)*(hz/ hs) +1; % ull size of expanded (stylus) map

%

%f wanted, grab a bit of surface for infil

%eeds to be nf square, taken, e.g., frommiddle of Z
filler=z(7:11,7:11); Y% et hardwired for nf=5 here!!
frac_scale = 1/nf; %o scale infill heights to width scales
Y%use TwistPlane in its 'leveling node (zero the corners)
C=[filler(1,1), filler(1,5); filler(5,1), filler(5,5)];
fitplane=Twi stPlane(C, nf); %et tw sted plane matching four
corners

filler=filler-fitplane; % evel i ng operation

filler=frac_scal e*filler; % educed height, |eveled

% end of building infill (not nost effciient - spelled out for
clarity)

%
%\ow expand each foursone of Zinto ZS with tw sted pl ane
i nterpolation

%super pose leveled fractal infill each tine (using always sanme one
here!!)

ZS=zeros(ns); %l acehol der full array to allow easy index
not at i ons.

%mor k through rows and colums from1 to nz-1
% nefficient becuase of ovverlaps on edges in ZS, but easy to
fol | ow
ii=1; % ow index points in expanded array
for i=1:(nz-1)
jj=1; %ol index points in expanded array
for j=1:(nz-1)
C[z(i,j), Z(i,j+1); Z(1+1,j), Z(i+1,j+1)]; %orners
pat ch=Twi st Pl ane(C, nf);
iil=ii+(nf-1); jjl=jj+(nf-1); Qwpper lints of patch

ZS(iiziil,jj:jjl)=patch; 9%l ane interpolated, Z heights
preserved
ZS(iiziil,jjejjly=zs(iiziil,jj:jjl)y+filler %o add fracta
' noi se'
ii=ij+nf; % ncrenent the outer index col count
end
ii=ii+nf; % ncrenent the outer row index
end

%S now has full population, wiht all orignal points of Z
preserved

%because Twi st Pl ane preseves them so ensuring corner of filler
are zero.
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A3.4 The fourth Matlab Code:

%0bast work on 2 Decenber 2013
%8conti nue 29/ 03/ 2015( Cone)
clc

cl ose all

clear all

Y%surface(l)

%=xl| sread(' G2ss201.xls");
%a=ones(128)

% dx = 0.156; % spacing in

X
0.156; % spacing iny

% dy = n nm
% nx = 128; % nunber of points along x
%ny = 128; % nunber of points along vy

% surface (2)
% a=x| sread(' KAOOCO2_AFM x| sx' ) ; Y64
% dx = 0.313; %spacing in x in mm

0.313; %spacing iny

% dy = n nm
% nx = 64; % nunber of points al ong x
% ny = 64; % nunber of points along y

%surface (3)
% a=x| sread(' zorigi nal _scal ed01_64. xl sx' ) ; %64
% dx = 0.313; %spacing in x in mm

0.313; %spacing iny i

% dy = n nm
% nx = 64; % nunber of points al ong x
% ny = 64; % nunber of points along y

% surface (4)

a=x| sread(' zori gi nal _scal ed01_64noi se01l. xl sx' ) ; %64
dx = 0.313; %spacing in x in nm

(o) D 0/0/0

0.313; %spacing iny in nm

dy =
nx = 64; % nunber of points along x
ny = 64; % nunber of points along y

x= (0:1:nx-1)*dx; % generate x array
y = (0:1:ny-1)*dy; %generate y array

for j = 1l.ny
for i = 1:nx
z(j,i) =a(j,i);
end
end

z=z/ (max(max(z)));

pl1=0. 8148130;

z=(z*pl);

figure (1111); surf(z);

xl abel (" x Di stance (pixel)");
yl abel ('y Distance (pixel)"');
zl abel (" Anplitude (um');
title ('z');

shadi ng interp;
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%enerating a sphere of radius 11 pm assumng a sanpling interval
of

%umin x and z.

% he Cone can be generated as shown bel ow.

