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ABSTR ACT: Small colony variant (SCV) bacteria arise spontaneously within apparently homogeneous microbial populations, largely in response to 
environmental stresses, such as antimicrobial treatment. They display unique phenotypic characteristics conferred in part by heritable genetic changes. 
Characteristically slow growing, SCVs comprise a minor proportion of the population from which they arise but persist by virtue of their inherent resilience 
and host adaptability. Consequently, SCVs are problematic in chronic infection, where antimicrobial treatment is administered during the acute phase of 
infection but fails to eradicate SCVs, which remain within the host causing recurrent or chronic infection. This review discusses some of the phenotypic and 
genotypic changes that enable SCVs to successfully proliferate within the host environment as potential pathogens and strategies that could ameliorate the 
resolution of infection where SCVs are present.
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Discovery of Small Colony Variants (SCVs)
Pure bacterial cultures are not genetically homogeneous, 
and their behavior is determined by genomic characteris-
tics, such as a high degree of plasticity. Slow-growing sub-
populations of bacteria in pure culture have been described 
from as early as 1913; reported to emerge in response to 
diverse environmental pressures, they were termed SCVs 
because they formed pin-prick-sized colonies when cul-
tured on solid media.1,2 Initially, SCVs were thought of as 
morphological variants with a secondary role in infectious 
disease because of their markedly diminished pathogenic-
ity and impaired production of virulence factors.2 Further-
more, it was believed that the G forms, as they were referred 
to, may even constitute an ordinary part of the microbial 
life cycle.3,4 It was not for many decades following their 
initial phenotypic characterization that the pathogenic 
potential of SCVs was realized and their presence within a 
microbial community was regarded as more than a labora-
tory curiousity.5,6

Early studies clarified the link between environmen-
tal stress and the phenotypic changes that became associ-
ated with SCVs, including atypical colony morphology, 
slow growth rate, lack of pigmentation, reduced hemolytic 
activity, reduced coagulase activity, reduced carbohydrate 
utilization, low virulence potential, and elevated antibiotic 

resistance (Fig. 1).7–9 Indeed, the growth rate of SCVs has 
been estimated to be approximately nine times slower than 
that of the progenitor organisms.10 As such, SCVs are now 
better defined as a microbial subpopulation constituting a 
naturally occurring, slow-growing but diverse bacterial 
morphotype.7,11 Clinically, this is problematic; the pres-
ence of SCVs during infection is correlated with recurrent 
or chronic infectious disease. A combination of extended 
incubation time in addition to altered phenotypic and bio-
chemical traits often means that SCVs in patient samples 
are overlooked by clinical microbiologists utilizing conven-
tional diagnostic tests. This results in the cessation of anti-
microbial treatment before SCVs are effectively cleared from 
an infection; therefore, they persist causing recurrent and 
chronic infection.7,12

Various environmental stimuli appear to result in phe-
notypically distinct varieties of SCV.7,13 Some undergo per-
manent genetic changes, whereas a subpopulation reverts to 
a wild-type (WT) phenotype or to a different phenotype 
that is distinct from both the progenitor and the SCV upon 
repeated subculture (revertant phenotype) (Fig. 1).14 Pheno-
typic reversion, where genetic mutations have not occurred, 
happens rapidly and circumvents any permanent fitness 
costs.14 The tendency to permanent genetic alteration as com-
pared to phenotypic reversion seems to depend largely on 
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the nature of the original environmental pressure.7 There is 
not always commonality between phenotypic and genotypic 
changes within different SCV populations, but there are a 
number of prevalent auxotrophies, characterized initially 
in Staphylococcus spp., including hemin, thiamine, menadi-
one, thymidine, or unsaturated fatty acids.7,14–17 Conversely, 
some SCVs do not demonstrate these auxotrophies,18–21 for 
example, those of Staphylococcus aureus, selected by Triclo-
sanTM treatment, which revert neither upon supplementa-
tion with growth factors nor by repeated subculture.22,23 
The reasons why SCVs are phenotypically diverse remain 
unclear beyond an unproven link to certain environmental 
contraints.7,24,25

