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Abstract The Langlands Programme, formulated by Robert Langlands in the 1960s
and since much developed and refined, is a web of interrelated theory and conjectures
concerning many objects in number theory, their interconnections, and connections to
other fields. At the heart of the Langlands Programme is the concept of an L-function.
The most famous L-function is the Riemann zeta function, and as well as being ubiq-
uitous in number theory itself, L-functions have applications in mathematical physics
and cryptography. Two of the seven Clay Mathematics Million Dollar Millennium
Problems, the Riemann Hypothesis and the Birch and Swinnerton-Dyer Conjecture,
deal with their properties. Many different mathematical objects are connected in vari-
ous ways to L-functions, but the study of those objects is highly specialized, and most
mathematicians have only a vague idea of the objects outside their specialty and how
everything is related. Helping mathematicians to understand these connections was
the motivation for the L-functions and Modular Forms Database (LMFDB) project.
Its mission is to chart the landscape of L-functions and modular forms in a systematic,
comprehensive, and concrete fashion. This involves developing their theory, creating
and improving algorithms for computing and classifying them, and hence discover-
ing new properties of these functions, and testing fundamental conjectures. In the
lecture I gave a very brief introduction to L-functions for non-experts and explained
and demonstrated how the large collection of data in the LMFDB is organized and
displayed, showing the interrelations between linked objects, through our website
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www.lmfdb.org. I also showed how this has been created by a worldwide open-source
collaboration, which we hope may become a model for others.

Keywords Database · L-functions · Modular forms

Mathematics Subject Classification 11-02 · 11-04

1 What is the LMFDB?

Since the early days of using computers in number theory, computations and tables
have played an important part in experimentation, for the purpose of formulating and
proving (or disproving) conjectures.

Until the World Wide Web, such tables were hard to use, let alone to make, as
they were only available in printed form, or on microfiche! An example relevant for
the LMFDB is the 1976 Antwerp IV tables of elliptic curves, published as part of a
conference proceedings in Springer Lecture Notes in Mathematics 476, as a computer
printout with manual amendments and diagrams.

However, even since the WWW, tables and databases have been scattered among a
variety of personal web pages (including my own [1]). To use them, you had to know
who to ask, download data, and deal with a wide variety of formats. A few had more
sophisticated interfaces, but there was no consistency.

In some areas of number theory, such as elliptic curves, the situation is now much
better and easier: packages such as SageMath [2], Magma [3], and Pari/gp [4]
contain elliptic curve databases (sometimes as optional add-ons, as they are large).
Also, the internet makes accessing even “printed” tables much easier. But the data are
still very scattered and incomplete.

The situation is now very much better: we have the LMFDB! (Fig. 1)

2 L-Functions and Why They are Important

L-functions are at the heart of the LMFDB.What are they?We will give a brief survey,
referring to number theory textbooks for details.

The simplest L-function is the Riemann zeta function ζ(s). This

• is a complex analytic function (apart from a pole at s = 1);
• has a Dirichlet series expansion over positive integers (valid when �(s) > 1):

ζ(s) =
∞∑

n=1

1

ns
;

• has an Euler product expansion over primes p (when �(s) > 1):

ζ(s) =
∏

p

(
1 − p−s)−1 ;
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• satisfies a functional equation:

ξ(s) = π−s/2Γ (s/2)ζ(s) = ξ(1 − s);

• has links to the distribution of primes.

2.1 L-Functions: A Definition

The definition of an L-function encapsulates these properties: it is a complex function
with a Dirichlet series and an Euler product expansion which satisfies a functional
equation. There are other more technical axioms (by Selberg) which we omit here:
refer to the LMFDB’s own knowledge database for details: http://www.lmfdb.org/
knowledge/show/lfunction.

Some of the defining properties have not in fact been proved for all the types of
L-function in the database: this can be very hard! For example, Andrew Wiles proved
Fermat’s Last Theorem by proving the modularity of certain elliptic curves over Q,
which amounted to showing that the L-functions associated to elliptic curves really
are L-functions in the above sense. This is not yet known in general for elliptic curves
defined over other algebraic number fields.

