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Abstract 1 

Down syndrome (DS) is a congenital chromosomal abnormality caused by the 2 

presence of all or part of a third copy of chromosome 21 (+21). DS is frequently 3 

complicated by congenital heart or digestive tract diseases at birth. DS patients are 4 

prone to infections and have mental retardation, with dementia such as Alzheimer’s 5 

disease showing in later life. Furthermore, malignancies with specific characteristics are 6 

also highly reported in DS patients compared with non-DS patients. Therefore, DS is 7 

believed to be a cancer predisposition syndrome due to the chromosomal instability. 8 

Acute myeloid leukemia (AML) and especially acute megakaryoblastic leukemia 9 

(AMKL) by French-American-British (FAB) classification are the most frequent 10 

hematological malignancies in DS patients, occurring at a rate that is 500 times higher 11 

than that in non-DS patients. Interestingly, transient abnormal myelopoiesis (TAM) is 12 

observed in approximately 10% of DS neonates with GATA1 mutations, and most TAM 13 

patients are asymptomatic and show spontaneous regression; however, about 10%–20% 14 

of TAM cases are fatal because of complications such as fetal effusion, liver fibrosis, 15 

and other complications.  16 

Acute lymphoblastic leukemia (ALL) is also associated with DS, occurring at a rate 17 

that is 20 times higher than that in non-DS patients. Furthermore, the prognosis of 18 
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DS-ALL patients is poorer than that of non-DS-ALL patients. A recent genetic analysis 1 

revealed that more than half of DS-ALL cases have a mutation in the CRLF2–JAK 2 

pathway, indicating that JAK inhibitors might have a limited effect for DS-ALL 3 

patients.  4 

Notably, solid tumors such as neuroblastoma, Wilms tumor, and brain tumor, which 5 

are frequently observed in non-DS children, are rarely reported in DS children. The 6 

reason remains unknown, but it may be because of the triplication of the Down 7 

syndrome critical region 1 (DSCR1) gene on chromosome 21. In adult patients with DS, 8 

the expected age-adjusted incidence rates of solid tumors are low compared with 9 

age-matched euploid cohorts for most cancers except for testicular cancer. Although the 10 

average life expectancy of patients with DS will increase with advances in healthcare, 11 

the detailed health problems including cancer rates in older DS patients remain 12 

unknown. Therefore, these issues will be needed to be addressed in future studies.  13 

 14 
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1. Background 1 

Down syndrome (DS) is a congenital chromosomal abnormality caused by trisomy 2 

21 (+21) and is frequently complicated by infection, congenital heart or digestive tract 3 

diseases, mental retardation, and developmental delay [1, 2]. Individuals with DS are 4 

more likely to be diagnosed (10–30 times) with hematological malignancies than 5 

non-DS individuals, and therefore DS is believed to be a cancer predisposition 6 

syndrome due to the chromosomal instability caused by +21 [3-6].  7 

A high frequency of acute myeloid leukemia (AML), especially acute 8 

megakaryoblastic leukemia (AMKL), has been observed in DS patients with mutations 9 

in GATA1, which encodes the GATA1 transcription factor [7-9]. AMKL occurs at a rate 10 

of 500 times higher in DS patients than non-DS patients. GATA1 mutations have also 11 

been found in patients with transient abnormal myelopoiesis (TAM) [10, 11]. However, 12 

the risk of acute lymphoblastic leukemia (ALL) is 20-fold greater in DS patients than 13 

non-DS patients. Approximately 10% of DS neonates also show TAM/transient 14 

myeloproliferative disorder (TMD)/transient leukemia. After regression of TAM, about 15 

20%–30% of DS patients develop AMKL. The morphology and immunophenotypes of 16 

TAM and AMKL are similar and the same GATA1 mutation has been observed in both 17 

TAM and AMKL blasts [11, 12]. However, the prognosis of AMKL with DS seems to 18 
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be better than that of AMKL without DS, even with reduced-intensity chemotherapeutic 1 

regimens [13, 14]. More than half of DS-ALL patients have high expression of type I 2 

cytokine receptor, CRLF2, with P2RY8–CRLF2 fusion genes and alterations in JAK 3 

[15-17]. The reason underlying the high frequency of leukemia in DS patients remains 4 

unknown, but the extra copy of 21 may affect leukemogenesis [5]. Notably, several 5 

genes on chromosome 21 such as Runt-related transcription factor 1 (RUNX1), 6 

erythroblast transformation-specific (ETS), and ETS-related gene (ERG) are believed to 7 

affect leukemogenesis [18-23] Furthermore, immunological disturbances such as 8 

decreased maturation of T/B cells and NK cell dysfunction in DS may affect 9 

leukemogenesis [24-26]. However, solid tumors such as neuroblastoma, hepatoblastoma, 10 

and brain tumors are rarely reported in DS [27-30]. The mechanism underlying the 11 

specific tumor spectrum in DS has been unclear. Notably, the Down syndrome candidate 12 

region 1 (DSCR1) gene on chromosome 21 encodes a protein that suppresses vascular 13 

endothelial growth factor (VEGF)-mediated angiogenic signaling by the calcineurin 14 

pathway [31]. Attenuation of calcineurin activity by DSCR1 dramatically diminishes 15 

angiogenesis, which plays a crucial role in the proliferation and expansion of solid 16 

tumors.  17 

In this article, DS-related malignancies including hematological malignancies and 18 
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solid tumors are reviewed. 1 