Unique Phenotypic Traits Associated with SCVs
In addition to the auxotrophies described above, there are a 
number of other phenotypic characteristics typically associ-
ated with SCVs that likely contribute to their ability to persist 
under adverse growth conditions. One such conventional SCV 
attribute is diminished electron transport, observed in various 
species of Staphylococcus, Enterococcus, and Pseudomonas. This 
phenotype arises as a consequence of mutations impairing the 
function of menadione, hemin, and thiamine, all of which are 
required for the biosynthesis of components of the electron 
transport chain (Table 1).7,14–16,26,27 Ordinarily, menadione is 
isoprenylated to form menaquinone, the acceptor of electrons 
from nicotinamide adenine dinucleotide (NADH)/flavin 
adenine dinucleotide (FADH2) in the electron transport 
chain, which does not occur in some SCVs.10,28,29 Subsequent 
reduced electron transport results in a decreased electrochem-
ical gradient and therefore reduced synthesis of adenosine 
triphosphate (ATP). Large amounts of ATP are required for 
cell wall biosynthesis, and electron transport is directly linked 
to the biosynthesis of carotenoid pigments, rendering many 
SCVs of pigmented species colorless.

The unique cell wall structure of SCVs is believed to con-
fer some degree of protection from stress and is allied with 
aberrant electron transport. Abnormal cell division has been 
described for SCVs of S. aureus, causing inappropriate cell 

wall biosynthesis and growth of unusually large cells.21,30–32 
SCVs of S. aureus remain to be some of the best character-
ized, and when examined by electron microscopy are revealed 
to be a heterogeneous population of differing size, including 
“empty” cells and substantial amounts of debris.29,30,33 More-
over, while WT S. aureus are spherical, with thin cell walls 
and a relatively uniform cytoplasm,34,35 their SCV counter-
parts tend to exhibit much thicker cell walls with irregular 
cytoplasm of dense granular appearance at the periphery and 
fine granular materials at the center.34 Additionally, SCVs 
with incomplete, branched, or multiple cross walls without 
regular cell separation are often also observed.7,29,30 Ghost or 
empty cells (as mentioned above and observed also for Entero-
coccus spp.) devoid of cytoplasmic content and chromosomal 
or plasmid DNA and with defective cell walls have also been 
documented; these are categorized as SCVs despite not being 
viable microorganisms.30–35

Characteristically, in addition to the aforementioned 
phenotypic changes, the small regulatory RNA molecule, 
RNAIII, is usually absent from SCVs and has been partic-
ularly well defined for SCVs of S. aureus.13,36,37 RNAIII is 
known to regulate virulence factors, including exoproteins, 
and cell wall-associated proteins, including adhesins, as well 
as act as the effector of agr-mediated quorum sensing. RNAIII 
positively regulates the production of toxins and proteases but 
negatively regulates adhesins, meaning that SCVs tend to be 
less toxigenic and more prone to adhesion to biotic or abiotic 
surfaces with enhanced intracellular persistence.38,39 Virulence 
during infection is reliant on initial colonization of the host; 
host–pathogen interactions prevail via bridging mechanisms 
involving bacterial adhesins and corresponding host proteins.40 
SCVs adhere to host cells in much the same way as WT micro-
organisms; the major difference is that SCVs express many 
more surface adhesins, thus favoring interaction with the host.

Once attached to the host cell, SCVs, like their WT 
counterparts, induce host-cell changes by actin rearrange-
ment, which mediates internalization, effectively hijacking 
non-phagocytic cells (including endothelial cells, fibroblasts, 
osteoblasts, and keratinocytes).41,42 Pathogens that are not 

Figure 1. WT organisms undergo a shift to the SCV phenotype under the conditions of stress, where they exhibit a slower growth rate but increased 
antibiotic resistance. They can revert to a WT-like (indicated by a dashed line to denote that WT-like organisms are not identical to the original WT 
progenitor) or alternative revertant (R) phenotype when the environmental stress is removed, regaining a faster growth rate but becoming more 
susceptible to antibiotic treatment.
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Table 1. Characteristics associated with SCVs.

