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Generalizing Murray’s law: An optimization principle for fluidic networks
of arbitrary shape and scale
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Murray’s law states that the volumetric flow rate is proportional to the cube of the radius in a

cylindrical channel optimized to require the minimum work to drive and maintain the fluid.

However, application of this principle to the biomimetic design of micro/nano fabricated networks

requires optimization of channels with arbitrary cross-sectional shape (not just circular) and smaller

than is valid for Murray’s original assumptions. We present a generalized law for symmetric branch-

ing that (a) is valid for any cross-sectional shape, providing that the shape is constant through the net-

work; (b) is valid for slip flow and plug flow occurring at very small scales; and (c) is valid for

networks with a constant depth, which is often a requirement for lab-on-a-chip fabrication proce-

dures. By considering limits of the generalized law, we show that the optimum daughter-parent area

ratio C, for symmetric branching into N daughter channels of any constant cross-sectional shape, is

C ¼ N�2=3 for large-scale channels, and C ¼ N�4=5 for channels with a characteristic length scale

much smaller than the slip length. Our analytical results are verified by comparison with a numerical

optimization of a two-level network model based on flow rate data obtained from a variety of sour-

ces, including Navier-Stokes slip calculations, kinetic theory data, and stochastic particle simulations.
VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4935288]

I. INTRODUCTION

In 1926, Murray1 posited that there were two competing

factors contributing to the energy cost of blood flow through

the arterial system: (1) the energy required to drive the flow,

which increases as the vessel radius decreases; and (2) the

energy required to metabolically maintain the fluid, which

increases with increasing vessel radius. Thus, to minimize

the total power requirement, the vessel could be neither too

large nor too small. Using the Hagen-Poiseuille law to

describe the flow through a cylindrical vessel (i.e., assuming

the flow is laminar, Newtonian, steady, and fully devel-

oped), the power Wf required for the flow to overcome the

viscous drag is

Wf ¼ fDP ¼ 8lLf 2

pr4
; (1)

where DP is the pressure drop over the vessel, l is the

dynamic viscosity of the fluid, L is the vessel length, f is the

volumetric flow rate, and r is the vessel radius. This is offset

by the maintenance “cost of blood” Wm which increases line-

arly with the blood volume:

Wm ¼ mLpr2; (2)

where m is an all-encompassing metabolic coefficient that

includes the chemical cost of keeping the blood constituents

fresh and functional, and the general cost owing to the

weight of the blood and the vessel. The total power require-

ment Wt¼WfþWm is thus

Wt ¼
af 2

r4
þ br2; (3)

where a¼ 8lL/p and b¼mpL. For a constant volumetric

flow rate, and given values of a and b, the total power will

be a function of a single variable—the vessel radius r—and

the minimum power is found by differentiating with respect

to r and equating to zero:

dWt

dr
¼ �4af 2

r5
þ 2br ¼ 0: (4)

Rearranging Eq. (4) gives

f ¼ Kr3; (5)

where K ¼
ffiffiffiffiffiffiffiffiffiffi
b=2a

p
. Thus for any vessel considered inde-

pendently, Eq. (5) describes the optimal relation between

volumetric flow rate and vessel radius, such that the power

requirement is minimized. If the fluid viscosity and meta-

bolic coefficient are constant throughout a network, then

K is constant. It was surmised that in this instance, Eq. (5)

should hold for all vessels in a network operating at

maximum efficiency, which tacitly assumes that the local

losses through the junction (due to bends and channel con-

tractions) are negligible compared to the pressure losses

over the channel lengths; this limits the applicability of

Murray’s law to networks of high-aspect-ratio channels.

By applying the conservation of mass at a branching

point, we retrieve the ubiquitous principle known as

Murray’s law:
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r3
p ¼

XN

i¼1

r3
di
; (6)

where the subscripts p and di denote the parent and the ith
daughter (of N), respectively. In the common case of sym-

metrical branching, Eq. (6) reduces to

r3
p ¼ Nr3

d: (7)

Murray’s law has been shown to be a good approxima-

tion for a diverse range of biological networks whose pri-

mary function is fluidic transport, for example, in the

cardiovascular systems of multiple animals;2–9 in the bron-

chial trees of lungs;10–12 and in the leaf veins of plants.13–15

Murray’s law can also be applied to inorganic systems5 and

has been adapted for networks with rectangular, trapezoi-

dal,16 and elliptical cross sections.17 The applicability of

Murray’s law to moderately rarefied gas flows has also been

investigated18 and a departure from Eq. (7) has been noted.

