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Abstract
Frontotemporal lobar degeneration (FTLD) is the second most common cause of presenile
dementia. The predominant neuropathology is FTLD with TAR DNA binding protein (TDP-43)
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inclusions (FTLD-TDP)1. FTLD-TDP is frequently familial resulting from progranulin (GRN)
mutations. We assembled an international collaboration to identify susceptibility loci for FTLD-
TDP, using genome-wide association (GWA). We found that FTLD-TDP associates with multiple
SNPs mapping to a single linkage disequilibrium (LD) block on 7p21 that contains TMEM106B
in a GWA study (GWAS) on 515 FTLD-TDP cases. Three SNPs retained genome-wide
significance following Bonferroni correction; top SNP rs1990622 (P=1.08×10−11; odds ratio (OR)
minor allele (C) 0.61, 95% CI 0.53-0.71). The association replicated in 89 FTLD-TDP cases
(rs1990622; P=2×10−4). TMEM106B variants may confer risk by increasing TMEM106B
expression. TMEM106B variants also contribute to genetic risk for FTLD-TDP in patients with
GRN mutations. Our data implicate TMEM106B as a strong risk factor for FTLD-TDP suggesting
an underlying pathogenic mechanism.

FTLD manifests clinically with progressive behavioral and/or language deficits with a
prevalence of 3.5-15/100,000 in 45 to 64 year olds2-5. The clinical presentation of cases
with FTLD pathology varies depending on the referral base6 and among these cases, ~50%
are diagnosed as FTLD-TDP1. A family history of a similar neurodegenerative disease may
be present in up to 50% of FTLD cases, supporting the existence of a genetic
predisposition7. Autosomal dominant GRN mutations occur in ~20% of FTLD-TDP
cases8-11. GRN mutations are loss-of-function mutations with most resulting in premature
termination of the mutant transcript invoking nonsense-mediated RNA decay and with the
ensuing haploinsufficiency causing disease11,12. However, a substantial number of familial
FTLD-TDP cases are not explained by GRN mutations. Further, patients with the same
GRN mutation show variable clinical phenotypes or ages of disease onset which likely
reflect additional genetic and environmental factors13.

The GWA phase of the study included 515 cases of FTLD-TDP and 2509 disease-free
population controls genotyped on the Illumina HH550 or 610-Quad BeadChips as
described14 (Table 1). A large population control cohort was acceptable since the general
population incidence of FTLD is low4,5,15. Cases were obtained under institutional review
board approval by members of the International FTLD Collaboration consisting of
investigators from 45 clinical centers and brain banks representing 11 countries (United
States, Canada, United Kingdom, The Netherlands, Belgium, Spain, Germany, Australia,
Finland, France, and Sweden). All cases met either pathological (n=499) or genetic (n=16)
criteria for FTLD-TDP which was confirmed by detecting TDP-43 inclusions using
immunohistochemistry (IHC)1,16. A genetic criterion for inclusion (i.e. presence of a
known pathogenic GRN mutation) was used since GRN mutation cases are always
diagnosed as FTLD-TDP 8,9,17,18. All cases were checked for relatedness using identity by
state (IBS). The results confirmed that although some GRN-associated FTLD-TDP cases
share the same mutation on chromosome 17 with similarity in the immediate vicinity of
GRN, they are no more related in the remainder of the genome than individuals without
GRN mutations. Detailed inclusion criteria are provided in Methods; cohort features are in
Supplementary Table 1.

