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Abstract. The following online problem arises in network devices, e.g.,
switches, with quality of service (QoS) guarantees. In each time step, an
arbitrary number of packets arrive at a single FIFO buffer and only one
packet can be transmitted. Packets may be kept in the buffer of limited
size and, due to the FIFO property, the sequence of transmitted packets
has to be a subsequence of the arriving packets. The differentiated service
concept is implemented by attributing each packet with a non-negative
value corresponding to its service level. A buffer management algorithm
can reject arriving packets and preempt buffered packets. The goal is to
maximize the total value of transmitted packets.
We study comparison-based buffer management algorithms, i.e., algo-
rithms that make their decisions based solely on the relative order be-
tween packet values with no regard to the actual values. This kind of al-
gorithms proves to be robust in the realm of QoS switches. Kesselman et
al. (SIAM J. Comput., 2004) present a comparison-based algorithm that
is 2-competitive. For a long time, it has been an open problem whether
a comparison-based algorithm exists with a competitive ratio below 2.
We present a lower bound of 1 + 1/

√
2 ≈ 1.707 on the competitive ratio

of any deterministic comparison-based algorithm and give an algorithm
that matches this lower bound in the case of monotonic sequences, i.e.,
packets arrive in a non-decreasing order according to their values.

Keywords: Online algorithms, competitive analysis, network switches,
buffer management, Quality of Service, comparison-based

1 Introduction

We consider the following online problem which arises in network devices, e.g.,
switches, with quality of service (QoS) guarantees. In each time step, an arbitrary
number of packets arrive at a single buffer, i.e., a FIFO queue, of bounded
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capacity. Each packet has a non-negative value attributing its service level (also
known as class of service (CoS)). Packets are stored in the buffer and only one
packet can be transmitted in each time step. Due to the FIFO property, the
sequence of transmitted packets has to be a subsequence of the arriving packets.
A buffer management algorithm can reject arriving packets and preempt packets
that were previously inserted into the buffer. The goal is to maximize the total
value of transmitted packets.

In probabilistic analysis of network traffic, packet arrivals are often assumed
to be Poisson processes. However, such processes are not considered to model
network traffic accurately due to the fact that in reality packets have been ob-
served to frequently arrive in bursts rather than in smooth Poisson-like flows
(see, e.g., [15, 17]). Therefore, we do not make any prior assumptions about the
arrival behavior of packets, and instead resort to the framework of competitive
analysis [16], which is the typical worst-case analysis used to assess the per-
formance of online algorithms, i.e., algorithms whose input is revealed piece by
piece over time, and the decision they make in each time step is irrevocable.

In competitive analysis, the benefit of an online algorithm is compared to the
benefit of an optimal algorithm opt which is assumed to know the entire input
sequence in advance. An online algorithm onl is called c-competitive if, for each
input sequence σ, the benefit of opt over σ is at most c times the benefit of onl
over σ. The value c is also called the competitive ratio of onl.

Comparison-based Buffer Management. In QoS networks, packet values are only
an implementation of the concept of differentiated service. A packet value stands
for the packet’s service level, i.e., the priority with which this packet is trans-
mitted, and does not have any intrinsic meaning in itself. However, just slight
changes to the packet values, even though the relative order of their correspond-
ing service levels is preserved, can result in substantial changes in the outcome
of current buffer management algorithms. We aim to design new buffer man-
agement algorithms whose behavior is independent of how the service levels are
implemented in practice. Therefore, we study comparison-based buffer manage-
ment algorithms, i.e., algorithms that make their decisions based solely on the
relative order between values with no regard to the actual values. Such algo-
rithms are robust to order-preserving changes of packet values.

Kesselman et al. [13] present the following simple greedy algorithm: Accept
any arriving packet as long as the queue is not full. If a packet arrives while
the queue is full, drop the packet with the smallest value. Clearly, greedy is
comparison-based, and Kesselman et al. show it is 2-competitive. Since the intro-
duction of greedy, it has been an open problem to show whether a comparison-
based algorithm exists with a competitive ratio below 2.