Other expected properties of L-functions are not even known for ζ(s). For example,
the Riemann hypothesis concerning the zeros of ζ(s) has remained open since it was
formulated by Riemann in 1859.

2.2 The Riemann Hypothesis

The RiemannHypothesis states that all the “non-trivial” zeros of ζ(s) (excluding those
coming trivially from poles of Γ (s)) are on the “critical line” �(s) = 1/2.

This was (part of) Hilbert’s 8th problem and is also one of the Clay Mathematics
InstituteMillenniumPrize Problems, so amillion dollars awaits the personwho proves
it. There are similar conjectures about the location of the zeros of all L-functions,
which are collectively known as the Generalized Riemann Hypothesis (GRH). These
are not only of theoretical (or financial!) interest, but have important applications to
the complexity of computing important quantities in number theory. For example,
computing the class number of a number field is much faster if one assumes GRH for
the number field’s own L-function, its Dedekind ζ -function.

What can a database say in relation to this problem?
It can give the object its own web page (http://www.lmfdb.org/L/Riemann/) which

shows basic facts about it, and its graph along the critical line 1/2 + i t to “show” the
first few zeroes. This is a pedagogical function of the database.

It can also store all the zeroes which have so far been explicitly computed: there are
more than 1011 (that is one hundred billion) of them at http://www.lmfdb.org/zeros/
zeta/, all computed to 100-bit precision by David Platt (Bristol), who in 2014 won a
prize for his contributions to progress on the Goldbach Conjecture. This resource can
thenbeused to studyproperties of the zeroes, such as their distribution, and connections
to random matrices, showing that the database also serves as a research tool.
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2.3 Degrees of L-Functions

The Euler product for a general L-function has the form

L(s) =
∏

p

1/Pp
(
1/ps

)

where each Pp(t) is a polynomial, and the product is over all primes p. These polyno-
mials all have the same degree, called the degree of the L-function, except for a finite
number indexed by primes dividing an integer called the conductor of the L-function,
where the degree is smaller. The zeros of these polynomials are also restricted in a
way depending on another parameter, the weight.

For example, ζ(s) has Pp(t) = 1− t for all primes p; the degree is d = 1, and the
conductor is N = 1.

2.4 L-Functions of Degree 1

There are other L-functions of degree 1, with larger conductor N , which have been
studied since the nineteenth century:Dirichlet L-functions. Their Dirichlet coefficients
an are given by the values of a Dirichlet character an = χ(n), meaning that they are
multiplicative and periodic with period N .

An example with N = 4 is

L(χ, s) = 1−s − 3−s + 5−s − 7−s + − · · · ,

with all even coefficients 0 and the odd coefficients alternating±1. Dirichlet used such
L-functions to prove his celebrated theorem about primes in arithmetic progressions:
for any integers N ≥ 1 and a, there are infinitely many primes p ≡ a (mod N ),
provided that a and N are coprime. The previous example can be used not only to
show that there are infinitely many primes p ≡ 1 (mod 4) (for which χ(p) = +1)
and infinitely many primes p ≡ 3 (mod 4) (for which χ(p) = −1) , but also to show
that (in a precise sense) the primes are equally distributed between these two classes.

This is a complete list of all L-functions of degree 1. For degrees greater than 1, a
complete classification has not yet been established, though a wide variety of sources
of L-functions is known, and in some cases (such as in degree 2, see below), we
conjecture that all L-functions do arise from these known sources.

2.5 Other Sources of L-Functions

A wide variety of mathematical objects have L-functions: algebraic number fields,
algebraic varieties (including curves). There is a general termmotive for objects which
have L-functions.

In many cases, while we know how to define the L-function of a more complicated
object, it has not yet proved that it actually satisfies the defining axioms for L-functions.
Even for elliptic curves over Q, this would have been true until the mid-1990s; for
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elliptic curves over real quadratic fields such as Q(
√
2) it was true until 2013! Now,

these elliptic curves are known to be modular [5].

