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ABSTRACT

Sensor pattern noise is an inherent fingerprint of imaging
devices, which has been widely used for source camera
identification, image classification, and forgery detection. In
a previous work, we proposed a feature extraction method
based on the principal component analysis denoising concept,
which can enhance the performance of conventional SPN
extraction methods. However, this method is vulnerable,
because the training samples are seriously affected by the
image content. Accordingly, it is difficult to train a reliable
feature extractor by using such a training set. To address
this problem, a camera identification framework based on the
random subspace method and majority voting is proposed in
this work. The experimental results show that the proposed
solution can suppress the interference from scene details and
enhance the performance in terms of the receiver operating
characteristic curve.

Index Terms— Digital forensics, Sensor pattern noise,
PCA denoising, Random subspace method

1. INTRODUCTION

Digital images are more and more frequently used as ev-
idences in court to support judgements. In some cases,
forensic investigators need to identify the origin of the digital
images in order to link the images to the cameras that acquired
them, such as child pornography investigations and intel-
lectual property protection. Thus, effective techniques for
identifying the origin of digital images are urgently needed.

Sensor Pattern Noise (SPN) has been proved as a reliable
fingerprint of imaging device to solve the camera identifica-
tion problem. There have been several works made in the
SPN-based camera identification field. The tasks for camera
identification can be broadly split into three steps: 1) The first
step is the SPN extraction from the query image. Lukas et
al. [1] first proposed using SPN extracted from digital image
to trace back the imaging device. They adopted a wavelet-
based Wiener filter to extract the SPN from the wavelet high
frequency coefficients. After that, Dabov et al. [2] proposed a
sparse 3D transform-domain collaborative filtering to extract
SPN. In [3], Chen et al. proposed a maximum likelihood

estimation method to estimate the corresponding multiplica-
tive factor from the reference images. In [4], Li introduced
a SPN enhancer to suppress the contamination caused by
image content. A further investigation into SPN’s location-
dependent quality is reported by Li and Satta in [5]. In [6], Li
et al. proposed a colour-decoupled SPN extraction method
to prevent the color filter array interpolation noise from
propagating into the physical components. In [7], Kang et al.
introduced a context adaptive SPN predictor to suppress the
impact of image content. 2) The second step is to estimate the
reference SPN from the suspect camera. A camera reference
SPN is usually built by averaging SPNs extracted from
multiple low-variation images taken by the same camera.
In [8], Li et al. proposed a reference SPN estimator which
is able to estimate a reliable reference from natural images
with varying scene details. 3) The final step is to detect
whether the query SPN correlates to the reference camera
SPN. The normalized cross-correlation is usually adopted as
the detection statistics [1]. Later, Goljan et al. [9] introduced
the peak to correlation energy ratio as a replacement for the
normalized cross-correlation. Another detection statistics is
the correlation over circular cross-correlation norm proposed
by Kang et al. [10].

Some considerations have been given to source camera
identification against the large database, where the goal is to
match a sensor fingerprint to a large number of fingerprints
in a database. This capability is needed when one needs
to attribute one or more images from an unknown camera
to a large number of images in a large image repository
to find other images that may have been taken from the
same camera. In this case, the high dimensionality of SPN
fingerprint will incur an expensive computational cost in the
matching phase and exorbitant storage requirements. To solve
this problem, Goljan et al. [11] proposed a fingerprint digest,
which is formed by keeping only a small number of the largest
fingerprint values and their positions. Later, Hu et al. [12]
proposed a fast fingerprint digest search algorithm to further
improve the identification efficiency. In [13], Bayram et al.
proposed to represent a sensor fingerprint in binary-quantized
form, which speeds-up the calculation of correlation and also
greatly reduces the size of fingerprint.

Recently, Li et al. [14] proposed a feature extractor
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based on the Principal Component Analysis (PCA) denoising
[15] to extract a small feature set, which contains most
of the discriminative information of the SPN fingerprint.
This method can significantly improve several existing SPN
extraction methods in the literature and achieve the state-of-
the-art Receiver Operating Characteristic (ROC) curve perfor-
mance. However, this improvement will degrade because the
training samples are seriously affected by the scene details.
To solve this problem in this paper, a solution based on
the Random Subspace Method (RSM) and Majority Voting
(MV) is proposed. The rest of this paper is organized as
follows. In Section 2, we introduce the way to construct the
entire feature space and describe how to conduct an ensemble
method based on the RSM and MV in the context of source
camera identification. Experimental results are reported in
Section 3. Finally, conclusion is drawn in Section 4.