These developments indicate that some version of Murray’s

law could be applied as a biomimetic design principle for

microfluidic and nanofluidic networks, such as lab-on-a-chip

devices for microreactors19 or tissue engineering,20 or micro/

nanoscale heat exchangers for high performance fuel cells21

or the cooling of electronic devices.22,23

Since the original derivation of Murray’s law, it has

been noted that the application of other optimization princi-

ples (not just that of minimum work) result in Eq. (7): mini-

mizing the total mass of the network,24 minimizing volume

for a constant pressure drop and flow rate,25 keeping the

shear stress constant in all channels,26 or minimizing flow re-

sistance for a constant volume.5,27

As noted in Ref. 16, in some circumstances, it is desira-

ble or necessary for the cross-sectional shape to vary

between the parent and daughter channels of a branching net-

work. In many lab-on-a-chip fabrication procedures (e.g.,

photolithograpy, wet or dry etching, or surface micromachin-

ing), the depth remains constant throughout the device, and

thus the shape (i.e., aspect ratio) of the cross section must

vary. A multi-depth approach to fabrication does exist,28 but

it is relatively complex.

Despite many developments to Murray’s law, there are

three major barriers that prevent it from being relevant to the

design of many artificial fluidic networks: (1) it is not

demonstrably applicable to cross sections of any arbitrary

shape; (2) it is not applicable at the micro/nanoscale, where a

fluid can no longer be accurately described as a continuous

material;29 and (3) it is not applicable to networks which

maintain a constant depth through branching, wherein the

cross-sectional shape changes between the parent and daugh-

ter channels.

II. ANALYTICAL SOLUTIONS

Although Murray’s original optimization concerns the

minimization of work, the principle can be generalized as a

maximization of flow conductance per unit volume for a va-

riety of constraint combinations. For a two-level network

(consisting of a single parent channel branching into multiple

daughter channels), this can be expressed as

arg max
C2 0;1½ �

Q

DPV

� �
subject to fixed

Q;DP
V;DP
V;Q;

8<
: (8)

where Q is the mass flow rate through the parent channel,

DP is the total pressure drop (from inlet of the parent to the

outlet of the daughters), V is the network volume, and

C ¼ Ad

Ap
(9)

is the daughter-parent cross-sectional area ratio. Note, the

three constraint options (pressure-drop minimization, volume

minimization, and flow-rate maximization) all lead to the

same optimal daughter-parent area ratio. For our optimiza-

tion, we assume that the channel lengths L are large com-

pared to the size of the parent-daughters junction so that (1)

the localized pressure losses through the junction are negligi-

ble compared to the pressure drops over individual channels

(as in Murray’s law) and (2) the volume of the network can

be considered to be the sum of the channel volumes:

V ¼ ApLp þ NAdLd: (10)

This means that the channel lengths are treated as being in-

dependent of the branching angle.30 The channel lengths are

also treated as being independent of the optimal daughter-

parent area ratio (as found in Murray’s optimization1), i.e.,

dL/dC¼ 0. This will be verified later. Inserting Eq. (10) into

the fitness function of Eq. (8), differentiating with respect to

C, and equating to zero, gives

d

dC
DPV

Q

� �
¼ Lp

dAp

dC
þ NLd

dAd

dC
¼ 0; (11)

noting that, for all constraint combinations, d(DP)/dC¼ 0

and dQ/dC¼ 0. The pressure drop over the parent and

daughter channels can be expressed in terms of the mass

flow rate:

DPp ¼ QLpkp; (12)

DPd ¼
QLdkd

N
; (13)

where L is the channel length and k is flow resistance per

unit length, e.g., kp¼DPp/(QLp). The pressure drop over the

entire network DP¼DPpþDPd is then

DP ¼ Q Lpkp þ
Ldkd

N

� �
: (14)