 2 

2. DS-related myeloid disorders 3 

DS is complicated by AML, especially AMKL, according to the 4 

French-American-British (FAB) classification [32-35]. In AMKL, immature 5 

megakaryoblasts spontaneously proliferate, resulting in neutropenia, anemia, and 6 

thrombocytopenia. Hence, the 2016 revision to the World Health Organization (WHO) 7 

classification included a distinct category of myeloid leukemia related to DS (ML-DS) 8 

[36]. In the process of TAM [37], TMD [38], or transient leukemia [39], 9 

morphologically similar blasts proliferate in DS neonates and exist in the peripheral 10 

blood (PB) for 3–4 months. Furthermore, some DS patients continuously show anemia 11 

or thrombocytopenia even after the disappearance of the TAM blasts, at which point a 12 

diagnosis of myelodysplastic syndrome (MDS) is made.  13 

 14 

2-1. TAM in DS patients 15 

Approximately 10% of DS neonates present with TAM. The majority of TAM 16 

patients show spontaneous regression of TAM blasts within 3-4 months, and thus the 17 

prognosis seems to be better even without therapy. After spontaneous remission, around 18 
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20%–30% of TAM patients develop AMKL (M7 by FAB classification) within 5 years 1 

after birth. This type of AML is very rarely reported in adults (<1%) and occurs in 15% 2 

of children [40-43]. However, approximately 10%–20% of TAM cases are complicated 3 

by fetal hydrops and irreversible liver fibrosis, which results in liver failure and 4 

coagulopathy [44-49]. Unfortunately, the prognosis of these fetal TAM patients is quite 5 

poor. A prospective study by the Children’s Cancer Group (COG) revealed that 6 

approximately 10% of early deaths occurred in TAM patients [50]. TAM develops in 7 

utero because of the presence of mutant GATA1 [9, 51]. Thus, TAM is sometimes 8 

complicated by severe fetal hydrops and pleural and abdominal effusion [45, 49, 52, 53]. 9 

Unknown stillbirth of DS might sometimes be because of TAM [46].  10 

2-1-1. Clinical features of TAM, asymptomatic to severe 11 

The clinical symptoms of TAM patients range from asymptomatic to severe. The 12 

most common physical finding in TAM patients is hepatosplenomegaly. In utero, TAM 13 

blasts start to proliferate in the liver and spleen [46]. After birth, the main location of 14 

hematopoiesis changes from extramedullary organs such as the liver or spleen to an 15 

intramedullary location, the BM niche (Figure 1).  16 

In contrast to asymptomatic TAM patients, severe TAM patients show marked 17 

hepatosplenomegaly, pleural or abdominal effusion, multiple organ failure, and 18 
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coagulopathy such as disseminated intravascular coagulation. Delayed-onset 1 

hyperbilirubinemia is a sign of progressive liver fibrosis that can result in fatal liver 2 

failure, even after the disappearance of TAM blasts [45, 47]. This is the main cause of 3 

the early deaths of TAM patients within 6 months of birth. This liver failure step seems 4 

to be irreversible, and thus novel treatment approaches are required to halt the 5 

progression of liver failure. 6 

2-1-2. Laboratory findings of TAM patients 7 

The diagnosis of TAM is relatively straightforward because characteristic 8 

leukocytosis and blasts exhibiting typical morphology called bulla or bleb are found in 9 

the PB of DS neonates. The white blood cell (WBC) count in PB is sometimes increased 10 

by more than 100×109 cells/L, resulting in leukocytosis. The immunophenotype of TAM 11 

blasts is similar to that of AMKL blasts, with positivity for stem cell markers (CD34, 12 

CD117), myeloid markers (CD13, CD33), and megakaryocytic lineage markers (CD41 13 

or CD61). However, some TAM blasts in PB were detected at less than 5% 14 

accompanied by a normal WBC count. Furthermore, a relatively small percentage of 15 

blasts are found in the bone marrow (BM) of TAM patients [50, 59, 60]. Therefore, BM 16 

aspiration or biopsy is not recommended for the diagnosis of TAM. Asymptomatic DS 17 

neonates may be accidentally diagnosed with TAM due to the detection of blasts in their 18 
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PB with or without the presence of leukocytosis.  1 

2-1-3-1. Pathogenesis of TAM: GATA1 mutations 2 

GATA1 is located on chromosome X and encodes a transcription factor that 3 

regulates the maturation of erythroid and megakaryocyte lineages, which produce red 4 

blood cells or platelets. Almost all DS-TAM patients have GATA1 mutations, and these 5 

mutations are frequently found in exons 2 and 3 (Figure 2) [10, 11]. These mutations 6 

lead to the expression of a truncated GATA1 protein, GATA1s, which lacks the 7 

N-terminal transcription activity and results in different gene expression profiles [42, 61, 8 

62]. GATA1 mutations are found in approximately 10% in DS patients. However, some 9 

DS neonates are not diagnosed with TAM but as having GATA1 mutations. Surprisingly, 10 

Roberts et al. reported that 195 of 200 (97.5%) DS neonates had circulating TAM blasts. 11 

GATA1 mutations were found in 17 of 200 DS neonates (8.5%) by Sanger 12 

sequence/denaturing high performance liquid chromatography and all with blasts >10%. 13 

