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ABSTRACT

Sensor Pattern Noise (SPN) has been proved as an effective
fingerprint of imaging devices to link pictures to the cameras
that acquired them. SPN is usually extracted from large image
block to improve the matching accuracy as the large image
block contains more SPN information. However, fingerprint
with high dimensionality will incur a costly computation in
the matching phase, thus hindering many interesting applica-
tions which require an efficient real-time camera matching.
To solve this problem, an effective feature extraction method
based on PCA and LDA is proposed in this work to compress
the camera fingerprint. Our experimental results show that the
proposed feature extraction algorithm could greatly reduce
the dimensionality of the original fingerprint and enhance
the performance in term of Receiver Operating Characteristic
(ROC) curve of several existing methods.

Index Terms— Digital forensics, Sensor pattern noise,
Photo-response nonuniformity noise, PCA denoising

1. INTRODUCTION

Sensor pattern noise, produced by imaging sensors, has been
proved to be an effective way for digital camera identification.
The photo-response nonuniformity (PRNU) noise is the deter-
ministic component of SPN, which is primarily caused by the
different sensitivity of individual sensor pixels to light. It is
essentially the slight variations in the intensity of individual
pixels and an unique pattern deposited in every image taken
by a sensor.

Lukas et al. [1] first adopted a wavelet-based Wiener filter
to extract the SPN from digital image. After that several
works [2—11] have been done to improve the performance
of SPN-based source camera identification. Many of them
have achieved nearly perfect identification rate when SPNs
are extracted from the image blocks with high resolution.
However, the complexity of computing correlation for fin-
gerprint matching is proportional to the dimensionality of
SPN. Therefore, the SPN extracted from large image block,
which has a high dimensionality, will incur an expensive
computational cost in the matching phase especially when

there is a sizable database involved. For example, in the real
practice investigators may face the applications of looking
for a particular fingerprint in a large database which contains
a huge number of fingerprint matching. To overcome this
problem, an intuitive idea is to reduce the dimension of SPN.
In [12], Goljan et al. proposed a fingerprint digest as a
possible solution. This fingerprint digest is primarily formed
by only keeping a fixed number of the largest fingerprint
values and their positions. In [13], Bayram et al. proposed to
represent sensor fingerprint in binary-quantized form, which
greatly reduce the size of fingerprint and speeds-up the
correlation detection.

In this paper, we employ the concept of PCA denoising
[14] in the SPN-based source camera identification. An effec-
tive feature extraction algorithm based on this concept is first
applied to extract a small number of principal components
that will better represent the SPN signal. LDA is then utilized
to take the advantage of the observed label information of
training samples (reference fingerprints) to further reduce the
dimension and improve the matching accuracy.

2. PROPOSED METHOD

2.1. Feature extraction via PCA

In digital camera identification, noise residual is usually
extracted from large image block to improve the identification
accuracy, since the large image block contains more SPN
information. As a result, noise residual usually has a very
high dimensionality (e.g. 1024x1024 pixels). Nevertheless,
the high-dimensional feature is more likely to introduce
redundancy and interfering components. For example, noise
residual can be contaminated by color interpolation, JPEG
compression, distortion introduced by denoising filter and
other artifacts. Most of these artifacts are non-unique, redun-
dant and less discriminant. Removing them will enhance the
SPN signal in noise residual and improve the identification
accuracy. However, they are mixed with the real SPN signal
in noise residual and it is very hard to separate them.

PCA [15] is a well-known decorrelation method which
has been widely used for dimensionality reduction or redun-
dancy removal. In this work, we attempt to find a PCA



transformed domain which can better separate the real SPN
signal and these redundant features. By excluding these
redundant features, we can extract a set of features which
contain most of the discriminative information of SPN signal.

2.1.1. Training Sample Selection

Assume there are n images {I;} , taken by c¢ cameras
{C;}j— in a database, each camera has L; images. We first
extract noise residuals from the N x [N-pixels blocks cropped
from the centre of these full-sized images and reshape them
into a set of column vectors {x; € RN *1}7_ _ Several SPN
extraction methods in the literature could be used here.

