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An increasingly time-consuming part of the design flow of on-chip multiprocessors is the simulation of the interconnect 

architecture. The accurate simulation of state-of-the art network-on-chip interconnects can take hours, and this process is 

repeated for each design iteration because it provides valuable insights on communication latencies that can greatly affect 

the overall performance of the system. In this paper, we identify a time-predictable network-on-chip architecture and we 

show that its timing behaviour can be predicted using models which are far less complex than the architecture itself. We 

then explore such feature to produce simplified and lightweight simulation models that can produce latency figures with 

more than 90% accuracy and simulate more than 1000 times faster when compared to a cycle-accurate model of the same 

interconnect.  
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1. INTRODUCTION 

Communication latency evaluation is a critical part of the performance evaluation of large on-chip 

multiprocessors. As the number of cores grows, there is less competition for computation 

resources and software task execution times become easier to evaluate. On the other hand, the 

same increase in the number of cores forces more congestion over the on-chip interconnect, which 

is used by software tasks to communicate with each other, external memory, and peripherals. With 

increased congestion over sophisticated interconnect architectures, it becomes harder to predict the 

latencies of each communication. Therefore, efficient tools and methods are needed. 

Despite of some progress in static analysis such as in [Shi and Burns 2008], most design flows 

for on-chip multiprocessors rely on simulation to evaluate the latency overhead imposed by on-

chip interconnects. In the case of complex interconnects like Networks-on-Chip (NoCs), cycle-

accurate simulation of a few seconds of the system’s execution can take hours [Genko et al. 2005]. 

Simulation has been identified many times before as a bottleneck on the embedded systems design 

flow, and many alternative techniques have been proposed such as emulation, rapid prototyping 

and abstract models [Marwedel 2011]. This has also happened in the domain of NoCs, but the 

alternatives are either too difficult to implement and maintain [Genko et al. 2005], or have to 

sacrifice accuracy in order to be faster. In this paper, we attempt to build a lightweight NoC 

simulation model that is both fast and accurate with regard to its cycle-accurate counterpart. We 

do that by restricting the NoC design space to a class of NoC interconnects that can be accurately 

described at higher levels of abstraction. The proposed model uses similar principles as the 

transaction-level modelling approach, and many of such approaches are reviewed in Section 2, 

followed by a discussion about the trade-off between accuracy and simulation speed. Section 3 

presents the region of the NoC design space that we concentrate in this paper, and justifies the 

constraining of design space exploration in favour of predictability and, as a consequence, faster 

simulation. The proposed simulation model and its functionality are detailed in Section 4, 

followed by extensive experimental results in Section 5 and our conclusions. 
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2. RELATED WORK 

Several techniques attempt to speed-up simulation of computers by abstracting away low-level 

events occurring during computation and communication, focusing instead on large-granularity 

data transfers between components. Transaction-level modelling (TLM) is one of them, which has 

mainly been applied in designs created with SystemC, but its methodology is generic enough to be 

used within other simulation frameworks and languages. In TLM 2.0, a transaction models the 

transfer of a load between components of the system. Components are either transaction initiators, 

transaction targets or interconnects, which modify and forward transactions from initiators to 

targets [Aynsley 2009]. 

The trade-off between accuracy and simulation speed in TLM was very well characterised by 

Schirner and Dömer [Schirner and Dömer 2008]. While TLM models can simulate up to four 

orders of magnitude faster than their cycle-accurate counterparts, this comes at the price of low 

accuracy. Because TLM models are based on a simplified structure of the system, they have a 

larger granularity of data and arbitration handling. As a consequence, such models cannot model 

effects that happen at a finer granularity, resulting in loss of accuracy. However, the notion that 

TLM models can be either fast or accurate has been recently challenged by a number of works. 

TLM models of processing elements (PE) can increase simulation speed by dealing with a 

granularity which is larger than individual instructions. Accuracy of such models is kept high by 

the use of timing annotations extracted from code profiling, which even allows the modelling of 

effects such as pipelining, caching [Kai-Li Lin et al. 2010] and interrupts [Ke Yu and Audsley 

2009].  

