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MULTIPLIER-LESS LOW-DELAY FIR AND IIR WAVELET FILTER BANKS WITH SOPOT COEFFICIENTS

W. Liu, S. C. Chan and K. L. Ho

Department of Electrical and Electronic Engineering

The University of Hong Kong,  Pokfulam Road, Hong Kong.

ABSTRACT

In this paper, a new family of multiplier-less two-channel low-

delay wavelet filter banks using the PR structure in [3] and the

SOPOT(sum-of-powers-of-two) representation is proposed.  In

particular, the functions )(zα  and )(zβ  in the structure are

chosen as nonlinear-phase FIR and IIR filters, and the design of

such multiplier-less filter banks is performed using the genetic

algorithm.  The proposed design method is very simple to use, and

is sufficiently general to construct low-delay wavelet bases with

flexible length, delay, and number of zero at π (or 0) in their

analysis filters.  Several design examples are given to demonstrate

the usefulness of the proposed method.

I. INTRODUCTION

        Perfect reconstruction (PR) multirate fiIter banks have

important applications in signal analysis, signal coding and the

design of wavelet bases.  Figure 1 shows the block diagram of

two-channel maximally decimated filter banks.  In [3], a new

structure for two-channel perfect reconstruction FIR/IIR filter

banks is proposed.  It is parameterized by two functions )(zα  and

)(zβ , which can be chosen as linear-phase FIR or all-pass

functions to realize new classes of FIR and IIR filter banks with

very low design and implementation complexities and good

frequency characteristic.  In [3], the case of using identical )(zα
and )(zβ  with delay parameter 12 −= NM  (see Fig. 2) is studied

to obtain linear-phase FIR or passband linear-phase IIR filter

banks. Furthermore, by imposing the K-regularity condition,

linear-phase FIR and passband linear-phase IIR wavelet bases can

readily be obtained.

         In this paper, we shall investigate the construction of a class

of wavelet bases associated with these filter banks when )(zα  and

)(zβ  are nonlinear-phase FIR or IIR functions. As the linear-

phase requirement is relaxed, the lengths of )(zα  and )(zβ  are no

longer restricted by the delay parameters of the system.  Therefore,

higher stopband attenuation can still be achieved at low system

delay. By representing each coefficient as sum of powers of two

(SOPOT), multiplier-less filter banks and wavelet bases can be

obtained. The design of such multiplier-less filter banks is

performed using the genetic algorithm (GA).  The proposed design

method is very simple to use, and is sufficiently general to

construct low-delay wavelet bases with flexible length, delay, and

number of zero at π (or 0) in their analysis filters.  Several design

examples are given to demonstrate the usefulness of the proposed

method.  Design results show that GA is capable of finding very

good filter banks and wavelets with very low implementation

complexity.  The average number of terms used per coefficient in

the design examples ranges from 2.3 to 2.9, i.e. each coefficient

multiplication can efficiently be implemented with 1.3 to 1.9

additions. The paper is organized as follows: Section II is a

summary of the theory of two-channel filter banks and related

wavelet bases.  The structure proposed in [3] and the basic idea

behind the proposed low-delay wavelet bases will also be

described.  Section III is devoted to the proposed design method.

In section IV several design examples will be given to demonstrate

the usefulness of the proposed algorithm. Finally, conclusions are

drawn in Section V.

II. TWO-CHANNEL STRUCTURAL PR FILTER BANKS

AND WAVELET BASES

Fig. 1 shows the structure of a two-channel critically decimated

multirate filter bank.  It can be shown that [1] the reconstructed

signal, )(zY , is given by

)()()()()( zXzAzXzTzY −+= ,

where       [ ])()()()(
2

1
)( 1100 zGzHzGzHzT += ,

[ ])()()()(
2

1
)( 1100 zGzHzGzHzA −−+−= .    (2-1)

The aliasing term, )(zA , can be canceled if the analysis and

synthesis filters are chosen as follows

)()( 10 zHzG −−= , )()( 01 zHzG −= .    (2-2)

Combining (2-1) and (2-2), one gets the following PR condition in

)(0 zH  and )(1 zH
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where 0n  is an integer and c  is a non-zero constant.