As mentioned in [5], image content would seriously
contaminate the real SPN, and their magnitude is far greater
than that of the real SPN. Without removing these strong
contaminations from the training set, PCA is more likely to
find a subspace that better represent these noisy components
rather than the SPN signal. Therefore, for training sample
selection, we give the priority to the noise residual extracted
from low-variation images (e.g., blue sky images). It is
because such images are more close to the evenly lit scene
and contain less scene details. Hence these images can
better exhibit the changes caused by SPN in intensity between
individual pixels. Such a training sample selection will
capture the energy of true SPN in the training set and guide
PCA to find a set of features that better represent the SPN
signal rather than other noisy components.

2.1.2. PCA-based feature extractor

Let ¥ = % >, x; be the mean of the training set. Each x;
differs from the mean ¥ by the vector ®; = x; — W. Then
PCA is performed to seek a set of orthonormal vectors uj, and
their associated eigenvalues \;. The vectors uy, and scalars
Ak are the eigenvectors and eigenvalues, respectively, of the
covariance matrix S

1« 1
S==>"&;®] = —AA" (1)
ni:l n

where A = [®,,Ps,...,P,]. However as aforemen-
tioned, the dimensionality of SPN could extremely high
(e.g., N?=10242). Thus directly solving the eigenvalue
decomposition problem of S € RN"*N” would incurs a
prohibitive computational cost (with a complexity O(N®)).
To make PCA feasible for the high-dimensional SPN, we
apply a fast method instead to compute these eigenvectors
(when n < N?). Assume u;,’ are the unit eigenvectors
of ATA € R™" with eigenvalue )\;. We could obtain
AT Auy,’ = M\i'uy’. Multiplying both sides by A, we have
AAT (Auy') = M\ (Auy'), where Auy,’ are the eigenvectors
of AAT = S with eigenvalues )\;,’. Thus, instead of finding
the eigenvectors u;, of matrix S directly, we can calculate
the eigenvectors uy’ of the smaller matrix ATA € R™*"
and obtain the objective eigenvector uy by u;, = Auy’. The
obtained {uy,}7_, are then normalized to the unit vectors and
sorted in the descending order according to their associated

© (d)
Fig. 1: (a) An image taken by Canon Ixus70. (b) Clean reference SPN
of Canon Ixus70. (c¢) The noise residual extracted from (a) via the Winer
filter [1]. (d) The reconstructed version of (c) via the proposed method. (Note
the intensity of Fig. 1(b), (c) and (d) has been scaled to the interval [0,255]
for visualization purpose.)

eigenvalues A\; > A2 > ..\,. Note that in practice
the size of the training set tends to be much smaller than
the dimensionality of SPN (n < N?2). Thus computing
eigenvectors via this method (with a complexity O(n?)) thus
will be more effective than the traditional way.

By excluding the eigenvectors with small eigenvalues
while preserving the eigenvectors with large eigenvalues, we
can obtain a small set of eigenvectors which contain most
of the discriminative information of the SPN signal. In this
work, the eigenvectors with the d largest eigenvalues are se-
lected to construct the feature extractor Mp., = [u1,...,uq] €
RN’ >d We keep the top d eigenvectors corresponding to
99% of the variance as it could give us the best result. Based
on this feature extractor M, we can obtain a new feature with
much lower dimensionality by

y:MTx 2)

pca
where y € R?*! is the compact version of the original vector
x. We call this obtained feature y as “PCA feature” in the rest
of this paper.

