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Abstract—Wireless sensor networks (WSNs) are commonly used
in asset monitoring applications, where it is often desirable for
the location of the asset being monitored to be kept private.
The source location privacy (SLP) problem involves protecting
the location of a WSN source node from an attacker who is
attempting to locate it. Among the most promising approaches
to the SLP problem is the use of fake sources, with much existing
research demonstrating their efficacy. Despite the effectiveness
of the approach, the most effective algorithms providing SLP
require network and situational knowledge that makes their
deployment impractical in many contexts. In this paper, we
develop a novel dynamic fake sources-based algorithm for SLP.
We show that the algorithm provides state-of-the-art levels of
location privacy under practical operational assumptions.

Keywords-Dynamic; Source Location Privacy; Sensor Networks;

I. INTRODUCTION

The ongoing development of wireless sensor network (WSN)
technology has facilitated the development of many novel
applications. One such application is asset monitoring, where
a WSN is used to observe some properties of an impor-
tant asset. Asset monitoring applications can range from
safety-critical monitoring, including military and medical
services [1], to non-critical monitoring, including temperature
and humidity control [2]. Privacy, which can be described
as the guarantee that information can only be observed or
deciphered by those intended to observe or decipher it, is an
important property in asset monitoring [3]. As WSNs operate
in a broadcast medium, attackers can intercept messages and
use the knowledge gained to attack the network or capture
information on the asset.

Threats to privacy in asset monitoring applications can be
classified along two dimensions: (i) content-based threats, and
(ii) context-based threats. Content-based privacy threats relate
to use of the content of the messages broadcast by sensor
nodes. There has been much research in providing content
privacy [4]. In contrast, context-based privacy threats relate
to the context in which messages are broadcasts and how
this can be observed by attackers. Context is a multi-attribute
concept that encompasses situational aspects of broadcast
messages, including environmental and temporal information.

To address content-based privacy threats, nodes launching
attacks are typically modelled as Byzantine nodes [5, 6],
with cryptographic techniques often being used to address the
threat itself [4, 5]. However, as cryptographic techniques can

not provide protection against context-based privacy threats,
alternative approaches must be employed.

In asset monitoring applications the location of a source
node, that is responsible for asset detection, often needs to
be kept private. Typically a WSN will be deployed to monitor
an asset, for example an endangered animal. When the nodes
detect the presence of the asset, which we call the source
nodes, those source nodes will periodically send messages,
over a certain duration, to a dedicated node, called a sink,
for data collection. If the location(s) of the source node(s) is
compromised, either directly or inferred, then an attacker can
capture the asset [3].

It is possible to infer message location information through
various techniques, depending on the power of the attacker.
For example, an attacker may have their own small wireless
network, which we term an attacker network, that is capable
of capturing messages at multiple locations [7]. On the other
hand, an attacker may be a single entity with the same
capabilities of a node in the network who uses the routing
protocol to infer the source’s location [3]. Several possible
techniques to handle the SLP problem have been proposed,
with the technique often being influenced by the attacker
model assumed [8, 9, 10, 11].

Previous fake source algorithms [12] have undertaken a
search through many parameter values looking for performant
settings under certain network configurations. Deploying the
algorithm in a real-world scenario would require simulating
the deployment to find good parameters. This is suboptimal,
and as these parameters are fixed, it does not allow the SLP
algorithm to respond to changing network conditions.

In this paper we present a novel dynamic algorithm to pro-
vide SLP that requires no a priori network knowledge. This
is achieved through the online estimation of the parameters
identified as being significant in [12]. We perform extensive
simulation to demonstrate that the dynamic algorithm pro-
vides state-of-the-art levels of privacy, making it a viable
option for WSN deployment in contexts where less in known
about the operational environment.

The remainder of this paper is as follows: In Section II we
provide a survey of related work. In Section III we develop
a dynamic algorithm for SLP. In Section IV, we outline
the simulation approach employed. The results generated are
presented in Section V and discussed in Section VI. Finally,
Section VII concludes with a summary of contributions.