Low abundance of GATA1 mutated clones was detected by targeted next generation 14 

sequence (NGS) in 18 of 88 (20.4%) DS neonates without GATA1 mutations by 15 

standard detection methods. These cases are known as “silent TAM” [40]. Therefore, 35 16 

of 200 (17.5%) DS neonates had GATA1 mutations and blasts >10% at diagnosis of 17 

TAM, demonstrating an important clinical point of TAM patients. If these highly 18 
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sensitive NGS methods were combined, GATA1 mutations would be identified in 1 

approximately 20% of DS neonates. Using single cell analysis for DS neonates, more 2 

patients with GATA1 mutation would be identified. Conversely, Terui et al. reported 3 

GATA1 mutations in 56% of genomic DNA samples from BM and 71% cDNA samples 4 

from PB as detected by Sanger sequencing; the study showed that 89% of TAM 5 

neonates have GATA1 mutations. Furthermore, targeted NGS detected GATA1 mutations 6 

in 90% of TAM neonates. In total, GATA1 mutations were detected in 98% of DS-TAM 7 

patients using a combined approach of Sanger sequencing and NGS [63]. Therefore, the 8 

detection method of GATA1 mutations is an important consideration in future studies. 9 

2-1-3-2. Pathogenesis of TAM: uniparental disomy of chromosome 21 10 

The usual frequency of uniparental disomy due to the chromosomal non-disjunction 11 

in meiosis is estimated at 1:3 in paternal origin vs. maternal origin in DS non-TAM 12 

patients. The precise data in DS-TAM patients remains unknown, but the mapping of a 13 

possible gene for TAM at 21q11.2 was reported in 1991 [64, 65]. Furthermore, several 14 

genes including DSCR1 on partial chromosome 21 could cause the myeloproliferation 15 

in TAM [23, 66, 67]. Takahashi et al. found a 10-Mb amplification of 21q22.12–21q22.3 16 

by SNP array and revealed that dual specificity tyrosine-phosphorylation-regulated 17 

kinase 1A (DYRK1A), ERG, and ETS but not RUNX1 are candidate genes for the 18 
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genesis of TAM [23]. In particular, DYRK1A promoted megakaryoblastic leukemia in a 1 

murine model of DS [4, 68].  2 

A recent study in induced pluripotent stem cells revealed that trisomy 21 alone could 3 

affect myeloproliferation, and thus GATA1 mutations are insufficient for the 4 

proliferation of TAM blasts [69]. Furthermore, a NGS study conducted in a large 5 

number of TAM patients revealed that only GATA1 mutations were detected in these 6 

patients [70, 71]. Therefore, GATA1 mutations and an extra copy of several genes 7 

including DYRK1A on chromosome 21 cooperate with TAM genesis. Future studies 8 

might reveal the gene(s) on chromosome 21 responsible for TAM genesis.  9 

2-1-3-3. Pathogenesis of TAM: the role of the microenvironment in DS fetal liver 10 

and BM 11 

The most defining feature of TAM compared with other hematological malignancies 12 

seems to be the origin of TAM blast proliferation. TAM develops in utero, and thus the 13 

main site of development is the fetal liver and spleen, which is called extramedullar 14 

hematopoiesis [9, 12, 72]. The direct evidence for TAM blasts in the fetal liver was 15 

observed in some autopsy cases [44]. The fetal liver is likely to provide the necessary 16 

microenvironment for driving and/or maintaining abnormal hematopoiesis in DS, but 17 

the factors responsible for maintaining or proliferating TAM blasts are not fully 18 
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understood. Miyauchi and Kawaguchi reported that stromal cells of the fetal liver, but 1 

not fetal BM, potently supported the proliferation of TAM blast progenitors, mainly 2 

through humoral factors such as granulocyte macrophage-colony stimulating factor 3 

(GM-CSF) through co-culture experiments. Therefore, fetal liver stromal cells provide a 4 

pivotal hematopoietic microenvironment for TAM blasts, and GM-CSF produced by 5 

fetal liver stromal cells may have an important role in the pathogenesis of TAM [72].  6 

There is no strict evidence of the existence of leukemia stem cells (LSCs) in TAM. 7 

In the field of AML, LSC concept seems to be common and LSCs themselves have 8 

some genetic abnormalities [73]. However, the same mutant GATA1 clone proliferates 9 

and develops into AMKL after the spontaneous regression of TAM blasts. Therefore, 10 

LSCs or progenitor cells with GATA1 mutations could start to proliferate in the BM 11 

microenvironment within 5 years after birth. However, the precise mechanism of TAM 12 

colonization to initiate proliferation in the BM microenvironment remains unknown. 13 

2-1-3-4. Pathogenesis of TAM: the role of inflammation  14 

Several reports suggested that abnormal cytokine levels are present in TAM patients, 15 

including transforming growth factor (TGF)-β, interferon (IFN)-γ, interleukin (IL)-1β, 16 

and IL-6 [51, 53-56, 58, 72]. Our previous data suggested that lethal TAM cases are 17 

frequently complicated by uncontrolled pro-inflammatory cytokinemia, especially 18 
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highly elevated IL-1β, TNF-α, and IFN-γ [51, 55]. TAM blasts produce TGF-β, which is 1 

correlated with liver fibrosis [54]. Furthermore, some reports suggested that 2 

pro-inflammatory cytokinemia has already developed in utero and is sustained even 3 

after the regression of TAM blasts, which means that some abnormal cytokines were 4 

also maintained by the immunological bias of DS [24-26]. The levels of inflammatory 5 

cytokines with TAM were different from those without TAM. The precise mechanism of 6 

spontaneous regression of TAM blasts remains unknown, but these inflammatory 7 

cytokines might affect the spontaneous regression of TAM. Another explanation is that 8 