2. PROPOSED METHOD

In [15] PCA denoising was introduced to the SPN-based
source camera identification. Based on this concept, a feature
extractor was proposed to extract the SPN components from
the original noise residual. By using noise residuals extracted
only from low-variation reference images (i.e., blue sky
images) as training samples, such a feature extractor can be
optimally trained for SPN components extraction. It has been
proved that this optimized feature extractor is very efficient on
suppressing the redundancy and interfering components (e.g.,
color interpolation, JPEG compression, distortion introduced
by denoising filter).

However, an effective feature extractor can only be ob-
tained based on a representative training set, while this as-
sumption may not hold in real-world scenarios. For example,
an investigator may just have reference images of a camera
from Facebook or Flickr for training, which are more likely
natural images with varying scene details rather than blue
sky images. However, SPN is a subtle signal, which can
be severely contaminated by scene details. The magnitude
of scene details tends to be far greater than that of the real
SPN, as demonstrated in Fig. 1(b). In this case, some leading
eigenvectors of the obtained feature extractor are more likely
to represent the scene details rather than the real SPN. Here,
to build a model that generalizes to training samples with
varying scene details, we propose a solution based on the
random subspace method.

2.1. Feature space construction

Assume there are n images {Ii}ni=1 taken by c cameras
{Cj}cj=1 in the database and each camera has taken Ej

images. We first extract noise residuals from N×N -pixels
blocks cropped from the centre of these full-sized images
and reshape them into column vectors denoted as {xi ∈
RN2×1}ni=1. These n SPN vectors form the training set. PCA

(a) (b) (c)
Fig. 1: (a) An image taken by Canon Ixus70. (b) he noise residual
extracted from (a) which is contaminated by scene details. (c) Clean
reference SPN of Canon Ixus70. (Note the intensity of these image
has been scaled to the interval [0,255] for visualization purpose.)

is performed to seek a set of orthonormal vectors vk and their
associated eigenvalues λk of the covariance matrix S

S =
1

n

n∑
i=1

xix
T
i = AAT (1)

whereA= 1√
n
[x1, . . . ,xn] ∈ RN2×n. Notice that the dimen-

sionality of SPN could be extremely high (e.g., N2=10242).
Therefore, directly solving the eigenvalue decomposition
problem of S ∈ RN2×N2

incurs a prohibitive computational
cost (with a complexity O(N6)). To make PCA feasible for
the high-dimensional SPN, we apply instead a fast method of
computing these eigenvectors (when n � N2). Assume vk

′

is the unit eigenvector of ATA ∈ Rn×n with eigenvalue λ′k.
We could obtain ATAvk

′ = λk
′vk
′. Multiplying both sides

by A, we have AAT (Avk
′) = λk

′(Avk
′), where Avk

′ are
the eigenvectors of AAT = S with eigenvalues λk′. Thus,
instead of solving the eigenvalue decomposition of matrix
S directly, we can calculate the eigenvectors vk

′ via the
smaller matrix ATA ∈ Rn×n and obtain the objective vk by
vk = Avk

′. The obtained {vk}nk=1 are then normalized and
sorted in the descending order according to their associated
eigenvalues λ1 ≥ λ2 ≥ ...λn. Note that only when n� N2,
computing eigenvectors via this method (with a complexity
O(n3)) would be more effective than the traditional way. The
top d=min{d′|

∑d′

i=1 λi/
∑n

i=1 λi>99%} eigenvectors with
non-zero eigenvalues are then retained as the feature space
T = [v1, ...,vd] ∈ RN2×d.

