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ABSTRACT 

R&D efficiency has gained great attention in regional innovation. This study examines the R&D efficiency 

patterns of Korean regions for 2005–2009 from static and dynamic perspectives. This study employs data 

envelopment analysis to identify the regions’ R&D performances relative to the best practices from the static 

perspective, and the Malmquist Productivity Index to evaluate their dynamic changes within a given timeframe. 

The results classify Korean regions into the deteriorating, lagging, and improving groups and indicate that most 

regions suffer from declining R&D productivity over time because of the inability of catching up with the best 

practices. To improve the catch-up effect, this study suggests (1) implementing exploitative strategies including 

direct technical imports and complementary R&D, (2) growing the number of government research institutes on 

a regional scale, and (3) increasing the ratio of industrial R&D organisations relative to industrial R&D 

expenditures are recommended. 
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INTRODUCTION 

Regional innovation initiatives aim to bridge the innovation-based economic gap between 

heterogeneous regions and strengthen their innovation competitiveness on a national scale (OECD, 2008). The 

European Union (EU; 2006) highlights the role of research and development (R&D) in regional innovation. 

Some studies have attempted to evaluate regional innovation performance to determine the evidence-based 

policy implications of regional initiatives (e.g. AUTIO, 1998; DIEZ, 2001; EVANGELISTA et al., 2001). 

However, it is difficult to compare interregional innovation performance, as R&D is not conducted under 

identical conditions owing to an imbalanced distribution of R&D capabilities across different regions 

(FELDMAN, 1994). Thus, the approach to simply analyse an absolute performance aspect, such as the number 

of R&D outputs, is inappropriate, because it does not consider the maximum attainable performance level for 

each region (BOSCO and BRUGNOLI, 2010). The study of R&D efficiency has gained substantial attention in 

recent years as researchers need to also consider resource accessibility in the assessment of heterogeneous 

regional R&D processes. Between 1993 and 2012, the keywords ‘R&D efficiency’, ‘research and development 

efficiency’, and ‘research efficiency’ appeared in a number of academic journal papers
1
. Despite the abundance 

of literature on regional efficiency evaluation (e.g. BAI, 2013; CHEN and GUAN, 2012; FRITSCH and 

SLAVTCHEV, 2011; GUAN and CHEN, 2010; ZABALA-ITURRIAGAGOITIA et al., 2007), very few studies 

examine this issue from a dynamic perspective (ARCHIBUGI et al., 1999). Moreover, because a region’s R&D 

efficiency can change over time, the longitudinal investigation of R&D efficiency can help assess the extent to 

which a region demonstrates consistency in productivity. 

Despite rapid economic growth, Korea’s nation-wide approach to innovation resulted in economic 

disparities between the capital metropolitan areas (Seoul, Gyeonggi, and Incheon) and other areas (DUKE et al., 

2006). Consequently, Korea began to adopt regional innovation frameworks in the mid-1990s to reduce 

interregional economic imbalances and reinforce competitiveness (CHUNG, 2002). Further, the Roh Moo-hyun 

administration (2003–2008) enacted the so-called “Special Law on Decentralisation” and “Special Law on the 

Construction of New Administrative Capital” in 2003 and the “Special Law on Balanced National Development” 

in 2004 to promote regional innovation. Since 2008, the Lee Myung-bak administration has aimed to strengthen 

regional science and technology competitiveness through R&D investment and efficiency endeavours such as 

the “Third Regional Science and Technology Promotion Plan” (2008–2013) and the “Five-year Comprehensive 

                                                           
1 According to the results of an on-line search (http://www.sciencedirect.com), 889 journal papers were published with these keywords. 

http://0-www.tandfonline.com.pugwash.lib.warwick.ac.uk/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Bai%2C+Junhong)
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Regional Science and Technology Promotion Plan” (2009–2013) (MINISTRY OF EDUCATION, SCIENCE 

AND TECHNOLOGY [MEST], 2010a). A study of Korean regions can provide valuable insights for policy-

making related to regional R&D systems transitioning from the national to the regional level, particularly where 

both approaches coexist.  

This study aims to contribute to the literature on regional innovation by quantifying the respective 

R&D efficiencies of Korean regions from static and dynamic perspectives. Korea is primarily characterised by 

dirigiste initiatives (BRACZYK et al., 1998), which are congruous with regionalised national approaches 

(ASHEIM and ISAKSEN, 1997) in a top-down manner (HOWELL, 1999). Consequently, it is worthwhile to 

examine the interregional differences in R&D efficiency from an intra-national perspective. Although regional 

innovation initiatives were introduced in Korea in the 1990s, the Korean government began to provide region-

wide R&D data only recently. Thus, this study employs data only for the period from 2005 to 2009. 

The next section provides a brief explanation of the regional knowledge production process. The third 

section introduces the DEA and MPI methods for the evaluation of regional R&D efficiency. The fourth section 

describes the data used in this study. The fifth section presents the empirical findings, followed by a discussion 

of the results in the sixth section. The last section concludes the paper with a summary of the main results, the 

limitations of the study, and directions for future research. 

 

 

REGIONAL KNOWLEDGE PRODUCTION PROCESS 

An innovation system is an aggregate of the knowledge production processes in an innovation 

environment (ASHEIM and ISAKSEN, 1997). A linear knowledge production function is based on the premise 

that the innovation process entails a linear relationship between inputs and outputs (ACS et al., 2002; GODIN 

and GINGRAS, 2000; GRILICHES, 1990; HESSELS and VAN LENTE, 2008; PATRICK, 2002; TSAO et al., 

2008; ZABALA-ITURRIAGAGOITIA et al., 2007). Universities, industries, and government research institutes 

(GRIs) are the key R&D actors in the process of any knowledge economy (ETZKOWITZ, 2008). A regional 

knowledge production function includes universities, industries, and GRIs that consume R&D inputs (e.g. 

people, money, knowledge) to produce new regional scientific and technological knowledge (e.g. patents, 

papers) (OECD, 1996; ZABALA-ITURRIAGAGOITIA et al., 2007; see Figure 1).  
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<Insert Figure 1.> 

 

Figure 1 demonstrates that a simple regional knowledge production function can be seen as a result of 

R&D inputs, process, and outputs. Primary R&D inputs are obtained from either internal or external sources of 

the respective R&D performing units. Thus, regardless of the sources (in-house sources, government, etc.) or 

R&D actors (universities, industries, or GRIs), a linear approach for evaluating the regional knowledge 

production process accounts for the total volume of regional R&D inputs consumed in the process to produce 

the total volume of regional R&D outputs. In other words, a region’s total R&D input level is the sum of 

resources invested by the universities, industries, and GRIs within the region that is transformed into outputs.  