TAM blasts lose the support from the stroma cells of the fetal liver [72]. Miyauchi et al 9 

also reported that TAM blasts could differentiate into basophil/mast cells and 10 

megakaryocyte lineages in vitro [57]. Therefore, spontaneous regression might 11 

alternatively indicate the differentiation of TAM blasts. Another report suggested that 12 

chemokine levels or monocyte chemoattractant protein-1 (MCP-1) predicts the progress 13 

of liver failure of TAM patients [58, 74].  14 

2-1-4. Treatment of TAM patients 15 

Most TAM patients are usually asymptomatic and do not need chemotherapy 16 

because the blasts will spontaneously regress within 3–4 months. Nonetheless, 17 

symptomatic fetal TAM cases such as those with multi-organ failure, hyperleukocytosis 18 
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(WBC > 100×109/L), hepatosplenomegaly, hydrops fetalis, pleural or cardiac effusions, 1 

renal failure, and coagulopathy with bleeding should be considered for treatment. 2 

Exchange transfusion (ET) is effective in reducing TAM blasts, especially 3 

hyperleukocytosis, although it is not effective for other complications. Low dose 4 

cytosine arabinoside (LDCA) is the most preferable chemotherapeutic regimen for TAM 5 

patients; there was a non-significant trend towards improved survival (80±6% vs. 6 

67±7%, p=0.1) in symptomatic TAM patients compared with a historical control. 7 

Furthermore, there was no apparent reduction in the cumulative incidence of DS-related 8 

myeloid leukemia (19±6% vs. 22±4%, p=0.95) [75]. Hydrops fetalis is a lethal clinical 9 

condition in DS neonates. In our previous study, three TAM neonates with hydrops 10 

fetalis were successfully treated with ET followed by LDCA [49]. The cases received 11 

LDCA after ET and all three remain alive to date. Liver failure is the biggest problem 12 

for fetal TAM patients, and the majority of TAM patients who suffer from severe 13 

irreversible liver failure will die. A recent report suggested the possibility of liver 14 

transplantation for fetal liver failure in TAM patients [76].  15 

2-1-5. Who will develop AMKL in later life? 16 

Approximately 20%–30% of TAM patients develop AMKL within 5 years after 17 

birth, but some patients will develop AML later in life. Kanezaki et al. revealed that 18 
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GATA1 mutations (with GATA1s expression) were significantly associated with a risk of 1 

progression to ML-DS [61]. However, DS patients who do not have a history of TAM 2 

could also develop AMKL in later life. An important question is whether ML-DS is 3 

always preceded by TAM [77]. There is the possibility that minor clones with GATA1 4 

mutations already exist during the neonatal period of these patients; these patients are 5 

referred to as “silent TAM” patients [78]. Alternatively, more minor clones such as 6 

LSCs might exist in the neonatal period. Saida et al. presented a xenograft model of 7 

TAM, which revealed that genetically heterogeneous subclones with varying 8 

leukemia-initiating potential already exist in the neonatal TAM phase, and ML-DS may 9 

develop from a pool of such minor clones through clonal selection [79].  10 

There is currently no specific biomarker to predict AMKL development. However, 11 

GATA1 mutations may be useful to detect minimal residual disease. If NGS technology 12 

can provide highly sensitive detection of a mutant GATA1 clone, it will be a good 13 

monitoring method for the development of AMKL. Therefore, continuous observation is 14 

needed for TAM patients for at least 5 years after birth, even after the spontaneous 15 

regression of TAM. Flasinski et al. reported that LDCA treatment helped to reduce 16 

TMD-related mortality compared with the historical control but was insufficient in 17 

preventing progression to ML-DS [75]. Further studies are required to examine 18 
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strategies to prevent leukemogenesis. 1 

 2 

2-2. MDS in DS patients 3 

Despite the spontaneous regression of TAM blasts, DS patients sometimes show 4 

continuous anemia or thrombocytopenia with or without blasts. This is known as MDS 5 

in DS patients and frequently requires the same chemotherapy as DS-AMKL [80].  6 

Mast et al. published a large study on DS-MDS (n=60) and DS-AML (n=103) and 7 

found that dysplastic change was frequently observed in megakaryocyte and erythroid 8 

lineages with reticulin fibrosis but infrequent in myeloid lineage in both DS-MDS and 9 

DS-AML. Patients with DS-MDS and DS-AML demonstrated similar rates of 5-year 10 

event-free survival (EFS) (MDS, 92%±7%; AML, 88%±6%) and overall survival (OS) 11 

(MDS, 95%±6%; AML, 90%±6%) [81]. Therefore, the only criterion to distinguish 12 

MDS and AML was blast percentage [MDS, mean 11% (range 2%–17%); AMKL 42% 13 

(range 20%–90%)].  14 

 15 

2-3. DS-related myeloid malignancy 16 

Most DS-related myeloid malignancies are AMKL (M7 by FAB classification; 17 

ML-DS by WHO classification); other types of AML were also infrequently reported 18 
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especially in patients older than 4 years old [81]. In general, <1% of adult AML is 1 