Radi us =2; % radius in nmm

dx =0.1; %spacing in X in mm

dy =0.1 ; %spacing iny in mm

% nx = 128; % nunber of points along x %6 or 128
%ny = 128; % nunber of points along y
nx 64; % nunber of points along x %6 or 64

ny 64; % nunber of points along y
x= (0: 1: nx-1)*dx; % generate x array
y = (0:1:ny-1)*dy;

nx = Radi us/dx; % nunber of points in one radius of the ball
my = Radi us/dy;

%end

=1

for yr = -Radi us: dy: Radi us;

i =1,

for xr = -Radi us: dx: Radi us;
if sqgrt(xr”2+yr”*2) <= Radi us;
B(j,i) = -sqrt(xrh2+yrn2);

el se
B(j,i) =-2;

end

i =i + 1;

end

=0+ 1

end

%B=B;

figure(555); surf(B);

% he | ocus of the center of the sphere can be obtained as shown
bel ow.

z1l(ny+2*my+1, nx+2* nx+1) =0;

z1(nmy+1: ny+ny, nx+1: nx+nx) = z;

for j=nmy+1: ny+ny;

for k = nx+1: nx+nx;

C(j-my, k-mx) = max(max(z1(j-nmy:j+nmy, k-nx: K+nmx)));
% conpare sum of profile and ball heights

end

end

figure (2); surf(z);

hol d on;

mesh(C);

xl abel (" x Di stance (pixel)");
yl abel ('y Distance (pixel)");
zl abel (" Anplitude (um');
title ("z & loc');

shadi ng interp;

hol d of f

% G = fspecial ('gaussian',[1 1], 2);
%lg =infilter(z,G ' 'sane');
% figure,inshow(lg);
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% C = conv2(z, G;

%

% return

% generating a Gaussian Filter S

%a = sqrt(log(2)/pi);

% | andacX = 0.08; %cutoff along x in nm

% | andacY = 0.08; %cutoff along y in nm

% x = (-lanmdacX: dx: | andacX-dx) " ;

%y = (-landacY: dy: | andacY-dy)"';

% Mk = size(x,1); % nunber of points along x

% y size(y,1l); % nunber of points along y
%for i = 1:nx

% for j = 1.ny

% S(j,i)=(1/(ar2*l andacX*| andacY)) *exp( -

pi *(x(i)/allandacX)~2*(-pi *(y(j)/allandacY)”"2));
% end

% end

%S = S/sunm(sun(S));

%figure (3); surf(x,y,9S)

%title (' Gaussian');

% shading interp

%

% dx 0.002; % spacing in x in nm

% dy 0.002; % spacing iny in nm

% nxc = 135; % nunber of points al ong x
% nyc = 135; % nunber of points along y
% x= (0:1:nxc-1)*dx; % generate x array
%y = (0:1:nyc-1)*dy; %generate y array
%

%for i = 1:nxc

% for j = 1:nyc

% C2 = conv2(z,9S);
% end

% end

%

% C2 = conv2(z,9S);

% figure (4),surf(C2);
% shadi ng i nterp;
%title ('conv');
% shading interp
% return
% w = C2(ny/2+1: ny+ny/ 2, nx/ 2+1: nx+nx/ 2) ;
% figure (5),surf(w;
%
% shading interp
% eturn
%BORBB0RB00 extra
a=z(1l:size(B), 1l:size(B)); % get archive data
%WOmpdat el4d/ 12/ 2013
%UC=C(1: size(B), 1:size(B));

% a=C,

%BORBBRBBE8880

pr =B; % get stylus nodul e (pr=probe)

9BOBBRBERA4 pr X, pry] =si ze(pr) ; % basi ¢ i ndex range
9OBORBEBBR4 sX, sy] =si ze(al); % overal | di aneter

i start=1;

i end=si ze(B);
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i =istart:iend,
jstart=1,

j end=si ze(B);
j=istart:jend,

t hr=0. 05; %0, 0.005, 0.01, 0.02, 0.05, 0.1

% 0. 057, 0.07, 0.85 and 0.105

% igure (77); plot(z(:,26),'b"); hold on; plot(B(:,26)+thr,"'r");
hold on; plot (C(:,26)); %old on;plot(ssss(1:7,4)+3,"k-*");

9BBBB0LRBBB80Ma=a(i - i +10,] : | +10);
%r =zeros(21); %°r obe shape (11x11)
%0B0RB0000008000808MVFa( 1, 1) +pr (1, 1); % cancel ed, we used atopr by
differnt way
at opr =a+pr; % nteraction function
Mrat opr(1,1);
for i=istart:iend;

for j=jstart:jend;

if atopr(i,j)>M

M =atopr(i,j); %ol di ng max vdm

i max=i; % i ndex of the current max

j max=j ;

end
end

end
firstcontact= zeros(size(atopr)); % 1x11
firstcontact (i max, j max) =1; % Map of tip, all zero except

simpl e contact point
full contact=zeros(size(atopr));
ful |l contact =at opr>=Mt hr;

gap=atopr-(Mthr);

Y%a=a' ;

%dx = 0.1, %spacing in x in nm
%dy = 0.1; %spacing iny in nm

% nx = 41; % nunber of points al ong x
% ny = 41; % nunber of points along y

% x= (0:1:nx-1)*dx; % generate x array
%y = (0:1:ny-1)*dy;

