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Abstract—The problem of three-dimensional (3-D) wind profile
prediction is addressed based a trinion wind model, which
inherently reckons the coupling of the three perpendicular
components of a wind field. The augmented trinion statisticare
developed and employed to enhance the prediction performame
due to its full exploitation of the second-order statistics The
proposed trinion domain processing can be regarded as a more
compact version of the existing quaternion-valued approde, with
a lower computational complexity. Simulations based on remrded
wind data are provided to demonstrate the effectiveness ofhe
proposed methods.

Index Terms—wind profile prediction, trinion-valued repre- Fig. 1. Trinion-valued three-dimensional wind speed model
sentation, least mean squares, adaptive filtering, widelyinear
processing

valued multiplication. By comparison, it only takes 9 real-
I. INTRODUCTION valued multiplications and 6 real-valued additions to akdte

Hypercomlex numbers are high-dimensional extensions B Multiplication of any two 3-D numbers. _
real numbers[1],2], and they have been introduced to solve!n this work, we aim to develop a more compact 3-D wind
multivariate signal processing problems, such as coloagien speed model based on a 3-D mathematical ring called trinions

processing[[3]X[6], vector-sensor array signal procesii- terr.ng(-tl by an anonymous author Who prov.ided all pogsible
[12], human gesture spotting [13], [14], wind profile predicdeﬁnmons of 3-D numbers [19]. We first define the gradient
tion [15]-[17], [22], and wirveléss:c‘ommunications [23]. iroperation in the trinion domain and then derive the leastrmea

the last application, anemometer readings are modeled wiffiares (LMS) adaptive algorithm, which is further extehde
hypercomplex numbers and the wind profile is predicted #§ augmented statistics. _ _
adaptive filtering algorithms. In particular, pure quatens 1€ rest of this paper is organised as follows. A brief
have been widely used to model three-dimensional (3D) wirffroduction to trinions is provided in Section II. The tion-
speed. When external atmospheric parameters are avaiabié?u€d LMS (TLMS) algorithm is developed in Section lIl,
full quaternion-valued model can be consideried [15]. and the augmented TLMS (ATLMS) algorithm in Section IV.

The quaternion-valued model leads to improved penc(n?._imulation results are presented in Section V and conatgsio

mance over real-valued models, since it accounts for tRES drawn in Section V.
coupling of the wind measurements and can be extended to
exploiting the augmented quaternion statistics [15]. Hove
pure quaternions do not form a mathematical ring [18], sinceAS shown in Fig. 1, the 3-D wind speed is a tri-variate
the product of two pure quaternions is not a pure quaterni§ignal composed of three perpendicular components, and can
in general. As a result, the related adaptive algorithm@for b€ modeled with 3-D hypercomplex numbers (see Fig. 1).
wind profile prediction initialised in the pure quaternioiilw There are various definitions of a 3-D numhercomposed
have to work in the full quaternion domain. The predictioRf one real part«,) and two imaginary partsuf andv.),

results have to be truncated from full quaternions to pure
guaternions, implying redundant computations in the updat
process. For example, it takes 16 real-valued multiplicesti according to definitions about the relationships among the
and 12 real-valued additions to implement a full-quatetrniothree base elements i,and.

Il. TRINIONS

U = Vg + 20p + JUe, (1)
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To form an Abelian group of these three, the following ruleBor details of the calculation, please refer to Appendixhat t
apply [20]: end. Using results there, the update of the weight vector can
be obtained as