1.1 Related Work

In their seminal work, Mansour, Patt-Shamir and Lapid show that greedy is
4-competitive. Kesselman et al. [13] show that the exact competitive ratio of
greedy is 2− 1/B, where B is the size of the buffer.
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Azar and Richter [7] introduce the 0/1 principle for the analysis of compari-
son-based algorithms in a variety of buffering models. They show the following
theorem.

Theorem 1 ([7]). Let alg be a comparison-based switching algorithm (deter-
ministic or randomized). alg is c-competitive if and only if alg is c-competitive
for all input sequences of packets with values 0 and 1, under every possible way
of breaking ties between equal values.

For our model of a single FIFO queue, Andelman [4] employs the 0/1 principle
to give a randomized comparison-based algorithm with a competitive ratio of
1.75. In fact, this is the only randomized algorithm known for this model.

In a related model with multiple FIFO queues, Azar and Richter [7] give
a comparison-based deterministic algorithm with a competitive ratio of 3. In
another related model, where the buffer is not FIFO and packet values are not
known for the online algorithm, Azar et al. [6] use the 0/1 principle to show a
randomized algorithm with a competitive ratio of 1.69. This algorithm is mod-
ified to a 1.55-competitive randomized algorithm, and a lower bound of 1.5 on
the competitive ratio of any randomized algorithm is shown for that model [5].

Apart from comparison-based algorithms, the model of a single FIFO queue
has been extensively studied. Kesselman, Mansour, and van Stee [12] give the
state-of-the-art algorithm pg, and prove that pg is 1.983-competitive. Addition-
ally, they give a lower bound of (1 +

√
5)/2 ≈ 1.618 on the competitive ratio

of pg and a lower bound of 1.419 on the competitive ratio of any deterministic
algorithm. Algorithm pg adopts the same preemption strategy of greedy and
moreover, upon the arrival of a packet p, it proactively drops the first packet in
the queue whose value is within a fraction of the value of p. This additional rule
makes pg non-comparison-based. Bansal et al. [8] slightly modify pg and show
that the modified algorithm is 1.75-competitive. Finally, Englert and Wester-
mann [10] show that pg is in fact 1.732-competitive and give a lower bound of
1 + (1/

√
2) ≈ 1.707 on its competitive ratio.

In the case where packets take on only two values, 1 and α > 1, Kesselman et
al. [13] give a lower bound of 1.282 on the competitive ratio of any deterministic
algorithm. Englert and Westermann [10] give an algorithm that matches this
lower bound. In the non-preemptive model of this case, Andelman et al. [3]
optimally provide a deterministic algorithm which matches a lower bound of
2 − 1/α given by Aiello et al. [1] on the competitive ratio of any deterministic
algorithm.

In the general-value case of the non-preemptive model, Andelman et al. [3]
show a lower bound of 1 + ln(α) for any deterministic algorithm, where α is the
ratio between the maximum and minimum packet values. This bound is achieved
by a deterministic algorithm given by Andelman and Mansour [2].

The problem of online buffer management has also been studied under sev-
eral other models. For example, the bounded delay model, where packets have
deadlines besides their values [9, 14]. A recent and comprehensive survey on this
problem and most of its variants is given in [11].
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1.2 Our Results

We present a lower bound of 1 + 1/
√

2 ≈ 1.707 on the competitive ratio of
any deterministic comparison-based algorithm. This lower bound is significantly
larger than the lower bound of 1.419 known for general deterministic algorithms.
We also give an algorithm, cpg, that matches our lower bound in the case of
monotonic sequences, i.e., packets arrive in a non-decreasing order according
to their values. Note that greedy remains 2-competitive in the case of mono-
tonic sequences. For general sequences, we give a lower bound of 1.829 on the
competitive ratio of cpg.

