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Abstract—The quality of the extracted gait silhouettes can
hinder the performance and practicability of gait recognition
algorithms. In this paper, we analyse the influence of silhouette
quality caused by segmentation disparities, and propose a feature
fusion strategy to improve recognition accuracy. Specifically, we
first generate a dataset containing gait silhouette with various
qualities generated by different segmentation algorithms, based
on the CASIA Dataset B. We then project data into an embedded
subspace, and fuse gallery features of different quality levels.
To this end, we propose a fusion strategy based on Least
Square QR-decomposition method. We perform classification
based on the Euclidean distance between fused gallery features
and probe features. Evaluation results show that the proposed
fusion strategy attains important improvements on recognition
accuracy.

I. INTRODUCTION

Gait has drawn great attention over the past decade as
a behavioural biometric modality that can be acquired at
a distance in a non-invasive manner. Because of the great
potential of this biometric trait in various fields such as
remote surveillance and authentication, various algorithms
have been recently proposed for person identification. These
algorithms can be classified into two categories: model-based
or appearance-based approaches. Model-based approaches rely
on the extraction of parameters from the subjects’ body and
walking cycle to construct a structural model of human motion
[1]. Appearance-based approaches, on the other hand, rely on
spatio-temporal representations of gait, which may be directly
obtained from the acquired gait sequences, such as binary gait
silhouette. A detailed review of gait recognition algorithms,
gait representations and databases may be found in the work
by Makihara et al. [2].

Despite its many advantages, gait recognition is not as
reliable as other biometric traits. Different factors such as age,
clothes, walking surfaces, viewing angles, and health condition
of the individuals may result in a poor recognition perfor-
mance. Furthermore, recognition efficiency may be hindered
if the associated gait gallery and probe silhouettes are acquired
under different conditions. The quality of the silhouette can be
influenced, for example, by the background environment when

capturing gait sequences and the accuracy of the segmentation
method used to detect the gait silhouette.

Only a limited number of solutions reported in the litera-
ture have studied the effect of gait silhouette quality on the
performance and practicability of model-free gait recognition
algorithms. Sarkar et al. [3] discuss silhouette segmentation
errors in the HumanID Gait Challenge Problem data set due
to the shadow of the individuals, varying lighting conditions
and moving objects in the background. In [4], Liu et al.
observe that if gallery and probe gait sequences are captured
under the same conditions, and are segmented by the same
method, the recognition accuracy may be high even if the data
quality is poor. Zhang et al. [5] and Yu et al. [6] address the
issue of poor recognition accuracy when low-resolution gait
silhouettes are used. In [7] Yu et al. propose a method to deal
with extreme low frame-rate gait sequences using Random
Subspace Method (RSM).

In this work, we study the case when quality differences
exist between gallery and probe data, which are caused by ap-
plying different segmentation algorithms on gallery and probe
video sequences to detect the corresponding gait silhouettes.
We are particularly interested in the following two scenarios.
1) The gait data related to an individual to be recognized
(i.e., the probe data) is not captured under ideal conditions,
and therefore the associated gait silhouettes may be noisy and
inaccurately segmented; whereas the stored gait data (gallery
data) is captured in noise-free environments, or vice versa.
2) The silhouettes extracted from gallery and probe data are
obtained using different segmentation algorithms, which may
result in very different features1.

Based on these scenarios, we propose a classier fusion
strategy based on least square QR- decomposition (LSQR).
Our approach uses GEIs [8], as it is one of the most popular
and efficient methods to represent gait features. We first create
a dataset by employing different segmentation algorithms on
gait video sequences to generate silhouettes with segmentation

1A simple example is that a segmentation algorithm generates shadow-
free gallery silhouettes, while another algorithm cannot generate shadow-free
probe silhouettes. The shadow can then be considered as features (or noise)
of the gallery silhouettes, thus affecting recognition accuracy.
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disparities. The dataset is divided into training, gallery and
probe sets, where the training set is for discriminant learning.
We project gallery and probe data into a discriminant sub-
space to generate gallery and probe feature sets. The gallery
features are fused using LSQR, thus generating more gallery
representations, which are considered as classifiers to match
with probe features. The output of all classifiers goes through
a majority voting process, where the voting result represents
the final classification decision. Local Fisher Discriminant
Analysis (LFDA) is employed as the discriminant learning
approach. Evaluation results show that our fusion strategy
improves recognition accuracy compared to using only LFDA,
or using a fusion strategy that assigns equal importance to all
features.