GENE PROTEIN FUNCTION VARIATION EXAMPLE ORGANISM(S) SELECTED 
REFERENCES

Altered interaction with the host
clfA Clumping Factor A Fibrinogen binding Increased expression in 

hemB background

Staphylococcus spp.

57

fnb Fibronectin Binding  
Protein

Fibronectin binding Increased expression in 
hemB background

57

spa Protein A Surface protein, inhibits 
phagocytosis

Transcription reduced in 
SCV: avoidance of host 
immunity

57

Altered biosynthesis or enzymatic pathways
hemL Glutamate 1-semi- 

aldehyde aminotransferase
Porphyrin biosynthesis Gene interruption causing 

persistent infection
Staphylococcus spp.
Pseudomonas aeruginosa 
Escherichia coli 
Salmonella enterica 
sv. Typhimurium 
Enterococcus spp.

52

hemB Porphobilinogen synthase Porphyrin biosynthesis Gene interruption causing 
persistent infection

52

menD 2-succinyl-6-hydroxy-2,4- 
cyclohexadine-1-carboxylate 
synthase

Cytochrome biosynthesis Gene interruption causing 
persistent infection

Staphylococcus spp. 
Pseudomonas aeruginosa 
Enterococcus spp.

7

ctaB Haem-O-monooxygenase Cytochrome biosynthesis Gene interruption causing 
persistent infection

Staphylococcus aureus 7, 39

citB Aconitase Catalyses isomerization  
of citrate to isocitrate in the 
tricarboxylic acid cycle

Down-regulated in hemB 
background

Staphylococcus spp. 13

aroD 5-dehydroquinate hydrolyase Menadione biosynthesis Defective in SCV: 
increased persistence

Staphylococcus spp. Salmo-
nella enterica sv. Typhimurium

26

ldh Lactate dehydrogenase Converts pyruvate to  
lactate in hypoxic/anoxic  
conditions

Defective in SCV: 
increased persistence

Staphylococcus spp. 26

thyA Thymidylate synthase Catalyses the conversion 
of deoxyuridine monophos-
phate (dUMP) to deoxythy-
mydine monophosphate 
(dTMP)

Varied mutations resulting  
in thymidine auxotrophy

Stenotrophomonas maltophilia 
Staphylococcus aureus 
Pseudomonas aeruginosa 
Enterococcus spp.

13, 14

Transcriptional regulation
agr Accessory gene regulator Global virulence regulator—

quorum sensing
Impaired expression in  
SCV: chronicity

Staphylococcus aureus 38, 39

sarA Accessory gene regulator Global virulence regulator—
biofilm formation

Impaired expression in  
SCV: chronicity

Staphylococcus aureus 60, 62

sigB Alternative stress regulator Alternative stress 
regulator—intracellular 
persistence

Down-regulated or  
silenced in SCV: increased 
intracellular persistence 
and resistance to hydrogen 
peroxide stress

Bacillus cereus Staphylococ-
cus aureus

58, 59, 61, 63

Miscellaneous function
mutL Member of MutHLS complex Methyl-directed mismatch 

repair (MMR) system
Gene truncated due to  
frameshift mutations in  
thymidine-dependent SCV  
isolates: hypermutability

Pseudomonas aeruginosa 65

nupC Nucleoside permease High affinity nucleoside 
transporter

Gene mutations in  
thymidine-dependent  
SCVs

Stenotrophomonas maltophilia 
Staphylococcus aureus

7

hla α-hemolysin Initiates eukaryotic cell  
apoptosis and necrosis

Expression impaired in 
SCV: attenuated virulence 
and enhanced intracellular 
persistence

