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A NUMERICAL STUDY OF THE 3D RANDOM INTERCHANGE AND

RANDOM LOOP MODELS

ALESSANDRO BARP, EDOARDO GABRIELE BARP, FRANÇOIS-XAVIER BRIOL,
AND DANIEL UELTSCHI

Abstract. We have studied numerically the random interchange model and related loop
models on the three-dimensional cubic lattice. We have determined the transition time

for the occurrence of long loops. The joint distribution of the lengths of long loops is

Poisson-Dirichlet with parameter 1 or 1
2

.

1. Introduction

The random interchange model is a stochastic process where transpositions are selected
at random. The product of these transpositions gives a random permutation and the main
question deals with its cycle structure. We consider variants where possible transpositions
are restricted to nearest-neighbours of a regular cubic lattice. We also consider related loop
models where “crosses” are replaced by “double bars”. We provide evidence that a phase
transition takes place where macroscopic loops occur. We give good estimates of the values
of the parameters at the transition point, which should help to better comprehend the model.
Finally, we compute moments of the lengths of the loops; it turns out that they are identical
to those of the Poisson-Dirichlet distribution.

The random interchange model was invented by Harris [11]; Tóth used it as a represen-
tation of the spin 1

2 quantum Heisenberg ferromagnet [16]. Angel [3] and Hammond [10]
obtained results for the model on trees. Schramm considered the variant on the complete
graph and he proved that the joint distribution of the large cycle lengths is Poisson-Dirichlet
of parameter 1, following a conjecture of Aldous [15]; see also [4] for some simplifications and
extensions. Alon and Kozma have obtained remarkable identities that give the probability
of cyclic permutations in terms of eigenvalues of the graph Laplacian, for arbitrary graphs
[2]. These have allowed Berestycki and Kozma to obtain further results on the complete
graph [5].

A similar model with “double bars” instead of “crosses” was introduced by Aizenman
and Nachtergaele in order to describe the spin 1

2 quantum Heisenberg model and the spin
1 model with biquadratic interactions [1]. It should be noticed that the representation of
quantum systems involves the extra factor θ#loops with θ = 2, 3... In the survey [8], the
authors conjectured that the joint distribution of the lengths of long loops, in dimensions
three and higher, is given by the Poisson-Dirichlet distribution of parameter θ. The two
representations of Tóth and Aizenman-Nachtergaele were recently combined so as to describe
quantum models that interpolate between the two Heisenberg models, such as the spin 1
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2 A. BARP, E.G. BARP, F.-X. BRIOL, AND D. UELTSCHI

quantum XY model and further spin 1 models with SU(2)-invariant interactions [18]. For
these models, the joint distribution of long loops should be Poisson-Dirichlet with parameter
θ/2. The consequences of this structure have yet to be worked out. One such consequence
is to identify the nature of symmetry breaking in the spin 1 model [19].

The Poisson-Dirichlet distribution is conjectured to be a common feature of “loop soups”
in dimensions three and higher. This was confirmed numerically in lattice permutations [9]
and in O(N) loop models [13]. This was also confirmed, with a mathematically rigorous
proof, in an annealed model of spatial permutations [6]. A numerical study of the spin 1
model [20] also provides indirect evidence, as explained in [19]. However, this conjecture is
far from being accepted nowadays. It thus seems necessary to verify it also in those loop
models that are related to quantum spin systems.

We introduce the random loop models in Section 2.1. The conjectures about the joint
distribution of the lengths of long loops are explained in Section 2.2. Numerical evidence is
presented in Section 3 for the occurrence of a phase transition; we also discuss a comparison
with bond percolation and quantum Heisenberg models. We investigate the presence of the
Poisson-Dirichlet distribution in Section 4.

2. Random loop models

2.1. Definitions. Let Λ = {1, . . . , N}3 ⊂ Z3, and let EΛ denote the set of edges (nearest-
neighbours) in Λ. Let β > 0 and u ∈ [0, 1]. To each edge of EΛ is associated an independent
Poisson point process on the interval [0, β] with two kinds of events:

• crosses occur with intensity u;
• double bars occur with intensity 1− u.

