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Interference-plus-Noise Covariance Matrix
Reconstruction via Spatial Power Spectrum
Sampling for Robust Adaptive Beamforming

Zhenyu Zhang, Wei LiuSenior Member, IEEE, Wen Leng, Anguo Wang, and Heping Shi

Abstract—Recently, a robust adaptive beamforming (RAB) has a complexity ofO (M?2S) with S > M, where M is
technique based on interference-plus-noise covarianceNC) ma- the number of sensors arl the number of samples taken
trix reconstruction has been proposed, which utilizes the @pon in the summation. Based on this idea, a sparse method was
spectrum estimator integrated over a region separated fronthe . - ’ .
direction of the desired signal. Inspired by the sampling ad proposed to estimate the INC matrix tq reduce the complexny
reconstruction idea, in this paper, a novel method named sp@l N [13]. On the other hand, to deal with unknown arbitrary-
power spectrum sampling (SPSS) is proposed to reconstruct type mismatches, an uncertainty set was employed for INC
the INC matrix more efficiently, with the corresponding beam  matrix reconstruction in [10].
forming algorithm developed, where the covariance matrix 8per 4 fyrther reduce the computational complexity of the RAB
(CMT) technique is employed to further improve its performance. method in [12], in this letter, a low-complexity INC matrix

Simulation results are provided to demonstrate the effectieness L A A
of the proposed method. reconstruction method is proposed based on spatial power

Index Terms—Covariance matrix reconstruction, matrix taper, spectrum sampling (SPSS), and a corresponding beamforming

robust beamforming, spatial power spectrum sampling. algorithm is developed. The spatial power spectrum sample
operation is realized by a proposed sample equation which is

derived from the selecting property of the steering vedtbe
covariance matrix taper (CMT) technique studied in [14] is
DAPTIVE beamforming has found many applicationemployed to improve the robustness as well as reinforce the
ranging from wireless communications, radar, sonar, agdmple equation due to a relatively small size of the array
speech processing, to medical imaging, radio astronomy, gystem in practice. With the proposed method, the spatial
[1], [2]. It is well-known that the performance of a standargower spectrum estimation process in [12] can be avoided,
adaptive beamformer is sensitive to various array manifoldaking the SPSS based algorithm computationally much more
errors such as calibration error and direction of arrivaD)  efficient. Simulation results will be provided to demonsira

estimation error for the signal of interest (SOI) [3], [4B][ the effectiveness and robustness of the proposed RAB method
[6]. As a solution, various robust adaptive beamforming BRA

techniques have been proposed in the past decades [1]h¢]. T
design principles of RAB based on the minimum variance ) ) )
Consider a uniform linear array (ULA) of\/ (usually

distortionless response (MVDR) criterion were illustchie oY AP /
grom tens to hundreds [15]) omni-directional sensors, vaith

I. INTRODUCTION

Il. THE SIGNAL MODEL

[8] and the diagonal loading technique was studied in [5], , ; . ,
while the one based on the worst-case optimization w alf wavelength spacing. Ong desired signal arrives froen th
proposed in [9], and steering vector estimation with presgimdirectionds with a power ofo, while @) interfering signals
prior knowledge for RAB was investigated in [10], [11]. impinge upon the array from directios, i = 1,2,...,Q,

In a recent RAB design [12], a method for estimating th&ith their corresponding powers given by?. The M x 1
interference-plus-noise covariance (INC) matrix to efiete complex array observation vector at tirheean be modeled as

the power of SOI was proposed, where it first uniformly x (k) =s (k) +i(k) +n(k), 1)
samples the spatial power spectrum over the full angulagaan o
from —m/2 to /2, and then reconstructs the INC matriwheres (k) = s (k) d (6s), i(k) andn(k) are the statistically
by summing up the values over a region separated from thigdependent components of the desired signal, interferand
direction of the desired signal. A drawback of this effeetivnoise, respectively;(k) is the desired signal waveform, and
RAB method is its high computational complexity due to thd (6s) is its steering vector. The steering vector of the ULA
large number of samples involved in both spectrum estimatibas the following general form
and matrix multiplication/summation. According to [12}, i d(6) = [ | eimsind  jm(M—1)sine ]T. @
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where(-)" denotes Hermitian transpose, amll is the noise rewritten asf (x) = 1/M Y ' e/@7/Mkz and f(x) can
covariance matrix witH representing the identity matrix andbe seen as a time-domain signal corresponding tdé/apoint
o2 the noise power. AlternativelyR can also be formed discrete rectangular function in the frequency domain. $o w

through the spatial spectruat(6) of the array by can obtain that
1 sin(mz) m—1
R = o2 (6)d (0)d” (6) do, (4) f@)=— —F 5 ™ (11)
oc[-2.3) ( (0) ( M sm(ﬁx)