2.6 L-Functions of Number Fields

An algebraic number field, or simply number field, is a finite extension of the rational
fieldQ, such asQ(

√
2) orQ(i) orQ(e2π i/m). Every number field K has an L-function

called itsDedekind zeta function ζK (s), defined in a similar way to Riemann’s ζ(s) =
ζQ(s), and with similar analytic properties.

Just as the analytic properties of ζ(s) imply facts about the distribution of primes,
from the analytic properties of ζK (s) we can deduce statements about prime factor-
izations in the field K . For example, taking K = Q(e2π i/m) we can prove Dirichlet’s
Theorem on primes in arithmetic progressions using a combination of algebraic and
analytic properties of ζK (s).

Also, just as some properties of ζ(s) are not yet proved (e.g. the Riemann Hypothe-
sis), the same is true for ζK (s): the Generalized Riemann Hypothesis or GRH remains
unsolved.

2.7 L-Functions of Curves

Algebraic curves defined over algebraic number fields also have L-functions, whose
degree depends on both the degree of the field over which the curve is defined and the
genus of the curve. So an elliptic curve overQ, which is a curve of genus 1 defined over
a field of degree 1, has a degree 2 L-function, elliptic curves over fields of degree d
have L-functions of degree 2d, and so on.

It is widely believed that all degree 2 L-functions arise as follows: they either are
products of two degree 1 L-functions, or come from elliptic curves over Q, or from
(a special kind of) modular form. The insight of Weil, Taniyama, Shimura, and others
in the 1960s and 1970s was to realize that the latter two sources actually produce
the same L-functions! This insight is behind the famous theorem of Wiles et al. that
“every elliptic curve (over Q) is modular”, from which Fermat’s Last Theorem was a
consequence. But it is still an unsolved problem to show that those degree 2L-functions
which are not products of degree 1 L-functions do all arise from automorphic forms.

2.8 Higher Degree L-Functions

For degrees 3 and 4, we do not yet even have a conjecture concerning all sources
of L-functions, and for those which are known, not all the conjectured connections
between them have been proved.

We mentioned above the recent result [5] that elliptic curves defined over real
quadratic fields (such as Q(

√
5)) are modular. This means that two sources of L-

functions of degree 4: on the one hand, elliptic curves over such a field, and on the
other hand Hilbert modular forms over the same field, actually produce the same
L-functions. Such results are extremely deep and require a vast amount of theory to
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establish, including real, complex, and p-adic analysis and algebra, as well as some
explicit computations (the ArXiV version of Freitas et al. [5] includes a number of
Magma scripts).

By contrast, over imaginary quadratic fields (e.g. Q(
√−1)) we conjecture, but

cannot prove in general, that elliptic curves haveL-functions also attached to a different
kind of modular form, Bianchi modular forms. These can be computed, and work is
in progress in entering many examples into the LMFDB, even though they are not all
known to “be modular” and hence have genuine L-functions.

Modularity of individual elliptic curves over imaginary quadratic fields can be
proved using the Serre–Faltings–Livné method (which uses Galois representations
rather than analysis) as explained in a 2008 paper [6] by Dieulefait, Guerberoff, and
Pacetti. We are currently using their method to prove modularity of all the curves in
the database; at the same time we are developing enhancements to the algorithm to
make it more efficient. A theoretical proof that all elliptic curves over these fields are
modular seems very far off, so even in the world of L-functions of degree 4 it is still
important to carry out experiments and collect data.

2.9 Showing Connections Through the LMFDB

The LMFDB shows connections between different objects with the same L-function,
such as those described above, by linking its databases of (for example) elliptic curves
over real quadratic fields, and Hilbert modular forms over the same field. The home
page of each elliptic curve includes a link to the associated Hilbert modular form, and
to the associated L-function, and (in progress) vice versa.

