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The conditional density offers the most informative summary of the relationship between
explanatory and response variables. We need to estimate it in place of the simple conditional
mean when its shape is not well-behaved. A motivation for estimating conditional densities,
specific to the circular setting, lies in the fact that a natural alternative of it, like quantile
regression, could be considered problematic because circular quantiles are not rotationally
equivariant. We treat conditional density estimation as a local polynomial fitting problem as
proposed by [1] in the euclidean setting, and discuss a class of estimators in the cases when
the conditioning variable is either circular or linear. Asymptotic properties for some members
of the proposed class are derived. The effectiveness of the methods for finite sample sizes is
illustrated by simulation experiments and an example using real data.

Keywords: Circular data; conditional densities; local polynomials; optimal smoothing; von
Mises kernel.

AMS Subject Classification: 62G07; 62G20; 65G60

1. Introduction

A circular observation can be regarded as a point on the circumference of the unit circle
and, after both an origin and an orientation have been chosen, can be measured, in
radians, by an angle θ ∈ [−π, π). Flight directions of birds from a point of release, wind
and ocean current directions constitute classic examples of circular data. For a circular
observation θ ∈ [−π, π), it holds that θ = 2mπ+ θ, for each m ∈ Z: this makes standard
real-line methods unsuited for circular data analysis.
The interest in predicting a circular variable given another one, of whatever nature,

arises in many scientific fields. For example, in meteorology, it could be of interest to
study the relation of wind direction on linear variables, such as the wind speed and the
amount of rain, or to predict the wind direction, given measurements at previous hours.
In atmospheric pollution studies, it is often of interest to investigate the dependency of
a pollutant concentration on the wind direction. Further, in studying animals migration
direction we often need to relate it to the distance moved.
Conditional densities are natural targets in prediction problems, where, for a given

value of the explanatory variable, we wish to estimate the density of the response. Stan-
dard estimation of the conditional mean is customary, but in some cases is not proper
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due to the fact that the expectation is not very representative in the presence of multi-
modality, significant asymmetry, and/or heavy tails. An alternative, robust approach,
lies in quantile estimation. In particular, estimating some key quantiles could be a valid
remedy when regression is not well-suited.
Nonparametric methods for estimating circular, conditional mean and quantiles, when

the explanatory variable is either linear or circular, has been recently studied by [2] and
[3], respectively. To the best of the authors’ knowledge, nothing specific has been made
for conditional density estimation. Compared to the euclidean setting, a strong additional
motivation in favour of conditional density estimation is specific to the circular setting
due to the problematic definition of quantiles for angular data. In fact, angle measurement
relies on the arbitrary choice of the origin within the circle. Such arbitrariness has an
impact on quantiles because the cumulative distribution function is calculated starting
from the origin. As a consequence, the basic property of rotational equivariance is lost.
This issue is recognized as serious, see [4], especially in problems when we need to compare
datasets.
When it is difficult to motivate a parametric model, a sensible approach to conditional

density estimation is the nonparametric one. Specifically, fully nonparametric estimation
of conditional densities does not require either parametric assumptions for the target
density, nor any parametric assumption on the link between response and explanatory
variables. Surely, in the circular setting a nonparametric estimator fulfils the important
property of rotational equivariance because of the local nature of weights, which depend
on the difference between the estimation point and the sample observations.
The present paper considers the problem of estimating the density of Θ | U , where Θ

is a random angle, and U is either angular or linear. In particular, we follow the idea in
[1], and formulate the problem of estimating the density of Θ | U as a nonparametric
regression problem, discussing local polynomial estimators of circular conditional densi-
ties. The same approach, designed for distribution functions and quantiles estimation of
circular random variable has been recently studied by [3].
In Section 2 we introduce our class of estimators. In Section 3, asymptotic properties

of some members in this class, along with optimal smoothing, are derived. In Section 4,
we show some results from a small simulation study, and illustrate the method in a real
data example. Technical proofs are briefly outlined in the Appendix.

2. Local polynomial estimators of circular conditional densities

Let (U1,Θ1), . . . , (Un,Θn) be n independent copies of the U × [−π, π)-valued random
variable (U,Θ), with unknown density fUΘ. In what follows, we discuss both the cases
when U is a random angle, i.e. U = [−π, π), or U stands for a linear random variable,
i.e. U = R.
Clearly, when U = [−π, π), fUΘ is a toroidal density, and letting fΘ|U denote the

density of Θ | U , for (m, s) ∈ Z× Z,

fΘ|U (θ, u) = fΘ|U (θ + 2πm | u+ 2πs)

while, when U = R, fUΘ is a cylindrical density, and

fΘ|U (θ, u) = fΘ|U (θ + 2πm | u).