The degree to which these regions’ knowledge production processes are efficient can be evaluated from 

either static or dynamic perspectives. Static efficiency reflects the relative positions of regions using the best 

practices as defined by efficient regions (CHARNES et al., 1994). Dynamic efficiency accounts for time-

dependent changes in regional positions relative to those best practices, that is productivity increase or decrease 

(FÄRE et al., 1994). It can be perceived that the regions’ relative positions are determined by an interregional 

comparison in terms of static and dynamic R&D efficiency, both of which consider the respective efficiencies of 

each region and other comparative regions (i.e. best practices). For example, an inefficient region can improve 

its relative (static) position if it exhibits increasing productivity, until it (possibly) becomes efficient. In contrast, 

if a currently static efficient region shows decreasing productivity, then the region would fall behind other 

comparative regions over time. 

Considering the patterns of both static and dynamic efficiencies, regions can be allocated in the matrix 

displayed in Figure 2. 

 

<Insert Figure 2.> 

 

The leading group (top-right quadrant) represents an ideal situation in which the regions are both R&D 

efficient and register an increasing R&D productivity. If these leading regions can maintain their R&D 

productivity increase, then they would likely face a future characterised as consistently efficient, in both a static 
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and dynamic sense. The deteriorating group (top-left quadrant) is (still) efficient, but suffers from a decreasing 

productivity over time. Although deteriorating regions are efficient at present, they are likely to lose this 

position over time due to their decreasing R&D productivity. The lagging group (bottom-left quadrant) is not 

only inefficient, but also has decreasing productivity. Therefore, the lagging group faces the greatest problems 

in terms of efficiency patterns; lagging regions are expected to continue their downward trend towards further 

inefficiency. The improving group (bottom-right quadrant) contains regions that though currently inefficient, but 

have increasing productivity. These regions can possibly become leading regions if they are able to maintain this 

productivity increase over time.  

Based on the notions outlined above, this study analyses Korean regions’ relative positions defined by 

R&D efficiency patterns. The following section explains the methodology this study employed to analyse these 

efficiency patterns.  

 

 

METHODOLOGY 

This study employs data envelopment analysis (DEA) and the Malmquist Productivity Index (MPI) to 

determine R&D efficiency patterns of Korean regions. Because MPI (FÄRE et al., 1994) is a DEA-based 

technique, these two methods share common strengths in terms of R&D efficiency evaluation. Commonly used 

ratio analysis cannot accommodate multiple inputs and outputs (SHERMAN, 1985). However, both the DEA 

and MPI can handle multiple input- and output variables with different units of measurement (CHARNES et al., 

1994). Moreover, unlike statistical methods such as a regression model, non-parametric approaches do not 

require a specified production function to link inputs with outputs (BERGER and HUMPHREY, 1997). This is 

relevant in the evaluation of a complex issue such as R&D efficiency, particularly in terms of studying the 

conversion of R&D inputs into outputs, where true production function is unknown and assumptions related to 

the nature or shape of the relationship between inputs and outputs cannot be easily justified. DEA allows the 

observed data to speak for itself by letting a convex envelopment of observations provide a conservative 

estimate of the frontier of the production possibility set, based on very few assumptions. This is also an 

advantage relative to other methods, like Stochastic Frontier Analysis (see e.g. AIGNER et al., 1977), which 

requires assumptions not only on the functional form of production function (although some variations are quite 

flexible), but also the shape of the inefficiency distribution. However, the advantage of needing only few 
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assumptions in DEA comes at the price of statistical properties. DEA efficiency analysis can be criticised for its 

bias from a statistical perspective, as it uses small samples (SIMAR and WILSON, 2000). Nevertheless, the use 

of few input and output variables can overcome issues related to sample size (DYSON et al., 2001).  

In a precise way, different regions may possess distinct industrial structures and R&D stages that lead 

to different quality of R&D outcomes.  However, a regional R&D system is the meso- or macro-level mixture of 

diverse knowledge production processes (ASHEIM and ISAKSEN, 1997) that are upon on various R&D actors 

including universities, industries, and GRIs (ETZKOWITZ, 2008). The meso- or macro-level knowledge 

production process the aggregated transducer that converts R&D inputs into a set of far-ranging region-wide 

knowledge base. Therefore, in a broad way, R&D outputs produced in different regions are perceived as 

comparable in this paper. 

On the basis on the above methodological strengths and the comparability of outputs, DEA and MPI 

are suitable to evaluate R&D efficiency and its time-based change of regions. 

 

Data envelopment analysis 

DEA is a linear programming technique that evaluates the performance of decision-making units 

(DMUs) relative to an efficiency frontier set on the basis of efficient DMUs (CHARNES et al., 1994; COOPER 

et al., 2007). Methodologically, DEA and MPI can be utilised in either a constant returns-to-scale model (the 

Charnes, Cooper, Rhodes [CCR] model) (CHARNES et al., 1978) or a variable returns-to-scale model (the 

Banker, Charnes, Cooper [BCC] model) (BANKER et al., 1984). Compared to a BCC model, a CCR model 

provides better discrimination among DMUs (PODINOVSKI and THANASSOULIS, 2007). Moreover, the 

BCC model is not well suited for measuring the change in total factor productivity (GRIFELL-TATJÉ and 

LOVELL, 1995). Consequently, this study employs a CCR-DEA model to discriminate the Korean regions 

more clearly. Further, this study adopts an input-oriented approach that aims to minimise inputs for a given level 

of output in order to reach the efficiency frontier, as macro-level systems (i.e. regions in this paper) cannot 

easily control the level of output.  