II. RELATED WORK

The SLP problem first appeared around 2005 in seminal
work by Kamat et al. [3], shortly followed by the work of
Ozturk et al. [13]. The authors of [3] proposed a formalisation
of the SLP problem, and subsequently investigated several
algorithms to enhance SLP. They proposed the fake source
technique, but indicated that it had poor performance despite
being an expensive technique. It has since been shown that
with certain attacker models, fake sources can provide SLP
[14]. They went on to propose an algorithm called phantom
routing, where messages are sent on a random walk of a given
length, followed by a normal flooding. The overall result im-
plied that attackers can not fully trace messages back to a real
source. Further energy-efficient random walk-based routing
algorithms for WSNs have been developed [15, 16], though
little is known as to whether these provide adequate SLP, with
work demonstrating the efficacy of novel attacks on random
walks [17]. Whilst investigating the global eavesdropper
attacker model, [7] proposed every node broadcasting after
τ seconds whether they had a packet to send or not. Recent
work has also contributed the notion of condensation-based
routing, which is a probabilistic broadcast algorithm [18].

The fake source technique, relies on a subset of network
nodes acting as decoys for the real source by becoming
fake sources. Fake sources will periodically broadcast fake
messages that are indistinguishable from the normal messages
sent by the (real) source, with the aim to convince an attacker
that the fake source is actually the source node. When the set
of nodes is the whole network, maximum SLP is achieved [7].
However, this configuration uses a large amount of energy,
which reduces the network’s lifetime. Thus, an intelligent
fake sources selection strategy is required. The fake source
selection problem has been shown to be NP-complete, with a
parameterised network-wide approach proposed to overcome
the problem [12]. It was also shown that there is a trade-off
to be made between SLP and energy used due to message
retransmissions [19].

Combining fake sources and routing protocols, work in [20]
and [21] contributed the notion of CEM and PEM respec-
tively. CEM aims to trap the attacker in a cycle instead
of letting them find the source node whereas PEM draws
the attacker away using extended paths that broadcast fake
messages. In [11] the authors proposed imposing a tree
structure on the network using fake sources at the leafs with a
focus on using the minimal energy possible at nodes one-hop
from the sink node to lengthen the network’s lifetime.

There are several other research directions relating to the
provision of privacy in WSNs. Some have investigated the
problem of base station-location privacy [22] and providing
location privacy to multiple nodes at once [23]. Others have
focused on more powerful attackers, such as global attack-
ers [7] or coordinated multiple attackers [14]. Whilst other
research has focused on temporal privacy [24]. However, there
is currently a lack of SLP-based techniques that provide SLP
that obviates the need for network or application knowledge.
We provide the first such technique in this paper.

III. ONLINE ESTIMATION OF PARAMETERS

The efficiency of the static algorithm proposed in [12]
depends on three parameters which capture the inherent
trade-off between privacy and energy consumption. These
parameters are: (i) the temporary fake source (TFS) duration
(DTFS), (ii) the temporary fake source period (PTFS), and
(iii) the permanent fake source (PFS) period (PPFS). The
authors of [12] provided an exploration of the value space to
understand their impact on SLP. However, these parameters
must currently be fixed for all nodes on the basis of the
deployer’s understanding of the operating environment and
problem domain. Dynamically determining these parameters
on a per node basis, obviating the need to incorporate
operational knowledge, is the thrust of this paper.

In this section, we first provide a brief recap of the static
SLP heuristic of [12] and derive the necessary equations
for estimation of the identified parameters. The algorithm
proposed in [12], henceforth referred to as static, is outlined
below.

1) The source node sends a 〈normal〉 message Ni with
period Psrc, beginning with N1.

2) When the sink receives N1 it waits Psrc

2 then broadcasts
an 〈away〉 message A that floods the network.

3) When a one-hop neighbour of the sink receives A it
becomes a TFS.

4) A TFS broadcasts a 〈fake〉 message Fi with period
PTFS for a duration of DTFS , before becoming a
normal node and broadcasting a 〈choose〉 message C.

5) When a normal node receives C it becomes a PFS if
the node believes itself to be the furthest node in the
network from the sink, otherwise it will become a TFS.
A PFS broadcasts a 〈fake〉 message Fi with period
PPFS .

• When a node receives a previously unencountered Ni or
A or Fi it updates its last seen sequence number for that
message and rebroadcasts the message.

• When a node receives a previously unencountered C it
updates its last seen sequence number for that message.

The three parameters that were fixed in the static algorithm
and need to be estimated in the dynamic algorithm are the
TFS duration DTFS (derived in Subsection III-C), the TFS
period PTFS (derived in Subsection III-D), and the PFS pe-
riod PPFS (derived in Subsection III-F). To aid in calculating
the TFS period, the number of fake messages to send on node
j (#F (j)) is calculated (derived in Subsection III-E).