As d(DP)/dC¼ 0 and dQ/dC¼ 0, differentiating Eq. (14)

with respect to C gives

Lp
dkp

dC
þ Ld

N

dkd

dC
¼ 0: (15)

Substituting Eq. (15) into Eq. (11), via the chain rule, gives the

generalized optimal area relation for symmetric branching:

174302-2 Stephenson et al. J. Appl. Phys. 118, 174302 (2015)
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dA

dk

����
p

¼ N2 dA

dk

����
d

: (16)

For brevity, this will be referred to as the generalized law to

distinguish it from Murray’s law. This expression is not a

function of L which suggests that the optimal daughter-

parent area ratio is independent of the channel lengths (and

thus branching angle). Note this generalized law is valid for

any Reynolds number (e.g., for turbulent flow) and for any

fluid (e.g., non-Newtonian)31 as long as local losses in the

junction remain negligible. In this paper, we restrict our

attention to laminar and Newtonian flows, and we now con-

sider some important cases where A can be expressed easily

as an analytical function of k.

A. The continuum-flow limit

We begin with the steady incompressible Navier-Stokes

momentum equation for laminar flow through a long channel

with an arbitrary cross-sectional shape, i.e.,

DP

L
¼ �lr2u ; (17)

where u is the streamwise channel velocity. We can non-

dimensionalize this using DP/L, l and cross-sectional area A,

such that

1 ¼ � ~r2
~u; (18)

where

u ¼ ~uA
DP

L

� �
1

l
; r2 ¼

~r2

A
; (19)

and tilde denotes a dimensionless quantity or operator. We

also define y, z as the axes of the cross-sectional plane, and

y ¼ ~y
ffiffiffi
A
p

; z ¼ ~z
ffiffiffi
A
p

: (20)

Provided the boundary conditions are fixed (which is the

case for the continuum-flow limit, where the no-slip bound-

ary condition applies), the solution of Eq. (18), ~uð~y; ~zÞ, is in-

dependent of A, DP, L, and l, and is thus a property of the

cross-sectional shape alone. Similarly, so is

S ¼
ð ð

A

~uð~y; ~zÞ d~y d~z : (21)

An expression for the mass flow rate is obtained by integrat-

ing the fluid momentum over the cross-sectional area

Q ¼ q
ð ð

A

u dy dz; (22)

where q is the mass density. Substitution of Eqs. (19)–(21)

into (22) gives the mass flow rate for an arbitrary cross-

sectional shape

Q ¼ qA2 DP

L

� �
S

l
; (23)

and the flow resistance per unit length

k ¼ l
qSA2

: (24)

It is assumed that the pressure drop over the network is small

such that the viscosity and density are constants. For cylin-

drical channels, S¼ 1/(8p) and Eq. (23) becomes the Hagen-

Poiseuille flow rate.

1. Constant-shape networks

If the cross-sectional shape is constant throughout the

network (i.e., S¼ const), substituting Eq. (24) into the gener-

alized law (Eq. (16)) gives

C ¼ N�2=3 : (25)

Equation (25) relates the area of the parent channel to the area

of the daughter channel in an optimized symmetric network.

Other studies have found that Murray’s law holds for some

specific cross-sectional shapes (i.e., rectangles and trape-

zoids,16 and ellipses17), but this demonstrates that Murray’s

law for symmetric branching is in fact applicable to any

cross-sectional shape, provided the shape is constant through

the network. Note this means that if the cross-sectional areas

are expressed in terms of a hydraulic radius, Murray’s law can

be expressed in its original form (i.e., Eq. (7)) for any shape—

however, this is only applicable for symmetric branching at

the continuum-flow limit.