Cochran-Armitage trend test statistics were calculated at all markers following quality
control filtering. In addition to self-reported ancestry, all cases and controls were initially
screened at ancestry informative markers (AIM) using the STRUCTURE software
package19 to reduce the risk of population stratification from self-reported ancestry alone.
Each case was subsequently matched to four controls by ‘genetic matching’ by smartPCA20
as previously described21. The genomic inflation factor (ͭ) for this study was 1.05
indicating that background stratification was minimal as demonstrated in the quantile-
quantile (Q-Q) plots (Supplementary Fig. 1).
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Three SNPs reached genome-wide significance following Bonferroni correction (Figures 1a
and b). All three SNPs (rs6966915, rs1020004, and rs1990622) mapped to a 68 kb interval
(Supplementary Fig. 2) on 7p21.3 (top marker, rs1990622, minor allele frequency (MAF)
32.1% in cases and 43.6% in controls, OR = 0.61, [95% CI 0.53 – 0.71], P=1.08×10−11). For
rs1990622, the more common (T) allele confers risk with an OR of 1.64 [95% CI 1.34-2.00].
The interval contained nine additional markers in strong LD (r2 >0.45) that were also
associated with FTLD-TDP (P-value range = 8.9×10−3 - 7.5×10−7; OR range 0.63-0.77)
(Table 2). All 12 associated SNPs map to a single LD block spanning TMEM106B, which
encodes an uncharacterized transmembrane protein of 274 amino acids (Figures 1b and c).
SNPs rs1020004 and rs6966915 lie within introns 3 and 5, respectively, of TMEM106B,
while rs1990622 is 6.9 kb downstream of the gene. These findings argue strongly for the
association of the 7p21 locus, and the gene TMEM106B, with FTLD-TDP.

The association with FTLD-TDP in the GWA was replicated by TaqMan SNP genotyping in
89 independent FTLD-TDP cases and 553 Caucasian control samples at two of the genome-
wide significant SNPs (rs1020004 and rs1990622) (Table 1 and Supplementary Table 1). A
polymorphic variation adjacent to rs6966915 interfered with interpretation of TaqMan
genotyping therefore precluding its use in the replication. The replication set was selected
based on the same pathological criteria and had similar characteristics as the GWA phase
cohort (Supplementary Table 1). In this replication cohort, the top SNPs again showed
significant association (P=0.004 for rs1020004 and P=0.0002 for rs1990622) with the same
directions of association as those found in the GWA phase (Supplementary Table 1). These
results suggest that in the 7p21 locus, encompassing the gene TMEM106B, we have
identified a common genetic susceptibility factor for FTLD-TDP. Of interest, this
association was not confirmed in a cohort of 192 living patients with unselected FTLD
(Supplementary Table 2). This likely reflects heterogeneity in neuropathological substrates
underlying FTLD, with only ~50% of unselected clinical FTLD cases expected to have
FTLD-TDP. Assuming that TMEM106B genetic variants confer risk of FTLD-TDP
specifically, the power to detect this association in 192 clinical FTLD cases and 553 controls
is ~30% for an alpha-value of 0.05. To have >90% power to detect this association, a
clinical FTLD cohort would require more than 1400 clinical FTLD cases and an equal
number of controls.

We next evaluated TMEM106B gene expression in different human tissues to identify
phenotype-associated differential expression and also any potential genetic regulators of
expression. We queried the mRNA-by-SNP browser (http://www.sph.umich.edu/csg/liang/
asthma/, last accessed June 6, 2009), for genetic regulators of TMEM106B expression
(eSNPs) in lymphoblastoid cell lines22. The top SNP, rs1990622, was significantly
correlated with TMEM106B average expression levels (LOD 6.32; P=6.9×10−8), as was
SNP rs1020004 (LOD 5.16, P=1.10×10−6). The risk allele (T) of rs1990622 was associated
with a higher level of mRNA expression, indicating that TMEM106B may be under cis-
acting regulation by either the FTLD-TDP associated SNPs or another SNP(s) in LD with
the associated variants. As the expression data in the publicly available database is derived
from lymphoblastoid cell lines from normal individuals22, and the diseased organ in FTLD-
TDP is brain, we asked if a similar correlation between genotype and expression phenotype
for TMEM106B is also present in tissue types affected by disease, and in diseased
individuals themselves. Accordingly, we used total RNA isolated from FTLD-TDP
postmortem brains (n=18) and neurologically normal control brains (n=7) to evaluate
TMEM106B expression in frontal cortex, which is severely affected in FTLD-TDP, by
quantitative reverse-transcription PCR (QRT-PCR). All RNA samples used were confirmed
to be of equivalent high quality as described23 (Supplementary Table 3). For the same
individuals for which we obtained expression data, we genotyped SNPs rs1020004 and
rs1990622 using allelic discrimination assays.
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Corroborating results from the cell lines, expression of TMEM106B was significantly
correlated with TMEM106B genotype, with risk allele carriers showing higher expression
(overall P=0.027, TT vs. TC P=0.017, TT vs. CC P=0.03, for rs1990622, Fig. 2a and
Supplementary Fig. 3a). Strikingly, however, expression of TMEM106B was >2.5 times
higher in FTLD-TDP cases compared to normal controls (P=0.045, Fig. 2b). In addition, the
effects of genotype and TMEM106B expression on risk of developing disease are at least
partly independent, as are the effects of genotype and disease status on TMEM106B
expression (Supplementary Table 4a and b). Thus, these data suggest that increased
TMEM106B brain expression might be linked to mechanisms of disease in FTLD-TDP, and
that risk alleles at TMEM106B confer genetic susceptibility by increasing gene expression.