If the training samples contain scene details, there will
be some leading eigenvectors in the feature space T that
represent the scene details rather than the real SPN signal.
Therefore, it is hard for the previous PCA-based feature
extractor [14] to preserve the SPN identification accuracy
when scene details are involved in the training set. Moreover,
in real applications, the training samples tend to depict a
wide variety of natural scenes. As a result, the corrupted
eigenvectors caused by these scene details are hard to be
located in the feature space T , since the scene details may
differ across different training samples and will not have
a fixed structure. Accordingly, this problem can not be
simply solved by removing some special eigenvectors from
the feature space. To address this problem, we propose to



randomly select subsets from the feature space T to suppress
the effect of scene details.

2.2. Random subspace construction

The random subspace method has been successfully applied
in face recognition [6] and gait recognition [16]. Motivated by
[6, 16], in this work we explore such technique in the context
of source camera identification.

Each eigenvector in feature space T is a candidate to
build the random subspaces. A random subspace R is
constructed by randomly selecting several eigenvectors from
these candidates. By repeating L times of randomly selecting
subsets from T (with size M < d), L random subspaces
{Rl ∈ RN2×M}Ll=1 will be generated. Then, a SPN template
can be represented as

yl = RlTx, l = 1, 2, ..., L, (2)

where yl is a new representation for the SPN x in the
random subspace Rl. After the just described approach, each
SPN x can be represented as a set of new features {yl ∈
RM×1}Ll=1. These newly generated features will be utilized
in the following identification process.

2.3. Camera identification via majority voting

For a query SPN sample, after extracting its features from the
aforementioned random subspaces, the following steps can
be adopted to detect whether this query sample is taken by a
specific camera in the database.
1) Reference estimation. By performing the random sub-
space feature extraction on all the training samples {xi}ni=1,
a set of features {yli}ni=1 will be generated in each random
subspace Rl. The reference y′

l
j of the camera Cj in the

subspace Rl then can be estimated by averaging all the
features belong to that camera as

y′
l
j =

∑Ej

i=1 y
l
i

Ej
, j = 1, 2, ..., c (3)

2) Identification. Let xq be a query SPN vector. By applying
(2), a set of features {yl

q}Ll=1 are obtained. Once the query
feature yl

q and the camera’s reference SPN y′
l
j are generated,

the camera identification problem can be modeled as a two-
channel hypothesis problem

H0 : yl
q 6= y′

l
j (the query image is not taken by the camera Cj )

H1 : yl
q = y′

l
j (the query image is taken by the camera Cj )

(4)

Then, a correlation-based detector will be established to make
the decision betweenH0 andH1 by comparing the correlation
ρ = corr(yl

q,y
′l
j) to a threshold t. The detector decides H1

when ρ ≥ t and decides H0 when ρ < t. In this paper, the
normalized cross-correlation [1] is adopted as the detection

statistics to measure the similarity between the query feature
yl
q and the reference feature y′

l
j .

3) Majority voting. In each subspaceRl, the aforementioned
identification process will be performed once. Every decision
between H0 and H1 will be made based on the comparison
between corr(yl

q,y
′l
j) and a fixed pre-calculated threshold t.

By repeating this process in every subspace, L decisions will
be generated in total. Then, the final decision can be made
according to the majority voting among these L decisions.
For example, if more than L/2 decisions are voted for H1,
the final decision will assert that the query image is taken by
the camera Cj .

3. EXPERIMENTS

3.1. Experimental setup

In this work, the noise residuals extracted by the methods
of Lukas [1] and Kang [7] are used as original features. In
order to evaluate the feasibility of the proposed method, these
original features are given as inputs to the PCA-based feature
extraction method [14] and the proposed method for the
performance comparison. Hereafter, Lukas/Kang+PCA and
Lukas/Kang+RSM indicate that the noise residuals are firstly
extracted by Lukas/Kang method and the PCA-based feature
extraction or the proposed RSM is performed afterwards. Our
experiments are conducted on the Dresden Image database
[17]. A total of 1200 images from 10 cameras are involved
in the experiments, where each responsible for 120. These
10 camera devices belong to 4 camera models, each camera
model has 2∼3 different devices. The cameras are listed in
Table 1. All these images are natural images containing a
wide variety of natural indoor and outdoor scenes. For each
camera, 20 images are used for training and the remaining 100
are used as query images for testing. Thus, there are 100×10
intraclass and 900 × 10 interclass correlation values in total.
We extract all the noise residuals from the luminance channel,
as the luminance channel contains information of all the three
channels. Our experiments are performed on an image block
of 256 × 256 pixels cropped from the centre of a full size
image.