2. Constant-depth networks

For a constant-depth network, the optimal branching

behavior depends on the change in shape between the parent

and daughter channels, which is a function of the aspect ratio

a¼A/h2 for rectangular channels. This leads to two aspect-

ratio limits for C (at the continuum-flow limit), as illustrated

in Fig. 1. An accurate approximation of the channel shape

property S for a rectangle32 is

S � h2b

4Ab

1

3
� 64h2b

p5Ab
tanh

pAb

2h2b

� �� �

where b ¼
1 for a � 1

�1 for a < 1;

(
(26)

FIG. 1. Schematic showing the symmetric bifurcation of constant-depth rectan-

gular channels of (a) high aspect ratio (a� 1) and (b) low aspect ratio (a� 1).
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where h is the constant network depth. Equation (26) only

includes the first term of an infinite series, but as the denomi-

nators of higher terms increase exponentially, the expression

is sufficient. It is clear from Eq. (26) that at the aspect ratio

limits, the shape property reduces to

S ¼ h2

12A
; for a� 1; (27)

S ¼ A

12h2
; for a� 1: (28)

As S is no longer a constant, the generalized law must con-

sider the change in shape between parent and daughter

channels

dS

dA
¼ �bh2b

4Abþ1

1

3
� 128h2b

p5Ab
tanh

pAb

2h2b

� �
þ 32

p4
sech2 pAb

2h2b

� �� �
:

(29)

At the aspect ratio limits, Eq. (29) reduces to

dS

dA
¼ � h2

12A2
; for a� 1; (30)

dS

dA
¼ 1

12h2
; for a� 1: (31)

Equations (30) and (31) can also be derived directly from

Eqs. (27) and (28), respectively. Substituting Eqs. (24), (27),

and (30) into the generalized law (Eq. (16)), via the chain

rule, gives the high-aspect-ratio continuum-flow limit:

C ¼ N�1: (32)

Incidentally, this limit is equal to da Vinci’s rule of tree

branching.33 Similarly, substituting Eqs. (24), (28), and

(31) into the generalized law gives the low-aspect-ratio

continuum-flow limit:

C ¼ N�1=2: (33)

B. The plug-flow limit

For the other limiting case of scale, the flow becomes

dominated by non-continuum and non-equilibrium effects,

for liquids and dilute gases, respectively. For more informa-

tion, see the reviews by Gad-el-Hak,29 Karniadakis et al.,34

and Conlisk.35 The complexity of channel flow increases

dramatically in such conditions, e.g., density layering can

occur near to the bounding surface in nanoscale liquid chan-

nel flows36 and Knudsen layers (kinetic boundary layers) can

occur in rarefied-gas channel flows.37 Furthermore, the state-

of-the art simulation techniques for such flows—molecular

dynamics for liquid and dense gas flows,38 and the direct

simulation Monte Carlo method for dilute gas flows39—

although accurate, are extremely computationally expensive.

Therefore, for the purpose of generating a simple analytical

relation, we make use of the general approximate observa-

tion that at very small scales (i.e., small channel cross sec-

tions or high degrees of rarefaction), the channel velocity

profile assumes a “plug-like” form, wherein the average ve-

locity approximates the velocity of the fluid at the walls (the

slip velocity). Navier’s slip condition (which is only approxi-

mate for these conditions, as discussed in Section II C)

allows us to express the wall shear stress sw as a function

of the slip velocity us, which must be nearly constant

around the perimeter of the cross section, given the plug-

flow profile:

sw ¼
usl
g
; (34)

where g is the slip length determined by the fluid-solid inter-

action. Note the value of g does not affect the optimal area

ratio solution at the plug-flow limit, and thus accurate know-

ledge of it is not required. As the flow tends to the plug-flow

limit, the mass flow rate is simply

Q ¼ qAus; (35)

and a force balance relates the pressure drop to the wall

shear, i.e.,

ADP ¼ LswP; (36)

where P is the perimeter of the section. Combining Eqs.

(34)–(36) gives the mass flow rate

Q ¼ qgA3=2 DP

L

� �
R

l
; (37)

and the flow resistance per unit length

k ¼ l

qgRA3=2
; (38)

where R ¼
ffiffiffi
A
p

=P is a property of the cross-sectional shape

(like S).