In [3], a new class of two-channel structurally-PR filterbanks

and wavelet bases are proposed (Fig.2).  The expressions for the

analysis filters are given by:
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It can be seen from (2-4) that (2-3) is satisfied for any choices of

)(zα  and )(zβ .   Therefore, FIR and IIR filter banks can readily

be realized by choosing )(zα  and )(zβ  as polynomials or rational

functions.  In [3], the case of using identical )(zα  and )(zβ  is

studied with the delay parameter M  chosen as 12 −N .  New

classes of FIR and IIR filter banks were obtained by choosing

)(zβ  and )(zα  as Type-II linear-phase functions and all-pass

functions, respectively.  The design of )(zβ  (and )(zα ) can be

accomplished by noting that )(0 zH  (and )(1 zH ) will become

ideal lowpass (and highpass) filter if )(zβ (and )(zα ) has the

following magnitude and phase responses
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Moreover, by imposing zeros at πω =  for )(0 zH  and

0=ω  for )(1 zH , wavelet bases can be constructed from the

resulted filter banks. In fact, the theory of wavelet is closely

related to that of multirate filter banks.  It have been shown that

discrete dyadic wavelets can be obtained from two-channel PR

filter banks with added regularity condition [4,5].  For

biorthogonal dyadic wavelet bases, )(0 zH and )(0 zG  should have

0K  (or 0

~
K ) zeros at 1−=z (the K-regularity condition), and

)(1 zH and )(1 zG  should also have at least one zero at 1=z  [5]:
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0)1()1( 11 == GH .  (2-7)

The delay of the system proposed in [3] can be shown to be

1220 ++= MNn .                         (2-8)

If )(zα  and )(zβ  are identical and are chosen as Type-II linear-

phase functions or all-pass functions, then the system delay will be

predetermined by the length of )(zα  or )(zβ .  The only way to

reduce the system delay in some low-delay applications is to

reduce the length of the filters, which will unavoidably reduce the

stopband attenuation of the filter banks. To overcome this

problem, nonlinear-phase FIR or IIR functions have to be used for

)(zα  and )(zβ  so that more flexibility are available in choosing

the filter length and hence their stopband attenuation.   The system

delay is still given by (2-8).  But the lengths of )(zα  and )(zβ  are

no longer limited by the values of M and N.  In the following

section, we shall investigate the construction of a class of wavelet

bases associated with this family of low-delay filter banks.

III. THE PROPOSED DESIGN METHODS

As mentioned earlier, )(zα  and )(zβ  considered in this

paper are nonlinear-phase.  We aim to design the multiplier-less

low-delay wavelet filter banks by imposing a given number of

zeros at 1−=z  for )(0 zH , and 0=z  for )(1 zH .  Since the filter

bank is still PR if the coefficients of )(zα  and )(zβ  are quantized

to other values, it is possible to reduce its complexity by

expressing them in sum-of-powers-of-two coefficients.  By so

doing, each coefficient multiplication can be efficiently performed

by simiple additions and shifts.  A number of methods have been

proposed for designing FIR filters with SOPOT coefficients.  A

classical work is the integer programming method proposed by

Lim [9].  Other heuristic methods such as stimulated annealing

[10] and genetic algorithm [11] have also been proposed as

alternatives to the problem.  These heuristic techniques are in

general very easy to apply, and is able to yield reasonably good

solution even when the objective function is non-smooth.  In

[7,12], the genetic algorithm (GA) is used to design SOPOT

multiplier-less 2-channel orthogonal and biorthogonal linear-phase

filter banks using respectively the structure in [2] and the

transformation method.

In this paper, GA is also employed to search for the SOPOT

coefficients of )(zα  and )(zβ  in the proposed multiplier-less

low-delay wavelet filter banks.  Each coefficient of )(zα  and

)(zβ  is represented as follows:

         ∑
=

=
n

k

p

k

b

kanh
1

2.)( , }1,1{−∈ka },...,1,0,1,...,{ llbk −−∈ .  (3-1)

 � l� is a positive integer and its value determines the range of

coefficients. np  is the number of  terms of the n-th coefficient.