Table 1: Cameras used in the experiments

Cameras Alias Resolution
Canon Ixus70 A C11 3072× 2304
Canon Ixus70 B C12 3072× 2304
Canon Ixus70 C C13 3072× 2304
Nikon CoolPixS710 A C21 4352× 3264
Nikon CoolPixS710 B C22 4352× 3264
Samsung L74wide A C31 3072× 2304
Samsung L74wide B C32 3072× 2304
Samsung L74wide C C33 3072× 2304
Olympus mju 1050SW A C41 3648× 2736
Olympus mju 1050SW B C42 3648× 2736
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Fig. 2: Performance with respect to the number of random subspaces
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Fig. 3: Performance with respect to the dimension of the random
subspace M .
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Fig. 4: ROC curves of different variants of Lukas’ method [1].
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Fig. 5: ROC curves of different variants of Kang’s method [7].

3.2. Performance evaluation

There are only two parameters in the proposed method,
namely, the dimension of random subspace M and the
number of random subspaces L. Figs. 2 and 3 show how the
true positive (false positive) rate of the method Lukas+RSM
vary for different values of M and L, respectively. As
shown in Fig. 2, the performance of the proposed method
improves by increasing number of random subspaces. Since
the performance tends to be stable when L > 600 and there
is a tradeoff between the performance and the computational
complexity, we set L = 600 in the following experiments.

Fig. 3 indicates the sensitivity of the proposed method to
the parameter M , where M is the dimension of each random
subspace and d is the size of the entire feature space T . It
is worth mentioning that the performance of the proposed
method is as same as that of the PCA-based extraction method
[14] when M/d = 1. Therefore, from Fig. 3 we can see
that as long as M < d, the proposed method can achieve
a higher true positive rate than the PCA-based extraction
method. In addition, from both Figs. 2 and 3 we can see
that the performance of the proposed method is not sensitive

to L and M . In rest of this paper, we empirically set L = 600
and M/d = 0.5, because these values yield the best result.

We use the Receiver Operating Characteristic (ROC)
curve to compare the performance of different methods, as
shown in Figs. 4 and 5. To get convincing results, all the
100× 10 intraclass and 900× 10 interclass samples from 10
cameras are used together to draw the overall ROC curve [7].
However, the overall ROC curve for the proposed method is
obtained in a slightly different manner. For a given detection
threshold, we count the number of true positive decisions and
the number of false positive decisions for each camera in
each subspace, respectively and then sum them up to obtain
the total number of true positive decisions and false positive
decisions. Finally, the total True Positive Rate and total False
Positive Rate are calculated to draw the overall ROC curve.
In Figs. 4 and 5, the black, blue, and red lines indicate
the ROC curve of the Lukas/Kang, Lukas/Kang+PCA, and
Lukas/Kang+RSM methods, respectively. As can be seen
from Figs. 4 and 5, the PCA-based feature extraction method
outperforms the original method even when the training set
is contaminated by scene details, and the proposed RSM can
further improve it.



4. CONCLUSION

In the previous work [14], a feature extraction algorithm
based on PCA denoising was proposed to extract a feature set
with much lower dimensionality from the original noise resid-
ual. However, the performance of this algorithm degrades
when scene details are contained in the training set, as the
obtained eigenvectors are affected by the scene details. As a
result, some leading eigenvectors are more likely to represent
the scene details rather than the real SPN signal. Moreover,
since scene details may differ for different training samples,
it is hard to locate and remove these corrupted eigenvectors
from the feature space. To address these problems in this
paper, an ensemble solution based on RSM and MV has been
presented to randomly select subspaces from the PCA feature
space to suppress the effect of scene details. The experimental
results suggest that the proposed method has the capability
to suppress the interference of scene details and achieves
a superior ROC curve performance than both the original
SPN extraction method and the PCA-based feature extraction
method.
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