AMKL and 15% of pediatric AML is AMKL [35]. The prognosis is quite different from 2 

that of DS-AMKL (ML-DS) and non-DS-AMKL (non-ML-DS). A Japanese nationwide 3 

prospective study of DS-AMKL reported that the 3-year EFS and OS rates were 4 

83.3%±4.4% and 87.5%±3.9%, respectively [82]. An international retrospective study 5 

of non-DS-AMKL reported that the 5-year EFS and OS were 43.7%±2.7% and 6 

49.0%±2.7%, respectively [83]. the German Berlin-Frankfurt-Miinster (BFM) data 7 

achieved an improved 5-year OS (AML-BFM 04; 70±6% vs. AML-BFM 98; 45±8%, P 8 

log rank = 0.041) [84]. A recent molecular study revealed that the CBFA2T3-GLIS2 9 

chimera in non-DS-AMKL subgroup showed poor prognosis [35, 85, 86]. According to 10 

the specific chimera, the prognosis was clearly different in non-DS-AMKL [87].  
11 

Approximately 20%–30% of TAM patients develop AMKL and the identical GATA1 12 

mutation is found in both TAM and AMKL blasts, as previously described.  13 

2-3-1. Molecular background of ML-DS development 14 

GATA1 mutations are essential but insufficient for the development of AMKL. A 15 

previous study amplified the segment in the critical DS region on chromosome 21 16 

between DS and euploid AML-M0, which excludes RUNX1, ERG, and ETS [88]. 17 

Recent exome sequencing studies of ML-DS revealed a high frequency of mutations in 18 
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cohesins, CCCTC-binding factor (CTCF), or other chromatin regulators [70]. Other 1 

mutations, believed to enhance growth and proliferation, occur in genes in signaling 2 

pathways, such as RAS and the thrombopoietin receptor MPL, or downstream 3 

JAK-STAT signaling [70]. Notably, these additional genetic events occur within 5 years 4 

after birth, and therefore ML-DS seems to be a good model to understand 5 

leukemogenesis [77].  6 

2-3-2. Diagnosis of ML-DS 7 

The morphology and immunophenotypes of blasts of ML-DS are typical and are 8 

similar to those of TAM, with erythroid and megakaryoblastic lineages. The 9 

immunophenotype of AMKL blasts is similar to that of TAM blasts and is positive for 10 

stem cell markers (CD34, CD117), myeloid markers (CD13, CD33), and 11 

megakaryocytic lineage markers (CD41 or CD61). BM aspiration is frequently 12 

unsuccessful because of myelofibrosis or due to a dry tap; therefore, blast counts are 13 

often underestimated at below 20% of nucleated cells, which does not satisfy the 14 

definition of AML. Therefore, the diagnosis of ML-DS is not dependent on blast counts. 15 

Furthermore, additional chromosome abnormalities are frequently acquired in AMKL 16 

blasts, but the common translocations associated with non-DS-AML are rare [89].   
17 

2-3-3. Treatment of ML-DS  18 
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DS-AMKL blasts showed a high sensitivity to cytarabine (CA) [90, 91]. Several 1 

decades ago, the same intensity chemotherapeutic regimen for non-DS patients was 2 

applied for ML-DS, but the clinical outcome was worse because early death related to 3 

severe infection or regimen-related toxicities was frequently observed. Thus, 4 

chemotherapeutic regimens at reduced intensities were used for ML-DS. Kojima et al. 5 

reported that remission induction chemotherapy consisting of daunorubicin (25 mg/m2/d 6 

for 2 days), CA (100 mg/m2/d for 7 days), and etoposide (VP16, 150 mg/m2/d for 3 7 

days) showed a relatively good prognosis [92]. Kudo et al. reported that 70 of 72 8 

(97.2%) patients with ML-DS treated with remission induction chemotherapy consisting 9 

of pirarubicin (25 mg/m2/d for 2 days), CA (100 mg/m2/d for 7 days), and VP16 (150 10 

mg/m2/d for 3 days) achieved complete remission with an estimated 4-year EFS rate of 11 

83±9% [93]. The authors concluded that a less intensive chemotherapeutic regimen 12 

produces excellent outcomes in standard-risk ML-DS patients, and thus this specific 13 

regimen was applied for ML-DS in a nationwide study in Japan. The clinical outcome 14 

was superior, and a low relapse rate was also observed. Hence, a less intensive 15 

chemotherapeutic regimen produces excellent outcomes in ML-DS. The international 16 

ML-DS 2006 trial and COG trial A2971 also supported this concept [94, 95].  17 

Notably, among ML-DS cases, some patients cannot receive reduced intensity 18 
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chemotherapeutic regimens because of other complications such as heart failure. 1 

Furthermore, relapsed ML-DS still shows poor prognosis. Relapse is the main cause of 2 

death of survivors of ML-DS. Hematopoietic stem cell transplantation (HSCT) is a very 3 

limited option for relapsed ML-DS. Therefore, future studies might be needed to 4 

identify new targeted therapies for relapsed ML-DS. 5 

2-3-4. DS-ML other than AMKL 6 

The common subtype of AML that occurs in non-DS patients (non-AMKL) also 7 

occurs in DS patients and is especially predominant in patients older than 4 years old. 8 