Now, letting fU denote the marginal density of U , a kernel estimator for fΘ|U (θ | u),
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(θ, u) ∈ [−π, π)× U, can be easily obtained as

f̂Θ|U (θ | u) :=
f̂UΘ(u, θ)

f̂U (u)
:=

n−1
∑n

i=1Qλ(Ui − u)Kκ(Θi − θ)

n−1
∑n

i=1Qλ(Ui − u)
, (1)

where, for U = [−π, π) (U = R, respectively) f̂U (u) is a kernel estimator of fU at u ∈ U,
with Qλ being a circular (euclidean, resp.) kernel with (scaled by a, resp.) smoothing

factor λ ∈ (0,∞) and f̂UΘ(u, θ) is a kernel estimator of the toroidal (cylindrical, resp.)
density fUΘ at (u, θ), with weight function given by the product between Qλ, and a
circular kernel Kκ with concentration parameter κ ∈ (0,∞).
Clearly, a more general version of estimator (1) can be obtained by using a weight

function different from Qλ in estimating fU (u), and/or by using a multivariate kernel
other than the product one in estimating fUΘ(u, θ).
As discussed in [1], estimating a conditional density can be regarded as a nonparametric

regression problem. Specifically, once observed that, as κ → ∞, for (θ, u) ∈ [−π, π)×U,

E[Kκ(Θ− θ) | U = u] ≈ fΘ|U (θ | u),

the estimation of fΘ|U (θ | u) can be treated as the estimation of a regression function
with response Kκ(Θ− θ) and predictor U .
Now, assuming that fΘ|U (θ | w) admits continuous derivatives up to order p ∈ N with

respect to w, at u ∈ U, a pth order series expansion of fΘ|U (θ | w), for w around u, yields

fΘ|U (θ | w) = fΘ|U (θ | u) +

p
∑

j=1

f
(j,0)
Θ|U (θ | u)Ψj(w − u)

j!
+ o(Ψp(w − u)), (2)

where, for u ∈ U,

Ψ(u) :=

{

u if U = R,
sin(u) if U = [−π, π),

and, for (i, j) ∈ N× N,

f
(i,j)
Θ|U (θ | u) =

∂i+j

∂ai∂bj
fΘ|U (b | a)

∣

∣

θ,u
.

Hence, a pth degree local polynomial estimator of fΘ|U (θ | u) can be defined as the
solution for β0 of the following least squares problem

argmin
{β0,...,βp}

n
∑

i=1







Kκ(Θi − θ)−

p
∑

j=0

βjΨ
j(Ui − u)







2

Qλ(Ui − u). (3)

Clearly, for p = 0 the solution for β0 of (3) gives estimator (1), while for p = 1 such a
solution defines a local linear estimator of fΘ|U (θ | u), i.e.

f̂Θ|U (θ | u) =

∑n
i=1 Lλ(Ui − u)Kκ(Θi − θ)

∑n
i=1 Lλ(Ui − u)

, (4)

3
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where

Lλ(Ui − u) := Qλ(Ui − u)

{ n
∑

j=1

Qλ(Uj − u)Ψ2(Uj − u)

−Ψ(Ui − u)

n
∑

j=1

Qλ(Uj − u)Ψ(Uj − u)

}

.

3. Asymptotics

3.1. Circular conditioning

We consider the case where U = [−π, π), and denote the conditioning variable as Φ.
Moreover, for any circular kernel with smoothing factor q > 0, say Kq, and j ∈ N, we
define

ηj(Kq) :=

∫ π

−π
Kq(α) sin

j(α)dα, and ν(Kq) :=

∫ π

−π
K2

q (α)dα.