1. Constant-shape networks

If we consider the case where the shape remains the

same throughout the network, Eq. (38) can be substituted

into the generalized law (16) to get the plug-flow limit for an

arbitrary cross-sectional shape:

C ¼ N�4=5: (39)

2. Constant-depth networks

For networks of rectangular cross section with a con-

stant depth, Eq. (38) can be rewritten as

k ¼ 2lh aþ 1ð Þ
qgA2

; (40)

where the perimeter is

P ¼ 2hðaþ 1Þ: (41)

Noting again that a¼A/h2, it can be seen from Eq. (40) that

at the aspect-ratio limits, k reduces to
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k ¼ 2l
qghA

; for a� 1; (42)

k ¼ 2lh

qgA2
; for a� 1: (43)

Substituting Eq. (42) into the generalized law gives

C ¼ N�1 (44)

for the high-aspect-ratio plug-flow limit. Interestingly, the

high-aspect-ratio limits are the same for continuum- and

plug-flow. Similarly, substituting Eq. (43) into the general-

ized law gives

C ¼ N�2=3 (45)

for the low-aspect-ratio plug-flow limit.

C. A slip flow approximation

In certain regimes, between the continuum- and plug-

flow limits, it is sufficiently accurate to model the channel

flow using Navier-Stokes equations with modified boundary

conditions accounting for the velocity slip at wall bounda-

ries—such solutions are referred to as slip solutions. There

are number of types of slip boundary condition (see, e.g.,

those in Refs. 34 and 40), but the most common is Navier’s

slip condition (for which Maxwell’s slip boundary condi-

tion41 is a special case for gas flows). Slip solutions using

Navier’s condition (sw¼ usl/g) have shown to yield accurate

results, as compared to molecular dynamics predictions, for

liquid flows in channels as small as �1–2 nm for water42 and

�2–3 nm for Lennard Jones fluids.43,44 For gases, provided

the Knudsen number (the ratio of the mean free path to the

channel height) is small, the slip solution is also a well-

known and good approximation.

A further approximation to the exact slip solution, for

any cross section, can be obtained by assuming that the shear

stress, and thus the velocity slip, is constant around the pe-

rimeter, i.e.,

Q � qDPA2

LlP SP þ gð Þ: (46)

This gives the exact mass flow rate of the slip solution for a

circular cross section (which has a uniform shear stress) and

accurate approximations for rectangles of any aspect ratio

(within 3% of results from a finite-difference slip solver).

Note that the slip solution is itself an approximation, and par-

ticularly for gas flows must be treated with caution, as dis-

cussed later. Equation (46) can be rearranged to give the

flow resistance per unit length

k ¼ lP
qA2 SP þ gð Þ : (47)

Inserting Eq. (47) into the generalized law (Eq. (16)) for par-

ent and daughter channels produces the general slip solution

for the optimal daughter-parent area ratio for all cross-

sectional shapes across all length-scales

C3

g 2Pp � Ap
dP
dA

����
p

 !
þ P2

p Ap
dS

dA

����
p

þ 2Sp

 !

SpPp þ gð Þ2

2
664

3
775

¼ N�2

g 2Pd � Ad
dP
dA

����
d

 !
þ P2

d Ad
dS

dA

����
d

þ 2Sd

 !

SdPd þ gð Þ2

2
664

3
775
:

(48)

1. Constant-shape networks

For all networks with a constant shape, Sp¼ Sd and dS/

dA¼ 0. For a circular cross section, A ¼ pR2; S ¼ 1=ð8pÞ;
P ¼ 2

ffiffiffiffiffiffi
pA
p

, and dP=dA ¼
ffiffiffiffiffiffiffiffiffi
p=A

p
. Substituting these values

into Eq. (48) and simplifying produces

C5=2 ¼ N�2 ~rp

ffiffiffiffi
C
p
þ 3

~rp þ 3

 !
~rp þ 4

~rp

ffiffiffiffi
C
p
þ 4

 !2

; (49)

where ~rp ¼ rp=g. For rectangular cross sections, P¼2ðaþ1Þh
and dP=dA¼ðaþ1Þh=A. A constant shape means a variable

depth h and a constant aspect ratio a¼A/h2. Substituting these

values into Eq. (48) and simplifying gives an optimal area rela-

tion of

C5=2 ¼ N�2 4C~hp

ffiffiffiffi
C
p
þ 3

4C~hp þ 3

 !
C~hp þ 1

C~hp

ffiffiffiffi
C
p
þ 1

 !2

; (50)

where S is calculated using Eq. (26) ~hp ¼ hp=g and

C¼ 2S(aþ 1) is a constant.