An intriguing question in this respect is whether a comparison-based algo-
rithm with a competitive ratio close to 1 + 1/

√
2 ≈ 1.707 could exist. If so, this

would mean that we do not need to know the actual values of packets in order to
compete with pg, the best non-comparison-based algorithm so far. If not, and
in particular if 2 is the right lower bound for any comparison-based algorithm,
the desired robustness of this kind of algorithms must come at a price, namely,
a significantly degraded performance.

1.3 Model and Notations

We consider a single buffer that can store up to B packets. All packets are
assumed to be of unit size, and each packet p is associated with a non-negative
value, denoted by v(p), that corresponds to its level of service. The buffer is
implemented as a FIFO queue, i.e., packets are stored and sent in the order of
their arrival.

Time is discretized into slots of unit length. An arbitrary number of packets
arrive at fractional (non-integral) times, while at most one packet is sent from
the queue, i.e., transmitted, at every integral time, i.e., at the end of each time
slot. We denote the arrival time of a packet p by arr(p). An arriving packet is
either inserted into the queue or it is rejected, and an enqueued packet may be
dropped from the queue before it is sent. The latter event is called preemption.
Rejected and preempted packets are lost.

We denote the arrival of a new packet as an arrival event, and the sending
of a packet as a send event. An input sequence σ consists of arrival and send
events. The time that precedes the first arrival event of the sequence is denoted
as time 0. We assume that the queue of any algorithm is empty at time 0.

The benefit that an algorithm alg makes on an input sequence σ is denoted
by alg(σ), and is defined as the total value of packets that alg sends. We aim
at maximizing this benefit. We denote by opt an optimal (offline) algorithm
that sends packets in FIFO order.

2 Lower Bound

The following theorem shows that no deterministic comparison-based algorithm
can be better than 1 + 1/

√
2 ≈ 1.707. Recall that the best lower bound for

general deterministic algorithms is 1.419.
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Theorem 2. The competitive ratio of any deterministic comparison-based algo-
rithm is at least 1 + 1/

√
2 ≈ 1.707.

Proof. Fix an online algorithm onl. The adversary constructs a sequence of
packets with non-decreasing values over a number of iterations. The 0/1 values
corresponding to the packets’ real values are revealed only when the sequence
stops. In each iteration, the adversary generates a burst of B packets in one time
slot followed by a number of individual packets, each in one time slot. We call
a slot with B arrivals a bursty slot, and a slot with one arrival a light slot. A
construction routine is repeated by the adversary until the desired lower bound
is obtained. For i ≥ 0, let fi denote the i-th bursty slot, and let ti denote the
number of time slots that onl takes to send and preempt all packets that it has
in slot fi.

As initialization, the adversary generates B packets in the first time slot.
Thus, the first slot is f0. After that, the adversary generates t0 light slots, i.e., one
packet arrives in each slot. Now, starting with i = 0, the adversary constructs the
rest of the sequence by the following routine which is repeated until ti ≥ B/

√
2.

1. Generate the bursty slot fi+1.
2. If ti ≥ B/

√
2, stop the sequence. At this point, all packets that arrive between

f0 and fi (inclusive) are revealed as 0-packets and all packets after that are
revealed as 1-packets, i.e., the 1-packets are those which arrive in the ti light
slots and in the bursty slot fi+1. Clearly, the optimal algorithm, denoted as
opt, will send all the 1-packets while onl will gain only the B 1-packets
which it has in slot fi+1. Notice that onl sends only 0-packets in the ti light
slots. Hence, provided that ti ≥ B/

√
2,

opt

onl
=
ti +B

B

≥ B/
√

2 +B

B
.