The primary criterion for inclusion in the GWAS was a neuropathological diagnosis of
FTLD-TDP; therefore we studied all cases together regardless of GRN mutation status.
Nevertheless, a priori it was difficult to predict whether additional genetic susceptibility loci
would be identified in a group with Mendelian inheritance of highly penetrant mutations.
We therefore separately evaluated FTLD-TDP cases with (n=89) and without (n=426) GRN
mutations. Association to the 7p21 locus persisted in both the GRN negative and positive
clusters and there was no significant heterogeneity in the ORs for the disease/SNP
association between the clusters (Fig. 3 and Supplementary Tables 2 and 5). Using family
history status as a covariate in a logistic regression showed that the 7p21 association is
independent of family history (Supplementary Table 6). Thus, TMEM106B variants may act
as a modifier locus in the presence of GRN mutations, as the APOE locus has been shown to
modify age of onset in patients with PSEN124 or PSEN225 mutations.

Additionally, in the whole GWA cohort, we observed a correlation between rs1020004
genotype and disease duration (P=0.03) with homozygotes for the risk allele (AA, wild-
type) having shorter duration of disease (i.e. more severe disease) than individuals
homozygous for the minor allele (GG, Supplementary Figure 4). These results provide
strong confirmatory evidence for association of the 7p21 locus with increased risk for
FTLD-TDP in both GRN positive and negative cases.

In addition to the 7p21 locus, analysis of the GRN cases alone showed highly significant
association with SNPs near the GRN locus on 17q21 (Fig. 3 and Supplementary Table 7).
Not unexpectedly, haplotype analysis of the cases indicated that the chromosome 17
association was driven by a shared haplotype among the p.R493X (NM_002087.2:c.
1477C>T) mutation carriers which represented 20.2% (18/89) of the GRN mutation cases.
To determine if the observed association at the GRN locus was dependent on the association
at the TMEM106B locus we carried out a logistic regression analysis conditioning on the
most significantly associated SNP at the 7p21 locus, rs1990622, in the patients with GRN
mutations. The conditional analysis had no effect on the association at the GRN locus
suggesting that the associations with 17q21 and 7p21 are independent. IBS analysis
confirms that these individuals are unrelated and therefore the identified association on
chromosome 7 cannot be discounted in GRN mutation carriers. Indeed, conditioning on the
top SNP at the GRN locus, rs8079488, also had no effect on the TMEM106B association
(results not shown). In addition to the 7p21 locus, the GWAS of GRN negative cases
showed a trend for association at five other loci (Supplementary Table 8) including a locus
on chromosome 9p21.2 that falls within a 7.7 Mb critical interval defined from five previous
linkage studies, representing a potential refinement of that region26. We observed no
association at the GRN locus in the cases without GRN mutations.

We then evaluated mRNA expression of TMEM106B in FTLD-TDP with and without GRN
mutations separately, and the GRN mutants showed increased expression (overall
P=0.0009), compared to controls (P=0.0005) and FTLD-TDP without GRN mutations
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(P=0.002) (Figure 2c). Furthermore, controlling for rs1990622 genotype and focusing on
heterozygotes (n=14), the presence of a GRN mutation remained significantly associated
with increased TMEM106B expression (P=0.039, Fig. 2d) compared to normal controls.
These results are compatible with a model in which mutations in GRN are upstream of
increased TMEM106B expression in increasing risk for FTLD-TDP.