Asymptotic properties, for both estimators (1) and (4), are collected in the following

Theorem 3.1 Given the [−π, π)× [−π, π)-valued random sample (Φ1,Θ1), . . . , (Φn,Θn)
from the unknown density fΦΘ, consider estimators (1) and (4). If

i) the marginal density fΦ of Φ is strictly positive at φ ∈ [−π, π), fΘ|Φ and fΦ are twice
continuously differentiable in some neighborhood of (θ, φ) ∈ [−π, π) × [−π, π) and
φ ∈ [−π, π), respectively;

ii) Kκ is a second-order circular kernel, which satisfies limn→∞ η2(Kκ) = 0, ηj(Kκ) =
o(η2(Kκ)) for each j > 2, and limn→∞ n−1ν(Kκ) = 0;

iii) Qλ is a second-order circular kernel which satisfies limn→∞ η2(Qλ) = 0, ηj(Qλ) =
o(η2(Qλ)) for each j > 2, and limn→∞ n−1ν(Qλ) = 0;

then, for estimator (1)

E[f̂Θ|Φ(θ | φ)]− fΘ|Φ(θ | φ) =
η2(Kκ)

2
f
(0,2)
Θ|Φ (θ | φ)

+
η2(Qλ)

2







f
(2,0)
Θ|Φ (θ | φ) +

2f ′
Φ(φ)f

(1,0)
Θ|Φ (θ | φ)

fΦ(φ)







+ o(η2(Kκ)) + o(η2(Qλ)),

while, for estimator (4)

E[f̂Θ|Φ(θ | φ)]−fΘ|Φ(θ | φ) =
η2(Kκ)

2
f
(0,2)
Θ|Φ (θ | φ)+

η2(Qλ)

2
f
(2,0)
Θ|Φ (θ | φ)+o(η2(Kκ))+o(η2(Qλ)).

Moreover, for both estimators,

Var[f̂Θ|Φ(θ | φ)] =
ν(Qλ)fΘ|Φ(θ | φ)

nfΦ(φ)

{

ν(Kκ)− fΘ|Φ(θ | φ)
}

+O

(

ν(Qλ)

n

)

+O

(

ν(Qλ)ν(Kκ)

n

)

.

4
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Proof. See Appendix. �

Typical examples of densities which are second-order circular kernels and satisfy the
condition on the ηjs, stated in both assumption ii), and iii) are von Mises, wrapped
normal and wrapped Cauchy; see [5].
Concerning optimal smoothing degrees, we assume Kκ and Qλ to be von Mises den-

sities both having zero mean direction, and concentration parameters κ > 0 and λ > 0,
respectively. Now, for a von Mises density with concentration parameter q > 0, i.e.
Kq(θ) := {2πI0(q)}

−1 exp(q cos(θ)), where I0(q) stands for the modified Bessel function
of order 0, it holds that for sufficiently large q

η2(Kq) ≈
1

q
, and ν(Kq) ≈

√

q

4π
.

Then, using the results of Theorem 3.1, the asymptotic mean squared error (AMSE)

of f̂Θ|U (θ | u), for both local constant and local linear estimators, has the form

AMSE[f̂Θ|Φ(θ | φ)] =
C1(κλ)

1/2

n
−

C2λ
1/2

n
+

Cp
3

κ2
+

Cp
4

λ2
+

Cp
5

κλ
, (5)

where C1 and C2 denote the terms in the asymptotic variance expression which do not
depend on κ, λ, and n, while Cp

j , (p, j) ∈ {0, 1}×{3, 4, 5}, are the terms appearing in the

asymptotic squared biases of local constant (p = 0), and local linear (p = 1) estimators
which do not depend on κ and λ. The values of the smoothing parameters which minimize
(5) are provided by the following

Corollary 3.2 Given the [−π, π) × [−π, π)-valued random sample
(Φ1,Θ1), . . . , (Φn,Θn) from the unknown density fΦΘ, consider estimators (1) and
(4) with Qλ and Kκ being von Mises kernels with concentration parameters λ and κ,
respectively. Then, the values of λ and κ minimizing the asymptotic mean squared errors
of the estimators are, for p ∈ {0, 1},

λAMSE = C
−1/3
1

{

4Cp
4

(

Cp
4

Cp
3

)1/4

+ 2Cp
5

(

Cp
4

Cp
3

)3/4
}1/3

n1/3,

and

κAMSE =

(

Cp
3

Cp
4

)1/2

λAMSE.

After substituting κAMSE and λAMSE in (5), we see that the infimum, over (κ, λ), of

AMSE[f̂Θ|Φ(θ | φ)] has order O(n−2/3). Then, from Corollary 3.2 it follows that, when
von Mises kernels are employed for smoothing in both the θ-direction and φ-direction,
the convergence rate for both estimators is of order n−2/3, which corresponds to the
convergence rate attained by their euclidean counterparts.