3. If ti < B/
√

2, continue the sequence after fi+1 by generating ti+1 light slots.
(a) If ti+1 ≤ ti, stop the sequence. At this point, all packets that arrive

between f0 and fi (inclusive) are revealed as 0-packets and all packets
after that are revealed as 1-packets, i.e., the 1-packets are those which
arrive in the ti and ti+1 light slots and in the bursty slot fi+1. Clearly,
opt will send all the 1-packets while onl will send only ti+1 packets of
the B 1-packets which it has in slot fi+1 and also the ti+1 1-packets which
it collects after fi+1. Hence, provided that B >

√
2 · ti and ti ≥ ti+1,

opt

onl
=
ti +B + ti+1

ti+1 + ti+1

≥ ti +
√

2 · ti + ti+1

2 · ti+1

≥ (1 +
√

2)ti+1 + ti+1

2 · ti+1
.
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Algorithm 1: cpg

arrival event. A packet p arrives at time t:

c(p)← 1;

Let r be the first packet in the queue such that r is preemptable by p and the
value of r is less than the value of the packet that is behind r (if any).

if r exists then
let S be a preempting set of r;
drop r;
charge(S);

if the queue is not full then
insert p;

else
let q be the packet with the smallest value in the queue;
if v(q) < v(p) then

drop q and insert p;
else

reject p;

(b) If ti+1 > ti, set i = i+ 1 and repeat the routine.

Obviously, the above routine terminates eventually, because a new iteration is
invoked only when ti+1 > ti, and thus the amount of ti is strictly increased in
each iteration. Therefore, there must exist i such that ti ≥ B/

√
2. ut

3 Algorithm cpg

We present a comparison-based preemptive greedy (cpg) algorithm. This algo-
rithm can be seen as the comparison-based version of the well-studied algorithm
pg [8]. It follows a similar rule of preemption as pg, but without addressing the
actual values of packets: Roughly speaking, once you have a set S of β packets
in the queue with a packet r in front of them, such that r is less valuable than
each packet in S, preempt r.

cpg is described more precisely in Algorithm 1. To avoid using the same
set of packets to preempt many other packets, it associates with each arriving
packet p a non-negative credit, denoted by c(p). For a set S of packets, c(S)
will also denote the total credit of all packets in S. We now describe the above
preemption rule in more details.

First, we present the notations of preemptable packets and preempting sets.
Assume that a packet p arrives at time t. Let Q(t) be the set of packets in
cpg’s queue immediately before t. For any packet r ∈ Q(t), if there exists a set
S ⊆ (Q(t) ∪ {p})\{r} such that (i) p ∈ S, (ii) c (S) ≥ β, and (iii) for each packet
q ∈ (S), arr(q) ≥ arr(r) and v(q) ≥ v(r), then we say that r is preemptable by
p. Furthermore, we call S a preempting set of r.
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A packet r is preempted upon the arrival of another packet p if r is the first
packet in the queue (in the FIFO order) such that r is preemptable by p and the
value of r is less than the value of the packet that is behind r in the queue (if
any). After a packet r is preempted, cpg invokes a subroutine charge to deduct
a total of β units from the credits of the preempting packets of r. This charging
operation can be done arbitrarily, but subject to the non-negative constraint
of credits, i.e., c(p) ≥ 0, for any packet p. After that, the algorithm proceeds
similarly to greedy: It inserts the arriving packet p into the queue if the queue
is not full or p is more valuable than the packet with the least value in the queue.
In the latter case, the packet with the least value is dropped. Otherwise, p is
rejected. Finally, in send events, cpg simply sends the packet at the head of the
queue.

Notice that cpg is a comparison-based algorithm. Hence, by Theorem 1, it
is sufficient to show the competitive ratio of cpg for only 0/1 sequences. We
denote a packet of value 0 as 0-packet, and of value 1 as 1-packet.

Lost Packets. We distinguish between three types of packets lost by cpg:

1. Rejected packets: An arriving packet p is rejected if the queue is full and no
packet in the queue is less valuable than p.

2. Evicted packets: An enqueued packet q is evicted by an arriving packet p if
the queue is full and q is the least valuable among p and the packets in the
queue.

3. Preempted packets: An enqueued packet r is preempted upon the arrival of
another packet p if r is the first packet in the queue such that r is preemptable
by p and the value of r is less than the value of the packet that is behind r
(if any).

Notice that a 1-packet can only be evicted by a 1-packet. Also, if a 1-packet
q is preempted, the preempting packets of q are all 1-packets.