In order to derive these parameters certain pieces of in-
formation about the network are required. This information
comes in three categories, (i) parameters fixed at compile time
of the firmware that are known by all nodes, (ii) information
needed to derive the parameters but is not required during
network execution and (iii) information that must be calcu-
lated during network execution and passed to other nodes in
the network.

The first piece of information required for implementation
of the algorithm above, is the source period (Psrc), which
is fixed at compile time. This value is varied in the results
presented in Section V.
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The second piece of information is the time it takes for a
message sent by one node to be received and processed by
a neighbour (α). This delay has been the subject of research
as it is an important value to take into account during clock
synchronisation [25, 26]. In the context of this paper, α will
be small compared to the periods at which nodes will be
broadcasting. This means that while it should be considered
in intermediate calculations, it will ultimately be discounted
in our final derivation.

Three pieces of network information are computed during
execution: (i) the sink-source distance (∆ss), (ii) the sink
distance for node n (∆sink(n)) and (iii) the source distance
for node n (∆src(n)). All distances are calculated in hops.

For the following derivations we will look at the times
certain events occur at. t will be used to indicate the current
time. t = 0 is the time at which the source node sends the first
〈normal〉 message. Another piece of information that will be
used in the derivation is the nodes that belong to the 1-hop
neighbourhood of j, this will be denoted 1HOPN(j).

A. Analogy
In tug-of-war, two teams are pulling on either end of a piece
of rope, the team that pulls a marker on the rope over a certain
point wins. When providing SLP we can think of sending
messages as pulling on the rope, the source is on one side
and the fake sources are on the other. The attacker is the
marker that will cause one team to lose, i.e., when it captures
the source because the pull from the source is greater than
the pull from the fake sources. We will often refer to the pull
of the source or the fake sources during our explanations.

B. Message Timings
In order to derive appropriate expressions for DTFS , PTFS ,
and PPFS , and hence develop the dynamic algorithm, the
timings associated with the reception of message can be con-
sidered. Assuming there is no additional algorithm providing
SLP, flooding is used to transmit messages, and that messages
can take the shortest route between nodes; the following is
true of the static algorithm behaviour:
• The ith 〈normal〉 message is sent by the source at time:

Ssrc(Ni) = (i− 1)Psrc (1)

• An attacker will receive N1 at t = α∆ss and at this
time the attacker will have moved to be at (∆ss − 1)
hops from the source. For the ith 〈normal〉 message the
attacker receives, the distance between the attacker and
the source (∆as) will be:

∆as(Ni) = max(0,∆ss − i) (2)

• An attacker will receive the ith 〈normal〉 message at time:

RA(Ni) = Ssrc(Ni) + ∆as(Ni−1)α (3)

When the dynamic algorithm is running the following infor-
mation is known about the earliest time 〈away〉 messages will
be sent and received.
• The 〈away〉 message A is sent by the sink at time:

Ssink(A) = Ssrc(N1) + α∆ss +
Psrc

2
(4)

• Node j will receive A at the earliest at time:

Rj(A) = Ssink(A) + α∆sink(j) (5)

When node j receives an 〈away〉 message A (and its hop
count is 0), or it receives a 〈choose〉 message the node
becomes a TFS and starts broadcasting 〈fake〉 messages. The
time at which j becomes a TFS is τTFS(j), where:

τTFS(j) =


Rj(A) if j ∈ 1HOPN(sink)

τTFS(k) +
DTFS(k) +
α

if k ∈ 1HOPN(j) ∧
∆sink(k) < ∆sink(j)

(6)

The number of N messages sent between t = 0 and t =
τTFS(j) is Σj(N ):

Σj(N ) =

⌈
τTFS(j)

Psrc

⌉
(7)

C. Calculating TFS Duration

1) Intuition: When a TFS is allocated, because it is by
nature temporary, it needs to have a finite duration during
which it exerts a pull on the attacker greater than that of the
source. The source period defines the pull that the source
executes over the attacker, so the TFS needs to execute a pull
greater than the source over this period. The source period
is available to all nodes as a fixed constant, but to ensure
that the network considers delays we need to instead defined
the duration in terms of the time at which a node becomes
a TFS (τTFS(j)) and how long the TFS has to broadcast
messages until the attacker receives the next normal message.
This better captures the relationship than just using the source
period.