This study uses two methods to calculate DEA scores: the super-efficiency DEA scores for a static 

regional R&D efficiency assessment, and the standard DEA scores for MPI score calculation. Many researchers 
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have assumed that an R&D input-output transformation process involves a time delay. The average length of the 

delay varies according to industry (GOTO and SUZUKI, 1989) and R&D actors (ADAMS and GRILICHES, 

2000; GUELLEC and VAN POTTELSBERGHE DE LA POTTERIE, 2004). However, the empirical influence 

of time delay on efficiency is not substantial (GRILICHES 1990; HOLLANDERS and CELIKEL-ESSER, 2007) 

and its length is not definite (WANG and HUANG, 2007). Therefore, this study simply defines an input-output 

time delay as one year (i.e. inputs from 2005 and outputs from 2006, etc.). 

To assess the static regional R&D efficiency for the period from 2005–2009, this study considers 

super-efficiency DEA scores, developed by Andersen and Petersen (1993). These are calculated by excluding 

each efficient region from the reference group in the model that is used to evaluate its efficiency. Super-

efficiency scores can be used to rank regions (ZHU, 2009) as they facilitate a discrimination of the efficient 

DMUs, all of which get an efficiency score of 1 in the standard DEA. The super-efficiency scores for efficient 

DMUs are equal to or higher than 1; their values represent the degree to which the DMUs can increase their 

inputs and still remain efficient. For the static super-efficiency DEA model, the variable values for a region are 

aggregated across the five years under analysis. Thus, to account for the time delay outlined above, the input for 

a region is the sum of input values from 2005 to 2009 and the output is the sum of values from 2006 to 2010.     

is the aggregated level of input   used by region   from 2005 to 2009, where    ,…,   is the number of inputs 

and    ,…,   is the number of regions. Similarly,     is the aggregated level of output   produced by region   

from 2006 to 2010, where    ,…, and   is the number of output factors. An observation in this analysis is 

given by the vector of ( ) inputs and vector of (s) outputs, (X,Y)      , where the input and output values are 

aggregated over the years 2005–2009 and 2006–2010, respectively. 

The static input-oriented super-efficiency CCR-DEA score for DMU  ′ ( 
 ′

  
 ′

) is defined as follows: 
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where    is the weight of observation for (region)   in the benchmark for observation  ′, and  
 ′

     
is 

greater than 1 if region  ′ is efficient and smaller than 1 if the region is inefficient.  

Standard DEA scores are used to estimate MPI scores (FÄRE et al., 1994). For the MPI, this study 

considers changes in R&D productivity of each Korean region between the two extreme years (i.e. between 

2005–2006 and 2009–2010). Changes in productivity signified by the MPI scores can be decomposed into a 

shift in the efficient frontier between 2005 (outputs from 2006) and 2009 (outputs from 2010) and the changes 

in the regions’ efficiencies relative to the frontiers in the two years. Let    
  denote the level of input   used by 

region   in the year  , with   =2005, 2009 and let    
    be the level of output   produced by region   in year 

   . An observation is now given by the vector of ( ) inputs in the year   and the vector of ( ) outputs in year 

   ,               . 

The input-oriented CCR-DEA score for DMU    (   
     

   ) relative to the frontier for time period    

(inputs from   , outputs from     ) is defined as follows:  

    ( 
 ′
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   )       

           ∑      
  

 

   
   

  ′

                 

∑      
      

 

   
 
  ′

                          

                                                                                                                                                 

 

Malmquist Productivity Index 

The MPI (CAVES et al., 1982; MALMQUIST, 1953) is used to measure changes in regional R&D 

productivity over time (COOPER et al., 2007). Methodologically, it is calculated from the standard DEA scores 

defined in (2) above. The MPI model employed in this study is as follows: 
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  ) represents the change in R&D productivity between 2005 and 2009 for 

region  ′.    (   
      

      
      

  )    indicates an increase in productivity between 2005 and 2009; conversely, 

a value lower than one implies a decrease in productivity during this period. A value of one indicates no change 

in productivity. Furthermore, model (3) can be decomposed into a technical efficiency change index (TECI) and 

a technical change index (TCI). 

    ( 
 ′

    
 ′

    
 ′

    
 ′

  )   

   ( 
 ′

    
 ′

  ) 

   ( 
 ′

    
 ′

  )

                                                                                                       

   ( 
 ′

    
 ′

    
 ′

    
 ′

  )   [
   ( 

 ′

    
 ′

  ) 

   ( 
 ′

    
 ′

  )

   ( 
 ′

    
 ′

  ) 

   ( 
 ′

    
 ′

  )

]

   

                                                                                  

The TECI model (4) indicates whether a region moved closer to or further away from the efficient 

frontier between 2005 and 2009 (COOPER et al., 2007). TECI scores reflect the catch-up effect of each region, 

defined by the ratio of the distances to the efficiency frontier. If one region is more capable of utilising 

knowledge production technologies than others, its R&D productivity would improve faster than that of other 

regions. Consequently, the region’s distance from the frontier would decrease over time; otherwise, it will 

increase. The TCI model (5) denotes the change in the best practice (technology) between 2005 and 2009 

(COOPER et al., 2007). TCI scores reflect the frontier-shift effect that is determined by efficient regions. 

Technological advancements due to innovation extend the frontier level, which implies an improvement in the 

best practices in terms of regional R&D production. Thus, with respect to R&D, a frontier shift reflects the 

change in a region’s potential for producing knowledge at that specific time. For this study, these two 

components provide further information on the sources of change in regional R&D efficiency. 
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DATA 

Sample of observations 

The analyses employ Korea’s regional knowledge production data. Of the sixteen administrative 

regions, Jeju was excluded, as it is largely a tourism-driven region, and therefore unlikely to be comparable to 

other territories with an advanced scientific and technological infrastructure. Among the remaining fifteen 

regions considered in this study, one region is a special city, six are metropolitan cities, and eight are provinces 

(see Table 1).  