The rest of the paper is organized as follows. Section 2
briefly reviews some background information, including the
discriminant learning and majority voting method used in this
work. Section 3 details the proposed approach as well as
the dataset and experimental design. Section 4 presents the
evaluation results and related discussions. Finally, Section 5
draws conclusions.

II. BACKGROUND INFORMATION

A. Gait Energy Image - GEI

Assume there are N gait silhouettes, represented as binary
images, in one gait cycle. A GEI G(x, y) is defined as
G (x, y) = 1

N

∑N
k=1 Ik(x, y), where Ik(x, y) is the kth binary

image, and (x, y) denotes the pixel coordinates [8]. Examples
of GEIs are shown in the rightmost column of Figure 2.

Consider n GEI samples that are stored as d-dimensional
column vectors in a matrix X = {x1, x2, ..., xn}, xi ∈ Rd, i ∈
{1, 2, ..., n}. Let W be the transformation matrix that projects
the original space onto an r-dimensional subspace, where d�
r. The new feature matrix in the subspace is denoted as Y =
{y1, y2, ..., yn}, where yi ∈ Rr. The transformation matrix for
each element is given by yi =WTxi, i ∈ {1, 2, ..., n}.

B. Dimensionality Reduction through PCA

Principle Component Analysis (PCA) is used as an ap-
proach to avoid singularities in further covariance matrix
calculations [9] in LFDA. Following the notations above,
the covariance matrix of the GEI matrix X is calculated as
S = 1

n

∑n
i=1(xi − µ)(xi − µ)>, where µ is the sample

mean, µ = 1
n

∑
xi, i ∈ {1, 2, ..., n}. The leading r vectors

with corresponding r non-zero eigenvalues are computed and
selected by the eigen-decomposition of the covariance matrix.

C. Discriminant Learning Using LFDA

Sugiyama [10] propose a novel subspace learning method
called Local Fisher Discriminant Analysis (LFDA), which
embeds within-class similarity matrices into local within-
class scatter matrices and local between-class scatter matrices,

denoted as S̃(w) and S̃(b), respectively. These matrices are
formulated as follows:

S̃(w) =
1

2

n∑
i,j=1

W̃
(w)
i,j (xi − xj)(xi − xj)>,

S̃(b) =
1

2

n∑
i,j=1

W̃
(b)
i,j (xi − xj)(xi − xj)

>,

(1)

and

W̃
(w)
i,j =

{
1/n` ifyi = yj = `,

0 ifyi 6= yj ,

W̃
(b)
i,j =

{
1/n− 1/n` ifyi = yj = `,

1/n ifyi 6= yj .

(2)

where n` is the number of samples in class `, with
∑c

`=1 n` =
n. The transformation matrix of LFDA is then defined as:

WLFDA = argmax
W∈Rd×r

[
tr(

W>S̃(w)W

W>S̃(b)W
)

]
. (3)

The transformation matrix WLFDA is computed by solving
the generalized eigenvalue problem of S̃(w) and S̃(b). LFDA
has the ability to separate data from different classes while
clustering data from the same class as close as possible, while
keeping the neighbourhood structures within the same class.

D. Majority Voting
The majority voting method applied in this work is based on

the max rule [11][12][13]. Let us assume that for individual
xi, there are p possible output labels computed by q classifiers,
which are denoted by lk ∈ {l1, l2, ..., lp}. Let nlk ≤ q denote a
score assigned to label lk representing the number of classifiers
who generated label lk. Individual xi is then assigned a label
according to the following rule:

assign xi → lk, if

nlk = max(ni), ni =
{
nl1 , nl2 , ..., nlp

}
.

(4)

If nli = nlj , i, j ∈ {1, 2, ..., p}, xi is randomly assigned label
li or lj .

III. PROPOSED APPROACH

Fig. 1 shows the block diagram of the proposed approach.
In the next subsections, we first describe the data used in our
experiments, followed by a more detailed description of our
approach.