5
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3.2. Linear conditioning

We now assume U = R, and denote the conditioning variable as X. Moreover, we set
Qλ(·) := λ−1Q(λ−1·), λ > 0, with Q being a second order euclidean kernel. Then, letting

µj(Q) :=

∫ ∞

−∞
xjQ(x)dx, and ν(Q) :=

∫ ∞

−∞
Q2(x)dx,

with j ∈ N, for both estimators (1) and (4), we get

Theorem 3.3 Given the R×[−π, π)-valued random sample (X1,Θ1), . . . , (Xn,Θn) from
the unknown density fXΘ, if assumptions i) and ii) of Theorem 3.1 hold with x ∈ R in
place of φ ∈ [−π, π), and

i) λ is such that limn→∞ λ = 0 and limn→∞ nλ = ∞;

then, for estimator (1)

E[f̂Θ|X(θ | x)]− fΘ|X(θ | x) =
η2(Kκ)

2
f
(0,2)
Θ|X (θ | x)

+
λ2µ2(Q)

2







f
(2,0)
Θ|X (θ | x) +

2f ′
X(x)f

(1,0)
Θ|X (θ | x)

fX(x)







+ o(η2(Kκ)) + o(λ2),

while, for estimator (4)

E[f̂Θ|X(θ | x)]−fΘ|X(θ | x) =
η2(Kκ)

2
f
(0,2)
Θ|X (θ | x)+

λ2µ2(Q)

2
f
(2,0)
Θ|X (θ | x)+o(η2(Kκ))+o(λ2).

Finally, for both estimators

Var[f̂Θ|X(θ | x)] =
ν(Q)fΘ|X(θ | x)

λnfX(x)

{

ν(Kκ)− fΘ|X(θ | x)
}

+O

(

1

nλ

)

+O

(

ν(Kκ)

nλ

)

.

Proof. See Appendix. �

Theorem 3.3 implies that the resulting asymptotic mean squared error, for both p = 0
and p = 1, takes the form

AMSE[f̂Θ|X(θ | x)] =
D1κ

1/2

nλ
−

D2

nλ
+

Dp
3

κ2
+ λ4Dp

4 +
λ2Dp

5

κ
, (6)

where D1 and D2 stand for the terms not depending on n, λ and κ in the asymptotic
variance expression, and Dp

3, D
p
4 and Dp

5 are the terms not depending on λ and κ in the
asymptotic squared bias of local constant (p = 0) and local linear (p = 1) estimators.
The pair (κ, λ) minimizing (6) is given by the following

Corollary 3.4 Given the random sample (X1,Θ1), . . . , (Xn,Θn) from the unknown
density fXΘ defined on R× [−π, π), consider estimators (1) and (4) with Kκ being a von

6
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Mises kernel with concentration parameter κ. Then, for p ∈ {0, 1},

λAMSE = D
1/6
1

{

4Dp
3

(

Dp
4

Dp
3

)5/4

+ 2Dp
5

(

Dp
4

Dp
3

)3/4
}−1/6

n−1/6,

and

κAMSE =

(

Dp
3

Dp
4

)1/2

λ−2
AMSE.

Using results of Corollary 3.4 we have that both local constant and local linear esti-
mators attain a convergence rate of order n−2/3.

4. Numerical results

4.1. Simulations

We present results from a brief simulation study which indicates the relative merits of the
local constant estimator (1) and local linear one (4) for both the cases of a real-valued
explanatory variable, and a circular explanatory variable, including different sample sizes.
Various authors (for example, [6], [7], and [8]) have proposed variations of cross-

validation methods to choose smoothing parameters for conditional density estimates.
Here we adopt the following strategy:

(1) Given the sample u1, . . . , un we can select λ by likelihood cross-validation to maxi-
mize

∑

i

log f̂
(−i)
U (ui)

where f̂
(−i)
U is the kernel estimator of fU using all the data except the ith observation.

(2) Using this value, say λ0, we then select κ by likelihood cross-validation to maximize

∑

i

log







∑

j 6=i

Qλ0
(uj − u)Kκ(θj − θi)







for the local constant case, and

∑

i

log







∑

j 6=i

Lλ0
(uj − u)Kκ(θj − θi)







for the local linear one.
(3) Using these values, say (λ0, κ0) as starting values, we can maximize the likelihood

cross-validation function for the joint likelihoods, given by the above equations, for
both λ and κ.