 

<Insert Table 1.> 

 

Variables and data sources 

In DEA and MPI assessments, the total number of observations should ideally be at least thrice that of 

the total number of variables (BANKER et al., 1989) or twice that of the product of the number of inputs and 

outputs (DYSON et al., 2001). However, it is preferable to include fewer variables for a better discrimination 

among DMUs (DYSON et al., 2001). Therefore, it is necessary to determine a small number of indicators that 

can represent the regional knowledge production process of the fifteen Korean regions. 

R&D expenditure, R&D staff, and accumulated knowledge are typical inputs that are directly 

consumed in the R&D process (GUAN and CHEN, 2010). While financial resources are crucial for stimulating 

progress in science and technology (HASHIMOTO and HANEDA, 2008; WANG and HUANG, 2007), R&D 

expenditure also generally includes R&D labour costs, which are already considered (WANG and HUANG, 

2007) as an important input factor. Moreover, R&D expenditure may also include explicit knowledge, as R&D 

funding covers intellectual property rights, which enable an organisation to acquire existing codified knowledge 

necessary for R&D. Therefore, this study does not consider R&D staff and accumulated knowledge to be 

distinct inputs. The study transforms all these different inputs to the R&D process into monetary values and 

aggregates them into total R&D expenditures. To quantify R&D investment, this study incorporates data from 
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the MEST Survey of Research and Development in Korea for the period of 2005–2009.
2
 Further, in order to 

mitigate the impact of inflation on R&D expenditures, this study converts the annual R&D expenditures into 

year 2010 KRWs (i.e. using the fixed base method). 

As the knowledge production function relates R&D inputs to outputs that reflect scientific and 

technological knowledge drawn from an R&D process, it is necessary to define knowledge as the output. 

Knowledge can be broadly divided into two types: tacit and codified (AUDRETSCH, 1998; LISSONI, 2001). 

R&D staff inputs tacit knowledge and translates it into codified knowledge. It is ultimately manifested and 

embedded in the form of technologies, products, and/or services through knowledge externalisation (NONAKA 

et al., 2000). Therefore, codified knowledge is considered as an output of the R&D process. Additionally, it is 

easier to quantify codified knowledge, which makes it more suitable for use in quantitative methods. In terms of 

science and technology, this knowledge codification may be revealed through patents and academic publications. 

Patents are a crucial indicator of R&D output (POPP, 2005; WANG and HUANG, 2007). Patent 

quantity is a proxy for the achievements embedded in an R&D process (GRILICHES, 1990), which has led to 

its consideration as an output variable. However, unlike some previous studies that counted the number of 

patents granted by domestic or international property offices (FRITSCH, 2002; FRITSCH and SLAVTCHEV, 

2011), this study counts the quantity of patent applications, because it is impossible to estimate the lead time 

between the initial application and granting of patents as required for patent examinations (THURSBY and 

KEMP, 2002). The Organisation for Economic Co-operation and Development (OECD) uses a fractional count 

method to provide statistics on Patent Cooperation Treaty (PCT) applications. This study collected region-wide 

information on patent applications by searching for applicants’ addresses on the World Intellectual Property 

Organization (WIPO) website.
3
  

Academic publications account for a large proportion of the scientific and technological output of R&D 

(BROWN and SVENSON, 1998; CHERCHYE and ABEELE, 2005; FURMAN et al., 2002; JIMÉNEZ-SÁEZ 

                                                           
2 Since 1963, the Ministry of Education, Science and Technology (MEST) and the Korea Institute of Science & Technology Evaluation and 

Planning (KISTEP) have carried out this annual survey to collect information for national science and technology policy making and R&D 

planning. Inspired by the OECD Frascati Manual (1993), it covers multifaceted aspects such as R&D expenditure, R&D workers, and other 

factors with respect to universities, industries, and government research institutes.  

3 Some patent applicants do not follow the Romanisation system proclaimed in 2000, so the names of Korean regions are seen to be spelled 

differently in different applications. For example, names, ‘Gwangju’, ‘Kwangju’, ‘Gwangjoo’, and ‘Kwangjoo’ have been used for Gwangju. 
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et al., 2011; WANG and HUANG, 2007). This study utilises the Science Citation Index Extended (SCIE) and 

the annual SCI Database Analysis published by MEST, based on the Web of Science®, Thomson Reuters, to 

assess the quantity of papers published annually.
4
 

To assess R&D outputs, this study analyses international statistics on PCT applications and SCIE 

journals rather than domestic data, because international patents and publications are considered superior to their 

domestic counterparts. For example, in contrast to international offices, the Korea Intellectual Property Office 

(KIPO) does not require patent applicants to include a rigid patent reference list. Therefore, domestic patented 

knowledge may not be of approved quality. Similarly, scientific and technological articles published in 

international journals may be considered of higher quality than those published in domestic journals, as they 

undergo a more systematic and critical review process. 

Table 2 provides data on R&D expenditure adjusted for inflation as the input, and data on PCT 

applications and SCIE publications as outputs, considering the time delay of one year. 

 

<Insert Table 2.> 

 

 

EMPIRICAL RESULTS 

R&D efficiency and its change 

Table 3 presents the R&D super-efficiencies and productivity changes of the fifteen Korean regions 

from 2005 to 2009. In the super-efficiency model, a score greater than 1 indicates that a region is efficient, while 

a score below 1 indicates it is inefficient. For the MPI, a score exceeding 1 indicates an increase in a region’s 

R&D productivity between 2005 and 2009; a score of 1 suggests no change in a region’s productivity; and a 

score less than 1 indicates a decrease in the region’s productivity.  