A mechanistic understanding of the pathogenesis of FTLD has been hampered the
heterogeneity in clinical and pathological features. With the discovery of TDP-43 as a major
FTLD disease protein, the pathologically-defined entity of FTLD-TDP emerged16.
Identification of GRN mutations as a major genetic cause of FTLD-TDP, led to definition of
a genetic subgroup of FTLD-TDP. This study identifies TMEM106B as a genetic risk factor
for FTLD-TDP. We speculate that the homogeneous pathologically-defined study
population used here enabled us to detect a robust signal with relatively small case numbers.

Our data suggest a potential disease mechanism in which risk-associated polymorphisms at
7p21 increase TMEM106B expression, and elevated TMEM106B expression increases risk
for FTLD-TDP. Additionally, we show that TMEM106B genotypes are a significant risk
factor for FTLD-TDP even in GRN mutation carriers implying that GRN mutations may act
upstream of TMEM106B in a pathogenic cascade. Future directions of research on this
novel genetic risk factor will include a detailed evaluation of the TMEM106B locus by
sequencing, collection of more pathologically-defined FTLD-TDP cases for a genome-wide
replication, and studies of expression profiles in additional tissues and brain regions. A
better understanding of this gene may in turn provide an opportunity to intervene in an
otherwise fatal and devastating neurodegenerative disease.

METHODS

Inclusion criteria

Individuals of European descent with dementia clinically +/− motor neuron disease (MND)
and an autopsy diagnosis of FTLD-TDP confirmed by TDP-43 IHC were included. Mixed
pathologies were not excluded. Living individuals with a pathogenic GRN mutation were
also included18. Only a single proband per family was permitted. Appropriate informed
consent was obtained. 598 unique FTLD-TDP cases met inclusion criteria; 515 were used
for the GWAS after PCA matching to controls. Characteristics described in Supplementary
Table 1. Whole genome amplification (WGA), performed in duplicate and pooled, was used
for 15 (Repli-g Mini, Qiagen), but only 6 cases ultimately passed quality control parameters
for the GWAS. The replication, using SNP genotyping, included cases of insufficient quality
or quantity for the GWA phase (n=27), cases available only as formalin-fixed paraffin-
embedded tissue (n=6), and cases randomly not used for GWA phase (n=56). Three FTLD-
TDP cases with mutations in valosin-containing protein (VCP) gene were included (two in
GWA and one in replication)18.

Controls

GWAS controls consisted of 2509 samples, including 1297 self-reported Caucasian children
of European ancestry recruited from CHOP Health Care Network and 1212 samples from
the 1958 birth cohort genotyped by the WTCCC27. Although the controls were not selected
for absence of neurodegenerative disease, the large size of the cohort relative to the low
population frequency of FTLD overrides this potential concern. Furthermore, the minor
allele frequencies at the 7p21 loci are very similar (<1-2% variation) between CHOP and
WTCCC cohorts suggesting they accurately reflect the control allelic frequencies in the
general population (Supplementary Table 9). To reduce the risk of population stratification
all internal controls were screened using the STRUCTURE package19 at 220 AIMs. To
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improve clustering the samples were spiked with 90 CEPH, Yoruban and Chinese/Japanese
individuals genotyped as part of the HapMap project. Cases were excluded if their inferred
proportion of ancestry was less than 90% that of the CEU cluster.

For the replication 553 controls were as follows: 275 from Coriell Institute (Neurologically
Normal Caucasian control panels, Camden, NJ), 155 clinical controls from neurology clinics
at University of Pennsylvania (UPenn), 28 brain samples of neurologically normal
individuals > 60 years from the UPenn Center for Neurodegenerative Disease Research
(CNDR), and 95 population controls from CHOP.