The simulation settings are as follows. For the linear case, we took X ∼ N(0.5, 0.22)
and then, conditional on this Θ | X = x ∼ vM(2 tan−1(x− 0.5), 4). Here we considered

7
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Table 1. Averages (standard deviations) of the integrated squared errors of local constant (p = 0)
and local linear (p = 1) versions of f̂Θ|U (θ|u) obtained using 1000 samples of various size, different u
and λ and κ selected from a range of values. Left panel: linear conditioning case; right panel: circular
conditioning case.

n u = 0.5 u = 0.9 n u = 0 u = π/2

p = 0 100 0.0201 (0.0142) 0.0572 (0.0465) p = 0 100 0.0160 (0.0111) 0.1110 (0.0827)
500 0.0080 (0.0052) 0.0272 (0.0189) 500 0.0060 (0.0038) 0.0604 (0.0467)

p = 1 100 0.0200 (0.0143) 0.0685 (0.0629) p = 1 100 0.0159 (0.0111) 0.0962 (0.0847)
500 0.0080 (0.0052) 0.0247 (0.0187) 500 0.0060 (0.0037) 0.0336 (0.0263)

Table 2. Averages (standard deviations) of the integrated squared errors of local constant (p = 0) and

local linear (p = 1) versions of f̂Θ|U (θ|u) obtained using 1000 samples of various size, different u and λ
and κ selected by the cross-validation strategy. Left panel: linear conditioning case; right panel: circular

conditioning case.

n u = 0.5 u = 0.9 n u = 0 u = π/2

p = 0 100 0.0330 (0.0160) 0.1060 (0.0365) p = 0 100 0.0227 (0.0139) 0.1591 (0.0999)
500 0.0230 (0.0062) 0.0960 (0.0180) 500 0.0130 (0.0066) 0.1403 (0.0838)

p = 1 100 0.0346 (0.0162) 0.0486 (0.0414) p = 1 100 0.0260 (0.0137) 0.2340 (0.2831)
500 0.0241 (0.0065) 0.0191 (0.0126) 500 0.0165 (0.0061) 0.0466 (0.0408)

two different values for the predictor X being equal to 0.5 and 0.9. In the circular case
we took Φ ∼ vM(0, 4) and then Θ | Φ = φ ∼ vM(atan2(sin(φ− 1), 1+ 0.8 cos(φ− 1)), 4)
where atan2(a, b) returns the angle between the x-axis and the (non-zero) vector (a, b).
Here we considered the conditioning values of φ being equal to 0 and π/2. We took 1000
samples of size n = 100 and n = 500, and for each sample we computed the estimates
through (1) and (4) using the optimal combination of (κ, λ) from a grid search, as well
as for (λ0, κ0) obtained by cross-validation according to the above strategy. The results
are presented in Table 1 and Table 2. As expected, the estimation is better when there
are more data available; both in the sample size n, and where the conditioning variable
is denser. It can be seen that the cross-validation strategy performs well, particularly for
small samples, by comparison with the benchmark minimum ISE in which λ and κ are
optimally determined over the entire simulation. However it should be also noted that
the standard deviations of the errors have moderately big magnitudes if compared to
the respective averages. This reflects the well known high variability of cross-validation
selectors.

4.2. Example

We illustrate the methods using some data on wind speed and wind directions. The
objective is to estimate the density of wind directions, conditional on some specific wind
speeds. This could be useful when designing buildings, or planning wind turbine locations.
The data, which is taken from an observation station close to the Florida coastline, was
collected by the National Data Buoy Center of the NOAC. The wind speeds are recorded
to one decimal place, and the directions are recorded as degrees (integers). In order to
reduce the serial correlation, we used only every tenth available observation for data
covering a full year, which resulted in 1748 observations at intervals of 5 hours. We have
chosen the smoothing parameters by cross-validation. The conditional density estimates
for wind direction, corresponding to three wind speeds (5, 10, 12) are shown in Figure 1.
We can see that there is a clear dependence of the density on the wind speed. As

8
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Figure 1. Density estimates for wind directions conditional on wind speeds 5, 10, and 12, and contour plot for the
joint density estimate, with observations shown. The continuous lines correspond to estimator (1), the dashed lines

to (4), and the dotted lines correspond to the normalized joint density, conditional on the wind speed. Smoothing
parameters were selected by stage-wise cross-validation with values λ0 = 0.41 and κ0 = 1.8, 4.4, 0.72, respectively,
corresponding to (1) and λ0 = 4.1 and κ0 = 4.3, 4.2, 0.3, respectively, corresponding to (4). For the joint density
estimate, the smoothing parameters (also selected by cross-validation) were λ = 0.53 and κ = 2.1.

a benchmark, we have also computed a standard kernel estimate of the joint density,
with smoothing parameters chosen by cross-validation. This is then used to compute
a conditional density estimate for comparison. The two estimators perform somewhat
differently, with the local linear tending to reveal more structure. Although this is a
moderately-sized dataset, the big differences between the estimators at wind speeds 10
and 12 is due to there being less data at these speeds (see the bottom right panel of
Figure 1), so all the estimates will have some degree of uncertainty.