Accurate TLM models for on-chip interconnects have also been proposed. In [van Moll et al. 

2009], bus protocol specifications are used to identify a reduced set of timing points when models 

of a particular on-chip bus architecture should be simulated without loss of accuracy. The authors 

reported an improvement of two orders of magnitude in simulation speed without loss of accuracy, 

in comparison with a cycle-accurate model. The drawback is that this technique depends on the 

ability to identify a set of timing points which are small enough to significantly reduce the number 

of simulation events while covering all possible protocol state transitions, which will not be 

straightforward in complex on-chip interconnects. 

Fast and accurate TLM models of busses are also discussed in [Schirner and Dömer 2007], 

where the concept of Result-Oriented Modelling (ROM) is introduced. ROM optimistically 

predicts the delay of a particular transaction and retroactively corrects it in case it detects that the 

delay was affected by the outcome of other transactions. It presents convincing results without any 

loss of accuracy, as demonstrated through two case studies with CAN and AMBA AHB busses. 

However, its improvement on simulation speed is inversely proportional to the frequency of 

corrections needed by the optimistic predictions, and such corrections are likely to occur very 

often in interconnects with complex contention patterns. 

Specific approaches to the fast simulation of NoC interconnects are also available in the 

literature. In [Viaud et al. 2006], a speed-up of 50x with 99.999% accuracy have been shown by 

using a timed TLM approach which reduces the overhead of the simulation kernel by using local 

time references for each individual task that communicates over the NoC. The local clocks of 

different tasks are only synchronised when those tasks are initiator or target of the same 

transaction. However, their approach fails to model contention within the interconnect, which is 

likely to happen in large multiprocessors. [Hosseinabady and Nunez-Yanez 2010] reported a 

modest speed-up of 38% with no loss of accuracy by using lightweight schedulers that handle the 

time reference for a group of tasks. In [Eggenberger and Radetzki 2013], the authors propose a 

decomposition approach that breaks the simulation kernel in multiple threads that can be executed 

in parallel with a lightweight time synchronisation between then. By running the decomposed 

kernel over a 16-core machine, the authors were able to obtain a speed-up of up to 15.5x, also 

without any loss of accuracy. Unlike those approaches, in this paper we do not aim to change the 

simulation semantics or the implementation of the simulation engine, but rather constrain our 

approach to model interconnect architectures whose behaviour can be better captured at higher 

levels of abstraction. 

In the specific case of wormhole NoCs, the approach by [Ost et al. 2009] obtained a speed-up 

of 2-6x over cycle-accurate models while keeping the level of accuracy as high as 95%. This has 

been achieved by simulating only the header flits of a packet (rather than the complete packet). It 



accurately modelled the hop-by-hop transfer of the packet header, and used analytical models to 

account for the “elastic” behaviour of the packet payload, i.e. “stretched” across multiple routers if 
the header faces no congestion or “compressed” over a few routers if the header is blocked. A 

different approach was used by [Kohler and Radetzki 2009], which abstracted away the hop-by-

hop behaviour of the packet and simulated the whole communication as a single TLM transaction, 

granting speed-ups of up to 30x when compared to an equivalent hop-accurate model. As the flit-

level contention over the NoC could not be modelled by this technique, the authors had to use 

stochastic models to introduce packet blocking delays to the transactions. Therefore, this approach 

can have very low accuracy when simulating congested NoCs (average error of 45%, as reported 

in [Kohler and Radetzki 2009]). [Indrusiak and Santos 2011] also abstracted the hop-by-hop data 

transfer of priority-arbitrated NoCs within a single transaction, providing the foundations of the 

work described and evaluated in this paper. Similarly, [Heid et al. 2014] followed that principle 

for NoCs with flit-level round-robin arbitration. 