2) Derivation: To calculate DTFS we set the duration to
be the difference in time between the TFS sending the first
〈fake〉 message and the attacker receiving the next 〈normal〉
message, less the time it takes to send the next 〈choose〉
message:

DTFS(j) = RA(NΣj(N )+1)− τTFS(j)− α (8)

For the case ∆sink(j) = 1, the attacker will have already
received N1 and the next 〈normal〉 message it will receive
is N2. The following timing information is known about the
nodes 1-hop away from the sink:

τTFS(j) = α∆ss +
Psrc

2
+ α (9)

RA(N1) = α∆ss (10)
RA(N2) = Psrc + α(∆ss − 1) (11)

Using this information the duration for j ∈ 1HOPN(sink) is:

DTFS(j) = RA(N2)− τTFS(j)− α =
Psrc

2
− 3α (12)

The next step is to calculate the duration for nodes that are
n-hops away from the sink, where n > 1. In this case the
attacker has now received Nn and the duration of this TFS
is to last until Nn+1 is received. The knowledge about node
k that is (n−1)-hops from the sink, can be used to calculate
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when the node j that is n-hops from the sink becomes a TFS
at τTFS(j).

τTFS(j) = τTFS(k) +DTFS(k) + α

= τTFS(k) + (RA(Nn)− τTFS(k)− α) + α

= RA(Nn)

= (n− 1)Psrc + α(∆ss − (n− 1))
(13)

RA(Nn+1) = nPsrc + α(∆ss − n) (14)

Therefore the duration is given by:

DTFS(j) = RA(Nn+1)− τTFS(j)− α = Psrc − 2α (15)

For nodes where ∆sink(j) > 1 the duration is equal to the
time that the attacker would receive the next 〈normal〉 mes-
sage, less the time it received the current 〈normal〉 message
and α.

DTFS(j) = RA(Ni+1)−RA(Ni)− α = Psrc − 2α (16)

So for any node j the DTFS(j) will be:

DTFS(j) =

{
Psrc

2 − 3α if ∆sink(j) ∈ {1,⊥}
Psrc − 2α otherwise

(17)

As α is not available to the nodes during runtime, α is ignored
in the final result.

DTFS(j) =

{
Psrc

2 if ∆sink(j) ∈ {1,⊥}
Psrc otherwise

(18)

To aid in handling imperfect passing of information around
the network, when the node’s distance to the sink ∆sink(j) is
unknown (i.e., set to ⊥) the smaller duration should be used.

3) Code: The implementation of this follows from the
derivation. In the static algorithm where the fixed constant
DTFS was used, the function DTFS(j) should now be called.

Algorithm 1 Dynamic - DTFS : Modified actions when node
is Normal
1: receive Away

〈
seqNo, sinkD, ssd, maxHop, alg

〉
→

. . .
2: if awaySeqNo < seqNo then

. . .
3: if sinkD = 0 then
−4: BECOMEFAKE(D← DTFS , P← PTFS , C ←〈Away〉)
+4: BECOMEFAKE(D← DTFS(), P← PTFS , C ←〈Away〉)
5: chooseSeqNo ← chooseSeqNo + 1

. . .
6: receive Choose

〈
seqNo, sinkD, ssd, maxHop, alg

〉
→

. . .
7: if chooseSeqNo < seqNo ∧ SHOULDPROCESSCHOOSE(A) then
8: chooseSeqNo ← seqNo
9: if isPFSCand then

10: BECOMEFAKE(D←∞, P← DPFS , C ←〈Choose〉)
11: else
−12: BECOMEFAKE(D← DTFS , P← PTFS , C ←〈Choose〉)
+12: BECOMEFAKE(D← DTFS(), P← PTFS , C ←〈Choose〉)

Algorithm 2 Dynamic - DTFS : DTFS(j)

+1: function DTFS ( )
+2: if ∆sink ∈ {1,⊥} then return Psrc

2
+3: else return Psrc

D. Calculating TFS Period

1) Intuition: The TFS period defines how often messages
are sent, when combined with the TFS duration it can define
or be defined in terms of the number of 〈fake〉 messages that
will be sent over the duration. If a TFS was to send n fake
messages in this time period we might expect the attacker
to be pulled back n hops. When considering collisions it is
unlikely that the number of messages that reach the attacker
from the right direction will be as high as n. Ideally the TFSs
would send as many fake messages as would be needed to pull
the attacker back from its actual position, but as we assume
no node in the network can determine where the attacker is,
the TFSs needs to pull back from a known distance elsewhere
or estimate the attacker’s position.