3.1 Monotonic Sequences

In this section, we consider input sequences in which packets arrive with non-
decreasing values, i.e., for any two packets p and q, v(p) ≤ v(q) if and only if p
arrives before q. We observe that the 2-competitive greedy algorithm from [13]
remains 2-competitive in this case.

Theorem 3. Choosing β =
√

2 + 1, the competitive ratio of cpg is at most
1 + 1/

√
2 ≈ 1.707.

For the rest of the analysis, we fix an event sequence σ of only 0- and 1-
packets. Furthermore, let Q(t) (resp. Q∗(t)) denote the set of 1-packets in the
queue of cpg (resp. opt) at time t.
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Assumptions on the Optimal and the Online Algorithms. Notice that opt, in
contrast to cpg, can determine whether a packet of σ has value 0 or 1. Therefore,
we can assume that opt accepts arriving 1-packets as long as its queue is not
full, and rejects all 0-packets. In send events, it sends 1-packets (in FIFO order)
unless its queue is empty.

We further assume that no packets arrive after the first time in which the
queue of cpg becomes empty. This assumption is also without loss of generality
as we can partition σ into phases such that each phase satisfies this assumption
and the queues of cpg and opt are both empty at the start and the end of the
phase. Then, it is sufficient to show the competitive ratio on any arbitrary phase.
Consider for example the creation of the first phase. Let t be the first time in
which the queue of cpg becomes empty. We postpone the packets arriving after
t until opt’s queue is empty as well, say at time t′, so that opt and cpg are
both empty at t′. This change can only increase the benefit of opt. Clearly, t′

defines the end of the first phase, and the next arrival event in σ defines the
start of the second phase. The remaining of σ can be further partitioned in the
same way.

Overflow Time Slot. We call a time slot in which cpg rejects or evicts 1-packets
an overflow time slot. Assume for the moment that at least one overflow time slot
occurs in σ. For the rest of the analysis, we will use f to denote the last overflow
slot, and tf to denote the time immediately before this slot ends. Obviously,
rejection and eviction of 1-packets can happen only when the queue of cpg is
full of 1-packets. Let t′f be the point of time immediately before the first rejection
or eviction in f takes place. Thus, the number of 1-packets in the queue at time
t′f is B. Thereafter, between t′f and tf , any 1-packet that is evicted or preempted
is replaced by the 1-packet whose arrival invokes that eviction or preemption.
Thus, the size of the queue does not change between t′f and tf , and hence the
following observation.

Remark 1. |Q(tf )| = B.

Furthermore, the following lemma shows that the B 1-packets in the queue
at time tf can be used to preempt at most one 1-packet in later arrival events.

Lemma 1. Consider any arrival event e. Let t be the time immediately after
e and let D(t) denote the set of packets in the queue at time t except the head
packet. Then, c(D(t)) < β.

Proof. We show the lemma by contradiction. Let e be the first arrival event in
σ, such that immediately after e, say at time t, c(D(t)) ≥ β. Hence, immediately
before e, say at time t′, β > c(D(t′)) ≥ β− 1, since the total credit of the queue
cannot increase by more than 1 in each arrival event.

Now, let p be the packet arriving in e and let q be the head packet at the
arrival of p. Recall that σ is monotonic. Thus, the packets behind q in the queue
and packet p are all at least as valuable as q. Hence, adding the credit of p to
c(D(t′)), these packets would preempt q upon the arrival of p, and thus the total
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credit would decrease by 1. Therefore, c(D(·)) does not change between t′ and t
which contradicts the definition of e. ut

Before we proceed, we introduce further notations. Let arr(t, t′) denote the
set of 1-packets that arrive in σ between time t and t′. Furthermore, let sent(t, t′)
and lost(t, t′) denote the set of 1-packets that cpg sends and loses, respectively,
between time t and t′. Similarly, we define sent∗(t, t′) and lost∗(t, t′) for opt.