β

Λ

β

Λ

Figure 1. Graphs and realisations of Poisson point processes, and their
loops. In both cases, there are exactly two loops.

See Fig. 1 for an illustration. Given a realisation ω, we define loops by moving in the vertical
direction, and by jumping to the neighbour whenever a cross or a double bar is encountered.
If it is a cross, one continues in the same vertical direction; if it is a double bar, one continues
in the opposite vertical direction. We assume periodic boundary conditions in the vertical
direction. All trajectories must close, resulting in loops. We use the following notation for
the relevant random variables.

• L1(ω), L2(ω), . . . denote the vertical lengths of all the loops in decreasing order
(repeated with multiplicities); notice that 0 < Lj(ω) ≤ β|Λ| for all j.

• `1(ω), `2(ω), . . . denote the “shadow lengths” of the loops in decreasing order (re-
peated with multiplicities); that is, `j ∈ {1, 2, . . . , |Λ|} is the number of sites at time
0 in the jth loop.
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Notice that for all realisations ω, we have
∑
j≥1 Lj(ω) = β|Λ| and

∑
j≥1 `j(ω) = |Λ|. The

following are random partitions of [0, 1]:(
L1(ω)

β|Λ|
,
L2(ω)

β|Λ|
, . . .

)
,

(
`1(ω)

|Λ|
,
`2(ω)

|Λ|
, . . .

)
. (2.1)

When β is small, crosses and double bars are scarce and loops are small. But a phase
transition occurs as β grows and some loops become macroscopic. A few random partitions
are displayed in Fig. 2; they were measured in a cube of volume 1603, for a value of β that
is above the critical parameter. Occurrence of macroscopic loops is manifest.

Figure 2. Samples of random partitions observed in a cube of size L = 160,
for u = 1 and β = 1. Notice that m(β) appears to be constant with
approximate value 0.9.

2.2. Phase transition and universal behaviour. The patterns of the random partitions
suggest a very interesting strong law of large numbers. It is worth describing in details,
since it is expected to occur in all models of “loop soups”.

Conjecture 1. There exists m(β) such that, as L→∞, we have for almost all realisations
ω:

lim
K→∞

lim
L→∞

K∑
j=1

`j(ω)

|Λ|
= m(β),

lim
k→∞

lim
L→∞

∑
j:`j≤k

`j(ω)

|Λ|
= 1−m(β).

(2.2)

The function m(β) represents the mass of points in long loops. It is equal to 0 when β is
small, and it becomes positive when β crosses the transition point. Eq. (2.2) says that loops
are either microscopic (the length is of order 1) or macroscopic (the length is of order |Λ|);
the number of sites that belong to loops of intermediate, mesoscopic length, has vanishing
density.

Conjecture 1 is also expected to hold with Lj/β instead of `j , with the same m(β).
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The next conjecture is about the joint distribution of the lengths of the macroscopic
loops, which should be Poisson-Dirichlet (PD). Let us recall the closely related Griffiths-
Engen-McCloskey (GEM) distribution and its “stick breaking” construction. Let X1, X2, . . .
be i.i.d. Beta(1,ϑ) random variables; their probability density function is ϑ(1 − s)ϑ−1 for
0 ≤ s ≤ 1. The following is a random sequence with GEM(ϑ) distribution:(

X1, (1−X1)X2, (1−X1)(1−X2)X3, . . .
)
. (2.3)

It is not hard to verify that the sum of all these numbers is 1 with probability 1. Rearranging
the numbers in decreasing order, we get a random partition with PD[0,1](ϑ) distribution.
Multiplying each element by m, the distribution is PD[0,m](ϑ). We can formulate the con-
jecture about the joint distribution of macroscopic loops.

Conjecture 2. For any k, the joint distribution of `1, . . . , `k converges to the joint distri-
bution of the first k elements of a random partition with PD[0,m(β)](ϑ) distribution, where

ϑ =

{
1 if u = 0 or 1;
1
2 if u ∈ (0, 1).

Here, m(β) is the same quantity as in Conjecture 1. In random loop models with weights
θ#loops, the conjecture holds with ϑ = θ if u = 0, 1, and ϑ = θ/2 if u ∈ (0, 1).