% figure (121); surf (Xx,y,a);

figure (121); surf (a);

x|l abel (" X (pixel)");
ylabel ('Y (pixel)");

z|l abel (' Hei ght (um)");

figure (1211); surf (atopr);

figure (122) ; waterfall (pr);

figure (123); spy(fullcontact,'b'); hold on ;
spy(firstcontact,'r")

grid on;

set(gca, 'GidLineStyle, ":");
figure (124); spy(fullcontact,'b');
grid on;

set(gca, 'GidLineStyle, ":');
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10.4. Appendix 4: SPIP Softwar e information

M easur ement:

The following measurement tools allows us to make awide range of measurements
interactively by drawing the available shapes in an image. The common shapes,

which can be measured are listed below:
1. Line measurement; primarily used for measuring length and height differences.

2. Polygon measurement; primarily used for measuring length, width, height, area

and volume.

3. Ellipse and Circle and measurement; primarily used for measuring radius and

length.
M easur ands

The shapes can be quantified by comprehensive set of parameters called

measurands, which are described below:

- Arex

Z[_r, X )y, —-v.)

Area =
2

The Area is caculated from the shapes periphery, i.e. the closed polygon that

surrounds the feature. The areais calculated using:
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- Perimeter:

The Perimeter is calculated from the shapes periphery as:

- Centre of Gravity:

The centre of gravity can be calculated using three different methods. Periphery,

Areaand Volume.

Periphery or Outline

The centre of gravity based on the shapes periphery, i.e the closed polygon that

surrounds the shape. Here, centre of gravity is calculated using:

Area

The centre of gravity based on a shapes interior scan-point.
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Inthiscasethe centreiscalculated asthe average value of al horizontal respectively

vertical coordinates within the shape.

Volume

The centre of gravity, where each point at x,y position within the shapesisweighted

by that scan points height.

Orientation:

Orientation gives the angle of the axis of momentum. To obtain the Orientation we
find the line which best fits all the points in the object, actualy only the points
describing the periphery are used. Thislineisthe "axis of momentum". Having the

moment axisit’s simply a matter of calculating the angle to the x-axis.
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Length:

Length (also known as the maximum caliper) is defined as the longest cord along
the angle given by the moment’ s axis to the x-axis. In other words, if we rotated the
shape so that the moment’ s axis becomes paralld to the x-axis, then Length is the

extension of the bounding rectangle in the horizontal direction.

. For lines thisis the distance between the most distant points of the line.

. For circles this equals the diameter
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. For ellipsesit equals the length of the mgjor axis
Breadth / Width:

Breadth (also known as the minimum caliper) is defined as the longest cord
perpendicular to the angle ® given by the moments axis to the x-axis. In other
words, if we rotated the feature so that the moments axis becomes parallel to the x-
axis, then Breadth is the extension of the bounding rectangle in the vertical

direction.
Maximum Feret’s diameter:

Maximum Feret diameter is the longest distance between any two points on the

periphery. Diameter (Heywood):
The diameter is expressed as the diameter of a circle having an area equivalent to
the shape' s area.

4
¥ |
Diameter 1u- - Area

Radiusis defined as half the size of that of the Heywood Diameter described above.

Elongation:

Elongation is ameasure indicating how elongated ashapeis. A squareor circlewill
return the value zero. As these shapes changes towards a long rectangle or ellipse

the returned value converges towards 1.0.

. ~ |Length — Breadth
Elongation = i

Length
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Aspect Ratio:

Aspect Ratio is the aspect ration defined as Length over Breadth. The aspect ration
will from this definition always be greater than or equal to 1.0. The aspect ratio of

both acircleand squareis 1.0, whereas other shapes will have avaue lessthan 1.0.

Length
Breadih

AspectRatio =

Form Factor:

Form Factor provides a measure that describes the shape of a feature. The form

factor is defined by the formula below.

. . 4.0 Area
FormFactar = -
Perimeter-

Roundness:

Roundness describes the shapes resemblance to a circle. The roundness factor of a

shape which will approach 1.0 the closer the shape resembles acircle.

4. Arear
Roundness = i
- Length’

Compactness:

Compactness is a measure expressing how compact afeature is. From the formula
below, a circle will have a compactness of 1.0, a squares compactness is 1.1284,

whereas elongated and irregular shapes resultsin values less than 1.0.
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Convexity:

Convexity istheratio between the convex polygons perimeter (shown in green) and

the perimeter of the shape itself.

Solidity:

Solidity isameasure describing the resemblance of the shapes areawith it’s convex

area.

EE Area
Solidity =

ConvexArea
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