P =gy=p=-17=—. )
Trinions subject to the above rules form a commutative ring, w(n+1) =w(n) + pe(n)z"(n), (10)
namely, for two trinionsy andw, we havevw = wv. where i is the step size. The algorithm formulated above is
The modulus ofv is given by [20] termed as the trinion-valued LMS (TLMS) algorithm.
[v| = y/v2 + vg + v2. 3) IV. AUGMENTED TRINION STATISTICS
We define the following conjugate of, A zero-mean trinion-valued vectar is composed of three
zero-mean real-valued random vectars, v,, and v., and
v = vg — Jup — g, (4)

their complete second-order statistics can be found in the
so that|v|? is equal to the real part afv*, i.e.|v|> = R(vv*). following six real-valued covariance matrices:
N T(t).d.evelopI ar;j LMj—Iikte alg(;)ri'ihntw) ir:jt?e t(;inlior:hdomaini Co,v, = B{vavT}, Cuyw, = E{vyv]},

e trinion-valued gradient needs to be defined. In the cexp T T
domain, a variable and its conjugate can be viewed as two Cocw. = B{veve}, Cowy = E{vavy }, (11)
independent variables, based on which the complex-valued Copv. = B{oyv;},  Cov, = E{vevg ).
gradient can be defined_[21]. Similarly, in the quaternioAnd they can be more efficiently represented by three trinion
domain, a variableg and its three involutions can be viewedvalued covariance matrices:
as four independent variables, based on which the quaternio Cyo = E{vv"},
valued gradient can be derived [22], [24]. However, to owstbe H

N L . . Cyp = E{vv'} (12)
knowledge, the trinion involution is not available in geslein °
this paper, we define the following gradients of a functig®) Cowr = E{vo’"},
with respect to the trinion-valued variabieand its conjugate, where superscriptf denotes the Hermitian transpose and the
Vo f = %(Vmaf Vaf - vacf)7 two additional mappings ob are defined as

1 (5) v = vy — 1w, — JU., 13
Vm*f: g(vmaf_Flvmbf_F.]vmcf)v 'Uj:'UC—Z'Ub—]'Ua. ( )
respectively, wherec = x, + 1) + jz.. Neither of these two mappings is an involution, and they are
Unlike the quaternion-valued gradient, the trinion-valuedefined as shorthand notations only. Then we can obtain
gradient remains the same, no matter which side of the sub- 1
gradients the imaginary unitsand ; are on, since trinions are Coiva = 5R(Cov +7C00),
commutative. We can then calculate the derivatives of some 1
simple functions, for instance, Covy, = 5ROCwo = 1Cvu),
* 1
% = Oz =1 Coow. = 5%(01:1: —1C 1),
Oxr  Ox* ’ (6) 1 (14)
a_x = ai = _1 _ Z+]_ Coy,v, = §§R(va + 1Cwu1),
ox* ox 3 1
I1l. T RINION-VALUED LMS FILTERING Cov. = 5%(@0,,,, — 1C 1),
Similar to the LMS algorithm in the complex-valued do- 1
: P ; : C'u vy — _m(cvvl - ZC'U'U)'
main, the trinion-valued errar(n) is given by o 7 9
e(n) = d(n) — wT (n)z(n), @) To take the complete second-order statistics into coresiger,

we need to make use of the augmented input vector composed
whered(n) is the reference signaiy(n) is the weight vector, of the original input vectorz(n) and its two mappings
z(n) = [z(n—P)a(n—P—1);-sa(n—L-P+ LTS g(n) 27(n), namely,
the filter input, L is the filter length, andP is the prediction

step. The cost function is expressed as (n)
28 (n) = |x*(n) | , (15)
J(n) = le(n)|. (8) 2/ (n)

Using the steepest descent method, the following gradesd n and the predicted estimaign) will be given by
to be calculated augT aug
y(n) = w8 (n)a™"5(n)

V- J(n) = % [V, J (1) + 1V, J (7) + 3V T ()] (9) = wl(n)z(n) + wl(n)z'(n) + wl(n)a’ (n), (16)
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Fig. 2. Predicted result from the TLMS algorithm. Fig. 3. Predicted result from the ATLMS algorithm.
wherew?®'8 = [w;;wsq; ws]. Analogous to the derivation of 45 ;

. . TLMS
the TLMS algorithm, the update equation of the augment A — — —ATLMS
TLMS (ATLMS) algorithm is given by