Staphylococcus aureus 7

 

categorized as SCVs utilize the same mechanism of inter-
nalization, but crucially, SCVs are far more efficient at this 
process than their progenitors.43 Fundamentally, this intra-
cellular protection affords additional defense against immune 

clearance or antimicrobial treatment. Owing to their reduced 
toxicity, the uptake of SCVs in this manner occurs in vitro 
without damage to host cells.44 Once inside the host cell, 
intracellular survival is critical to retain protection.40 SCVs 
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characteristically proliferate intracellularly, more successfully 
than their progenitors, which is a trait that directly contrib-
utes to antibiotic treatment failure and poor prognosis in 
patients.45–47 A marked increase in the expression of member 
genes of the arginine deaminase pathways in SCVs of S. aureus 
results in the reduced function of vital host enzymes involved 
in the immune response and is believed to be key to successful 
intracellular persistence.36

In addition, SCVs evade the immune response and persist 
intracellularly by escaping from intracellular phagosomes,43,48 
thus avoiding the hydrolytic activity of lysosomes.48 It has 
been proposed that unlike other intracellular pathogens, once 
in the cytoplasm, SCVs may no longer disrupt normal actin 
polymerization of the cells in which they reside, meaning that 
they do not elicit normal intracellular cytokine and chemo-
kine defense mechanisms.40 Therefore, the ability of SCVs to 
dampen the proinflammatory response means that the attenu-
ated virulence associated with the SCV phenotype is in fact 
favorable for their survival and prolonged persistence within 
the host.46 The recovery of SCVs from the cases of asymp-
tomatic infection supports this theory of persistence through 
diminished host damage.48,49

Unique Genotypic Features Associated with SCVs
Several genetic mutations can result in the electron transport-
defective SCV phenotype described above, including the 
mutations in menD, hemB, and ctaA.38,44,50,51 MenD encodes 
for 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate 
synthase, which catalyses the conversion of isochorismate 
2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-car-
boxylate. HemB encodes for porphobilinogen synthase, which 
is essential for subsequent porphyrin metabolism.36,44,52–54 
CtaA encodes haem-O-monooxygenase that converts haem-
O to haem-A, which is an essential cofactor for enzymes 
involved in electron transport,53 and its deficiency inhibits 
cytochrome biosynthesis.7 Mutations in menD and hemB block 
the biosynthesis of menadione, which is used in menaquinone 
biosynthesis. Mutations in menD, hemB, or ctaA can also lead 
to defective cytochrome biosynthesis.7 Both menD and hemB 
mutations also impair the biosynthesis of cytochromes.36,44,52,53

During infection, organisms are exposed to high levels of 
haem that may be toxic because of the accumulation of super-
oxides. By virtue of the mutations described above, haem stress 
for SCVs is significantly alleviated, suggesting that a reduc-
tion in haem-associated stress may be an additional factor 
enabling the survival of SCVs during chronic infection.54 
Genes governing other aspects of general metabolic pathways 
associated with energy production and respiration in SCVs 
often also carry mutations (Table 1). They primarily include 
genes encoding proteins of the Entner–Doudoroff pathway, 
reconciling the slower growth rate of SCVs that contributes 
to their persistence.

Increased adhesion and biofilm formation are correlated 
with the enhanced expression of surface-bound adhesins and 

their cognate transcriptional regulators.55–58 Adhesins not only 
function as a means of binding directly to host proteins prior to 
colonization but also enable interbacterial aggregation, which 
is critical to the development of biofilm; SCVs are characteris-
tically prolific biofilm-forming organisms.59 The expression of 
adhesin genes is often governed by global transcriptional regu-
lators that form part of an intricate transcriptional network 
that responds to environmental cues, usually involving quo-
rum sensing. Therefore, it is not surprising to find that genes 
encoding transcriptional regulators, such as agr, sigB, and sarA, 
are differentially regulated in SCVs of both Bacillus cereus and 
S. aureus (Table 1).60–65 Indeed, during chronic infection where 
the SCV phenotype begins to emerge, the expression of these 
transcriptional regulators is repressed, thus suppressing viru-
lence gene expression, promoting intracellular survival, and 
dampening the host immune response (Table 1).66