                                                           
4 Thomson Reuters provides access to the world’s leading citation databases including the SCIE, Social Sciences Citation Index Expanded, 

Arts and Humanities Citation Index, and the Conference Proceedings Citation Index (Science edition, and Social Science and Humanities 

edition). Instead, the MEST SCI Database Analysis solely deals with SCIE data. 
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<Insert Table 3.> 

 

As is evident from Table 3 (second column), three regions were found to be efficient in the static model 

(DEA super-efficiency ≥ 1), while the remaining twelve were inefficient. Seoul demonstrated the second 

highest efficiency (1.116) despite being the largest producer of PCT applications and SCIE publications between 

2006 and 2010 (see Table 2). Despite the strong government-driven industrial relocation policies (DUKE et al., 

2006), Incheon (0.496) and Gyeonggi (0.406) were found to be inefficient in R&D. The last column in Table 3 

demonstrates that six regions improved their R&D productivity between 2005 and 2009 (MPI > 1), and the other 

nine regions declined in this regard. Although Ulsan has been one of the largest industrial districts in Korea 

based on its chaebol-driven automobile, shipbuilding, and petrochemical industries since the 1970s (OH, 1996), 

the city experienced the most severe decrease in its R&D productivity (0.343).  

 

Technical efficiency change and technical change 

The MPI score can be broken into TECI and TCI (see models (3), (4), and (5)). While TECI reflects the 

extent to which a region catches up with the frontier set by efficient regions, TCI illustrates how the 

technological frontier is improving from the perspective of region in questions.  

 

<Insert Table 4.> 

 

Table 4 demonstrates that while countrywide technological innovation advanced, many regions 

declined in terms of R&D productivity because of decreases in technical efficiency, specifically Seoul, Daegu, 

Incheon, Ulsan, Gyeonggi, Chungcheongbuk, Chungcheongnam, and Gyeongsangbuk. As seen in the last row 

in Table 4, although in general the frontier-shift effect showed a positive contribution to R&D productivity 

change (1.141), the catch-up effect (0.806) was the major factor of the general decrease in R&D productivity 

change (0.920). This interpretation is confirmed by Kendall’s coefficient of concordance test (CONOVER, 
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1980), a non-parametric technique to test correlations among more than two variables based on the ranking of a 

small sample. Table 5 illustrates that R&D productivity change strongly correlates with the catch-up effect at the 

0.01 level in terms of ranking (0.924***), but not with total TCI change.
5
 

 

<Insert Table 5.> 

 

As regional innovation systems become mature over time, it is intuitively expected that Korean regions 

may suffer from stagnation in R&D productivity change. However, Table 6 indicates that while countrywide 

MPI (0.982) and TECI (0.947) declined and TCI (1.036) increased, regional yearly-based trends in these 

indicators do not capture clear recession. In large, Korean regions fluctuated in terms of MPI, TECI, and TCI 

during the given period. 

 

<Insert Table 6.> 

 

 

 

 

DISCUSSION: REGIONAL POSITIONS AND IMPLICATIONS 

Based on the results summarised in Table3, the Korean regions are classified into three groups: 

deteriorating, lagging, and improving (see Figure 3).  

 

<Insert Figure 3.> 

 

This classification scheme also contains the leading group (top-right quadrant), but no region was 

                                                           
5 Hereafter, Samples are fifteen regions; *** Correlation is significant at the 0.01 level (2-tailed); ** Correlation is significant at the 0.05 

level (2-tailed); and * Correlation is significant at the 0.1 level (2-tailed). 
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categorised there. Interestingly, these results indicate that even Seoul does not belong to the leading group, but 

is instead categorised as a deteriorating region characterised as efficient but with decreasing productivity 

Although Seoul has historically enjoyed strong support from the government and has a rich resource-laden 

infrastructure (DUKE et al., 2006), it seems that Seoul does not effectively leverage its advantages as a capital 

city to increase its R&D productivity, though it is located near the borderline between the leading and 

deteriorating groups. In the lagging group, Gyeonggi is one of the beneficiaries of government-driven industry 

development (DUKE et al., 2006) and was the largest R&D investor and the second largest producer of PCT 

applications and SCIE publications for the period from 2005 to 2009. While Gyeonggi has experienced a rapid 

growth in its industrial and research districts in areas adjacent to Seoul (DUKE et al., 2006), the massive 

investment has led to neither static nor dynamic efficiency. Within the improving group, Daejeon presents an 

interesting case. Daejeon has the largest GRI-research complex in Korea, which was responsible for 

approximately 56.6% of its total R&D expenditures for the period from 2005 to 2009 (MEST, 2010b). During 

this time period, Daejeon had the third highest R&D expenditures among the regions, spending around 58.6% of 

the expenditures of Seoul but it was inefficient since the city produced merely around 28.8% of the PCT 

applications of Seoul. The above cases of Seoul, Gyeonggi, and Daejoen suggest that rich researchers, finance, 

and government support do not necessarily guarantee superior positions relative to other regions in terms of 

static or dynamic R&D efficiency.  

Note that this paper is focused on only an intra-country comparison (i.e. comparing domestic regions in 

Korea) which allocates regional positions in the four-quadrant matrix. If analysis objects are compared on an 

international scale (i.e. comparing with cities of other nations), Korea’s regional locations would change. In this 

paper adopting an intra-country comparison method, the absence of leading regions does not imply that no 

region is advanced in R&D performance. For example, as seen in Table 2, longitudinally Seoul is reported to 

have the greatest quantity of PCT applications and SCIE publications in Korea, and thus the city can be regarded 

as the most developed place in science and technology. That is, the display of regional locations does not say 

that Seoul’s technological development lags behind the bottom-right-quadrant regions (e.g. Gwangju, Busan, 

etc.). Instead, Figure 3 points out that Seoul presents the lower speed of R&D productivity change relative to the 

bottom-right-quadrant regions between 2005 and 2009. 