DNA extraction and quality assessment

Samples sent as DNA from external sites were extracted using different methods. Remaining
samples (376) were extracted at UPenn from frozen brain tissue or blood. Genomic DNA
was extracted from frozen brain tissue (50 mg) by the Qiagen MagAttract DNA Mini M48
Kit on the M48 BioRobot. Genomic DNA was purified from whole blood using FlexiGene
kit (Qiagen). High quality DNA was required for the Illumina genotyping. All DNA samples
were evaluated for purity by spectrophotometric analysis (Nanodrop) and for degradation by
1% agarose gel electrophoresis (Invitrogen).

TDP-43 IHC

Autopsy cases were confirmed to have TDP-43 pathology by IHC performed by the sending
institution or at UPenn CNDR as previously described16. TDP-43 negative cases were
excluded.

GRN sequencing

To stratify the analysis according to GRN mutation status, exons 1-13 (with exon 1
representing exon 0 in Gass et al.10) and adjacent intronic regions were sequenced as
described13 in cases not previously evaluated. GRN sequencing was not possible due to
limited sample quantity in a few cases (n=13 in GWA, n=15 in replication). Novel variants
identified in this study not predicted to cause a frameshift or premature termination and
previously described variants of uncertain significance were grouped with GRN mutation
negative cases. The most common mutations identified are given in Supplementary Table 1.

Illumina genotyping and quality control

The FTLD-TDP cases and CHOP control samples were genotyped on either the Illumina
HH550 BeadChip or the Illumina human610-quad BeadChip at the Center for Applied
Genomics at CHOP as previously described14. The 1958 birth cohort samples were
genotyped on the HH550 BeadChip by the WTCCC27. Sixteen individuals, 13 cases and 3
controls, were excluded from GWA phase for low genotyping (<98% chip-wide genotyping
success). We further rejected 13,316 SNPs with call rates <95%, 23,552 SNPs with MAF <
1% and 1,940 SNPs with Hardy Weinberg equilibrium P<10−5 in the controls samples; the
ͭ was 1.05. Cases and controls were screened for relatedness using the IBS estimations in
plink (http://pngu.mgh.harvard.edu/~purcell/plink/index.shtml) on 100,000 randomly
distributed markers throughout the genome. Pairwise Pi-hat values in excess of 0.01 were
indicative of relatedness.

Following the quality control measures cases were matched to controls by ‘genetic
matching’ as previously described21. We computed principal components for our dataset by
running smartpca, a part of the EIGENSTRAT package, on 100,000 random autosomal
SNPs and applied a matching algorithm implemented in MATLAB to the output. The
matching algorithm assigns each sample a coordinate based on k eigenvalue-scaled principal
components. It then matches each case to m unique controls within a distance d, keeping
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only cases that match exactly m controls. The distance thresholds were manually optimized
to minimize ͭ  and maximize power (i.e. number of cases). We matched each case to four
controls, using the first three principal components and a distance threshold of 0.025.

Statistical Analysis for Association

Statistical tests for association were performed using plink. Single marker analyses for the
genome-wide data were done using the Cochran-Armitage trend test. The genomic inflation
factors were 1.05 for the complete case set and 1.03 for the GRN mutation carriers,
indicating only minor background stratification. The Breslow-Day test within plink was
used to test for heterogeneity of odds ratio for the disease/SNP association between GRN
mutation carriers and non-carriers. Conditional SNP regression analyses were completed in
plink, the allele dosages of the conditioning SNP were included as covariates in the logistic
regression models. To determine if the association at the TMEM106B locus was dependent
on family history we included family history status as a covariate in a logistic regression
model using plink. Haplotypes were reconstructed and population frequencies estimated
using the EM algorithm implemented in the program fastPHASE28. For the age of onset and
disease duration analyses we performed an analysis of variance (ANOVA) with the general
linear models procedure in R (www.r-project.org). Independent variables for each ANOVA
were the log transformed age of onset or disease duration in years and the individual SNP
genotype with additive encoding (ie three categories where 0 is homozygous for the
ancestral allele, 1 is heterozygous and 2 is homozygous for the minor allele). Power
calculations were based on the rs1990622 allele frequencies observed for cases and controls
in the GWAS, using a two-tailed test. We assumed that clinical FTLD cases without TDP-43
pathology as the neuropathological substrate would have allele frequencies similar to
controls.