One difficulty we have encountered in setting up these links on thewebsite, which is
perhaps typical in a large project where many different individuals are providing data,
is to maintain consistency of labelling of objects. Over the field Q(

√
5), the Hilbert

modular forms were computed (inMagma) by John Voight (Dartmouth College) and
Steve Donnelly (Sydney) [7], while the elliptic curves were computed (in SageMath)
by Jonathan Bober (Bristol), William Stein (Washington), Alyson Deines (CCR), and
others [8]. These groups used essentially the same naming convention, but we were
careful to check that the labels of matching objects did match exactly, resulting in one
set of data (the elliptic curves) requiring relabelling.

3 The LMFDB Database

The LMFDB consists of both a database, where the data collection itself is organized
and stored, together with the website www.lmfdb.org. This provides a sophisticated
user interface to the data, has home pages for individual objects in the database, show-
ing links between related objects, and also provides an online repository of knowledge
about L-functions and related objects, through its knowledge database.

Both database and website are currently hosted on servers at Warwick, funded by
EPSRC; until 2013 they were hosted at the University of Washington on NSF-funded
servers administered by William Stein. Plans are also underway to have mirror sites
in other countries: this is an international project.
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The LMFDB is also a group of mathematicians who collaborate to create and
develop the database and its website. We will say more about this collaboration in the
final section.

3.1 The Database and Website Software

Weare using the open-source database softwareMongoDB. This currently holds nearly
a terabyte of data and indices. This choice was made because MongoDB allows data to
be organized in a completely flexible schema, rather than having to specify the schema
for each item in advance as with SQL databases. It also has a powerful Python
interface, PyMongo, which suits the project well, since it allows the website code to
use other Pythonmodules such as Flask (a web framework), and to have access to
all the power of SageMath, another large Python-based open-source mathematical
software project. All of these are open source, which is another essential requirement.
(Note, however, that not all of the data in the database have been computed using
open-source tools.) The website code is a collaborative open-source project hosted at
GitHub (see https://github.com/LMFDB/lmfdb).

Basing all the website code on Python has many advantages. It is relatively easy
to learn to use, which is important since we want the barriers to new people joining our
project to be as low as possible. And it is phenomenally powerful, giving access to a
vast array of additionalmodules for interfacingwith the database (PyMongo), running
the web framework (Flask), web page templating (Jinja), testing, and more.

Anyone contributing to the project who wants to do more than just donate data has
to learn how to use this software. At project workshops we run tutorial sessions for
newcomers, where code is written by beginners under the guidance of more experi-
enced peers. All code is reviewed and tested before being adopted, as well as being
subject to some automated testing.

3.2 Database Organization

The database as a whole consists of around 35 individual databases containing
collections of mathematical objects (including elliptic_curves, hilbert_
modular_forms, and number_fields) and other data such as the knowledge
database, which holds the contents of knowls (see below).

The data are indexed in various ways for faster searching, and, of course, backed
up regularly. Many parts of the database can also be recreated from plain text data files
which are stored in separate Git repositories, also hosted on GitHub.

Each constituent database contains collections of records, and these records hold
the data in a flexible format: additional data fields can be added later.

3.3 Sample Database Entry

To take just one example, the database number_fields contains just one collec-
tion fields, for which a typical entry looks as follows (after being converted by
PyMongo into a Python dictionary):
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{u’_id’: ObjectId(’4cb80fdb5009fb52db0946b6’),
u’class_group’: u’’,
u’class_number’: 1,
u’coeffs’: u’1,0,-1,1’,
u’degree’: 3,
u’disc_abs_key’: u’00123’,
u’disc_sign’: -1,
u’galois’: {u’n’: 3, u’t’: 2},
u’label’: u’3.1.23.1’,
u’ramps’: [u’23’],
u’signature’: u’1,1’,
u’unitsGmodule’: [[3, 1]]}

Here we see the coefficients of the minimal polynomial x3 − x2 + 1 of a generator of
the field stored as coeffs, and the label ’3.1.23.1’ which also uniquely determines
the field. Invariants of the field which are easy to compute on the fly, and to which
we do not need to provide direct access through database queries, need not be stored,
while quantities which might be expensive to compute, or for which we may want to
run searches, are stored and indexed.