A TFS must send at least 1 〈fake〉 message to keep at
parity with the number of 〈normal〉 messages sent. c > 1
messages need to be sent to ensure that at least one 〈fake〉
message reaches the attacker when collisions occur. To pull
an attacher back h hops, h×c different 〈fake〉 messages need
to be sent.

2) Derivation: To establish PTFS we calculate the ratio
between the TFS duration DTFS(j) and the number of 〈fake〉
messages to send #F (j) (to be defined in Section III-E). Note
that PTFS can not allowed to go below 3α as collisions would
then occur between the current and the previously broadcast
〈fake〉 message.

PTFS(j) = max(3α,
DTFS(j)

#F (j)
) (19)

Again as α is unavailable PTFS(j) is finally defined without
it. A caveat is that this requires #F (j) to be defined in such
a way that it does not lead to PTFS(j) being set to 3α or
less.

PTFS(j) =
DTFS(j)

#F (j)
(20)

3) Code: When a node becomes a TFS, instead of ini-
tialising the TFS period to the fixed constant used in the
static algorithm PTFS the function PTFS(j) should be used
instead.

Algorithm 3 Dynamic - PTFS : Modified actions when node
is Normal
1: receive Away

〈
seqNo, sinkD, ssd, maxHop, alg

〉
→

. . .
2: if awaySeqNo < seqNo then

. . .
3: if sinkD = 0 then
−4: BECOMEFAKE(D← DTFS(), P← PTFS , C ←〈Away〉)
+4: BECOMEFAKE(D← DTFS(), P← PTFS(), C ←〈Away〉)
5: chooseSeqNo ← chooseSeqNo + 1

. . .
6: receive Choose

〈
seqNo, sinkD, ssd, maxHop, alg

〉
→

. . .
7: if chooseSeqNo < seqNo ∧ SHOULDPROCESSCHOOSE(A) then
8: chooseSeqNo ← seqNo
9: if isPFSCand then

10: BECOMEFAKE(D←∞, P← DPFS , C ←〈Choose〉)
11: else
−12: BECOMEFAKE(D← DTFS(), P← PTFS , C ←〈Choose〉)
+12: BECOMEFAKE(D ← DTFS(), P ← PTFS(),
C ←〈Choose〉)
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Algorithm 4 Dynamic - PTFS : PTFS(j)

+1: function PTFS ( )
+2: return DTFS()÷#F ()

E. Calculating Number of Fake Messages to Send

1) Derivation: The final setting for TFSs is number of
messages a TFS needs to send. Two approaches are provided
to calculate this setting.

a) Pull From Attacker:

#F (j) = max⊥(1, 2∆sink(j)) (21)

This approach aims to pull the attacker back from its esti-
mated position assuming no SLP protection. In this case we
assume that TFS nodes propagate away from the source at the
same rate that an attacker moves towards the source. This can
be a reasonable assumption when the duration of the TFS is
equal to the source period. This means that a TFS will need
to send twice the ∆sink(j) to dissuade the attacker back from
its position. ∆sink(j) message are needed to pull back from
the sink to the TFS, another ∆sink(j) messages are needed
to pull the attacker from its position back to the sink.

b) Pull From Sink:

#F (j) = max⊥(1,

∆sink(j) if ∆src(j) = ⊥ ∨
∆ss = ⊥

∆src(j)−∆ss otherwise
)

(22)
This approach aims is to pull the attacker back from the sink’s
location. This approach is less aggressive compared to the
previous approach and isn’t as focused on trying to pull the
attacker all the way back, but instead keeping it in a location
between the TFS and the source. An important benefit of
this approach is that ∆src(j) −∆ss is used to calculate the
sink distance. This means that a TFS closer to the source
will send fewer messages than TFS further away. Leading
to better message sending patterns that should prefer leading
the attacker away from the source. We explore this further
in Section V, where the implications for privacy and energy
consumption are considered for each approach.

2) Code: Two #F (j) algorithms are presented here, only
one is chosen to be active at compile time.

Algorithm 5 Dynamic - #F : #F (j) - Pull From Attacker
+1: function #F ( )
+2: return max⊥(1, 2∆sink)

Algorithm 6 Dynamic - #F : #F (j) - Pull From Sink
+1: function #F ( )
+2: if ∆src = ⊥ ∨∆ss = ⊥ then return max⊥(1, ∆sink)
+3: else return max⊥(1, ∆src −∆ss)

Algorithm 7 Dynamic - #F : Modified Receive 〈choose〉 by
Normal nodes
1: receive Choose

〈
seqNo, sinkD, ssd, maxHop, alg

〉
→

+2: ∆sink ← min⊥(∆sink, sinkD + 1)
3: . . .