The heuristics for this conjecture goes back to Aldous’ ideas for the complete graph, which
Schramm eventually managed to turn into a proof [15]. Its relevance for models with spatial
structure was suggested in [8, 9]. In summary, the idea is to consider the stochastic process
restricted on random partitions. Adding crosses or double bars result in splits or merges of
elements of the partition. The rate at which two long loops merge may seem at first sight
to depend on the exact geometry of the loops, which is very intricate. But averages take
place when the loops are macroscopic, which is the case in dimension 3 and higher. The
effective stochastic process is then a standard split-merge process, whose invariant measure
is Poisson-Dirichlet.

The addition of a transition (cross or double bar) between different loops always results in
a merge. When u = 1, or when u = 0 on a bipartite graph, the addition of a transition within
the same loop always results in a split. It follows that the Poisson-Dirichlet distribution has
parameter ϑ = 1. When 0 < u < 1, the addition of a transition within the same loop may
split it, or it may rewire it. The splits occur therefore at half the rate of the merges, and
the Poisson-Dirichlet distribution has parameter ϑ = 1

2 . See [8, 9, 13, 18] for more detailed
explanations.

3. Phase transition and critical parameters

3.1. Fraction of sites in long loops. We seek a convenient expression for the mass of sites
in macroscopic loops m(β). The expressions of Conjecture 1 turn out to be inconvenient
and we use Conjecture 2 instead. It allows to relate m(β) with the moments of the lengths
of the loops, see Eq. (3.4) below. We now give a derivation of this result.

We start with

E
(∑
j≥1

( `j
|Λ|

)2)
=

1

|Λ|2
∑
j≥1

E
( ∑
x,y∈Λ

1(x,0)∈jth loop 1(y,0)∈jth loop

)
=

1

|Λ|2
∑
x,y∈Λ

P
(
(x, 0)↔ (y, 0)

)
.

(3.1)
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If we accept Conjecture 2, the probability that two sites x, y, that are far apart, belong to
the same loop, is given by the probability that they both belong to long loops — this is equal
to m(β)2 — times the probability that two random numbers in [0, 1] belong to the same
element in the partition. The latter probability can be calculated using the GEM random
sequence (2.3). The probability that both random numbers belong to the jth element is∫ 1

0

ds1

∫ 1

0

ds2 EGEM(ϑ)

(
1s1,s2∈jth element

)
= EGEM(ϑ)(Y

2
j )

= EBeta(1,ϑ)

(
(1−X)2

)j−1 EBeta(1,ϑ)

(
X2
)
.

(3.2)

Elementary computations give EBeta(1,ϑ)

(
(1−X)2

)
= ϑ

ϑ+2 and EBeta(1,ϑ)

(
X2
)

= 2
(ϑ+1)(ϑ+2) .

The probability that two distant sites belong to the same loop is therefore approximately
equal to

P
(
(x, 0)↔ (y, 0)

)
= m(β)2

∑
j≥1

( ϑ

ϑ+ 2

)j−1 2

(ϑ+ 1)(ϑ+ 2)
=
m(β)2

ϑ+ 1
. (3.3)

Using (3.1), we obtain an expression that is convenient for numerical calculations, namely

m(β) =

√
(ϑ+ 1)E

(∑
j≥1

( `j
|Λ|

)2)
. (3.4)

Our numerical results are displayed in Fig. 3. As expected, m(β) is zero for small β and
positive for β large enough. m(β) is also continuous and increasing. Notice also that, when
u = 1, it converges to 1 as β →∞; indeed, all sites belong to long loops. It converges to a
value smaller than 1 when u = 0 or 1

2 because a density of small loops remains present in
the system.

3.2. Value of the critical parameter βc(u). The previous results confirm the existence
of a phase where m(β) is positive. We define the critical parameter by

βc(u) = inf{β : m(β) > 0}. (3.5)

It is instructive to estimate its value and to investigate its dependence on the parameter u.
Our numerical results are depicted in Fig. 4. We find that βc(u) is a convex function of u.
Its minimal value occurs when u is close to 0.5. The derivative of βc(u) diverges at u = 0
and u = 1. In retrospect, this is perhaps not surprising: The model with weight 2#loops has
more symmetry at u = 0 and u = 1, SU(2) rather than U(1), so that a minor change in the
value of u has major consequences. This also explains why βc( 1

2 ) < βc(0) and βc( 1
2 ) < βc(1):

Less symmetry means reduced fluctuations so that spontaneous magnetisation occurs more
easily in systems with U(1) symmetry rather than SU(2). Somehow, this explanation should
retain validity when the weight 2#loops is not present.