Although differentially expressed or mutated genes tend 
to be conserved in SCVs, to date no defined core set of SCV 
genes has been documented. Often SCV-associated pheno-
typic traits are not the result of permanent genetic mutations 
but may instead result from genome rearrangements; there-
fore, identifying SCVs at the genotypic level is potentially as 
challenging as identifying them based on phenotype alone. 
Moreover, numerous phenotypic traits can be attributed to 
epigenetics.67 Where genetic traits are conserved, they usually 
confer essential adaptations; transient characteristics that are 
not an absolute requirement for survival, but which confer a 
competitive advantage, are likely controlled by uncharacter-
ized global transcriptional regulators or alternative sigma fac-
tors (Table 1) that form part of a larger and as yet undefined 
SCV regulon. Since only traits that are conferred by permanent 
genetic change are heritable, the maintenance of a stable SCV 
community within the larger microbial consortia is postulated 
to depend on appropriate regulatory signals. Significantly, 
DNA mismatch repair systems are often impaired in SCVs, 
leading to the accumulation of genetic mutations that confer 
the typical SCV phenotype or, in some cases, result in hyper-
mutability and alternative variant phenotypes.68

SCVs within Microbial Communities
Variants occur at random within microbial populations; most 
are transitory with only those changes that allow bacteria 
to remain viable and confer an advantage becoming fixed 
within a population. Microbial adaptation to a particular 
environment and competition between the members of a 
heterogeneous population, comprising a parent (wild type) 
and progeny (including mutants), are dictated by growth 
parameters and stresses.69 Numerous laboratory studies have 
demonstrated that successful microorganisms, namely, those 
that succeed within a given environment, do so because they 
exhibit the highest growth rate under prevailing conditions.70 
Despite this, SCVs persist within microbial communities, 
albeit as a minor constituent that is never entirely outcom-
peted by the parental strain. Given the tenacity of SCVs to 
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survive under stress, it might be expected that they should 
eventually predominate. Certainly with regard to antimicro-
bial interventions,71 this is the case, as the more susceptible 
parent strain is eradicated leaving behind a population of 
SCVs that can undergo reversion, which results in a recur-
rence of infection (Fig. 2).72 SCVs that arise during human 
infection appear better adapted for survival and persistence 
within the host73 despite their impaired rate of growth and 
increased host dependency. Selection because of loss or redun-
dancy of metabolic activity is not unusual and under certain 
growth conditions,74 such as the host environment, might 
confer a fitness advantage, if not in terms of growth, in terms 
of survival.75 Many host-adapted and therefore invariably 
host-dependent pathogens undergo reductive evolution;76 
driven by the host habitat and their ability to utilize host 
metabolites, such organisms become slow growing and nutri-
tionally fastidious, often adopting an intracellular lifestyle.77 
This process is ordinarily mediated by the loss of large frag-
ments of genomic DNA. SCVs appear similar to host-adapted 
pathogens, and the loss of metabolic function renders them 
reliant on the host to meet their nutritional needs;78 indeed, 
many SCVs survive intracellularly. Where reductive evolu-
tion occurs in pathogens, it is correlated with increased viru-
lence79 that is not observed for SCVs, which conversely seem 
to exhibit attenuated virulence.80 Significantly, pathogens 
that undergo reductive evolution do not regain “lost” genetic 
function81 unlike SCVs that are able to revert to WT or WT 
like once selective pressures, such as antimicrobial treatment, 
are removed (Figs. 1 and 2). Therefore, for SCVs, there is 
apparently a trade-off between virulence and persistence that 
exploits the ability to revert to a WT or WT-like variant, 
which is less host dependent and regains virulence. The spe-
cific adaptations that the minority SCV population depends 
on to ensure survival among their faster growing counterparts 
include the increased expression of surface adhesins as pre-
viously described. If two microorganisms are competing for 
the same human receptor, then those with a binding advan-
tage (ie, more surface adhesins) are more likely to adhere.82,83 