F. Calculating PFS Period

1) Intuition: Unlike when calculating the TFS period,
the PFS is ∞ meaning reasoning about a fixed number of
messages to be sent in a given time period isn’t possible. So
determining the PFS period needs a different approach.

By the time that a PFS has been created, many TFSs should
have been involved with pulling the attacker away from the
source. This means that the PFS shouldn’t need to send as
many 〈fake〉 messages as a TFS. It will still need to send at
least 1 〈fake〉 message for each 〈normal〉 message sent by the
source, plus some extra to consider collisions.

2) Derivation: If an attacker can be guaranteed to have
been moved far enough from the source by TFSs then having
PPFS(j) = Psrc would be preferable. However, the attacker’s
position should not be relied upon to be far enough away,
meaning the algorithm requires PPFS(j) < Psrc, such that
any PFSs retains the ability to pull back the attacker and cope
with collisions of 〈fake〉 messages.

A lower bound on the period PPFS(j) ≥ α exists, as the
PFS cannot physically send messages more often than that.
There will also exist an upper bound of PPFS(j) < Psrc as
the PFS should not broadcast slower than the source.

The technique used here is to set the PFS period to the
source period based multiplied the receive ratio of 〈fake〉
messages at the source (ψsrc(F)). This is justified because it
means for every 〈normal〉 message sent the PFS should send
enough 〈fake〉 messages for the attacker to receive at least
one 〈fake〉 message.

PPFS(j) = max(Psrc × ψsrc(F), 3α) (23)

In order to calculate this receive ratio, the source node needs
to keep a record of the number of 〈fake〉 messages sent and
received. It can do this by using the sequence counter as
the number sent and then record the number of times that
counter was updated as the number received. This information
must be transmitted back to the PFS, where it is needed,
using 〈normal〉 messages. This is best effort as a PFS may
not receive every 〈normal〉 message sent.

ψsrc(F) =
fake messages received + 1

fake sequence number + 1
(24)

Removing the α terms this gives:

PPFS(j) = Psrc × ψsrc(F) (25)

3) Code: The code for this implementation requires gath-
ering extra knowledge about srcFakeIncs and srcFakeNo
and passing it to other nodes in the network using 〈normal〉
messages.

Algorithm 8 Dynamic - PPFS : PPFS(j) and ψsrc(F)

+1: function PPFS ( )
+2: return Psrc × ψsrc(F)

+3: function ψsrc(F )
+4: return (srcFakeIncs + 1)÷ (srcFakeNo + 1)
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Algorithm 9 Dynamic - PPFS : Modified actions when node
is Normal
1: receive Choose

〈
seqNo, sinkD, ssd, maxHop, alg

〉
→

. . .
2: if chooseSeqNo < seqNo ∧ SHOULDPROCESSCHOOSE(A) then
3: chooseSeqNo ← seqNo
4: if isPFSCand then
−5: BECOMEFAKE(D←∞, P← PPFS , C ←〈Choose〉)
+5: BECOMEFAKE(D←∞, P← PPFS(), C ←〈Choose〉)
6: else
7: BECOMEFAKE(D← DTFS(), P← PTFS(), C ←〈Choose〉)

Algorithm 10 Dynamic - PPFS : Modified Source Actions
1: receive Fake

〈
seqNo, . . .

〉
→

2: if fakeSeqNo < seqNo then
+3: srcFakeIncs ← srcFakeIncs + 1
4: . . .
5: timeout (normalTimer) →
6: normalSeqNo ← normalSeqNo + 1
−7: BCAST Normal

〈
normalSeqNo, 0, j, firstSrcD, ∆ss

〉
+7: BCAST Normal

〈
normalSeqNo, 0, j, firstSrcD,
∆ss, fakeSeqNo, srcFakeIncs

〉
8: normalTimer ← Psrc

Algorithm 11 Dynamic - PPFS : Modified Receive 〈normal〉

1: receive Normal
〈

seqNo, srcD, srcID, maxHop,
ssd, fakeNo, fakeIncs

〉
→

+2: srcFakeNo ← MAX(srcFakeNo, fakeNo)
+3: srcFakeIncs ← MAX(srcFakeIncs, fakeIncs)
4: . . .
5: if normalSeqNo < seqNo then
6: . . .
−7: BCAST Normal

〈
seqNo, srcD + 1, srcID,
MAX(firstSrcD,maxHop), ∆ss

〉
+7: BCAST Normal

〈
seqNo, srcD + 1, srcID,
MAX(firstSrcD,maxHop), ∆ss,
srcFakeNo, srcFakeIncs

〉

G. Additional Dynamic Algorithm Implementation

One final change was included and that was to increase the
area around the source node in which 〈choose〉 messages are
ignored. By ignoring 〈choose〉 messages in this area, fake
sources will not be allocated in the direction of the source.