3.3. Comparison with bond percolation, Ising, and quantum Heisenberg models.
There are natural comparisons between the critical parameters of the model of random loops,
of the Ising model (a.k.a. the q = 2 random cluster model), and the quantum ferromagnetic
and antiferromagnetic Heisenberg models.

A. Bond percolation. Given a realisation ω of crosses and double bars on EΛ× [0, β], there
corresponds a percolation configuration η = η(ω) where ηxy = 1 if at least one transition
occurs on xy× [0, β], and ηxy = 0 otherwise. The percolation parameter is p = P(ηxy = 1) =
1− e−β . Let C(ω) denote the set of percolation clusters of η(ω). One can check that each
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Figure 3. Numerical values for E
(∑

j≥1

( `j
|Λ|
)2)

as function of β. The size

of the cube is L = 80 in the top row and L = 160 in the bottom row. The
parameter u takes values 0 (left), 0.5 (centre), and 1 (right). The points

represent the values of
∑
j(

`j
|Λ| )

2 for many realisations; the curve gives the
average.

loop γ ∈ L(ω) is contained in some cluster C ∈ C(ω) in the sense that γ ⊂ C × [0, β]. Then
|C(ω)| ≤ |L(ω)| and the presence of long loops is possible only when percolation occurs.

The critical parameter for the cubic lattice is pc = 0.2488, which gives βper
c = − log(1 −

pc) = 0.286. We have indeed found that βc(u) > βper
c for all u ∈ [0, 1], and the inequality is

strict.

B. Random cluster and Ising model. The random cluster model is similar to bond
percolation, but with configurations η receiving the extra weight q|C(ω)|. The random
cluster model is closely related to the q state Potts model; their transition parameters

satisfy p
r.c.(q)
c = 1 − e−β

Potts(q)
c . The case q = 2 is equivalent to the Ising model with

2βIsing
c = β

Potts (q)
c . See [7, Section 3.8] for an excellent introduction to this topic. The Curie

temperature for the three-dimensional Ising model is Tc = 4.51, which allows to deduce that

β
r.c.(q=2)
c = β

Potts (q=2)
c = 0.443.

There is no natural comparison between β
r.c. (q=2)
c of the random cluster model, and βc(u)

of the random loop model. But it can be compared with βper
c and β

(2)
c , see (3.7).

C. Quantum Heisenberg models. Let S1, S2, S3 denote the usual spin operators in C2

that satisfy [S1, S2] = iS3 and further cyclic relations. Consider the quantum Hamiltonian
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Figure 4. Value of the critical parameter βc as function of u.

that acts on the Hilbert space ⊗x∈ΛC2:

HΛ = −2
∑

{x,y}⊂Λ
‖x−y‖=1

(
S1
xS

1
y + (2u− 1)S2

xS
2
y + S3

xS
3
y

)
. (3.6)

The case u = 1 corresponds to the spin 1
2 Heisenberg ferromagnet; the case u = 1

2 is the
quantum XY model; the case u = 0 is unitarily equivalent to the Heisenberg antiferromagnet,
provided Λ is bipartite.

The partition function and the quantum correlations can be expressed using random loop

models where realisations ω receive the extra weight 2|L(ω)| [16, 1, 18]. In particular, β
(2)
c (u)

is equal to the inverse Curie temperature of the quantum model. Numerical studies have

found that β
(2)
c (1) = 0.59 [17] and β

(2)
c (0) = 0.53 [14].