Normally, np  is limited to a small number, and the multiplication

of such SOPOT coefficient can be implemented with simple shifts

and additions.  In this work, each coefficient is allowed to have

different number of terms.  The objective function we minimize is

||)(
~

||)(||max)( ωω kkk HHHE −= , ],0[},1,0{ πω ∈∈k , (3-2)

where )(
~

ωkH  is the desired frequency response of the k-th

channel. To obtain the corresponding wavelet bases, we need to

incorporate the K-regularity conditions in (2-6) and (2-7).  If we

substitute (2-4) into (2-6) and (2-7), one gets a set of equations that

have to be satisfied.  The problem is a constrained nonlinear

optimization, which cannot be easily handled by conventional

genetic algorithm.  Fortunately, it is found that these conditions

can be used to eliminate some of the design variables, and it leads

to an unconstrained optimization with fewer variables. From the

GA point of view, the resulting problem is surprisingly easier to

solve than that without the K-regularity constraints.  In other

words, it is easier to design the wavelet bases than to design the

corresponding filter banks, using GA.

           Next, we give several examples to illustrate the proposed

method.

IV. DESIGN EXAMPLES

1. Low-Delay FIR Wavelet Bases

   In this case, both )(zα  and )(zβ  are nonlinear phase FIR filters

with length αL  and βL . Let�s express the coefficients of )(zα

and )(zβ  as )0(α , )......1(α and )0(β , )......1(β , respectively.
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On the other, from 0
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And for k=1,
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Similar conditions can be obtained if we keep on differentiating

the equation for k=2,3, .., and so on.

Example 4.1:. The specifications are: 1
~

00 == KK , M=8, N=3,

cutoff frequencies: πω 4.01 = , πω 6.02 = , stopband attenuation :

39dB.  )(zα  and )(zβ  are nonlinear-phase FIR filters with

lengths αL =14, βL =12, and delays 5.5, 2.5, respectively.  The

overall system delay is 23.  The regularity constraints can be

expressed as: )11()1(1)0( βββ −−= ,

)13()1(1)0( ααα −⋅⋅⋅⋅⋅⋅−= , thus we have two parameters less to

optimize than in the corresponding filterbanks case. The average

number of terms used per coefficient is 2.3. The coefficients of the

SOPOT wavelet filter banks and its frequency responses are

summarized in Table 1 and Figure 3, respectively.

Example 4.2:. The specifications are: 3
~

00 == KK , M=5, N=2,

αL =10, βL =8; cutoff frequencies: π38.0 , π62.0 ; stopband

attenuation: 30dB; delays of )(zα , )(zβ  and the system are 3.5,

1.5, and 15, respectively.

By solving the corresponding equations in (4-1), one gets:

          
8/))7(168)6(120

)5(80)4(48)3(243()2(

ββ

ββββ

−−

−−−=
                   (4-2a)
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)9(36)8(28)7(21

)6(15)5(10)4(6)3(38/35)2(

ααα

ααααα

−−−

−−−−=
  (4-2d)

)9(9)4(4)3(3)2(22/7)1( ααααα −⋅⋅⋅⋅⋅⋅−−−= (4-2e)

)9()2()1(1)0( αααα −⋅⋅⋅⋅⋅⋅−−= . (4-2f)

By eliminating these variables, we only have 8+10-6=12 free

parameters to optimize, 6 less than the original filter banks. The

average number of terms used per coefficient is 2.9.  The

coefficients of the SOPOT wavelet filter banks and its frequency

responses are summarized in Table 2 and Figure 4, respectively.



2. Low-Delay IIR Wavelet Bases.

In general, both )(zα  and )(zβ  can be IIR filters.  In the design

process, however, we find that its performance/complexity trade-

off is not satisfactory.  In fact, we find that it is more efficient to

choose one of )(zα  and )(zβ to be a nonlinear-phase FIR filter

and the other as an IIR filter. Much better performance can be

achieved with similar implementation complexity.

Example 4.3:. The specifications are: 1
~

00 == KK , M=5, N=2;

stopband attenuation: 30dB; cutoff frequencies: πω 4.01 = ,

πω 6.02 = .  The overall system delay is 15. )(zβ  is an IIR filter

with delay 1.5 and is given by 
7
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3
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1

1

0

)1(

)1(
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czczczc
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−−−
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+++
+++
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Because 1)(
1

=
=z

zβ , we have 5436 1 cccc +++=  and

2107 1 cccc +++= .  )(zα  is a nonlinear-phase FIR filter with

length αL =10  and  delay  3.5.  The average number of terms used

per coefficient is 2.8.  The coefficients of the SOPOT wavelet

filter banks and its frequency responses are summarized in Table 3

and Figure 5, respectively.