2. Constant-depth networks

For rectangular cross sections of a constant depth and

variable aspect ratio, substituting the expression for dS/dA
(from Eq. (29)) into Eq. (48), along the rectangle parameters

previously outlined, gives

C3

2~h ap þ 2ð Þ þ 4~h
2

ap þ 1ð Þ Ap
dS

dA

����
p

þ 2Sp

 !

2~hSp ap þ 1ð Þ þ 1
� 	2

2
6664

3
7775

¼ N�2

2~h ad þ 2ð Þ þ 4~h
2

ad þ 1ð Þ Ad
dS

dA

����
d

þ 2Sd

 !

2~hSd ad þ 1ð Þ þ 1

 �2

2
664

3
775:
(51)

III. NUMERICAL VERIFICATION AND DISCUSSION

An accurate numerical optimization procedure is now

described to demonstrate the following: (a) the generalized

law (Eq. (16)) is applicable to networks with arbitrary cross-

sectional shape and for all scales; (b) the limits of the gener-

alized law, identified as the continuum-flow limit (Eqs. (25),

(32), and (33)) and the plug-flow limit (Eqs. (39), (44),
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and (45)), are valid and precise for all shapes considered;

and (c) the approximate slip solutions to the generalized law

(Eqs. (49)–(51)) provide reasonable accuracy, even for rare-

fied gas flows.

The numerical optimization procedure is based on calcu-

lations that use non-dimensional mass flow rates, i.e.,

~Q ¼ QlL

qA2DP
: (52)

These mass flow rate are obtained either from published

sources, from high-resolution finite-difference slip solutions,

from exact analytical expressions, or from stochastic particle

calculations (for dilute gases). The numerical model of the

network also assumes that channels are sufficiently long

such that pressure losses at the parent-daughters junction are

negligible compared to the pressure drops over the channels

themselves. This allows a model for a two-level network to

be constructed from predictions of mass flow rate through

individual channels, constrained by a common branching

pressure and the requirement for mass continuity. For each

shape and physical model, an interpolant is constructed that

provides the non-dimensional mass flow rate for any given

area, ~QðAÞ. From this, Eq. (52) can be evaluated for parent

and daughter channels

DPp ¼
QlLp

~Q Apð ÞqA2
p

; (53)

DPd ¼
QlLd

N ~Q Adð ÞqA2
d

: (54)

Combining Eqs. (53) and (54), and substituting for the total

pressure drop DP¼DPpþDPd, produces a model of the

mass flow rate through a two-level network for a particular

cross-sectional shape and physical model:

Q ¼ qDP

l
Lp

~Q Apð ÞAp
2
þ Ld

N ~Q Adð ÞA2
d

" #�1

: (55)

For symmetric branching, the volume constraint requires

that LpAp¼V�NAdLd. The numerical procedure uses an

interior-point constrained optimization algorithm45 in

MATLAB
VR

to find the parent and daughter areas that, in

combination, maximize the mass flow rate through the net-

work (as predicted by Eq. (55)) for arbitrarily fixed total vol-

ume, total pressure drop, channel lengths, and fluid

properties. Alternatively, the same result can be obtained via

a brute force approach to ensure that the numerical optimiza-

tion finds a global, not local, maximum.

A. Different shapes and sizes

Murray’s original derivation was for circular channel

sections at the continuum-flow limit. The first set of optimiza-

tion results are presented to verify that the generalized law is

valid for a variety of cross-sectional shapes across all length

scales, with the shape remaining constant through branching.

The numerical optimization uses non-dimensional mass flow

rates calculated from a standard central-difference solution of

the laminar Navier-Stokes equations with a Navier slip

boundary condition.46 The results from the analytical and nu-

merical optimizations, for symmetric bifurcations, are pre-

sented in Fig. 2.