Appendix

Proof of Theorem 3.1. Letting m(θ, φ) := E[Kκ(Θ − θ) | Φ = φ], assumptions i) − iii)
along with results in Theorem 4 of [9], yield

E[f̂Θ|Φ(θ | φ)]−m(θ, φ) =

{

η2(Qλ)
2

{

m(2,0)(θ, φ) + 2f ′

Φ(φ)m
(1,0)(θ,φ)

fΦ(φ)

}

+ o(η2(Qλ)) if p = 0,
η2(Qλ)

2 m(2,0)(θ, φ) + o(η2(Qλ)) if p = 1,

9
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and letting s2(θ, φ) := Var[Kκ(Θi − θ) | Φ = φ], for both estimators

Var[f̂Θ|Φ(θ | φ)] =
ν(Qλ)s

2(θ, φ)

nfΦ(φ)
+ o

(

ν(Qλ)

n

)

.

Now, in virtue of assumption i) and ii), using a Taylor-like expansion yields

m(θ, φ) =

∫ π

−π
Kκ(ω − θ)fΘ|Φ(ω | φ)dω

=

∫ π

−π
Kκ(α){fΘ|Φ(θ | φ) + sin(α)f

(0,1)
Θ|Φ (θ | φ) + 2−1 sin2(α)f

(0,2)
Θ|Φ (θ | φ) + o(sin2(α))}dα

= fΘ|Φ(θ | φ) + 2−1η2(Kκ)f
(0,2)
Θ|Φ (θ | φ) + o(η2(Kκ)),

and

s2(θ, φ) =

∫ π

−π
K2

κ(ω − θ)fΘ|Φ(ω | φ)dω −

{
∫ π

−π
Kκ(ω − θ)fΘ|Φ(ω − θ)dω

}2

= fΘ|Φ(θ, φ){ν(Kκ)− fΘ|Φ(θ, φ)}+ o(ν(Kκ)) +O(η22(Kκ)).

Then, substituting the above approximations for m(θ, φ) and s2(θ, φ) into the asymptotic
biases and variance expressions, respectively, leads to the results.

Proof of Corollary 3.2. We need similar arguments as those used in [10] for deriving
optimal smoothing of euclidean kernel conditional density estimator. Specifically, after
setting the partial derivatives of (5) to zero, some simplifications give

C1

2n
−

2Cp
3

κ5/2λ1/2
−

Cp
5

κ3/2λ3/2
= 0, (7)

and

C1

2n
−

C2

2nκ1/2
−

2Cp
4

κ1/2λ5/2
−

Cp
5

κ3/2λ3/2
= 0. (8)

Finally, subtracting (8) to (7), and solving for κ yields

κ̃ =

{

4Cp
3λ

2n

C2λ5/2 + 4Cp
4n

}1/2

.

Now, in order to obtain λAMSE, replace κ by κ̃ in (7), then use a first order Taylor
series approximation for n−1λ1/2 around 0, and finally solve the resulting equation. Then,
substituting λAMSE in κ̃, and retaining the dominant term of the first order Taylor series
approximation lead to κAMSE.

Proof of Theorem 3.3. The results easily follow by using the same arguments as in
the proof of Theorem 3.1, with x in place of φ. Starting from the fact that, in virtue of

10
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assumption i), one has

E[f̂Θ|X(θ | x)]−m(θ, x) =

{

λ2µ2(Q)
2

{

m(2,0)(θ, x) + 2
f ′

X(x)m(1,0)(θ,x)
fX(x)

}

+ o(λ2) if p = 0,
λ2µ2(Q)

2 m(2,0)(θ, x) + o(λ2) if p = 1,

and, for both p = 0 and p = 1

Var[f̂Θ|X(θ | x)] =
ν(Q)s2(θ, x)

nλfX(x)
+ o

(

1

nλ

)

.

Now, asymptotic approximations of m(θ, x) and s2(θ, x) follow by adapting their corre-
sponding approximations in the proof of Theorem 3.1 to the linear setting.

Proof of Corollary 3.4. The result follows by reasoning as in the proof of Corollary
3.2, and then modifying the asymptotic approximations according to the assumptions in
Theorem 3.3.
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