Algorithm 12 Dynamic: Modified ShouldProcessChoose
1: function SHOULDPROCESSCHOOSE(A)
2: switch A do
3: case GenericSpecialisation
−4: return ¬(∆ss 6= ⊥ ∧∆src ≤ 3

4
∆ss)

+4: return ¬(∆ss 6= ⊥ ∧∆src ≤ 4
5

∆ss)

5: . . .

IV. EXPERIMENTAL SETUP

In this section we describe the simulation environment and
protocol configurations that were used to generate the results
presented in Section V.

A. Simulation Environment and Network Configuration

The TOSSIM (V2.1.2) simulation environment was was used
in all experiments [27]. TOSSIM is a discrete event simulator

capable of accurately modelling sensor nodes and the modes
of communications between them.

A square grid network layout of size n × n was used in
all experiments, where n ∈ {11, 15, 21, 25}, i.e., networks
with 121, 225, 441 and 625 nodes respectively. The node
neighbourhoods were generating using LinkLayerModel with
the parameters shown in table I. Noise models were created
using the first 1000 lines of meyer-heavy.txt1. A single
source node generated messages and a single sink node
collected messages. The source and sink nodes were distinct
and assigned positions in the SourceCorner configuration
from [12]. The rate at which messages from the real source
were generated was varied, as shown in Section V. Exactly
500 repeats were performed for each source location, and
for each combination of parameters. Nodes were located 4.5
meters apart. The node separation distance was determined
experimentally, based on observing the pattern of transmis-
sions in the simulator. This separation distance ensured that
messages (i) pass through multiple nodes from source to sink,
(ii) can move only one hop at a time, and (iii) will usually
only be passed to horizontally or vertically adjacent nodes.

TABLE I: LinkLayerModel Parameters

Name Value
PATH LOSS EXPONENT 4.7
SHADOWING STANDARD DEVIATION 3.2
D0 1.0
PL D0 55.4
NOISE FLOOR −105
S [0.9 −0.7; −0.7 1.2]
WHITE GAUSSIAN NOISE 4

B. Attacker Model
A reactive attacker model based on the patient adversary
introduced in [3] is used. The attacker initially starts at the
sink. When a message is received the attacker will move
to the 1-hop source’s location if that message has not been
received before. To detect if a message has been received
before, we assume that an attacker has access to the message
type and sequence number. Once the source has been found
the attacker will no longer move. This is commensurate with
the attack models used in [12], [19] and [14].

C. Safety Period
A metric called safety period was introduced in [3] to

capture the number of messages needed to capture the source.
The higher the safety period is, the higher is the privacy level.
The problem with this metric is that simulation time may be
extremely large. We thus use an alternative, but analogous,
definition for safety period: for each network size and source
rate, using flooding, we calculate the average time it takes
to detect the real source (i.e., capture the asset). Since this
value is for normal flooding network, we use a larger value
of safety period to allow the attacker the chance of rectifying
a move in the wrong direction. The safety period, for each
network size and rate, for flooding is shown in table II. The
safety period value used is double the average time taken for
source detection.

1meyer-heavy.txt is a noise sample file provided with TOSSIM.
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TABLE II: Safety period for each network size and send rate.

Network Size Safety Period (seconds)
1/sec 2/sec 4/sec 8/sec

11× 11 47.30 25.16 13.35 7.51
15× 15 72.30 36.54 18.50 10.05
21× 21 103.76 53.59 27.58 14.01
25× 25 126.14 63.21 33.19 17.06

D. Simulation Experiments

An experiment constituted a single execution of the simu-
lation environment using a specified protocol configuration,
network size and safety period. An experiment terminated
when the source node had been captured by an attacker or
the safety period had expired. An attacker was implemented
based on the log output from TOSSIM. It maintains internal
state about its location using node identifiers. When a node re-
ceives a message, if the attacker is at that location it will move
based on the attacker model specified in Subsection IV-B.