Lemma 2. It holds that

|lost(0, tf )|−|lost∗(0, tf )|+|Q(tf )|−|Q∗(tf )| = |sent∗(0, tf )|−|sent(0, tf )| .

Proof. The lemma follows from this simple observation:

|Q(tf )|+ |sent(0, tf )|+ |lost(0, tf )|
= |arr(0, tf )|
= |Q∗(tf )|+ |sent∗(0, tf )|+ |lost∗(0, tf )| .

ut

The following lemma is crucial for the analysis of cpg. It essentially upper-
bounds the number of 1-packets that cpg loses between the start of the sequence
and the end of the overflow slot.

Lemma 3. |lost(0, tf )| − |lost∗(0, tf )|+ |Q(tf )| − |Q∗(tf )| ≤ β
β+1B .

Proof. First, we present further notations. If an algorithm alg does not send
anything in a sent event t, we say that alg sends a ∅-packet in t. We call a send
event in which opt sends an x-packet and cpg sends a y-packet an x/y send
event, where x and y take on values from {0, 1, ∅}. Furthermore, we denote by
δx/y(t, t′) the number of x/y send events that occur between time t and time t′.

Now, observe that

|sent∗(0, tf )| = δ1/0(0, tf ) + δ1/1(0, tf ) + δ1/∅(0, tf ) ,

|sent(0, tf )| = δ0/1(0, tf ) + δ1/1(0, tf ) + δ∅/1(0, tf ) .

Recall that opt does not send 0-packets and that, by assumption, the queue
of cpg does not get empty before tf . Thus, δ0/1(0, tf ) = δ1/∅(0, tf ) = 0, and
therefore

|sent∗(0, tf )| − |sent(0, tf )| = δ1/0(0, tf )− δ∅/1(0, tf ) ≤ δ1/0(0, tf ) .

Hence, given Lemma 2, it suffices to show that δ1/0(0, tf ) ≤ b β
β+1Bc.

Assume for the sake of contradiction that δ1/0(0, tf ) > b β
β+1Bc. Let M1

(resp. M0) be the set of 1-packets (resp. 0-packets) that opt (resp. cpg) sends
in these 1/0 send events. Thus,

|M1| = |M0| ≥ b
β

β + 1
Bc+ 1 >

β

β + 1
B . (1)



10 Kamal Al-Bawani, Matthias Englert, and Matthias Westermann

Let p (resp. q) denote the first arriving packet in M1 (resp. M0). Furthermore,
let r be the last arriving packet in M0 and denote the time in which it is sent
by tr. Recall that σ is monotonic. Thus, all the 1-packets of M1 arrive after r.
Moreover, since cpg’s buffer is FIFO, none of these 1-packets is sent before tr.
Also, since r, which is a 0-packet, is before them in the queue and is eventually
sent, cpg does not either reject, evict or preempt any 1-packet from M1 before
tr. Therefore, all the 1-packets of M1 must be in the queue of cpg at time tr.

Let’s now look closely at the queue of cpg immediately after the arrival of
p. Let that time be denoted as tp. Since q is sent with p in the same 1/0 send
event and since r is between q and p (by the above argument), q and r must be
in the queue as well at time tp. Moreover, since r is the last arriving 0-packet in
M0, the remaining 0-packets of M0 must also be in the queue at tp. Hence, the
queue of cpg contains all the packets of M0 along with p at time tp.

Next, notice that all the 1-packets of M1 are inserted in cpg’s queue after
r (which is a 0-packet) without preempting it. Since the credits of packets are
used only in preemption, the credits of these 1-packets must be used to preempt
other packets before r. Let R be the set of these preempted packets. Obviously,

|R| ≥ b|M1|/βc > |M1|/β − 1 . (2)

Since the packets of R cannot be preempted before the arrivals of the packets
of M1, all of them must be then before r in the queue at time tp. Thus, the queue
of cpg contains the packets of both M0 and R along with p at time tp. Clearly,
M0 ∩R ∩ {p} = ∅. Hence, given Inequalities 1 and 2, the size of cpg’s queue at
tp is at least

|M0|+ |R|+ 1 > |M0|+ |M1|/β =
β + 1

β
M0 >

β + 1

β

β

β + 1
B = B ,

which is strictly larger than B, and hence a contradiction. ut

So far, our discussion has been focused on one half of the scene; namely, the
one between the start of the sequence and the end of the last overflow slot. We
shall now move our focus to the second half which extends from time tf until
the end of the sequence.