According to the PCA feature y and the feature extractor
M., we can easily obtain a reconstructed SPN in the spatial
domain via the inverse PCA transformation x’ = Mpeay,
where x’ is an approximation of x (when d < n). By
preserving only the principal eigenvectors and conducting the
inverse PCA transformation, we find that the impact of image
content can be effectively suppressed in the reconstructed
version. As shown in Fig. 1(c), the image content in Fig. 1(a)
propagate through the Wiener filter into the noise residual,
but these scene details have been significantly suppressed
after the SPN reconstruction Fig. 1(d). The reason for this
phenomenon is that, the objective of our PCA-based feature
extractor is to extract a set of features that will better represent
the primary signal in the training set, thus the aforementioned
training sample selection will guide it to extract features
that represent the SPN signal rather than other contaminated



signals. Moreover, since the magnitude of image content
is not similar with that of true SPN at all [5], our PCA-
based feature extractor can easily distinguish and separate
them. To further prove this concept, we calculate the signal-
to-noise ratio (SNR) between the signal of interest (SPN)
and the contaminants in the noise residual (Fig. 1(c)) and
reconstructed SPN (Fig. 1(d)), respectively. Since we have
the clean SPN x (Fig. 1(b)), the contaminations = in the
noise residual or reconstructed SPN can be approximately
estimated by subtracting the clean SPN from the observed
data. Thus SNR could be obtained as 101log,, fffff((é)) The
results show that the reconstructed SPN has a higher average
SNR (6.2 dB) than the noise residual (-9.8 dB).

2.2. Feature Extraction via LDA

Since the training set is labeled, LDA can use this information
to further reduce the dimensionality. The purpose of LDA is
to find a transformation matrix M;4, which can best separate
different classes. This optimal matrix can be obtained by
maximizing the ratio of the determinant of the between-class
scatter matrix .S to the determinant of the within-class scatter
matrix S,,.

M4, = arg max
J

JTS,J )

JTSyJ ‘

The within-calss scatter matrix S,, is defined as S, =
POy S5 (y; —m;)(y; —m;)T where y, is the i*" sample
of class j, m; is the mean of class j, cis number of classes, L;
is the number of samples in class j. The between-class scatter
matrix Sp is defined as S, = Z;Zl L(m; —m)(m; —m)T
where m is the global mean of all samples. Having the matrix
M4, a (c — 1) dimensional vector z can be obtained by

=MLy = MlﬁaMpTcax =Tx 4)

where z can be seemed as another compact representation of
the original noise residual x, we call this new feature as “LDA
feature” in the rest of this paper. And 7' is the PCA+LDA-
based feature extractor.

2.3. Reference Estimation and Detection Statistics

By performing the LDA-based feature extraction on the
tracing set {x;}? ;, we can obtain a set of LDA features
{zi}j. The reference feature 2 for each camera C; then
can be estimated by averaging all the L; features belong to
that camera as z/; = Zlefl zi/Lj,j=1,2,..,c

The Normalized Cross-Correlation (NCC) is adopted as
the detection statistics to measure the similarity between the
query z and the camera reference z’

N =2 -7)

o) = 2 ®
where Z and 7’ are the means of z and 7/, respectively. Notice
that the complexity of computing correlation is proportional
to the dimensionality of the features. Since the dimensionality
of LDA feature z € R(°~D*1 is much lower than that of the

original noise residual x € RV X! (¢ — 1< N?2), using the
feature z as a compact representation of x in the matching
phase could greatly reduce the computational complexity.

3. EXPERIMENTS

In this work, the noise residuals extracted by the methods
in [1] (Lukas), [5] (Li’s Model 3) and [9] (Kang) are used as
the original features. To testify the feasibility of the proposed
method, the performance of these original features combined
with and without the proposed scheme are compared. Our
experiments are conducted over the Dresden Image database
[16]. A total of 2000 images from 10 cameras are involved
in the first experiment, each responsible for 200. These 10
camera devices belong to 4 camera models, each camera
model has 2~3 different devices. For each camera, we have
50 low-variation images for training and 150 images with
scene details for testing. Thus there are 150 x 10 intraclass
and 1350 x 10 interclass correlation values in total. We extract
all the SPNs from the luminance channel as the luminance
channel contains information of all the three channels.