A. Dataset Design

In order to build gait dataset containing silhouettes with
different segmentation discrepancies, we combine background
subtraction (BS), de-noising, and frame differentiation (FD), to
generate different segmentation approaches. We also employ
the Gaussian Mixture Model and Expectation Maximization
(GMM & EM) segmentation method [3], and the Least
Median of Squares (LMedS) segmentation method [14]. The
segmented silhouettes obtained by each of these approaches
is used to generate binary images (and GEIs) at a specific
quality. The quality levels and the corresponding segmentation



Fig. 1. Block Diagram of the proposed approach.

TABLE I
SEGMENTATION APPROACHES FOR GENERATING VARIOUS DATA

QUALITIES, AND THE CORRESPONDING NOTATION.

Quality Segmentation Approach

Q.1 Approach 1: BS with Otsu’s threshold
Q.2 Approach 2: Normalised BS plus dilation & erosion
Q.3 Approach 3: BS with small threshold (1/3 of Otsu’s)
Q.4 Approach 4: FD plus dilation & erosion
Q.5 Approach 5: GMM & EM method
Q.6 Approach 6: LMedS method

approaches used are listed in Table I. The segmentation
approaches are explained in the following paragraphs.
Approach 1: A pixel is marked as foreground if |It −Bt| >
threshold, where It refers to an image with both foreground
and background objects and Bt contains only background
objects. The threshold is set using Otsu’s method[15].
Approach 2: The background image is normalized to eliminate
the negative effects of noise. Thus |It − avgBt| > threshold
where avgBt = Bt/

∑
pi,j ; pi,j refers to the value of pixel

i, j in Bt. The threshold is set using Otsu’s method. As
the obtained foreground may comprise several disconnected
regions, dilation and erosion operations are performed to
generate the final foreground.
Approach 3: A small threshold is used in order to intro-
duce a distinct contrast in the segmented silhouettes and to
include more background objects in the foreground; namely
|It −Bt| > threshold/3.
Approach 4: FD is used to mark the moving foreground pixels,
It−It−1 > threshold, where the threshold is set using Otsu’s
method. In addition, dilation and erosion operations are used
in order to connect the disconnected regions comprising the
foreground.
Approach 5: The GMM and EM method, as introduced in the
baseline algorithm of Sarkar et al. [3].
Approach 6: The LMedS method, as is introduced in [14].

Using the distinct segmentation approaches tabulated in
Table I, each gait sequence can generate six sequences with

Fig. 2. Samples of gait silhouette and corresponding GEIs with different
qualities (Q.1 to Q.6) for the same subject. For each row, the first 11 images
are the binary silhouettes obtained after segmentation. while the rightmost
image is the corresponding GEI.

different segmentation discrepancies. For each of these six
sequences, we compute the corresponding GEI. Figure 2 shows
sample GEIs with the six different qualities.

B. Discriminant Learning

We select r of the total n eigenvectors generated by PCA,
when the sum of the r corresponding eigenvalues are above
99% of the sum of all eigenvalues. LFDA is employed after
reducing the dimensions of the training GEIs by using PCA.
The generated transformation matrix Wtrans is Wtrans =
W>LFDAW

>
PCA. We keep (c − 1) eigenvectors with r largest

eigenvalues, where c denotes the number of classes in X .

C. Fusion and Classification

It is mentioned in [16] that an efficient way of combining
classifiers is to put them into groups and apply a different
fusion strategy to each group. An important factor to consider
during grouping is the level of diversity of classifier types.
However, it is hard to acquire prior knowledge of the optimal
strategy for grouping classifiers and applying fusion strategies.



In this work, the gallery features with different segmentation
discrepancies are fused in an exhaustive manner using a set
of weights generated by LSQR, and each set of fused features
is considered as one classifier. In other words, each distinct
classifier is created by fusing gallery features with three
different qualities. With 6 qualities in total, the number of
generated fusion classifiers is Nc = 6!/((6 − 3)! ∗ 3!) = 20.
A set of weights are assigned to the three gallery features
to be fused. For example, if a classifier comprises gallery
features at qualities Q.1, Q.2 and Q.3, the features are fused as
gf = w1 ∗gQ.1+w2 ∗gQ.2+w3 ∗gQ.3, where wi, i ∈ {1, 2, 3}
are the corresponding weights for the gallery features. The
values of weights wi are calculated as a vector by:

w = argmin
w

‖gallery ∗ w> − probe‖, (5)

where gallery and probe are column vectors containing
the gallery data at different qualities to be fused, and the
corresponding probe data, respectively