V. RESULTS

In this section we describe the results of the dynamic al-
gorithm via a comparison between them and the static SLP
algorithm.

From our simulations we collected various metrics about
the performance of the static and dynamic algorithms. Two
of those metrics are included in the results graphs: i) capture
ratio and ii) average number of fake messages sent. Capture
ratio is defined as the number of simulations in which the
source was captured by the attacker within the safety period
(see Subsection IV-C). Capture ratio is a metric that can be
used to analyse how well the algorithm provides SLP. The
second metric, average number of fake messages sent is the
average of the total number of fake messages sent by all
nodes in each simulation. This metric is useful in providing
the amount of energy that the SLP algorithms use to produce
fake messages to pull the attacker away.
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(c) Source Period 0.25 seconds
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(d) Source Period 0.125 seconds

Fig. 1: The capture ratio for two dynamic #F (j)
approaches and the minimum and maximum static results.

In terms of the dynamic algorithm’s ability to provide SLP,
we see that the capture ratio results tend to lie between
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Fig. 2: The average number of fake messages sent for two
dynamic #F (j) approaches and the minimum and

maximum static results.

the best and worst static results for the two slower source
periods 1.0 and 0.5 seconds. For the periods of 0.25 and
0.125 seconds the capture ratios tend to be similar or worse
than the worst case static results. It would appear that the
dynamic algorithm performs better for longer source periods
than slower.

There are a couple of plausible causes of this behaviour.
It could be that the fake message rates are too high for these
shorter periods, leading to a greater number of collisions and a
reduction in the pull the fake sources have over the attacker.
However, we believe the most likely one is that, at those
very low periods, the message processing delay at each node
has higher significance. However, we assumed no processing
delay at the nodes. Specifically, at such low periods, the delay
in processing messages is non-negligible with respect to the
source period.

In most cases the Pull Attacker approach shows a
greater energy usage and a greater capture ratio than the
Pull Sink approach. This was caused by the definition of
the Pull Attacker approach calling for more messages to
be sent than the Pull Sink approach. As shown in [19] this
is one of the outcomes of increasing the number of messages
sent, as more collisions occur leading to reduced privacy
provided even as more energy is used. One conclusion of
this is that there is a maximum distance a fake source can
attempt to pull an attacker back in a certain time period. This
distance is not limited by the maximum rate at which a node
can broadcast messages, but is in fact lower that this rate.
Instead the maximum distance is limited to be the point before
increasing the rate would leads to an increase in collisions
that would decrease the SLP provided. Examining this limit
further may feedback into better settings for the TFS duration.

The average number of fake messages sent by either of
the dynamic approaches falls between the minimum and
maximum results for the static algorithm. The convenience of
network determined parameters comes with a trade-off con-
sisting of a small reduction in privacy in some circumstances.
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VI. DISCUSSION

A. Assumptions on the Magnitude of α

The time between one node sending a message and another
node receiving a message (denoted α) has been assumed to be
a small value. During simulations α was observed to be about
6ms. In our derivation of the dynamic parameters we made
the assumption that α would have a negligible impact when
it turned up in the penultimate derivation of the parameters,
that allowed it to be removed from the final derivation. Doing
so opens the fake sources to potentially become out-of-sync
with the normal source. If α is small then it is unlikely that
this will have a large impact as collisions are likely to be a
bigger factor. If α is large with respect to the source period,
then the fake sources could become out-of-sync quickly and
often. We predict that this could lead to poor performance,
meaning that in this case the extra effort to estimate and use
α may be necessary. Although we would be surprised to find
WSN radio transmissions of hundreds of bytes lasting in the
region of seconds.

B. TFS Duration

In this work the TFS duration is calculated based on the time
between a node becoming a TFS and an attacker receiving the
next 〈normal〉 message. Previously it has been observed that
longer TFS durations tended to produce lower capture ratios
[12]. Changing the TFS duration to pull back over more than
one 〈normal〉 message may improve the privacy provided.

VII. CONCLUSION

In this paper, we have developed a novel SLP algorithm that
performs online estimation of parameters, making it attractive
for deployment. We have derived the conditions required for
estimating parameters that are paramount for the efficiency of
the SLP protocol. We have shown that, in general, the results
obtained by the dynamic algorithm are comparable to state-
of-the-art results when performing a traversal of the value
space of the important parameters.
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