Fig.2 shows the distribution with respect to randomly
selected 500 intraclass and 500 interclass correlation values
according to different features, where “Original feature”
indicates the noise residual extracted by Kang’s algorithm. It
can be seen that using the LDA feature can better separate the
intraclass and interclass samples than the original feature or
PCA feature. To further testify the accuracy, all the 150 x 10
intraclass and 1350 x 10 interclass samples are used to draw
the overall ROC curves [9]. As shown in Fig. 3, the black,
blue and red lines indicate the performance of the original
features, PCA features and LDA features, respectively. It
can be concluded from Table 2 and Fig. 3 that our PCA-
based feature extraction could enhance the performance of
the original SPN extraction method, and PCA+LDA-based
feature extraction could further improve it. Based on Table 1,
we can obtain the detection threshold for each features when
they have the low False Positive Rate (FPR) (1073).

Table 1: The TPR of different features at the FPR of 1073

Methods Original SPN PCA  PCA+LDA
Lukas [1] 83.65% 95.55% 99.21%
Li’s Model 3 [5] 85.97% 96.23% 99.40 %
Kang [9] 93.20% 98.87% 99.27 %

In practice, forensic investigators may face the problem
that the testing images are not taken by the cameras in the
database. Therefore, we use 150 x 6 testing samples taken
by another 6 cameras from the Dresden database to further
testify the performance of our proposed method. We calculate
the NCC between these 150 x 6 testing samples and the
aforementioned 10 camera references. By comparing these
150 x 6 x 10 interclass samples with the threshold obtained
from Table 1, we can get the FPR of different features in Table
2. From Table 2 we can see that both PCA feature and LDA
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Fig. 3: The overall ROC comparisons among original features, PCA features and LDA features, 512 x 512 pixels.
Table 2: The FPR of different features 1400
— Il Original feature
Methods Original SPN PCA  PCA+LDA 12001 EPCA feature
LDA feature
Lukas [1] 0.07% 0.03% 0.11% 1000
Li’s Model 3 [5] 0% 0% 0.04% 800
Kang [9] 0.02% 0% 0.05% 600
X 400}
feature are able to make out that these testing samples are not
. . 200
taken by the aforementioned 10 camera, even though their JIH -
0 =

fingerprints are not involved in the training set.

Fig. 4 presents the time cost for different features of
matching a fingerprint against a simulate database with 300
cameras, where “SPN extraction” indicates the time cost
of extracting SPN from a query image via Kang’s method,
“Projection” represents the time cost of feature extraction via
PCA and LDA, “Matching” is the time cost of matching a
query fingerprint against 300 cameras and the overall time is
evaluated by “Total”. Notice that the time cost of training
is not counted in this figure as it could be performed at off-
line. All the experiments are conducted on the same PC
with Intel(R) Core(TM) i5-3470 CPU @3.20GHz 16G RAM.
It can be observed from Fig. 4 that although using PCA
and LDA will incur an extra time cost in feature extraction,
they dramatically reduce the time costs of matching process.
Based on the overall time cost, we can conclude that the pro-
posed method could greatly reduce the time cost of fingerprint
matching with a large camera database. However, there is a
potential limitation of LDA feature. Since the dimensionality
of LDA feature is ¢ — 1, the computational cost of matching
process based on LDA feature might be also expensive when
the number of camera in the database c is huge. But for this
case, the dimensionality of PCA feature will still stay at a
constant low level as it only depends on the dominance of the

SPN extraction Projection Matching Total

Fig. 4: Time cost of different features, 512 x 512 pixels.

primary signal in the training set.

4. CONCLUSION

In this work, we evaluate the concept of PCA denoising in
source camera identification. A feature extraction algorithm
based on this concept is proposed to extract a feature set with
much lower dimensionality from the original noise residual.
LDA is then utilized to take the advantage of the observed
label information of the training data to further reduce the
dimensionality and find a space could better separate different
classes. By applying the proposed feature extractor on the
noise residual, the SPN components could be well preserved
while the dimensionality being effectively reduced. The
experimental results show that the proposed feature extraction
method could greatly improve the matching efficiency and
further enhance the performance of several existing methods.
However, this method is hard to address the problem when
new cameras are sequentially added into the database. It is
because that repeating an entire training that includes these
new cameras would incur a costly re-computation. To solve
this issue will be the focus of our future research.
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