Let us denote the set of gallery GEI vectors by g, and
the set of probe GEI vectors by p. Following the subspace
transformation processes in Section III-B, the gallery feature
sets {ĝ} and probe feature sets {p̂} are obtained as follows:

{ĝ} : ĝi =WtransGi, i ∈ {1, 2, ..., n1}
{p̂} : p̂j =WtransPj , j ∈ {1, 2, ..., n2}

(6)

where n1, n2 are the total number of GEIs in gallery and
probe data sets, respectively; and Gi, and Pi denote the GEI
representations of gallery and probe data, respectively. The
centroid of class l in {ĝ} is calculated as mgl = 1

nl

∑
ĝ∈ĝl

ĝ,
where ĝl is the set of gallery feature vectors in class l. The
centroid of class l in {p̂} is calculated in the same way and
is denoted as mpl. The classifier is then defined as:

D(mgl,mpi) = ‖mpi −mgl‖, i = 1, 2, ...c. (7)

If D(mgl,mpl) = minci=1D(mgl,mpi), the probe feature
vector is assigned to the right class label l. The classification
results of all classifiers used in our fusion strategy go through
the majority voting process to obtain the final recognition
result.

IV. EXPERIMENT AND RESULT

We use the gait sequences of CASIA Dataset B to generate
GEIs with 6 different qualities, as previously described. CA-
SIA Dataset B comprises video sequences for 124 individuals.
We use the video sequences of first 62 individuals as the
training data. The sequences of the remaining 62 individuals
are used as gallery and probe data. The frame size of all
sequences is 320×240, and the frame rate is 25 fps. All 6
segmentation approaches produce binary silhouettes with a
size of 128×88. As this work aims at studying the effect of
gait silhouette quality on recognition, other factors that may
influence the recognition performance are excluded. Therefore,
only normal gait sequences are chosen from CASIA Dataset
B, without the factors of carrying objects, different clothes, or
different view angles.

TABLE II
RECOGNITION RATES (%) WITHOUT DISCRIMINANT LEARNING AND

FUSION BETWEEN GALLERY (G) AND PROBE (P) WITH DIFFERENT
QUALITIES. PERCENTAGES IN BOLD INDICATE THE HIGHEST

RECOGNITION RATE.

G
P Q.1 Q.2 Q.3 Q.4 Q.5 Q.6

Q.1 85 12 7 10 80 70
Q.2 12 67 17 8 10 35
Q.3 17 15 78 5 17 8
Q.4 15 8 5 38 18 15
Q.5 83 12 7 13 83 63
Q.6 58 25 5 10 43 97

A. Evaluation Without Subspace Learning

We first evaluate the recognition rates without discriminant
learning and fusion. The recognition rates, in percentage, are
shown in Table II. Two observations can be drawn from this
table:

1) The entries in the main diagonal represent the matching
results between gallery and probe data with the same
quality. These values are generally the highest values
among each column, suggesting that when both gallery
and probe data have same quality, the best matching
results are attained. However, matching across gallery
and probe with different qualities obtains low results
in most cases, with some exceptions; for example the
matching rates between Q.1 and Q.5. This indicates
that different segmentation approaches might generate
silhouettes with similar quality.

2) The entries outside the main diagonal show that the
quality disparity between gallery and probe data indeed
decreases the recognition accuracy. In some cases, the
matching rate between data segmented using the same
approach can still be very low, which indicates that
the segmentation approach may be inappropriate for the
sequences (see for example Q.4 gallery matched with
Q.4 probe).

B. Evaluation With Discriminant Learning

We measure the similarity between gallery and probe fea-
tures generated by subspace transformation. The recognition
rates are shown in Table III. Note that by using dimensionality
reduction plus LFDA, the figures in Table III significantly
improve compare with the figures in Table II.