In practice, theoretical covariance matrR is usually When M is large enough,f (z) will approximate a sinc
unavailable and the sample covariance matrix (5) is used fegction, i.e. f(z) = sinc(mz) = sin(7rz)/72. As z =
an approxima‘tion: ]V[/2[sm(a) — sin(ao)], unlessa is very close toayg, = will

K be very large andf(x) will have a very small value. Then
_ 1 H we can conclude that wheh/ is big enough,f(«; «p) will
R, = K Zx R)x (k) ®) approximate a Kronecker delta function, i.e.
WhereK_ is number of data _snapshots. . F(500) % 6o = { (1), a = o (12)
Applying the complex weight vectow = [w1, ..., wp]|" € , aF g

C to the received signal vector(k), we obtain the beam- Thjs is calledthe selecting property of the steering vector in
former outputy(k), given byy (k) = w'x (k). The beam- thjs |etter. Fig. 1 shows the relationship betwethand the
former output signal-to-interference-plus-noise raBtNR) is  selecting property of the steering vector.

defined as . 9 Moreover, for equation (11), whem = 0, we have
SN = WA ()] ) [(@) =1 whenz € Z = {]z € [(~1 — sin(ag))M/2, (1 -

wWHR w7 sin(a))M/2), z € Z, z # 0}, we havef (z) = 0. There

whereR,.,, is the INC matrix. are M — 1 such values in the set, i.e. f(z) hasM — 1
Maximizing (6) subject to a unity constraint to the SOFeros, and we denote them ag, k = 1,2,..., M — 1. As
direction leads to the following optimization problem x = M/2[sin(a) — sin(ao)], the zeros Off (04 040): denoted

o . . . asag, k =1,2,...,M — 1, can be easily obtained hy; as
minimize  w Ritnw subject to w"d(0s) =1, (7) q = arcsin (2zx/M + sin (ag)).
Additionally, from (10), we can show that any two of the
steerlng vectors of(ao,{ak}k 1) are orthogonal to each
other. Therefore, the steering vectors(o&),{ak},ﬁi‘ll) span

and the solution is commonly known as the MVDR beam
former or Capon beamformer [11]

- RHnd( s) 8 the M-dimensional complex space.
Wopt = i (0 R, d(0:) ®) " Then, we define a matrix usin@yo, {oux 157"
1. THE PROPOSEDMETHOD D=— M > d(ar)d” () (13)

Recall the INC matrix reconstruction method given by[12]: ones

where ) is a specified angular sector. Wheyi is large
Riin = / P(6)d(9)d" (6)de (9) enough, we have the result for the Hermitian maldixR.- D
c given in (14). From (14), we can see that wh@ncovers
where P(6) = 1/d" ()R, 'd(0) is the Capon power spec- the whole regionD - R - D can be considered as aw-
trum estimator andd is the angular region excluding thePoint apprOX|mat|0n to the covariance mati We refer to
assumed SOI regio®. The main computational cost is the(c, {ax};5"), D, and equation (14) asatch points, sample
integration approximation by summation, wheténumber of Matrix, andsample equation, respectively.
sampled values) times spectrum estimation and vector multi T0 estimate the INC matrix, we can remove the assumed
plication operations have to be performed. In the followimg angle sector for SO, i.e. l& = ©. Then an approximation
analyzing the selecting property of the steering vectorgive ©f the INC matrix can be obtained b - R - D, where
an efficient method to calculate this approximation withod? = 1/M 3, co d(cx)d™ (au). In practice, sinceR is not
incurring the spectrum estimation process. available, we can replad@ by R, i.e.D - R, - D.
In this way, we have avoided the estimatiét{d) of the
spatial power spectrum in (9). However, whikh < oo, there
will be a large error in the estimation B - R, - D, because
the selecting property of the steering vector is not idea an
the watch points spacing is not dense enough. To improve it,
a taper operation is needed, as detailed in the next subsecti