This is only a simple example. The database entry for an individual elliptic curve
over Q currently contains 33 fields, some very technical. The number of fields grows
over time as new data are contributed. For example, in 2015 Jeremy Rouse offered
to provide information concerning the 2-adic Galois Representation attached to every
elliptic curve over Q, after developing and implementing an algorithm to determine
this jointly with David Zureick-Brown (see [9]). He provided us with aMagma script
of their implementation, we ran it and uploaded the data, and added a corresponding
section on the home page of every curve showing these additional data.

3.4 Software Choices, Pros and Cons

Using off-the-shelf software has plenty of advantages but will never be perfect for a
mathematical project.

Most mathematicians, even those with substantial computational experience and
expertise, know almost nothing about databases or running websites, and many of the
contributors to the LMFDB knew nothing at all about these before they joined the
project. Decisions about the specific software used by the project was made by those
who did have such experience, notably William Stein (lead developer of SageMath)
and Harald Schilly (another key developer of the SageMathCloud project, https://
cloud.sagemath.com/).

We have already seen some of the advantages of our choice of database, MongoDB.
There are disadvantages too: MongoDB data consists of strings or integers or floating
point values, with strings as keys. Values can also be lists of these, but a serious
deficiency for number-theoretic data is that the integers cannot be larger than 232.
This means that most data fields which hold integers have to be stored as strings, and
this limits functionality, such as searching for the value being in a certain range.
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Similarly, rational numbers cannot be stored as such, or even as a pair of inte-
gers [numerator,denominator] if these could be large, so instead they are stored as
strings such as “1728” or “-122023936/161051”. Building on these, consider-
able thought has to be given as to how to store more complicated data, such as an
element of a number field. Decisions such as these are made by consensus at LMFDB
workshops, since they affect all developers, even though the effects of such decisions
are hidden from users of the website.

4 The LMFDB Website

The LMFDB website serves several purposes. It provides

• a shop window for the data;
• a way to visualize the data, and the connections between different, linked mathe-
matical objects;

• a way to browse types of object;
• a way to search for objects with specified properties;
• a repository of knowledge through its “knowledge database”;
• a source of data for downloading for further work.

Catering for several different audiences at once is hard to get right!

4.1 Technical Support (or Lack of)

The project would benefit greatly from having technical support staff. Our current
grant fromEPSRC does not provide this—it does support six postdoctoral researchers,
who all have a certain amount of experience writing mathematical software, but not
any dedicated software engineers. For this, we are currently relying on charitable
contributions of time. We would not be where we are now, and indeed the website
would never have been launched, without the enormous contributions of one person in
particular: Harald Schilly, a doctoral student in Vienna and software consultant, who
knows more than the rest put together about Python, MongoDB, Flask, and the
rest.

FromSeptember 2015, through theHorizon 2020EuropeanResearch Infrastructure
projectOpenDreamKit (http://opendreamkit.org/), which provides substantial funding
for the development of open-source computational mathematics, we are currently
seeking to employ a software engineer to provide support to the project.

4.2 Home pages

A key organizing principle of the LMFDB is that every object has its own home
page. These have mathematically meaningful, permanent URLs which follow a care-
fully thought out schema. The home pages themselves are created on demand from
templates, filled in with data partly retrieved directly from the database and partly
computed on the fly. For example, the elliptic curve with label 5077a1 has URL
http://www.lmfdb.org/EllipticCurve/Q/5077/a/1.
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Each home page gives a view of the object (depending on its nature), highlighting
its most important properties, with breadcrumbs to show its position in the whole. In
some cases, where the object has some interesting additional historical or mathemat-
ical significance, this can also be shown on its home page. For example, the elliptic
curve 5077a1 was used by Dorian Goldfeld in 1985 to solve Gauss’s class number
problem effectively, by making use of a new connection between the problem and
L-functions of elliptic curves, and this piece of historical information is shown on the
curve’s home page.

A related objects box on each home page provides links between related objects.
For example, from the pages of an elliptic curve, or a number field, or a modular form
there are links to the associated L-function.