The extra weight encourages the system to have more, smaller loops, so we can expect

β
(2)
c (u) ≥ βc(u) for all u. Besides, we observe that β

(2)
c (0) < β

(2)
c (1), as in the absence of

the weight.
Regarding the quantum XY model, Stefan Wessel has just performed numerical calcu-

lations and he obtained the value Tc = 1.008 ± 0.001 for the Hamiltonian with interaction

−
∑
{x,y}(S

1
xS

1
y +S3

xS
3
y) [21]. This implies that β

(2)
c ( 1

2 ) ≈ 0.496. We conjecture that β
(2)
c (u)

has a shape similar to that of βc(u).
Let us summarise the discussion above with the following inequalities; for all u ∈ [0, 1],

βper
c = 0.286 ≤


βc(u) ∈ [0.313, 0.361]

β
r.c. (q=2)
c = 0.443

 ≤ β(2)
c (u) ∈ [0.496, 0.59]. (3.7)
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4. Joint distribution of the lengths of long loops

4.1. Calculation of the moments of Poisson-Dirichlet. We check the presence of the
Poisson-Dirichlet distribution by looking at its moments, following [13]. Let n1 ≥ · · · ≥ nk
be integers. The calculation of the moments can be achieved by starting from another
representation of the Poisson-Dirichlet distribution due to Kingman [12]. Let Z1, . . . , ZN
be i.i.d. random variables with Gamma( ϑN ) distribution (that is, their probability density

function is s
ϑ
N−1 e−s /Γ( ϑN ) for 0 ≤ s <∞). Let S = Z1 + · · ·+ZN . Consider the sequence(Z1

S
, . . . ,

ZN
S

)
(4.1)

and reorder it in decreasing order, so it forms a random partition of [0, 1]. As N →∞, this
partition turns out to converge to PD[0,1](ϑ). The following two observations are keys to
our calculations:

• S is a Gamma(ϑ) random variable;
• S is independent of (Z1

S , . . . ,
ZN

S ).

For given integers n1, . . . , nk ≥ 0, using the independence of S from the partition, we have

EPD[0,1](ϑ)

( ∑
j1,...,jk≥1

distinct

Y n1
j1

. . . Y nk
jk

)
= lim
N→∞

N !

(N − k)!
E
((Z1

S

)n1

. . .
(Zk
S

)nk
)

= lim
N→∞

N !

(N − k)!

E
(
Sn1+···+nk(Z1

S )n1 . . . (Zk

S )nk
)

E(Sn1+···+nk)

= lim
N→∞

N !

(N − k)!

Γ(ϑ)E
(
Zn1

1 . . . Znk

k

)
Γ(ϑ+ n1 + · · ·+ nk)

.

(4.2)

We also used E(Sa) = Γ(ϑ+ a)/Γ(ϑ). Since the Zis are independent,

E
(
Zn1

1 . . . Znk

k

)
=

k∏
i=1

Γ(ϑ/N + ni)

Γ(ϑ/N)
. (4.3)

Recall that Γ(ϑ/N) ∼ N/ϑ as N →∞, so that N !
(N−k)!Γ(ϑ/N)k

→ ϑk. We obtain

EPD[0,1](ϑ)

( ∑
j1,...,jk≥1

distinct

Y n1
j1

. . . Y nk
jk

)
=
ϑk Γ(ϑ) Γ(n1) . . .Γ(nk)

Γ(ϑ+ n1 + · · ·+ nk)
. (4.4)

This important formula appears in [13]. Its derivation there is different; it involves another
loop soup model, assumes the presence of Poisson-Dirichlet, and uses a “supersymmetry”
method.

Eq. (4.4) holds for Poisson-Dirichlet on the interval [0, 1]. The formula for the interval
[0,m] is identical, except for the additional factor mn1+···+nk . Combining Conjecture 2 and
Eq. (4.4), we get the following exact formula.

Conjecture 3. The moments of the lengths of the loops are given by

E
( ∑
j1,...,jk≥1

distinct

( `j1
|Λ|

)n1

. . .
( `jk
|Λ|

)nk
)

= m(β)n1+···+nk
ϑk Γ(ϑ) Γ(n1) . . .Γ(nk)

Γ(ϑ+ n1 + · · ·+ nk)
,

where ϑ = 1 for u = 0 or u = 1, and ϑ = 1
2 for 0 < u < 1.