Combined with enhanced biofilm formation, such colonizers 
are less likely to be removed from the host by detachment.84 
Intracellular survival provides more than simple protection 
from immunity, with the cell cytoplasm providing a nutrition-
ally rich habitat for auxotrophic SCVs that is not afforded to 
the parental strain, but at the same time reduces competition 
for space at the tissue surface.85 It is proposed that in this way, 
both SCV and progenitor can coexist.

SCVs in Chronic Infection
SCVs show enhanced resistance to a range of antibiotics7,25,86–88 
and have been directly associated with persistent infections 
in a number of diseases, including, but not limited to, cys-
tic fibrosis,89,90 chronic obstructive pulmonary disease,91 
diabetic foot ulcers,92 chronic rhinosinusitis,93 chronic wound 
infections,94–96 systemic infections,97 and infections arising 
from surgical intervention or medical devices,98–102 which 
can lead to serious and sometimes fatal clinical consequences, 
such as endocarditis, bacteremia, or meningitis.97,102 It has 
been proposed that in the case of the ventriculoperitoneal 
shunt (a medical device used in the treatment of hydrocepha-
lus), SCV-associated meningitis infection can arise from 
inadequate disinfection of the shunt and failure to identify 
and treat these persistent variants.103 Chronic infections rep-
resent a significant burden to both patients and health-care 
providers. Where chronicity ensues, biofilm is frequently 
present.104–108 The presence of SCVs within biofilms has 
been directly linked to chronic antibiotic-resistant infec-
tions, including cystic fibrosis in lung, osteomyelitis, cath-
eter and pacemaker infection, among others as previously 
described.87–93,108–115 The respiratory tract of cystic fibrosis 
patients provides a unique environment for the selection of 
a subgroup of autoaggregative and highly adherent SCVs of 
Pseudomonas aeruginosa.20,115,116 These SCVs are hyperpiliated 
and exhibit increased twitching motility as well as have the 
capacity to emerge and successfully endure in biofilms, thus 
contributing significantly to the pathogenesis of P. aeruginosa  
lung infection.115,116 However, it is the hyperaggregative 

Antibiotic/stress

Selection removed

S
ustained stress/treatm

ent

Figure 2. Pure populations of bacteria often comprise WT (major population; blue) and SCV (minor population; orange), which arise spontaneously; 
under environmental stress, such as antibiotic treatment, the WT population is diminished and SCVs survive; under sustained stress, such as a course 
of antibiotics to treat an infection, the SCVs become the dominant members of the population. When the selective pressure is removed, WT organisms 
proliferate and become the dominant members of the population compared to slow-growing SCVs; significantly a proportion of SCVs revert to either the 
WT phenotype or a WT-like phenotype (green), which regains characteristics that enable faster growth.
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property of these SCVs that is the primary contributing factor 
to etiology of chronic infection because it enables microorgan-
isms to produce large amounts of polysaccharide intercellular 
adhesion and highly structured biofilms.117 Significantly, 
a recent study describing polymicrobial biofilm comprising 
P. aeruginosa and S. aureus suggests that the cohabitation of 
these microorganisms not only leads to a more dense and 
stable biofilm formation but also induces SCV emergence, 
even in the absence of antibiotics.83 Specifically, SCV of  
S. aureus emerged following the exposure to 4-hydroxy-
2-heptylquinoline-N-oxide, secreted by P. aeruginosa, which 
is known to impair the growth of S. aureus. Growth impair-
ment was attributed to a shift to the slower growing SCV 
morphotype.118 This phenomenon has been best studied in 
cocultured organisms derived from patients with cystic fibro-
sis who present with chronic infection for which antibiotic 
treatment is received, where SCVs of S. aureus were identified 
in 24% of the patients.119 It is believed that for S. aureus, this 
is a specific survival strategy in the presence of P. aeruginosa, 
mediating protection from secreted exotoxin A, which targets 
the electron transport chain.25