While TECI reflects the catch-up effect that accounts for the contribution of change in technical 

efficiency toward the change in productivity, TCI is frontier-shift effect that allows technical change to 
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contribute to changes in productivity (COOPER et al., 2007). Therefore, TECI reflects a region’s efficiency in 

utilising its existing scientific and technological knowledge in their knowledge production process, whereas TCI 

is the extent to which regions improve through technological innovation. In comparing the practical implications 

of TECI and TCI, it is evident that the catch-up effect can be improved by exploitative efforts aimed at 

‘refinement, choice, production, efficiency, selection, implementation and execution’ to search for new 

applications of existing scientific and technological knowledge (MARCH, 1991: 71). In contrast, the frontier-

shift effect can be achieved through exploration efforts focused on ‘search, variation, risk taking, 

experimentation, play, flexibility, discovery, innovation’ to seek new possibilities of innovation through 

intensive challenges (MARCH, 1991: 71). Therefore, if a region has moved away from best practices over time, 

it is necessary to improve its TECI score using exploitative approaches. As March (1991) indicates, the 

exploitative R&D refers to the use of incumbent advanced technologies to produce more knowledge in the long-

term. Conversely, if a region suffers from a decline in R&D productivity resulting from a slowdown in technical 

change over time, its TCI score can be improved through more aggressive R&D investment in technological 

advancement through innovation. 

As shown in Tables 4 and 5, the catch-up effect (TECI) is largely decisive for R&D productivity 

change (MPI) in Korean regions (with the exception of Gangwon). Therefore, to improve their respective 

productivities, TECI-declining regions should focus on knowledge spillover that facilitates the transfer of best 

practice technologies and apply them to potential production techniques. These regions should also improve 

their absorptive capacities through secondary R&D that allows for the capture of other organisations’ new 

techniques or technologies (COHEN and LEVINTHAL, 1989). This would accelerate technical imports and 

may enhance the catch-up ability of struggling regions. That is, these typically underprivileged regions should 

preferably adopt less challenging strategies for incremental innovation that is coherent with absorptive capacity 

corresponding to the regions’ traditional scientific and technological competitiveness. 

What brings about cross-regional differences in the catch-up effect? The relative level of this indicator 

may be attributed to characteristics of localised universities, industries, and GRIs that are core R&D performers. 

The considerations include their organisation-specific variables such as the amount of R&D expenditure, the 

population of researchers, and other related composite factors (e.g. R&D expenditure per researcher in GRIs, 

density of R&D organisations per R&D expenditure in universities, etc.). To identify influential factors on the 

catch-up effect, Kendall’s coefficient of concordance test is employed. As a result, the number of GRIs has a 
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slightly positive correlation with TECI (0.371*). Further, the test result gives a statistical account of the 

effectiveness of the number of R&D organisations per R&D expenditure in the industry presents a small relation 

with TECI (.390**) of regions. Therefore, when regions (1) induce more GRIs in the government sector and (2) 

try up more industrial R&D organisations under the fixed amount of R&D expenditures in the industry sector, 

they are expected to stimulate their ability of catching up with frontier runners. In particular, the second measure 

points out an interesting implication for the industrial R&D process. Kendall’s coefficient of concordance test 

indicates that each of the variables (the number of industrial R&D organisations and the amount of industrial 

R&D expenditures) does not significantly correlate with TECI, but the composite variable of them does. This 

implies that the catch-up effect cannot be improved by increasing either solely the amount of R&D expenditures 

or the quantity of R&D organisations. Rather, the catch-up effect of Korean regions can increase only if the 

quantity of R&D organisations increases when the amount of R&D expenditures increases over time.  

 

 

CONCLUSION 

This study used non-parametric techniques to measure the R&D efficiency of fifteen Korean regions 

for 20052009 from static and dynamic perspectives. It analysed the status of Korean regions in terms of 

efficiency, region classification, and strategic directions for improvement in R&D efficiency. Major findings are 

as follows. 

 The appearance of three efficient regions and twelve inefficient regions clearly indicates an 

interregional disparity in terms of static R&D efficiency. 

 Because six regions are increasing in productivity and nine regions are decreasing in productivity, 

it seems that there is an imbalance in scientific and technological advancement across the regions 

from a dynamic R&D efficiency perspective. 

 The absence of leading regions is potentially worrying, since it is such regions, which are efficient 

in both a static and a dynamic sense, that could drive the overall development of the country as 

well as serve as benchmarks for other regions.  

 While technological capacity improved on the national scale, the majority of Korean regions 

suffered from a decrease in R&D productivity over time that was largely attributable to a decrease 
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in the catch-up effect. 

Through exploitative strategies, Korean regions can enhance the catching-up to best practice in order to 

reach the efficiency frontier. Direct technical imports and complementary R&D to intensify absorptive capacity 

would be helpful in bridging the interregional gap in R&D efficiency and strengthen the entire country’s 

scientific and technological competitiveness. Policy interventions to grow the quantity of GRIs on a regional 

scale and to rev up the quantity of industrial R&D organisations under the financial constraint are expected to 

lead to the improvement of the catch-up effect. 

In spite of these important findings, this study has some limitations, which suggest new avenues for 

future studies. First, because of the lack of access to long-term historical data, this study investigated the 

regional R&D patterns for only five years. Longer time series data may provide more comprehensive guidance 

for mid- and long-term regional R&D policy planning. Second, other intermediate variables should be 

considered within the regional knowledge production environments. Such factors (e.g. types of R&D performers, 

regional strategic industries, and R&D stages) can provide multifaceted insights into regional R&D phenomena. 

Third, the scope of this study was restricted to Korea. A cross-country analysis using the Organization for 

Economic Cooperation and Development (OECD) members may aid in capturing the position of Korean regions 

on the supranational scale. Lastly, investigations of the effect of other factors (e.g. partner accessibility, 

demographic changes, and industrial shifts) on static and dynamic R&D efficiency could help clarify particular 

causes and specify policy implications. Despite these limitations, this study highlights one of key issues 

regarding balanced regional development of Korea by specifically evaluating the differences in the regional 

R&D efficiencies. Methodologically, the nonparametric quantitative methods used in this study illustrate a 

possible approach for comparing interregional innovation performance on a national scale for countries with a 

small number of regions. 
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Table 1. Key statistics of Korean regions 

No. Region Type GRDP  

in 2009c 

(billion 

KRWd) 

Area  

in 2009 

(km2) 

Population  

in 2007 

(000) 

Map 

1 Seoul Special city 237,594 605 10,039 

 