Where possible, on the home page of an object, we make it possible to see and
download codewhichwill recreate the object in one of the standard number-theoretical
packages (SageMath, Pari/gp or Magma) and work with it there. In this way,
the LMFDB can be used by students learning a subject who wish to work out their
own examples, as well as researchers wishing to carry out larger-scale investigation
starting from the LMFDB data. A more sophisticated programming interface through
SageMath is also planned.

4.3 Searching and Browsing

Each class of objects in the LMFDB has its own Browse and Search page.
The Browse section is intended to be usable by people who know nothing of the

underlying theory but want to browse through examples without having to type any-
thing or have technical knowledge.

The Search section is more for experts looking for a specific object (possibly by
its label), or for an object with certain properties: “a number field with Galois group
C5 ramified only at p = 5”, or “an elliptic curve with rank 2 and non-trivial Tate-
Shafarevich group”, or “a classical modular form of weight 12 and level 12”. This
leads to a Search Results page listing all database entries which match (if any), with
links to the home pages of each individual matching object.

4.4 Knowledge and Knowls

The knowledge aspect of the LMFDB exists in the first place as a glossary of technical
terms used on the web pages, so the pages themselves do not get cluttered up, and
there is consistency between pages on basic definitions.

The mechanism which serves these is the knowl, created by Harald Schilly and first
demonstrated at an LMFDB workshop. The text expands within the page and can be
dismissed after reading, without any need for “pop-ups” or new pages.

Knowls can be used anywhere on the web—for example, I use them on my own
web page of preprints and publications to display abstracts of papers.

Another good example of their use is in the online undergraduate textbook onLinear
Algebra by Robert Beezer [10]. For more about knowls and how to use them, see the
knowl on the LMFDB itself, http://www.lmfdb.org/knowledge/show/doc.knowl, or
the page http://aimath.org/knowlepedia/.
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The content of knowls can be edited by any project member (someone who has a
login account) and is itself stored in the database.

5 The LMFDB Project

5.1 The LMFDB as a Collaborative Project

The LMFDB was first conceived at an AIM workshop in 2007. It holds regular work-
shops, which are run along the lines of AIM workshops: few talks and a lot of hard
work. As well as individual workshops of around 30 people, there are smaller groups
whomeet towork together on specific projects, and there have also been longer periods
of activity hosted at MSRI, during the semester programme “Arithmetic Statistics” in
2011, and ICERM, during the semester programme “Computational Aspects of the
Langlands Program” in late 2015 (see http://icerm.brown.edu/sp-f15/). All members
of the organizing committee for the latter are LMFDB contributors, and we expect
that the LMFDB will make a substantial leap forward during the semester.

The AIM connection remains strong: both Brian Conrey (Director of AIM) and
David Farmer (Director of Programs at AIM) are number theorists who have been
intimately connected with the project from the start.

We have Editorial and Management Boards, but essentially all decisions are made
by consensus at workshops.

5.2 Funding

During 2008–2012, the LMFDB was funded by NSF FRG Grant DMS:0757627;
currently (2013–2019), it is supported by Programme Grant EP/K034383/1 from the
UK research council EPSRC. The investigators on this are the author and Samir Siksek
(Warwick) and Brian Conrey (AIM and Bristol), and Andy Booker and Jon Keating
(Bristol). David Farmer (AIM) is a project partner, as are FernandoRodriguez-Villegas
(ICTP), William Stein (Washington), and Mike Rubinstein (Waterloo).

These research grants provide funding both for LMFDBworkshops and for servers
hosting the database and website; the NSF FRG grant also paid for some technical
software support.

5.3 Collaboration

TheLMFDBencompasses such awide range ofmathematics, and it is essential to have
an equally wide range of mathematical expertise contributing to the project. Many of
the collaborators on the LMFDB project, who are all listed at http://www.lmfdb.org/
acknowledgment, have contributed not by coding for the website but by providing
the data (without which the project would be nothing!). More contributors are always
welcome.
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