A. The selecting property of the steering vector, sample matrix
and sample eguation

The inner product of two steering vectors is given by

1 1 M-1 . ) .
fa;ap) = —]\/[dH (g)d () = i E eIk sin(a)=sin(ao)]
k=0 (10) B. SPSSINC matrix reconstruction

whereag, a € [—7/2,7/2]. Letx = M/2[sin(a) — sin(ayp)] As just mentioned, for the estimation given in (14), whdn
€ [(=1 —sin(ag))M/2, (1 —sin(ag))M/2), then (10) can be is not large enough, the spacing between two adjacent watch
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Effect of the first three steps in the SPSS algorithm.

points may be too large to sample the power informatiggstimator is adopted. It can be seen that the reconstrudted |
of interfering signals accurately. So we need to dither theatrix can effectively restrain the power of SOI, as well as
power of interferences to their neighborhood for robustnegaintain the information of interferences and noise.

as well as for the sample equation to catch more critical 1)
power information of the interfering signals to some degree
To achieve this, the covariance matrix tapering technique2)
introduced in [14] is employed to modify the estimated INC
matrix. In particular, we here use the Malloux-Zatman (MZ)

taper defined as follows [14], 3)

Trz = [amnlpre s = [8inc ((m —n)A/m)], A >0 (15)

whereA corresponds to the width of the dithering area. For the
matrix R, the ‘tapered matrix’ is given bR o Tz, where
“o" denotes the Hadamard product. As pointed out in [14],
“the MZ taper is equivalent to the introduction of a unifoyml
distributed coherent phase dither.”

As for the choice ofA, it should satisfy a requirement
that, for a signal whose arriving angle is located betweem tw
adjacent watch points, the power of the arriving signal sthou

4)

Step 1: (Dithering) Specify a certaih for T, to taper
the sample covariance mati,, i.e. Rt = R, 0T z.
Step 2: (Sampling) Develop the required sample matrix
D; then sampleR; using the sample equation, i.e.
R, =D Ry -D.

Step 3: (Reconstructing) USE,,z in Step 1 again, to
dither the power of each watch point to its neighborhood,
a}nd obtain a continuous spatial spectrum, Rg,,, =
RiinoTyz;

Step 4. (Weighting) Substitute the reconstructed INC
matrix R;;, and presumed DOA of SOH,, into the
Capon beamformer (8) to obtain the weight vector, i.e.

W = —
d” (6,)R;!.d

. 16
() (o)

It can be seen that the main computational cost of the

be dithered to one of the adjacent watch points by the tapgpposed algorithm is the matrix inversion operation inpSte

operation. In this papery = sin”" (2/M) is chosen. 4. Its overall computational complexity 8(1M?) in contrast
Additionally, considering that the spectrum of the sampleg »(s1/2) with S > M for the algorithm in [12]. As

matrix is discrete,T'y;; should be adopted again to dithen example to show the significantly reduced computational

the power of watch points into their neighborhood to obtaigomplexity by the proposed method, we run the two algorithms

a relatively continuous spatial spectrum. And this finisk thsing MATLAB 2009a on a Windows XP SP3 PC with dual

reconstruction of INC matrix. core 3.07GHz Intel Core i3 CPU and 3.36GB memory. With

M = 30, K = 60, and.S = 300, the required CPU time for

C. The SPSS-based beamforming algorithm the beamformer in [12] is around 14.6ms, while it takes the
Based on the discussions above, the proposed SPSS-b&$egosed one only about 0.6ms with no code optimization.

beamforming algorithm can be described in four steps: dithe

ing, sampling, reconstructing, and weighting. Fig. 2 shdves IV. SIMULATION RESULTS

power spectrums of the output matrices in the first threesstep In our simulations, we consider a ULA withi/ = 30

where® = [—1°,11°] is used and the Capon power spectruramnidirectional sensors, with zero-mean and unity vaganc



spatially and temporally white Gaussian noise. Two intanfg
sources with random waveforms arrive from DOA angles of 5 —_OPTIMAL SINR

. . . R —¢—WORST CASE BEAMFORMER
—50° and —20°, respectively. The interference-to-noise ratio - v~ BEAMFORMER in [16] =

(INR) at each sensor is 30dB. The desired signal impinges +§S§$§£¥JS§?QE[T2] g R
on the array from the presumed directién = 5°. For each 40| - == PROPOSED BEAMFORMER >
simulation, 500 Monte-Carlo runs are performed.