With minor modifications, this formula also applies to a wide range of “loop soup” models.
And indeed, it was derived in [13] in the context of O(N) loop models.
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4.2. Numerical results. We now calculate numerically some moments of the joint distri-
bution of the loops and compare the results with Conjecture 3. First, moments involving a
single loop. Let mn1(β) be the value of m(β) in Conjecture 3 when n1 ∈ N and nj = 0 for
j ≥ 2. Explicitly, we have

mn1(β) =

[
Γ(ϑ+ n1)

ϑΓ(ϑ)Γ(n1)
E
(∑
j≥1

( `j
|Λ|

)n1
)]1/n1

. (4.5)

Our numerical results deal with β = 1, u ∈ {0, 1
2 , 1}, and n1 ∈ {2, 3, 4, 5} and they are

listed in Table 1. They show that mn1
(β) is quite constant in n1, apart from numerical

fluctuations and finite-size corrections. This confirms Conjecture 3. Notice that it confirms
in particular that ϑ is either 1 or 1

2 , depending on the value of u.

u
0 1

2 1

n1

2 0.8925 0.9585 0.9310
3 0.8968 0.9587 0.9276
4 0.8815 0.9595 0.9217
5 0.8930 0.9528 0.9356

Table 1. Numerical values of mn1(β) for β = 1, and L = 160.

Next, let mn1,n2
(β) be as mn1

(β), but with n2 6= 0. The expression is

mn1,n2
(β) =

[
Γ(ϑ+ n1 + n2)

ϑ2Γ(ϑ)Γ(n1)Γ(n2)
E
( ∑
j1,j2≥1
distinct

( `j1
|Λ|

)n1
( `j2
|Λ|

)n2
)]1/(n1+n2)

. (4.6)

The numerical values are listed in Tables 2–4 for u = 0, 1
2 , 1. Notice that we avoid the values

ni = 1 because of undesirable effects due to small loops.

n2

2 3 4 5

n1

2 0.9031 0.8924 0.8915 0.9001
3 . 0.9056 0.9001 0.8985
4 . . 0.8987 0.8947
5 . . . 0.8946

Table 2. Numerical values of mn1,n2(β) for u = 0, β = 1, and L = 160.
Here, mL(β) = 0.872.

We observe that mn1,n2(β) does not depend much of n1, n2, as expected from Conjecture
3. This also guarantees that the value of ϑ has been conjectured correctly. Variations in the
values of mn1,n2

(β) can be dismissed as random fluctuations and finite-size effects.
To summarise, we have studied numerically the joint distribution of the lengths of macro-

scopic loops in a family of loop models in three dimensions. These loop models are motivated
by their close relations to certain quantum spin systems and include in particular the ran-
dom interchange model. We have observed the presence of the Poisson-Dirichlet distribution
with parameters ϑ = 1 and 1

2 as conjectured in [8, 18].
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n2

2 3 4 5

n1

2 0.9576 0.9579 0.9562 0.9593
3 . 0.9671 0.9600 0.9580
4 . . 0.9539 0.9479
5 . . . 0.9523

Table 3. Numerical values of mn1,n2
(β) for u = 0.5, β = 1, and L = 160.

Here, mL(β) = 0.949.

n2

2 3 4 5

n1

2 0.9286 0.9295 0.9318 0.9315
3 . 0.9350 0.9256 0.9341
4 . . 0.9349 0.9282
5 . . . 0.9210

Table 4. Numerical values of mn1,n2(β) for u = 1, β = 1, and L = 160.
Here, mL(β) = 0.925.

Acknowledgments: We are grateful to Stefan Wessel for sending us the result of his
numerical calculation of the critical temperature of the quantum XY model.
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[16] B. Tóth, Improved lower bound on the thermodynamic pressure of the spin 1/2 Heisenberg ferromagnet,

Lett. Math. Phys. 28, 75–84 (1993)
[17] M. Troyer, F. Alet, S. Wessel, Histogram methods for quantum systems: from reweighting to Wang-

Landau sampling, Braz. J. Phys. 34, 377 (2004)

[18] D. Ueltschi, Random loop representations for quantum spin systems, J. Math. Phys. 54, 083301 (2013)
[19] D. Ueltschi, Ferromagnetism, antiferromagnetism, and the curious nematic phase of S=1 quantum

spin systems, Phys. Rev. E 91, 042132 (2015)
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