C. Fusion Between Qualities with Majority voting

Finally, we evaluate the recognition rates attained by using
our fusion approach with majority voting. In this evaluation,
we are also interested in considering the case when data
contained in the probe set with a specific quality is not present
in the gallery data. This attempts to represent the situation
where the quality of the probe data is different from that of
the gallery data. Recognition rates are tabulated in Table IV.
The notation for this table are as follows:



TABLE III
RECOGNITION RATES (%) USING LFDA BETWEEN GALLERY (G) AND

PROBE (P) WITH DIFFERENT QUALITIES. PERCENTAGES IN BOLD
INDICATE THE HIGHEST RECOGNITION RATE.

G
P Q.1 Q.2 Q.3 Q.4 Q.5 Q.6

Q.1 95 75 63.3 20 93.3 95
Q.2 85 85 83.3 30 78.3 91.7
Q.3 68.3 75 95 33.3 66.7 81.7
Q.4 48.3 46.7 70 61.7 56.7 68.3
Q.5 95 75 56.7 21.7 95 96.7
Q.6 88.3 66.7 65 23.3 85 100

TABLE IV
THE RECOGNITION RATES IN PERCENTAGE (%) FOR PROBE DATA WITH 6

SES. DL(A): AVERAGE RATES OF LFDA; DL(H): HIGHEST RATES OF
LFDA; FDL(S): FUSION+LFDA USING SPLIT-EQUAL WEIGHT; FDL:

PROPOSED APPROACH; FDL(I): DEALING WITH INCOMPLETE GALLERY
DATA USING PROPOSED APPROACH

Probe
Alg. Q.1 Q.2 Q.3 Q.4 Q.5 Q.6 Avg.

DL-A 80 70.6 72.2 31.7 76.3 87 68.3
DL-H 95 85 95 61.7 95 100 88.6
FDL-S 90 78.3 83.3 33.3 88.3 96.7 78.3
FDL 95 85 90 58.3 95 98.3 86.9

FDL-I 95 76.7 73.3 23.3 93.3 95 76.1

• DL- A: LFDA. Average recognition rates for each column
in Table III.

• DL-H: highest recognition rate in each column of Table
III.

• FDL-S: LDFA plus fusion and majority voting. The
weights are equal for the three gallery features to be
fused, i.e., w =[1/3 1/3 1/3].

• FDL: LDFA plus fusion and majority voting, i.e. the
proposed approach.

• FDL-I: the proposed approach with incomplete fusion,
i.e., a particular quality contained in the probe data is
not present in the gallery data.

The improvement of the fusion approach is evident compared
to the recognition performance using a single classifier. The
fusion strategy using LSQR attains higher recognition rates
than the case of using equal weights (FDL-S). Note that results
corresponding to FDL are similar to those corresponding to
DL-H. This is expected, as the fusion strategy is capable of
obtaining weights that results in the highest recognition rates
when the quality of the probe data is in the gallery data during
fusion. When the probe quality is not present in the gallery
data, the recognition results are still high (see FDL-I).

D. Discussions

Experiment results suggests that the quality of the extracted
binary silhouette images is particularly important for model-
free gait recognition algorithms to perform accurately, since
the segmentation errors might negatively affect the recognition
rates. In [4], it is mentioned that a low gait silhouette quality
may provide powerful features for gait recognition when both

gallery and probe data have the same low quality. However,
through our analysis, an inaccurate segmentation could lead to
very low recognition rate, even when employing discriminant
learning methods, see for example results for probe data with
Q.4 in Table III.

One main shortcoming of LFDA, as in any other dis-
criminant learning method, is that subjects represented by
very low quality silhouettes cannot be recognized accurately.
Nevertheless, if the quality of gallery and probe data are
acceptable, even if they are very different, our fusion approach
can improve the matching performance to a promising level.

V. CONCLUSION

This paper studied the performance of GEI-based gait
recognition algorithms when a disparity in quality between
gallery and probe data exists. To this end, we generated gait
silhouettes with different segmentation discrepancies in order
to represent different levels of data qualities.

A classifier fusion strategy in conjunction with discriminant
learning was proposed to tackle the negative impact of quality
disparity on matching rate. Specially, we proposed to generate
weights by using LSQR to fuse gallery features and generate
several classifiers. We then proposed to use majority voting to
compute the final classification result. Experimental results on
the CASIA Dataset B suggested that this approach provides
better performance than the case of using a single classifier
and the case of employing fusion with equal weights.
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