2 Busan Metropolitan city 51,349 766 3,446 

3 Daegu Metropolitan city 30,151 884 2,431 

4 Incheon Metropolitan city 47,479 1,027 2,661 

5 Gwangju Metropolitan city 20,671 501 1,450 

6 Daejeon Metropolitan city 21,763 540 1,515 

7 Ulsan Metropolitan city 43,191 1,058 1,094 

8 Gyeonggi Province 203,627 10,136 11,637 

9 Gangwon Province 25,360 16,613 1,443 

10 Chungcheongbuk Province 31,079 7,433 1,479 

11 Chungcheongnama Province 67,055 8,629 1,959 

12 Jeollabuk Province 28,471 8,061 1,703 

13 Jeollanam Province 48,008 12,233 1,740 

14 Gyeongsangbukb Province 66,239 19,029 2,592 

15 Gyeongsangnam Province 68,383 10,532 3,141 

16 Jeju Special self-

governing province 

8,893 1,849 547 

Notes: Compiled from Statistics Korea (http://www.kostat.go.kr/eng/), last accessed on 5
th

 October, 2011; 
a
 

Daejeon excluded; 
b
 Daegu excluded; 

c
 Gross Regional Domestic Product, fixed base year 2005; 

d
 Korean 

currency unit: won 

 

  

http://www.kostat.go.kr/eng/
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Table 2. Inputs and outputs in evaluating regional R&D efficiency in Korea 

Indicator  Data source Region Year 

2005 2006 2007 2008 2009 2010 

Input Amount of 

R&D 

expenditure  

(after inflation 

adjustment, 

billion KRW) 

Survey of 

Research and 

Development 

in Korea, 

MEST 

 

Seoul 1654.59 2272.83 2473.51 1526.53 2608.66 - 

Busan 125.88 268.77 348.10 157.94 289.67 - 

Daegu 134.11 141.84 165.25 108.08 189.58 - 

Incheon 421.51 496.88 670.56 250.57 514.55 - 

Gwangju 123.40 173.46 200.91 106.46 188.18 - 

Daejeon 1042.91 1391.83 1343.94 839.92 1555.95 - 

Ulsan 132.89 245.08 141.40 87.52 140.91 - 

Gyeonggi 3433.59 5112.24 4905.86 2883.08 5558.30 - 

Gangwon 55.82 82.69 81.73 54.80 99.00 - 

Chungcheongbuk 142.84 210.54 239.37 136.90 223.42 - 

Chungcheongnam 389.20 529.68 601.88 367.13 759.33 - 

Jeollabuk 92.95 121.64 153.15 130.94 176.22 - 

Jeollanam 61.59 104.73 94.40 69.94 139.22 - 

Gyeongsangbuk 460.05 706.23 555.88 300.12 562.42 - 

Gyeongsangnam 343.83 548.84 514.53 302.99 501.41 - 

Output Number of 

PCT 

applications  

(count) 

WIPO website 

(http://www.w

ipo.int) 

Seoul - 2,960.00  3,432.00  4,151.00  4,189.00  4,742.00  

Busan - 256.00  340.00  362.00  289.00  389.00  

Daegu - 179.00  185.00  275.00  264.00  321.00  

Incheon - 299.00  347.00  465.00  491.00  557.00  

Gwangju - 162.00  162.00  210.00  274.00  262.00  

Daejeon - 770.00  992.00  1,330.00  1,370.00  1,140.00  

Ulsan - 40.00  58.00  85.00  101.00  125.00  

Gyeonggi - 2,352.00  2,971.00  3,421.00  3,491.00  4,201.00  

Gangwon - 60.00  74.00  108.00  106.00  106.00  

Chungcheongbuk - 109.00  152.00  232.00  203.00  225.00  

Chungcheongnam - 164.00  197.00  256.00  270.00  327.00  

Jeollabuk - 79.00  76.00  94.00  97.00  158.00  

Jeollanam - 67.00  70.00  92.00  98.00  82.00  

Gyeongsangbuk - 220.00  297.00  482.00  509.00  411.00  

Gyeongsangnam - 337.00  325.00  483.00  388.00  449.00  

Number of 

SCIE 

publications  

(count) 

SCI Database 

Analysis, 

MEST 

Seoul - 17,986.00  19,227.00  19,421.00  23,661.00  27,009.00  

Busan - 2,530.00  2,661.00  2,843.00  3,553.00  3,791.00  

Daegu - 1,731.00  1,829.00  1,956.00  2,470.00  2,865.00  

Incheon - 1,664.00  1,793.00  1,955.00  2,218.00  2,528.00  

Gwangju - 2,225.00  2,103.00  2,300.00  2,863.00  3,077.00  

Daejeon - 7,817.00  7,389.00  7,640.00  8,819.00  10,202.00  

Ulsan - 305.00  358.00  407.00  598.00  844.00  

Gyeonggi - 7,448.00  7,818.00  8,478.00  10,465.00  12,150.00  

Gangwon - 1,195.00  1,367.00  1,459.00  1,665.00  2,186.00  

Chungcheongbuk - 1,061.00  1,192.00  1,291.00  1,479.00  1,802.00  

Chungcheongnam - 1,297.00  1,370.00  1,440.00  1,952.00  2,338.00  

Jeollabuk - 1,545.00  1,560.00  1,826.00  2,177.00  2,522.00  

Jeollanam - 543.00  510.00  546.00  735.00  837.00  

Gyeongsangbuk - 2,476.00  2,700.00  2,776.00  3,389.00  3,645.00  

Gyeongsangnam - 1,663.00  1,944.00  1,977.00  2,645.00  2,968.00  
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Table 3. Static R&D super-efficiency and R&D productivity change by region in Korea for 2005–2009 

Region  Static R&D efficiency  

(DEA super-efficiency) 

 R&D productivity change 

(MPI) 