Our proposed SPSS-based beamformer is compared with the
worst-case-based beamformer [9], the beamformer in [18], t
sequential quad-ratic programming (SQP) based beamformer
in [17], and the beamformer in [12]. For the SPSS-based
beamformer and the beamformer in [12], the general angular  _ ‘ ‘ ‘ ‘ ‘ ‘ ‘
location of the desired signal is assumed to be within the —30 ~20 10 OSNRlc()DB)ZO 30 40 %0
interval® = [0, — 6°,6, + 6°]; ap = 0° is used in (10}, and @)

A =sin~! (2/M) is used in (15). The valué = 0.1 and 20
dominant eigenvectors of the mati& = [ d(6)d™ (9)d(9)
are used in the SQP based beamformer, white0.3 is used
for the worst-case-based beamformer.

20f ’

OUTPUT SINR (DB)

Or /

N
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N
N
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T

A. Example 1: Random direction mismatch for SOI and inter-
ference

=
o

In this example, the direction mismatch error is assumed to
be randomly and uniformly distributed [p-4°, 4°] for both the
SOI and interferences as in [14.is kept at 300 to calculate
the integration in the beamformer [12]. Here the random DOAs i e s 70 5 s a0 1o o
change from run to run but remain fixed from snapshot to NUMBER of SNAPSHOTS
shapshot. Fig. 3a depicts the output SINR of the beamformers
versus the input SNR. The number of snapshots is fixed to (b)
be K = 2M = 60. It can be seen that the performancéig. 3. First example: (a) Output SINR versus input SNR; (bjpat SINR
of the SPSS-based beamformer is very close to that of tffgsus number of snapshots.
beamformer in [12] and outperforms the other beamformers
when SNR is larger than 0dB. In Fig. 3b, the output SINR 32
is shown with respect to the number of snapshigtswith a
fixed SNR for the desired signal at 10dB. Again the proposed s1
beamformer has a similar performance to the beamformer in
[12], but much better than the remaining ones.

—— OPTIMAL SINR
~—<—WORST CASE BEAMFORMER
-V =-BEAMFORMER in [16]
SQP BEAMFORMER
~@- BEAMFORMER in [12]

OUTPUT SINR (DB)
4§
¥

(52

- @ -DIVIATION
—=— PROPOSED BEAMFORMER
—e—BEAMFORMER in [12]

!
N

w
o
=

N
©
-

B. Example 2: Performance versus number of sensors

In the second example, we compare the performance be- '
tween the SPSS-based beamformer and the beamformer in 27 s

'
gl JS .,

[12] against the number of sensors. Considering the same ) R I S G PP
mismatched situation in Example 1, we vaty from 20 to 0 30 70 8
80, while the SNR of SOI and are kept at 20dB andM

respectively. In all the simulationsy = 3601 is chosen to Fig. 4. Second example. Output SINR versus number of sensors

get the best performance for the beamformer in [12]. It can

be seen from Fig. 4 that, when using 22 or more sensors,

the deviation between the two beamformers is within 0.7d®ay, With the corresponding robust beamforming algorithm
which means the approximation by our proposed beamfornfégveloped. The computational complexity of the proposed

has been good enough to reach a similar performance to [12§amformer i) (M?), which in general is much smaller than

OUTPUT SINR (DB)
DIVIATION (DB)

N
o]
T
L
N

40 50 60
NUMBER of SENSORS

but with a much lower computational complexity. O (M?S) (S>> M) of a previously proposed reconstruction
method. In particular the spatial spectrum estimation @sec
V. CONCLUSION has been avoided. Simulation results have demonstrat¢d tha

In this letter, an SPSS-based method has been propotshe% propo;ed peamformer_can aqh|eve a very similar perfor-
o : .. “mance to its high-complexity version.
to reconstruct the INC matrix in a computationally efficient

INote that for the choice ofig, it can take any value as long as at least
one watch pointa; (as a result of the choice afp) is within the desired
angular secto®. When this is satisfied, the power of SOI will be excluded
in the reconstructed INC matrix.
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