Another approach to address long simulation times is to use analytical performance models, 

which generally run faster than simulation. A number of analytical methods were proposed in the 

past decade aiming to estimate packet latency in NoCs. Beekooij et al. have proposed an extension 

to dataflow analysis that can model the behaviour of a homogeneous synchronous dataflow 

(HSDF) application performing computation and communication over a statically scheduled time-

division multiplexing (TDM) Network-on-Chip [Bekooij et al. 2005]. They assume that the worst-

case computation time of each application task is known, and they assume that contention over 

NoC links can be avoided by a carefully constructed TDM schedule of each link. Therefore, the 

delay introduced by the NoC to each packet can be established independently for each task. Qian 

et al. proposed the use of network calculus to calculate worst-case packet latency bounds in 

wormhole NoCs [Qian et al. 2009], as long as all traffic can be modelled as an arrival curve and 

all NoC routers can be modelled by a service curve. Such curves abstract the actual behaviour of 

the application and the NoC by the bandwidth required or provided, respectively, at each point in 

time. The calculation of latency bounds is done through algebraic operations over all arrival 

curves at a given router, as well as the router’s service curve. The main challenge of this approach 
is to represent the behaviour of a sequence of specific routers (with their particular buffering and 

arbitration schemes) as a service curve. Shi and Burns have proposed an analytical model based on 

Response Time Analysis (RTA) that can find worst-case latency bounds in priority-arbitrated 

NoCs [Shi and Burns 2008]. That approach was compared against simulation results in [Shi et al. 

2010], showing that it is safe and conservative, and was extended to estimate end-to-end latency 

(computation and communication) in [Indrusiak 2014]. Other analytical approaches to estimate 

packet latency in NoCs are surveyed in [Kiasari et al. 2013], all of them based on dataflow 

analysis, network calculus or RTA, just as the examples cited above.  

In general, analytical models restrict the behaviour of the application by limiting the times 

when tasks and packets can be released (e.g. periodic, sporadic, according to a specific rate) and 

produce aggregate latency metrics (e.g. average, worst-case) rather than specific figures for each 

packet. Simulation, on the other hand, can provide latency figures for each and every 

communication packet sent by each and every task of the system, which in turn can execute 

without any restrictions. Thus, in most design flows both techniques will be used in a 

complementary way. 

3. NETWORK-ON-CHIP ARCHITECTURE 

The design space of NoC architectures is very large, as many of its components can be 

parameterized to better meet design goals: routers, arbiters, buffers, flow controllers, among others. 

However, the experience acquired through the development of many commercial and research-

oriented NoCs allowed the identification of a few mechanisms that are adequate for a wide variety 

of NoC configurations, and so they were adopted widely. For example, sophisticated routing 

algorithms do not significantly reduce communication latency when compared with simple 

deterministic routers such as XY [Vieira de Mello et al. 2004], so most NoC designers avoid the 

costs in area and power consumption by adopting the simpler solution. Wormhole switching is 

another example of a mechanism that was widely adopted in NoCs because it does not require 

large capacity buffers (which in turn means lower power and area overhead of the routers, a top 

priority among NoC designers).   



In this paper, we also adopt such widely used architectural patterns and consider NoCs with 

mesh topology, wormhole switching and deterministic routing. However, such architectures are 

particularly vulnerable to network contention and its effects can only be accurately predicted by 

using cycle-accurate models. Taking as an example the situation when two packet headers arrive 

at a NoC router within one cycle of each other, this minimal time difference could determine 

which of the packets would be granted access to a mutually exclusive resource (e.g. an output port) 

while the other would have to wait, significantly affecting the latency of both of them. Such 

scenario can obviously not be modelled with a time granularity that is larger than one cycle, such 

as in TLM, therefore a TLM model of such system will certainly present low accuracy figures for 

latency (e.g. the model proposed in [Kohler and Radetzki 2009]). To solve this issue, we further 

constrain our design space and focus on architectural constructs whose behaviour can be 

accurately modelled at a higher level of abstraction. While this decision is not based on a 

functional requirement of a particular design, it has the potential to speed up design space 

exploration by reducing the time to evaluate each alternative solution within that space. As a 

consequence, more alternatives can be analysed and designers are more likely to find solutions 

that fulfil functional requirements.  