For large parent areas, relative to the square of the slip

length g, the optimum daughter-parent area ratio converges

to the continuum-flow limit of the generalized law (Eq. (25))

for all shapes considered. The same is true for the other

extreme of scale: the optimum area ratio for all shapes con-

verges to the plug-flow limit of the generalized law

(Eq. (39)) for small parent areas. In the transition between

these limits, the approximate slip solutions of the generalized

law are also highly accurate. The difference between the slip

approximations of the generalized law and the numerical

optimization is less than 0.1% across the entire range of

scales for all shapes tested. Clearly, predictions for the

optimum dimensions are not particularly sensitive to errors

introduced by the approximation in Eq. (46). These results

are consistent regardless of the daughter and parent channel

length magnitudes, demonstrating that the optimal daughter-

parent area ratio is independent of the lengths, as was

asserted in the analytical solution.

In Fig. 2, it is observed that for networks of channels

with rectangular cross sections, the aspect ratio affects the

range of areas for which C is in the transition period between

the continuum- and plug-flow limits. This occurs because the

influence of slip is governed by the size of the smallest
cross-sectional length scale (hereon referred to as the charac-

teristic length L) relative to the slip length. So, for the same

cross-sectional area, the characteristic length of a rectangle

with a high-aspect-ratio is less than the characteristic length

of a low-aspect-ratio rectangle. This means that optimal

branching of high-aspect-ratio channels will depart from the

continuum-flow limit and approach the plug-flow limit at

larger parent areas than optimal branching in low-aspect-

ratio channels.

FIG. 2. Optimal daughter-parent area ratio C against non-dimensional parent

area for networks with a constant shape. Comparison of the approximate slip

solution to the generalized law (Eqs. (49) and (50)) and the numerical opti-

mization using data from a Navier-Stokes slip solver. Plotted for circles,

squares, and rectangles of aspect ratio a¼ 5, a¼ 10, and a¼ 100 at N¼ 2.
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B. Rarefied gas flow

The numerical optimization is now performed for sym-

metric branching of rarefied gas flows. The mass-flow-rate

data are obtained from a variety of sources, including our

own simulations47 computed using a version of low-

variance deviational simulation Monte Carlo (LVDSMC).48

Additional mass-flow-rate data are procured from solutions

of the linearized Boltzmann equation49,50 to verify the accu-

racy of the LVDSMC results. For dilute gases, the slip

length can be related to the mean free path k via g¼Csk,

where Cs¼ 1.11 is the first-order slip coefficient for the

hard-sphere model of gases with purely diffuse molecular

reflection at walls.51 The results for the analytical and nu-

merical optimizations, for circular cross sections, are pre-

sented in Fig. 3. To demonstrate that the generalized law is

valid for any number of daughter branches (N� 2), C is

plotted for N¼ 2, N¼ 3 and N¼ 5 and, for clarity, is nor-

malized with respect to the continuum-flow limit (N�2=3).

Again, the agreement between the numerical optimiza-

tion and the plug-flow limit of the generalized law is excel-

lent for each case considered. It is perhaps unexpected that a

slip solution to the generalized law should converge to the

same result as that of kinetic theory and LVDSMC at the

free-molecular limit, given the approximate nature of slip

boundary condition at such scales. However, as ~rp ! 0, C in

Eq. (49) becomes independent of the slip length g, and is

thus unaffected by any inaccuracy in the slip model. Due to

computational cost, molecular simulations are not performed

for sufficiently large areas to see the solution meet the

continuum-flow limit; but, since the results from kinetic

theory converge to the solution of the slip model, agreement

at the continuum-flow limit is also expected. It is well known

that when the Knudsen number Kn ¼ k=L is greater

than� 0.1, slip solutions become inaccurate, explaining the

departure in C between the limits. The kinetic theory and

LVDSMC results all show a minimum in C beneath the

plug-flow/free-molecular limit. This is possibly a manifesta-

tion of the Knudsen minimum,52 a rarefied gas phenomenon

that occurs when the diffusive flux starts to dominate the

convective flux as the length scale decreases.53

Note although Eq. (49) is approximate between the scale

limits, the precise result of the numerical optimization can

be reclaimed by expressing the interpolated dimensionless

mass flow rate, ~QðAÞ, as a flow resistance per unit length,

k(A). This allows the evaluation of the generalized law in

(16), but, of course, does not afford an analytical relation.