DS-AML in patients older than 4 years old is not associated with GATA1 mutation and 9 

good prognosis like DS-AMKL [96].  10 

 11 

3. DS-related lymphoid malignancy 12 

3-1. Epidemiology, clinical, and laboratory features of DS-ALL 13 

DS-ALL is uncommon compared with DS-ML; however, DS-ALL occurs at a 14 

20-fold greater incidence than non-DS-ALL [27]. Several studies of children with 15 

DS-ALL showed an inferior outcome compared with non-DS patients [101-103]. 16 

Event-free (56% vs 74%; P < .001) and disease-free (55% vs 73%; P < .001) survival at 17 

10 years was significantly lower in the standard-risk DS-ALL population compared with 18 
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non DS-ALL, but not in high-risk DS-ALL population [101]. An international 1 

retrospective study revealed that the major immunophenotype is precursor B cell ALL, 2 

and T cell ALL is rare [97]. Furthermore, normal karyotype was dominant (40.3%) and 3 

high hyperdiploid was infrequent in DS-ALL.  4 

3-2. Genetic background of DS-ALL 5 

Unlike ML-DS, in which a specific and critical disease-associated mutation GATA1 6 

has been identified, the genetic background of DS-ALL is quite heterogeneous. 7 

Common genetic events such as BCR-ABL1, MLL rearrangement, and ETV6-RUNX1 8 

are infrequent in DS-ALL compared with non-DS-ALL. However, more than half of 9 

DS-ALL patients have alterations in the CRLF2-JAK2 pathway, such as increased 10 

expression of CRLF2 and activating mutations JAK2 [15-17, 97]. These cases are 11 

considered Philadelphia chromosome-like ALL [41, 98]. In total, 50% of DS-ALL 12 

patients had more than one deletion in B-cell development genes: PAX5 (12%), 13 

VPREB1 (18%), and IKZF1 (35%). JAK2 was mutated in 15% of patients, and genomic 14 

CRLF2 rearrangements were observed in 62% [99]. Outcome was significantly worse in 15 

patients with IKZF1 deletions (6-year EFS 45%±16% vs. 95%±4%; P = 0.002), which 16 

was confirmed in the validation cohort (6-year EFS 21%±12% vs. 58%±11%; P = 17 

0.002). IKZF1 deletion was a strong independent predictor for outcome (hazard ratio 18 
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EFS 3.05; P = 0.001). Neither CRLF2 nor JAK2 were predictors for worse prognosis. 1 

The authors suggested that IKZF1 deletions may be used for risk-group stratification in 2 

DS-ALL [99].  3 

Integrative genomic analysis of 25 matched diagnosis-remission and -relapse 4 

DS-ALLs revealed that CRLF2 rearrangements are early events during DS-ALL 5 

evolution and generally stable between diagnoses and relapse [100]. Secondary 6 

activating signaling events in the JAK-STAT/RAS pathway were ubiquitous but highly 7 

redundant between diagnosis and relapse, suggesting that this signaling is essential but 8 

that no specific mutations are “relapse driving.” Furthermore, activated JAK2 may be 9 

naturally suppressed in 25% of CRLF2-positive DS-ALLs by loss-of-function 10 

aberrations in USP9X, a deubiquitinase previously shown to stabilize activated 11 

phosphorylated JAK2. Therefore, the authors concluded that the therapeutic effect of 12 

JAK specific inhibitors may be limited [100]. 13 

3-3. Clinical outcome of DS-ALL  14 

In general, the prognosis of DS-ALL is worse compared with that of non-DS-ALL 15 

[101-103]. Apart from ML-DS, there has been no specific study protocol for DS-ALL, 16 

and therefore the treatment protocol for non-DS-ALL was applied to DS-ALL in each 17 

study protocol. The EFS or OS of DS-ALL was 10%–20% lower than that of 18 
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non-DS-ALL [101-103]. The reasons postulated for this are that DS-ALL has a higher 1 

relapse rate, a higher induction failure rate, and a higher death rate due to severe 2 

complications. DS patients commonly incur severe infections after chemotherapy that 3 

could result in death [104, 105]. Another explanation is the relatively low frequency of 4 

favorable cytogenetic risk groups such as t(12;21) in DS-ALL [106].  
5 

In the international Ponte di Lengo study previously mentioned, DS-ALL patients 6 

had a higher 8-year cumulative incidence of relapse (26%±2% vs. 15%±1%, P < 0.001) 7 

and 2-year treatment-related mortality (TRM) (7%±1% vs. 2.0%±<1%, P < 0.0001) than 8 

non-DS patients, resulting in lower 8-year EFS (64%±2% vs. 81%±2%, P < 0.0001) and 9 

OS (74%±2% vs. 89%±1%, P < 0.0001) [97]. Relapse is the main contributor to poorer 10 

survival in DS-ALL; infection-associated TRM was increased in all protocol elements, 11 

unrelated to treatment phase or regimen.  12 

ETV6-RUNX1 conferred an excellent prognosis and high hyperdiploidy with trisomy 13 

of chromosomes 4 and 10 was associated with a very low cumulative incidence of 14 

relapse [97]. The authors suggested that these patients, comprising 12% of DS-ALL, 15 

may be eligible for future treatment reduction to reduce TRM and can be treated 16 

according to the same risk-stratified algorithms as non-DS patients in the collaborative 17 

study group protocols [97]. Interestingly, the authors identified a clinically favorable 18 
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prognostic subgroup of DS-ALL patients, characterized by age < 6 years and WBC 1 