In this paper, we focus on one particular architectural construct that can be accurately 

described at a high level of abstraction such as TLM, namely a flow controller based on priority 

preemptive virtual channels. By assigning priorities to packets, and by allowing high priority 

packets to preempt the transfer of low priority ones, network contention scenarios become more 

predictable and do not require cycle-accurate models to be analysed. Fig. 1 shows the internal 

structure of a NoC router using such architecture. In each input port, a different FIFO buffer stores 

flits of packets arriving through different virtual channels (one for each priority level). The router 

assigns an output port for each incoming packet according to their destination. A credit-based 

approach [Bjerregaard and Sparso 2004] guarantees that data is only forwarded from a router to 

the next when there is enough buffer space to hold it. 

At any time, a flit of a given packet will be sent through its respective output port if it has the 

highest priority among the packets being sent out through that port, and if it has credits (that is, 

buffer space on the respective buffer of the neighbouring node connected to that output port). If 

the highest priority packet cannot send data because it is blocked elsewhere in the network, the 

next highest priority packet can access the output link. The identified architecture is therefore able 

to provide guaranteed throughput (GT) to traffic of higher priority, and also provides means to 

calculate upper latency bounds to best-effort (BE) traffic, as the priority ordering clearly shows 

when a packet will be blocked. Its approach to guarantee throughput is more efficient than time-

division multiplexing (TDM), as used in many NoC architectures such as [Goossens et al. 2005], 

where GT traffic gets a pre-assigned time-slot to use resources. Priority preemptive arbitration 

does not unnecessarily reserves resources, so low priority traffic can always use the NoC if there 

are no requests from GT traffic. 

For the sake of simplicity, we describe below the behaviour of such a NoC router as a set of 

rules followed when forwarding a data packet from its input port (data_in in Fig. 1) to one of its 

output ports (data_out in Fig. 1), and therefore to the input port of the next router of the packet's 

route towards its destination. This is usually referred as the data-link layer behaviour of a NoC. 

 

1. Each input port of a router can handle a number of virtual channels (VCs), and this 

number is defined at design time. We assume a common implementation of VCs, which 

defines a separate FIFO buffer to store the incoming flits of each VC at a router's input 

port, and avoids head-of-line blocking between flits of different VCs.   

2. All flits of a packet use the same VC, and when a flit arrives to an input port of a router, 

the router can identify which VC the flit is using and therefore store it in the respective 

input buffer. We assume a common implementation of this feature, which is the encoding 

of the virtual channel ID on each flit (i.e. 2
n
 additional control signals in the link, where n 

is the predefined number of supported virtual channels).  

3. When a flit is at the head of one of the VC buffers of a router, the router can identify 

whether the flit is a packet header. We assume a common implementation of this feature, 

where each header flit includes the length of the packet and the router uses a counter on 

each VC to identify the end of a packet. If the counter is at zero, the incoming flit is a 



header and the counter is set to the packet length. If the counter is not zero, the counter is 

decremented every time a flit from the respective VC is forwarded through an output port 

to the subsequent router. 

4. When a header flit is at the head of one of the VC buffers of a router, the router can 

identify which output port the flit should be forwarded to. This is defined by the network 

layer behaviour of the NoC, and we assume that the header will include the destination 

address which enables the router to decide which output port to use according to a 

deterministic routing algorithm (e.g. X-Y). Once this is done, the input VC is locked to 

the chosen output port once the header is processed and it remains locked until the packet 

is completely transmitted, so all flits following the header will be sent out through the 

same port (and therefore route). 