SNP Genotyping for Replication

For the replication, genotyping was performed using TaqMan chemistry-based allelic
discrimination assays (Applied Biosystems (ABI), Foster City, CA) on the ABI 7500 Fast
Real-Time System followed by analysis with SDS 7500 software v2.0.1. The ABI assays
used were: rs1020004, C_7604953_10 and rs1990622, C_11171598_10. A nearby novel
genetic variation (possible deletion) was found to interfere with correct genotyping of the T
allele of SNP rs6966915 using ABI reagents C_31573289_10 (as well as by DNA
sequencing), thus this SNP was not used further.

Human samples for expression analysis

Frontal cortex human brain samples from the CNDR Brain Bank characterized following
consensus criteria1,3 were dissected as previously described23. Neurologically normal
controls (n=7), FTLD-TDP cases with (n=8), and without (n=10) GRN mutations were
sampled (Supplementary Table 10). GRN mutations were confirmed to be absent from
control cases. RNA quality was verified using an Agilent 2100 Bioanalyzer (RIN>6 for
inclusion) as previously described23. mRNA expression was quantified by QRT-PCR on the
ABI7500 using the delta-delta CT method, and the geometric mean of two housekeeping
genes (ͤ-actin and Cyclophilin A), shown to have stable expression in frontal cortex
samples from FTLD-TDP and normal individuals23. Detailed information on primers is
available on request.

Statistical analyses of expression data and replication cohort

For all brain expression and replication cohort analyses, statistical tests were performed
using open source R software packages. R-scripts are available upon request. For
evaluations of the effect of disease status, SNP genotype, and gender on TMEM106B
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expression, linear regressions were used to compute p-values in univariate models. We
evaluated assumptions of linearity by checking QQ plots (observed vs. predicted under
normal distribution). For pairwise comparisons within the linear models, risk allele
homozygotes and GRN mutants, respectively, were designated the reference group for
marginal t-tests evaluating genotype effects and the effects of GRN mutations on expression.
Normalized gene expression sample genotype and gender data are provided in
Supplementary Data 1 and 2. For evaluations of the independent contributory effects of SNP
genotype and TMEM106B expression on disease state, logistic regressions were used to
compute AIC values in multivariate vs. univariate models (Supplementary Table 4a). For
evaluations of the independent contributory effects of SNP genotype and disease state on
TMEM106B expression, linear regressions were used in multivariate vs. univariate models
(Supplementary Table 4b). For analyses of association of SNP genotypes with disease in our
TaqMan replication cohort, Cochran-Armitage trend tests were used to compute P-values
under a codominant model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Region of genome-wide association at 7p21
a. Manhattan plot of −log10(observed P-value) across genome demonstrating region of
genome-wide significant association on chromosome 7; b. Regional plot of the TMEM106B
associated interval. Foreground plot: Scatter plot of the −log10 P-values plotted against
physical position (NCBI build 36). Background Plot: Estimated recombination rates (from
phase 2 of the HapMap) plotted to reflect the local LD structure. The color of the dots
represents the strength of LD between the top SNP rs1990622, and its proxies (red: r2 ≥ 0.8;
orange 0.8 < r2 ≥ 0.4; blue < 0.4). Gene annotations were obtained from assembly 18 of the
UCSC genome browser; c. Location of 3 highest associated SNPs (green arrows) relative to
the gene structure of TMEM106B (blue bars, 3ᓉ and 5ᓉ-untranslated regions; larger red bars,
coding exons; thick gray line, intronic regions; gray dashed line, downstream chromosome
sequence) and chromosome 7 location.
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Figure 2. TMEM106B expression variation by genotype and disease state
a. TMEM106B mRNA expression by QRT-PCR in frontal cortex differed significantly by
genotype at rs1990622 (overall P=0.027, genotype TT vs. TC P=0.017, TT vs. CC P=0.03).
Black circles, FTLD-TDP (n=18); open squares, normal (n=7); horizontal lines, group mean.
Significance of P-values are denoted by the numbers of asterisks. b. TMEM106B mRNA
expression in frontal cortex was significantly higher in samples from FTLD-TDP patients
compared to normal controls (P=0.045). c. TMEM106B expression in frontal cortex samples
in FTLD-TDP with (GRN pos, n=8) or without (GRN neg, n=10) GRN mutations compared
to normals (n=7). GRN mutation carriers had significantly higher levels of TMEM106B
expression (overall P =0.0009, GRN pos vs. controls P =0.0005, GRN pos vs. GRN neg P
=0.002). d. When only cases heterozygous at rs1990622 (n=14) were evaluated, GRN
mutations remained significantly associated with a higher level of TMEM106B expression
(P =0.039) in frontal cortex. QRT-PCR was performed in triplicate for all expression
studies. Expression values were normalized to the geometric mean of two housekeeping
genes and are shown relative to a single reference normal control sample23. Error bars
represent the standard error of the mean. Normalized gene expression data and sample
genotype and gender data used for these analyses are provided online in Supplementary
Material.
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Figure 3. Manhattan plot in cases with and without GRN mutations
Manhattan plot of −log10(observed P-value) across genome in cases with (a) and without (b)
GRN mutations. The subset of cases with GRN mutations demonstrates regions of genome-
wide significant association on chromosomes 7 and 17. The chr 17 association is confirmed
to be driven by a shared haplotype in c.1477C>T (p.R493X) GRN mutation carriers
representing ~20% of mutation positive cases, however the chromosome 7 association is not
related to any single GRN mutation and remains when the cases with c.1477C>T are
removed (P=1.446×10−10). The same locus on chr 7 identified in the GRN mutation cases is
also the strongest signal in the GRN negative cases, although it does not reach genome-wide
significance. A list of the SNPs with the highest signals in b is given in Supplementary
Table 8.
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Table 1