<10×109/L. 2 

Until now, some DS-ALL patients could not continue or complete the 3 

ALL-therapeutic regimen, and partial reductions in chemotherapeutic drugs were 4 

needed because of treatment toxicities. However, the reduction in chemotherapeutic 5 

drugs resulted in increased relapse and death rates [102]. The intensified treatment was 6 

not tolerable for DS patients, and the reduced intensity of chemotherapy such as that for 7 

ML-DS will not benefit DS-ALL.  8 

The recent Dana-Farber Cancer Institute ALL consortium protocols 00-001 and 9 

05-001 showed similar clinical outcomes of DS-ALL patients to non-DS-ALL despite a 10 

high rate of mucositis [107]. A recent COG study revealed the excellent long-term 11 

survival of DS children with standard risk ALL. The ten-year EFS rates for DS patients 12 

randomized to intravenous methotrexate (MTX) vs. oral MTX were 94.4% vs. 81.5%, 13 

respectively [108]. Furthermore, there were no increases in hepatic toxicity, systemic 14 

infections, or treatment-related deaths in DS-ALL patients.  15 

Another ALL-BFM report suggested MTX toxicity in DS-ALL [109]. Higher MTX 16 

plasma levels were associated with increased toxicity, and therefore the authors 17 

concluded that a dose reduction of the first MTX course reduced severe toxicities 18 
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without increasing the risk of relapse. 1 

3-4. Relapsed DS-ALL 2 

Increased deaths and treatment-related mortality are the main barriers for the 3 

successful outcome of relapsed DS-ALL therapy [110]. Recently, relapsed DS-ALL 4 

patients were treated with clofarabine therapy or HSCT. Meissner et al. reported that 5 

relapse, and not regimen-related toxicity, was the main cause of death in DS-ALL 6 

patients who received HSCT [111]. These findings were confirmed by a recent study 7 

[112].  8 

Several new therapeutic approaches have been used for DS-ALL such as 9 

blinatumomab [113] and inotuzumab-ozogamicin (IO) [114]. Blinatumomab is an 10 

anti-CD19 bispecific T-cell engager antibody construct that shows a good response in 11 

minimal residual disease-positive non-DS-ALL. IO is a humanized anti-CD22 12 

monoclonal antibody conjugated to calicheamicin. IO has sub-nanomolar binding 13 

affinity and is rapidly internalized into cells that express CD22 to deliver the conjugated 14 

calicheamicin. Calicheamicin binds to the minor groove of DNA and induces 15 

double-strand cleavage with subsequent apoptosis. However, its severe adverse effects 16 

included cytokine release syndrome and sinusoidal obstruction 17 

syndrome/veno-occlusive disease in non-DS-ALL. For DS-ALL, the reduced 18 
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myelosuppression by both drugs is preferable, but there is only one case report to date. 1 

Further larger studies are needed to define the effectiveness of both drugs for DS-ALL. 2 

Chimeric antigen receptor T-cell therapy will be also applicable to DS-ALL patients. 3 

 4 

4. DS-related solid tumors 5 

4-1. DS-related solid tumors in children 6 

Solid tumors in children such as neuroblastoma, Wilms tumor, and brain tumors that 7 

are common in euploid children are rarely reported in DS children [27]. A previous 8 

analysis of 6724 patients with neuroblastoma reported from 11 European countries 9 

identified no cases of neuroblastoma among children with DS [115]. The National 10 

Wilms Tumor Study registry reviewed 5854 Wilms tumor cases and did not identify any 11 

kidney tumors in children with DS [116]. Only retinoblastoma, an occult tumor, might 12 

have an association with DS [27, 117]. No report has suggested these tumors could 13 

occur in utero.     14 

4-2. DS-related solid tumors in adults 15 

In adult DS patients, solid tumors are also uncommon, and most types have 16 

significantly lower than expected age-adjusted incidence rates [28]. For example, the 17 

standardized incidence ratios (SIRs) of breast cancer in DS patients compared with 18 
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age-matched euploid cohorts were 0 and 0.4 from two studies [27, 118]. Hasle et al. 1 

reported that the overall risk of solid tumors was decreased (SIR 0.45; 95% CI 2 

0.34–0.59), especially in patients aged 50 years or older (SIR 0.27; 95% CI 0.16–0.43), 3 

with significantly lower risks of lung cancer (SIR 0.10; 95% CI 0.00–0.56), breast 4 

cancer (SIR 0.16; 95% CI 0.03–0.47), and cervical cancer (SIR 0.0; 95% CI 0.00–0.77). 5 

Testicular cancer was the only solid tumor with an increased SIR (2.9; 95% CI 1.6–4.8) 6 

[28].  7 

Data from US death certificates from 1983 to 1997 revealed that malignant 8 

neoplasms other than leukemia were listed on death certificates of people with DS less 9 

than one-tenth as often as expected  [119]. A strikingly low standardized mortality 10 

odds ratios for malignancy was associated with DS at all ages, in both sexes, and for all 11 

common tumor types except leukemia and testicular cancer. In data of autopsied cases 12 

operated by the Japanese Society of Pathology from 1974 to 2000, 104 cases with 13 

malignant disorders (61 male, 42 female and one case with unrecorded sex), including 14 