Score Ranking  Score Ranking 

Seoul  1.116  2   0.988 8 

Busan  0.849  5   1.354 2 

Daegu  1.029  3   0.803 11 

Incheon  0.496  10   0.655 14 

Gwangju  0.916  4   1.055 5 

Daejeon  0.524  8   1.050 6 

Ulsan  0.302  14   0.343 15 

Gyeonggi  0.406  13   0.906 10 

Gangwon  1.327  1   0.991 7 

Chungcheongbuk  0.557  7   0.780 12 

Chungcheongnam  0.260  15   0.987 9 

Jeollabuk  0.678  6   1.108 3 

Jeollanam  0.507  9   1.750 1 

Gyeongsangbuk  0.434  12   0.733 13 

Gyeongsangnam  0.487  11   1.083 4 
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Table 4. Technical efficiency change and technical change by region in Korea for 2005–2009 

Region R&D productivity change  

(MPI) 

 Catch-up effect 

(TECI) 

 Frontier-shift effect 

(TCI) 

Score Ranking  Score Ranking  Score Ranking 

Seoula 0.988 8  0.880 7  1.124 10 

Busan 1.354 2  1.211 2  1.118 13 

Daeguc 0.803 11  0.656 11  1.223 2 

Incheon 0.655 14  0.586 14  1.119 11 

Gwangju 1.055 5  0.924 6  1.141 8 

Daejeon 1.050 6  0.858 8  1.223 1 

Ulsan 0.343 15  0.296 15  1.157 7 

Gyeonggi 0.906 10  0.810 10  1.119 12 

Gangwonc 0.991 7  1.000 4  0.991 15 

Chungcheongbuk 0.780 12  0.643 12  1.213 3 

Chungcheongnama 0.987 9  0.847 9  1.165 6 

Jeollabuk 1.108 3  1.088 3  1.019 14 

Jeollanam 1.750 1  1.446 1  1.211 4 

Gyeongsangbukb 0.733 13  0.612 13  1.197 5 

Gyeongsangnam 1.083 4  0.958 5  1.130 9 

Geometric means across 

regions 

0.920   0.806   1.141  

a
 efficient region 
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Table 5. Results of Kendall’s coefficient of concordance test 

 R&D productivity change  

(MPI) 

Catch-up effect 

(TECI) 

Frontier-shift effect 

(TCI) 

R&D productivity change  

(MPI)  

 .924*** -.143 

Catch-up effect 

(TECI)  

.924***  -.219 

Frontier-shift effect 

(TCI) 

-.143 -.219  
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Table 6. Trends of Malmquist productivity index, technical efficiency change, and technical change by region in Korea for 2005–2009 

Region  R&D productivity change  

(MPI) 

 Catch-up effect 

(TECI) 

 Frontier-shift effect 

(TCI) 

Year  2005- 

2006 

2006- 

2007 

2007- 

2008 

2008- 

2009 

Geometric means  

across years 

 2005- 

2006 

2006- 

2007 

2007- 

2008 

2008- 

2009 

Geometric means  

across years 

 2005- 

2006 

2006- 

2007 

2007- 

2008 

2008- 

2009 

Geometric means  

across years 

Seoulc  1.088  0.950  0.782  1.228  0.998  0.880  1.000  1.000  1.000  0.968  1.237  0.950  0.782  1.228  1.031 

Busan  1.332  1.215  0.563  1.364  1.056  1.103  1.408  0.811  0.961  1.049  1.207  0.863  0.694  1.419  1.006 

Daeguc  1.011  0.934  0.813  1.204  0.981  0.656  1.000  1.069  0.936  0.900  1.541  0.934  0.761  1.287  1.090 

Incheon  1.016  1.008  0.382  1.743  0.909  0.754  1.119  0.579  1.199  0.875  1.347  0.901  0.661  1.454  1.039 

Gwangju  1.332  0.971  0.551  1.350  0.991  1.039  1.149  0.726  1.067  0.981  1.282  0.845  0.760  1.266  1.010 

Daejeon  1.099  0.749  0.603  2.129 1.014  0.737  0.852  0.985  1.387  0.962  1.490  0.880  0.612  1.535  1.054 

Ulsan  1.305  0.399  0.519  1.281 0.767  0.925  0.447  0.849  0.845  0.738  1.410  0.893  0.611  1.517  1.040 

Gyeonggi  1.178  0.833  0.576  1.602  0.976  0.875  0.926  0.942  1.061  0.949  1.347  0.900  0.612  1.510  1.028 

Gangwonc  1.135  0.962  0.782  1.173  1.001  1.000  1.000  1.000  1.000  1.000  1.135  0.962  0.782  1.173  1.001 

Chungcheongbuk  1.090  0.788  0.642  1.454 0.947  0.725  0.893  1.048  0.948  0.896  1.504  0.883  0.613  1.534  1.057 

Chungcheongnama  1.152  0.898  0.569  1.710  1.002  0.801  1.017  0.929  1.118  0.959  1.437  0.883  0.613  1.529  1.044 

Jeollabuk  1.293  1.076  0.717  1.106 1.025  1.002  1.162  1.221  0.766  1.021  1.291  0.926  0.588  1.445  1.004 

Jeollanam  1.651  0.706  0.681  2.232 1.154  1.138  0.806  1.114  1.415  1.097  1.450  0.876  0.612  1.577  1.052 

Gyeongsangbukb  1.264  0.535  0.512  2.233 0.938  0.839  0.606  0.828  1.454  0.884  1.505  0.883  0.618  1.536  1.060 

Gyeongsangnam  1.644  0.637  0.725  1.435 1.021  1.212  0.711  1.180  0.943  0.989  1.356  0.896  0.614  1.522  1.032 

Geometric means  

across regions 

 1.226  0.815  0.616  1.509 0.982  0.898  0.908  0.936  1.056  0.947  1.364  0.898  0.659  1.429  1.036 
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Figure 1. A linear illustration of a regional knowledge production function 

 

Figure 2. Regional R&D efficiency patterns 

 

Figure 3. Positions of Korean regions. Note: Dotted lines parallel to the x-axis and y-axis indicate the threshold 

value that distinguishes efficient regions from inefficient ones (based on an input-oriented super-efficiency 

CCR-DEA model) and efficiency-increasing regions from efficiency-decreasing ones (based on an input-

oriented CCR-MPI model), respectively. 
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