First, let t0 be defined as follows: t0 = 0 if no overflow slot occurs in σ, and
t0 = tf otherwise. Notice that in both cases, no 1-packet is rejected or evicted
by cpg after t0. Moreover, let T denote the first time by which the sequence
stops and the queues of opt and cpg are both empty. Thus, the benefits of opt
and cpg are given by |sent∗(0, T )| and |sent(0, T )|, respectively.

The following lemma is the main ingredient of the proof of the competitive
ratio.

Lemma 4. |sent(0, T )| ≥ (β − 1) (|lost(0, T )| − |lost∗(0, T )|) .

Proof. Obviously, we can write |sent(0, T )| as follows:

|sent(0, T )| = |sent(0, t0)|+ |Q(t0)|+ |arr(t0, T )| − |lost(t0, T )|
≥ |Q(t0)|+ |arr(t0, T )| − |lost(t0, T )| .
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Due to the fact that no 1-packet is rejected or evicted by cpg after t0, all
packets in lost(t0, T ) are lost by preemption. We further notice that all these
packets are preempted using packets that arrive after t0. This is trivial in case
t0 = 0, and follows from Lemma 1 in case t0 = tf . (In fact, in the latter case,
at most one packet of lost(t0, T ) can be preempted using the credits of packets
that are in the queue at time tf , but this anomaly can be covered by introducing
an additive constant in the competitive ratio of cpg.) Since preempting a packet
requires a credit of β, preempting the packets of lost(t0, T ) implies the arrival
of at least new β |lost(t0, T )| 1-packets that are inserted into the queue after
t0. Thus, |arr(t0, T )| ≥ β |lost(t0, T )|, and hence we can rewrite |sent(0, T )|
in the following way:

|sent(0, T )| ≥ |Q(t0)|+ β |lost(t0, T )| − |lost(t0, T )|
= |Q(t0)|+ (β − 1) |lost(t0, T )|
≥ |Q(t0)|+ (β − 1) (|lost(t0, T )| − |lost∗(t0, T )|) .

Now, if t0 = 0, then |Q(t0)| = 0 and thus the lemma follows immediately. If
t0 = tf , we continue as follows:

|sent(0, T )| ≥ B + (β − 1)
(
|lost(tf , T )| − |lost∗(tf , T )| − |Q(tf )|+ |Q∗(tf )|

)
≥ β + 1

β

(
|lost(0, tf )| − |lost∗(0, tf )|+ |Q(tf )| − |Q∗(tf )|

)
+ (β − 1)

(
|lost(tf , T )| − |lost∗(tf , T )| − |Q(tf )|+ |Q∗(tf )|

)
= (β − 1)

(
|lost(0, T )| − |lost∗(0, T )|

)
,

where the first inequality follows from Remark 1, the second inequality from
Lemma 3, and the equality from the fact that β−1 = (β+1)/β, for β =

√
2+1.
ut

Now, we use Lemma 4 to show that |sent∗(0, T )| ≤ β
β−1 |sent(0, T )|, which

obviously completes the proof of Theorem 3:

|sent∗(0, T )| = |arr(0, T )| − |lost∗(0, T )|
= |sent(0, T )|+ |lost(0, T )| − |lost∗(0, T )|

≤ |sent(0, T )|+ 1

β − 1
|sent(0, T )|

=
β

β − 1
|sent(0, T )| .