87 cases with hematopoietic malignancies (83.7%) and 17 cases with solid tumors 15 

(16.3%), were identified [120]. The 17 solid tumors identified included three 16 

hepatocellular carcinomas, three extrahepatic cholangiocarcinomas, two gallbladder 17 

adenocarcinomas, three brain tumors, and three seminomas, and the most frequent age 18 
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range of patients with solid tumors was 40–50 years old. 1 

Testicular tumors are frequently found in DS patients but the underlying reason is 2 

unclear. High incidence of cryptorchidism [121], high serum level of 3 

follicle-stimulating hormone or luteinizing hormone [122], or Ets-2, an oncogene on 4 

chromosome 21 [123], and maturation delay of germ cells with trisomy 21 might result 5 

in increased risk of testicular cancer [124].  6 

4-3. The contribution of trisomy 21 in solid tumors 7 

Solid tumors in DS seem to be rare in children and adults, but the reason is unclear. 8 

One explanation may be that the decreased immunosurveillance enables cancer cells to 9 

survive and proliferate due to the decreased efficiency of T cells, B cells, and NK cells 10 

in DS patients [26]. Such immunodeficiencies in DS are the cause of the high incidence 11 

of infection in these patients and might contribute to leukemogenesis but not solid 12 

tumor growth. 13 

Another explanation is that the attenuation of calcineurin activity by DSCR1, 14 

together with another chromosome 21 gene DYRK1A, may be sufficient to markedly 15 

diminish angiogenesis [31]. Therefore, suppression of tumor angiogenesis by an 16 

additional copy of DSCR1 contributes to the reduced cancer incidence in individuals 17 

with DS and the calcineurin pathway in the tumor vasculature might be a potential 18 
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target for cancer treatment. These observations were confirmed in a murine lung tumor 1 

model [125]. Rethore et al. proposed that for women with DS, breast cancer screening is 2 

not recommended, but annual clinical monitoring should be conducted, with the option 3 

to perform ultrasound or MRI examinations in suspect cases. For cervical cancer, 4 

screening could be proposed for women who are sexually active, beginning at 25 years 5 

of age. Annual surveillance for testicular cancer via palpation by a health professional is 6 

preferable from ages 15 to 45 [30]. 7 

DS was believed to be a model of progeria (accelerated aging) or 8 

immunosenescence [126]. Aging is characterized by a chronic, low-grade, and sterile 9 

inflammation, called “inflammaging,” which has been directly associated with several 10 

age-related conditions [127]. Individuals with DS have increased spontaneous 11 

circulating levels of pro-inflammatory cytokines, such as TNF-α, IFN-γ, IL-6 and IL-1β 12 

[128]. The chronic pro-inflammatory state observed in patients with DS is likely to 13 

greatly contribute to neurodegeneration. Inflammation is considered as an important 14 

contributor to neurodegenerative disorders, such as Alzheimer’s disease, and is a critical 15 

component of tumor progression [129, 130]. However, there was no specific data to 16 

support that immunosenescence, inflammaging, or inflammation contributes to 17 

increased solid tumors in DS. 18 
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Advances in healthcare have improved survival in DS patients over the last 60 years 1 

[131]. The mean life expectancy at age 12 years has increased to approximately 60 2 

years [132]. DS is associated with a high risk of stroke in patients of all ages [133]. 3 

Ischemic stroke risk in DS appears to be mostly driven by cardioembolic risk. The 4 

greater risk of hemorrhagic stroke and lower risk of coronary events in DS males [133]. 5 

Furthermore, majority of death reason in older DS patients was respiratory infections. 6 

The detailed health problems in older DS patients including the prevalence of cancer 7 

remain unknown and will need to be clarified in future studies. 8 

 9 

5. Conclusion 10 

DS is a cancer predisposition syndrome, especially for leukemia in children and 11 

testicular cancer in adults. In children with DS, most cases related to myeloid 12 

malignancies were AMKL and TAM preceded most AMKL cases. The prognosis of 13 

DS-AMKL has improved over several decades; however, the prognosis of DS-ALL 14 

remains poor. Solid tumors have been rarely reported in children with DS. The expected 15 

age-adjusted incidence rates of solid tumors in adult patients with DS compared with 16 

age-matched euploid cohorts was low for most cancers except for testicular cancer. 17 

Thus, the cancers associated with DS have a unique cancer profile, cancer 18 
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predisposition & cancer evasion. Further study might help elucidate the unique 1 

contribution of +21 to oncogenesis.  2 
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transient abnormal myelopoiesis (TMD), transforming growth factor (TGF), interferon 7 
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 15 

 16 

Figure Legends 17 

Figure 1. Suspected myeloid leukemogenesis mechanism of Down syndrome (DS). 18 

Transient abnormal myelopoiesis (TAM) and acute megakaryoblastic leukemia 19 

(AMKL) are characteristic to DS. Proliferation of TAM is initiated in fetal liver after 20 

acquired +21 and GATA1 mutation. The majority of DS-TAM shows spontaneous 21 

regression, but about 10% of DS-TAM cases develop AMKL within 3–4 years after 22 

birth.  23 

Figure 2. Predicted structure of GATA1 protein. GATA1 mutation is frequently found in 24 

DS-TAM and AMKL patients, and this mutation causes a truncated form of GATA1 25 

(GATA1s). 26 
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