Summary of samples and controls used for GWA and replication phases

Phase Case
Numbers

Case Study
Source

Control
Numbers Control Study Source Method of

Testing ͭ

GWA 515
International

FTLD
Consortium

2509
1297 CHOP European-
Caucasian,
1212 WTCCC

Illumina
HH550 or
610-Quad
BeadChips

1.05

Replication 89
International

FTLD
Consortium

553

Penn Autopsy, Penn ADC,
Coriell Neurologically
Normal panel, CHOP
European-Caucasian

TaqMan
genotyping of
2 SNPs

CHOP, Children's Hospital of Philadelphia; Penn ADC, University of Pennsylvania Alzheimer's Disease Center; WTCCC, Wellcome Trust Case Control Consortium; ͭ, genomic control inflation factor.
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Table 2

SNPs on chromosome 7 in region with highest association in the GWAS

SNP rs ID BP Minor
Allele

MAF
case

MAF
cont CA P-val OR Lower

95% CI
Upper

95% CI

rs1006869 12071795 G 0.148 0.184 5.82×10−3 0.77 0.64 0.92

rs1990602 12088321 G 0.133 0.166 8.97×10−3 0.77 0.64 0.94

rs10226395 12101859 C 0.154 0.1914.90×10−3 0.77 0.64 0.93

rs1003433 12130625 G 0.287 0.351 9.45×10−5 0.75 0.64 0.86

rs6952272 12166585 T 0.154 0.207 9.88×10−5 0.70 0.58 0.84

rs12671332 12182087 C 0.173 0.2457.50×10−7 0.64 0.54 0.77

rs1468915 12194417 C 0.171 0.242 9.49×10−7 0.65 0.54 0.77

rs1020004 12222303 G 0.233 0.3385.00×10−11 0.60 0.51 0.70

rs6966915 12232513 T 0.321 0.435 1.63×10−11 0.61 0.53 0.71

rs10488192 12243606 T 0.139 0.204 1.46×10−6 0.63 0.52 0.76

rs1990622 12250312 C 0.321 0.4361.08×10−11 0.61 0.53 0.71

rs6945902 12252934 A 0.183 0.230 7.17×10−4 0.75 0.63 0.89

SNPs are listed in genomic order based on location on chromosome 7. SNPs in bold text have the lowest P-values.

Chr, chromosome; BP, base pairs (NCBI build 36); MAF, minor allele frequency; cont, controls; CA P-val, Cochrane-Armitage P-value; OR, odds ratio; CI, confidence interval.
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