3.2 General Sequences

Theorem 3 shows that cpg is an optimal comparison-based algorithm in the
case of monotonic sequences. In this section, we investigate how this algorithm
performs on general sequences.
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We notice that Lemma 1 does not necessarily hold for general sequences.
Therefore, after an overflow of 1-packets takes place, the total credit of the 1-
packets in the online buffer can significantly exceed β and thus some of these
packets may be used in a subsequent time steps to preempt other packets from
the same group, i.e., the group of the B 1-packets from the overflow slot. Con-
sequently, the lower bound of B on the number of cpg’s sent 1-packets may no
longer hold in the general case, resulting in a competitive ratio worse than 1.707.
Such a bad scenario for cpg is illustrated in the proof of the following theorem
and leads to a lower bound of 1.829 on its competitive ratio.

Theorem 4. For any value of β, cpg cannot be better than 1.829-competitive.

Proof. The adversary generates one of the following two sequences based on the
value of β:

Case 1. β ≤ 2.206: In the first time slot, B 1-packets are generated in an in-
creasing order (with respect to their original values). After that, no more packets
arrive. Clearly, opt sends all the B packets, while in cpg, every β packets pre-
empt a packet from the front. Thus, cpg preempts B/β in total. Hence, its
competitive ratio is given by

opt

cpg
=

B

B −B/β
=

β

β − 1
≥ 1.829 .

Case 2. β > 2.206: In the first time slot, (B−1) 0-packets are generated followed
by a single 1-packet. Then, over the next βB/(β + 1) − 1 time slots, a single
1-packet is generated in each slot. Let M1 denote the set of those 1-packets that
arrive in the first βB/(β+1) time slots. After that, in slot number βB/(β+1)+1,
B 1-packets arrive at once. Let M2 denote the set of these packets. Finally, in
the next B/(β(β + 1)) time slots, a single 1-packet arrives in each slot. Let M3

denote the set of these packets. After that, no more packets arrive.
Clearly, opt sends all the 1-packets in the sequence. To minimize the number

of 1-packets sent by cpg, the adversary can choose the original values of the 1-
packets in the following malicious way. First, the values of packets in M2 are all
strictly less than the smallest value in M1. Let M ′2 denote the set of the first
B/(β + 1) packets in M2. The packets of M ′2 are ordered as follows. For each
group of β packets, starting from the earliest, the first packet is strictly smaller
than the β − 1 packets behind it, and all the β packets of this group are strictly
smaller than all packets before them in M ′2. For example, for β = 3, theses
groups may look like |50, 51, 51|40, 41, 41|30, 31, 31| · · · . For the rest of M2, i.e.,
the set M2 \M ′2, packets are given values that are strictly less than the smallest
value in M ′2. Finally, the packets in M3 are all assigned a value that is equal to
the greatest value in M ′2.

Obviously, cpg accepts all the βB/(β + 1) packets of M1 and uses them to
preempt B/(β + 1) 0-packets. Meanwhile, the rest of the B 0-packets are sent
in the first βB/(β + 1) time slots. Thus, the packets of M1 will be all in the
queue of cpg when the packets of M2 arrive. Clearly, this leads to an overflow
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of 1-packets and only the packets of M ′2 can be accepted in this time slot. These
packets are inserted with full credits into the queue, and thus when each packet
from M3 arrives, it groups with β−1 packets from M ′2 to preempt the first packet
in one β-group of M ′2, according to the above description of M ′2. Therefore, cpg
sends a total of B 1-packets only, and hence its competitive ratio is given by

opt

cpg
=
|M1|+ |M2|+ |M3|

B

=
β

β + 1
+ 1 +

1

β(β + 1)

=
β(β + 1) + β2 + 1

β(β + 1)
≥ 1.829 .

ut

4 Conclusions

Our main result is a lower bound of 1 + 1/
√

2 ≈ 1.707 on the competitive
ratio of any deterministic comparison-based algorithm, and an algorithm, cpg,
that matches this lower bound in the case of monotonic sequences. For general
sequences, cpg is shown to be no better than 1.829-competitive. However, for
general sequences, the intriguing question of whether there exists a deterministic
comparison-based online algorithm with a competitive ratio below 2 remains
open.
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