The rate of occurrence of SCVs in chronic infection is 
likely to vary depending on the clinical conditions;7 nonethe-
less, SCVs are detected in approximately 1% of isolates in a 
clinical microbiology laboratory and their incidence is the 
highest in cystic fibrosis and osteomyelitis.7 It is pertinent to 
highlight that in patients with osteomyelitis, surgical place-
ment of slow-release gentamicin beads along with debride-
ment is a common practice for treatment and may be linked to 
SCV induction.120 This is of concern as inadvertent iatrogenic-
induced SCVs may be formed as a result of the long-term 
exposure to gentamicin; studies have verified that SCVs can be 
recovered from patients undergoing treatment with gentami-
cin beads.120 It has consequently been suggested that routine 
screening for SCVs should take place for patients treated with 
gentamicin beads for osteomyelitis.28 Furthermore, given the 
recalcitrance of SCV-associated infection, it might seem rea-
sonable to screen persons who are predisposed to developing 
chronic infection following the completion of antimicrobial 
chemotherapy. Therefore, with regard to efficacious antimi-
crobial treatments, the identification of SCVs is as important 
as ensuring an appropriate dose of antimicrobial is adminis-
tered. However, this approach is confounded by the relatively 
limited information describing successful treatment of SCV 
infections. Since aminoglycosides are known to promote the 
emergence of SCVs in some bacterial species, including P. 
aeruginosa, they are unlikely to constitute a suitable treatment 
where such SCVs persist. Vancomycin exhibits a higher degree 
of efficacy against SCVs than most antibiotics, but its potency 
is estimated to be approximately half of that typically observed 
for the treatment of non-SCV organisms.121 It is possible to 
achieve bactericidal activity against S. aureus hemB mutants 
using daptomycin, and the effect is concentration dependent, 
suggesting that at its simplest, SCVs can be effectively treated 

using higher doses of antibiotics that are normally prescribed 
to treat infection.122 However, until satisfactory laboratory 
isolation is achieved, SCVs will remain very difficult to detect 
in patient samples and will, therefore, remain excluded from 
the standard antimicrobial testing regimens.

Future Perspectives
Although SCVs have been known to exist for over century, 
little attention was originally given to them as they were 
believed to be nonvirulent and therefore not clinically impor-
tant. However, as more is understood about their role in per-
sistent infections, it has become imperative that mechanisms 
of SCV persistence and resistance, as well as population 
dynamics, are thoroughly explored. Recent investigations 
have proposed a low-cost point-of-care test for the diagno-
sis of P. aeruginosa in patients at risk of chronic respiratory 
infection for rapid and economical diagnosis. This method, 
named electrochemical impedance spectroscopy, has suc-
cessfully differentiated strains of P. aeruginosa based on their 
impedance signature, which is influenced by factors such as 
pyocyanin secretion.123 While this method has not yet been 
tested using the SCVs of P. aeruginosa, many SCVs exhibit 
differential pyocyanin production and so could be potentially 
identified via this means that could replace traditional culture 
methods. With this in mind, it seems reasonable to suggest 
that accurate diagnosis of SCV-associated infections will rely 
on nontraditional diagnostics, including the use of molecular 
probes, in future. The principle complication for the develop-
ment of such diagnostic methodology is the varied phenotypic 
and genotypic traits exhibited by SCVs; without a core set 
of SCV genes even with new diagnostic techniques, it might 
prove as easy to misdiagnose SCVs in infection as by tradi-
tional culture.
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