C. Constant-depth rectangles

Finally, we perform a numerical optimization for a sym-

metrically bifurcating network of rectangular channels with a

constant depth and variable aspect ratio, mimicking the condi-

tions of a micro-fabricated fluidic network. Here, we have

used non-dimensional mass-flow-rate data obtained from the

two-dimensional Navier-Stokes slip solver. Figure 4 shows

the optimum daughter-parent area ratio against dimensionless

area (A/h2; incidentally, this is equal to the aspect ratio, a) for

rectangles of a constant dimensionless depth ~h ¼ h=g.

Agreement between the numerical optimization and the

approximate slip solution to the generalized law (Eq. (51)) is

excellent for all cases, with the difference being less than

0.5% across the entire range of scales. The results also show

convergence to the limits derived in Eqs. (32), (33), (44),

and (45). It can be seen that when the non-dimensional

depth ~h is small, such that the slip length is relatively large,

C varies only between the plug-flow limits for high and low

aspect ratios (Eqs. (44) and (45), respectively). The high-

aspect-ratio limits are the same for continuum- and plug-

flow. When ~h is large and the aspect ratio decreases, C
first tends to the low-aspect-ratio limit continuum-flow

(Eq. (33)), until the area gets sufficiently small that the vari-

able width is comparable to the slip length, at which point

FIG. 3. Normalized optimal daughter-parent area ratio against non-

dimensional parent area. Comparison of the analytical slip solution to the

generalized law (Eq. (49)) and the numerical optimization using data from

kinetic theory49,50 and LVDSMC. Plotted for circles at N¼ 2, N¼ 3, and

N¼ 5.

FIG. 4. Optimal daughter-parent area ratio C against non-dimensional parent

area A/h2 (equal to aspect ratio a) for rectangles of a constant dimensionless

depth ~h. Comparison of the approximate slip solution to the generalized law

(Eq. (51)) and the numerical optimization using data from a Navier-Stokes

slip solver. Plotted for rectangles of depth ~h ¼ 1; 10; 102; 103; 104, and 105,

at N¼ 2.
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the solution converges again to the low-aspect-ratio plug-

flow limit (Eq. (45)).

For constant-depth networks, C behaves very differently

compared to constant-aspect-ratio networks. For the most

part, when the depth is constant, the optimal daughter-parent

area ratio increases with decreasing cross-sectional area—

the opposite to the trend found in Figs. 2 and 3. In addition,

the range of C values is wider, the minimum C is smaller,

and the maximum C is larger for constant-depth networks:

0.5	C	 0.71 compared to 0.57	C	 0.63. However, there

are some similarities. At the low-aspect-ratio limits, the trend

for constant-depth networks is the same as for constant-as-

pect-ratio networks, with the optimal daughter-parent area

ratio decreasing as cross-sectional area decreases.

IV. CONCLUSION

We have derived a generalized optimization principle

that leads to analytical expressions for the optimum

daughter-parent area ratio C for any shape, at any scale, and

for any number of daughter branches. We have shown that at

the continuum-flow limit, Murray’s law is reclaimed

(C ¼ N�2=3) for networks of any cross-sectional shape, as

long as the shape is constant through branching. The general-

ized law presented is also valid for slip flows and plug flows

(C ¼ N�4=5) that occur at smaller length scales, as well as

for networks with a constant depth, which is often a require-

ment for lab-on-a-chip devices due to limitations in fabrica-

tion procedures. The new optimal design relation we propose

will allow the original biomimetic design principle of Murray to

be applied to a variety of micro and nanofluidic networks that

require non-circular geometry, due to manufacturing constraints,

and are designed for increasingly smaller scales in order to

achieve a greater degree of control, functionality, and analytical

and economic efficiency. Future work will include determining

optimal branching angles and optimum channel lengths for arbi-

trary cross-sectional shapes, across all physical scales.
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