Example 4.4: The specifications are: 1
~

,3 00 == KK , M=4, N=2;

stopband attenuation: 36dB; cutoff frequencies are: πω 34.01 = ,

πω 66.02 = .  The overall system delay is 13. )(zβ  is a FIR filter

with  length βL =8 and  delay  1.5. The constraints are the same as

equations (4-2a), (4-2b), and (4-2c).  )(zα  is an all-pass filter with

order 3 and delay 2.5: 

∑
∑

=

−

=

−
−=

3

0

3

0 3
)(

k

k

k

k

k

k

za

za
zα , which automatically

fulfills the requirement 1)(
1

=
=z

zα . The reason for the choice is

to demonstrate the good performance/complexity tradeoff of this

type of hybrid filter banks.  It will be seen later that the

performance of using the all-pass filter is very good and its

complexity is extremely low. Higher stopband attenuation can of

course be achieved by using nonlinear-phase FIR and IIR

functions with longer lengths at the expense of higher

implementation complexity.  The coefficients of the SOPOT

wavelet filter banks and its frequency responses are summarized in

Table 4 and Figure 6, respectively. .  The average number of terms

used per coefficient is 2.4.

V. CONCLUSION

         A new family of multiplier-less two-channel low-delay

wavelet filter banks using the PR structure in [3] and the SOPOT

representation is presented.  The functions )(zα  and )(zβ  in the

structure are chosen as nonlinear-phase FIR and IIR filters, and

the design of such multiplier-less filter banks is performed using

the genetic algorithm.  It was found that GA is able to find very

good solution to this problem.  The proposed design method is

very simple to apply, and is sufficiently general to construct low-

delay wavelet bases with flexible length, delay, and number of

zero at π (or 0) in their analysis filters.  Several design examples

are given to demonstrate the usefulness of the proposed method.
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Fig. 4. Wavelet filter banks in Example 4.2: (a) Frequency responses(dB)

of analysis filters, (b) scaling and wavelet functions (K=3, K
~

=3).
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Fig. 6. Wavelet filter banks in Example 4.4. (a) Frequency responses(dB)

of analysis filters, (b) scaling and wavelet functions (K=3, K
~

=1).

I )(iα )(iβ

0 97 22 −− −− 875 222 −−− ++
1 1085 222 −−− −− 32−−
2 974 222 −−− −+− 641 222 −−− −+
3 954 222 −−− ++ 521 222 −−− −+
4 42 22 −− +− 52 22 −− −−
5 831 222 −−− ++ 742 222 −−− −−
6 731 222 −−− ++ 83 22 −− −−
7 743 222 −−− −−− 764 222 −−− ++
8 763 222 −−− −− 42−−
9 84 22 −− +− 85 22 −− +

10 52− 86 22 −− −−
11 96 22 −− +− 72−

12 72−

13 109 22 −− −−

Table 1.

i )(iα )(iβ

0 86 22 −− −− 964 222 −−− −−−
1 9753

2222 −−−− −−− 9751 2222 −−−− +++
2 8653 2222 −−−− −−−− 9621 2222 −−−− −−+
3 541 222 −−− ++ 9752

2222
−−−− −−−−

4 631
222 −−− ++ 53 22 −− +

5 743 222 −−− −−− 863 222 −−− ++−

6 63 22 −− − 84 22 −− −
7 864 222 −−− −+− 86

22
−− +−

8 76 22 −− +

9 97 22 −− −−

Table 2.

i )(iα
ic

0 74 22 −− +− 312 222 −− −+−
1 63

22
−− − 413 222 −− +−−

2 643 222 −−− +−− 5310 2222 −−− −−−−
3 731 222 −−− −+ 6531

2222
−−−− +++

4 9731
2222 −−−− +++ 0

5 8742 2222 −−−− −−+− 0

6 9853
2222

−−−− ++− 6421 2222
−−− −−−

7 74 22 −− +− 52123 22222
−−− +−−−−

8 52−

9 87 22 −− −−

Table 3.

i )(iβ
ia

0 974 222 −−− +−− 02

1 961
222

−−− ++ 951 222 −−− +−
2 8621 2222 −−−− +−+ 954 222 −−− +−−
3 52 22 −− −− 95 22 −− −
4 63

22 −− +

5 74 22 −− −−
6 975 222 −−− +−

7 92−−

Table 4