3.5
wE(n+ 1) = wE(n) + pe™ ()™ (n),  (17) 4
£
. . = 3
wherep is the step size. B
. . . >
The computational complexity for each update of the weig 825
vector of the trinion-based and quaternion-based filteaigg- £
rithms are summarised in Table I. It can be seen that thetrini g 2
model can effectively reduce the computational complexi 15 y
compared to the quaternion model. N
1F LRI A G L
TABLE | AQLMS S ATl p b sy Arg 2
COMPUTIONAL COMPLEXITY PER UPDATE OF THE WEIGHT VECTOR 0.5 L L L L L
0 50 100 150 200 250 300
- — — Samples
Algorithm Real multiplications| Real additions
QLMS [17] 16L + 4 16L
Augmented QLMS 64L + 4 64L Fig. 4. Averaged learning curves.
TLMS 9L + 3 9L
Augmented TLMS 27L + 3 27L

faster convergence rate than the original ones (QLMS and
TLMS), due to their full exploitation of the second-order

statistics. Meanwhile, the proposed TLMS algorithm has a

In this section,_ both proposed algorithms (TLMS angimilar performance with the QLMS algorithm, while the
ATLMS? are appl_le.zd.to anemomete_zr readings provided t3‘3(LI'LMS algorithm is comparable with the AQLMS algorithm.
Google's RE-C Initiative [25]. The wind speed measured %"However, as shown in Table I, the proposed trinion-based

May 25, 2011 is use_d for demo.nstration. The Ste'? §ize is %\%orithms have a much lower computational complexity.
to be6 x 10~°. The filter length is 8, and the prediction step

is 1. All algorithms are initialised with zeros. The preeidt
results provided by TLMS and ATLMS algorithms are shown
in Figs. 2 and 3, respectively. From the results, we can seeA compact model for three-dimensional wind profile pre-
that both algorithms can track the wind data effectively.  diction based on trinion algebra has been proposed, with two
The learning curves averaged over 200 trials of the propodedd S-type adaptive filtering algorithms derived using palrti

algorithms are shown in Fig. 4, compared with the quaternioand full trinion-valued second-order statistics, respebt.
based QLMS and AQLMS algorithms. It can be observed thiumerical simulations using recorded wind data have shown
both augmented algorithms (AQLMS and ATLMS) have that the two algorithms have a similar performance to their

V. SIMULATIONS

VI. CONCLUSION



guaternion-valued counterparts, but with a much lower conys]
putational complexity.

APPENDIX (6]

The cost function/(n) as a function of real-valued variables

is given by (7]

J=(d, — wle, + wgmc + w;f:cb)Q

@ (8]
+ (dp — w;f:cb - wgma + w;fmc)Q (18)
+ (d. — 'waT:I:c — wgwb — wCT:Ba)Q,

[9]

where the time indexr’ has been dropped for the sake of

compact notation. Then the three component-wise gradients

can be computed as [10]
Vuw,J =2 [(mamaT + :cb:cg + :cc:cg)wa

T T T
+ (Tpx, + Ty — T, )Wh

[11]
+ (o) — zox) — zpxw. (19)
— (doq + dpxy + de)]
T T T [12]
Vaw,J = 2[(mamb +TpT, — T, )W,
+ (@ + Tz, + THTY )W) (20) 013
+ (e — ozl + zpx))w,
+ (dawc - dbwa - dcmb)]a
T T T [14]
Vw,J = 2[(mamc — T, — T )W
+ (zpx! — zex! + oz} Wy, 1) [15]

+ (o) + zoxl + zpa) w.

+ (damy + dpe — dey)].
16
Finally, we can obtain the expression for the gradienf (f) (el

by substituting [(ZI9)£(21) intd 9),

9 [17]
V- J(n) = Ze(n)a”(n),

(22) (18]

which yields the update equation in {10), as the t%man
be absorbed into the step size.

[19]
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