5. An output port is aware of the availability of buffer space on each of the VCs of the input 

port at the other end of its link. This is usually referred as the NoC flow control 

mechanism, and we assume a credit-based implementation where the output port is 

initialised with credits for each VC that correspond to the respective buffer spaces 

available in the input port down the line. As flits are transferred over the VCs, the 

respective credits are decremented. Once the subsequent router forwards a flit to the next 

hop towards its destination over a given VC, it frees a buffer space and it uses control 

signals over the upstream link to replenish credits to same VC at the upstream output port.  

6. An output port may be locked to multiple input virtual channels, because many packets 

may need to be routed to the same neighbouring router. We assume that each output port 

will arbitrate contention by always sending out the flit of the input VC with the lowest ID 

that has credit (or highest, depending on priority assignment convention). Then, by 

assigning packets to VCs by matching their priorities to the VC IDs, it is possible to 

effectively achieve priority-preemptive arbitration of NoC links. Notice that the 

preemption happens at the granularity of a single flit, so a high priority packet will be 

given immediate access to the desired output port once it arrives at a router (assuming 

that its VC is not fully blocked down the line by previously transmitted packets of the 

same priority). Interleaving between packets of different priorities over a link will be 

handled by rule 2, as they will be assigned different VCs. 

7. No assumptions are made on the arbitration of packets of the same priority arriving 

simultaneously to an output port, but for the sake of implementation simplicity we 

assume that once a packet is given access to the output port it will not be preempted by 

another packet of the same priority. Additional VC management functionality would be 

needed if this rule would not be enforced. 

 

The NoC architecture described in this section is widely used in embedded and real-time 

systems research for its time predictability properties (i.e. ability to analytically estimate worst-

case latency bounds) [Nikolic et al. 2014; Kashif and Patel 2014; Indrusiak 2014]. Commercially-

available NoCs (such as the TILE family [Agarwal 2007]) and academic NoCs (such as QNoC 

[Bolotin et al. 2004] and HERMES [Mello et al. 2005]) can be configured to follow the 

architectural constraints described here.   

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Overview of the NoC architecture with detail of the router structure. 

 

4. LIGHTWEIGHT MODEL OF THE NETWORK-ON-CHIP ARCHITECTURE 

Unlike regular NoC simulation models, which are composites of routers, buffers, arbiters and links, 

the proposed model is a single monolithic interconnect component (Fig. 2). It is connected to all 

processing cores, which can be both sources and targets of inter-task communication packets. The 

interface between the processing cores and the proposed NoC simulation model is minimal, 

allowing every core to specify when a packet is released (i.e. ready to be carried by the NoC), 

what is its destination and at which level of priority it should be transferred. It also has a simple 

mechanism to notify each destination core when a packet has been received and is available in 

their local memory. 

The focus of this work is to determine, once a packet is released, how long it will take to be 

transferred by the NoC and be completely stored at the local memory of its destination core. The 

time elapsed between the packet release and its complete reception at the destination is referred as 

packet latency. 

 

 

 

 

 

 

 

 

 

 

Fig. 2. General architecture of the proposed simulation model. 

 

While structurally simple, the proposed simulation model must be able to accurately estimate the 

latency of each and every packet transfer. It must take into consideration the time the NoC takes to 

carry the packet as well as the time the packet is blocked by other packets with higher priority. 

Unlike some of the previous work, we consider blocking at all possible parts of the NoC 

architecture, from the core interface to all internal routers and links. 

The core of our approach is the notion of interference suffered by a given packet. If a packet 

has the whole network to itself, estimating its latency is trivial as it becomes a function of the 

number of hops it must traverse over the NoC on the way to its destination, and the packet’s flit 
count. This is referred throughout the paper as the packet’s no-load latency. However, packet 

latency estimation becomes harder when multiple packets compete for the same NoC resources. 

This is a critical issue in the simulation of many NoC architectures, because the NoC must be 

simulated with a very small time granularity in order to accurately reflect the effects of resource 

arbitration. However, with priority arbitration it is possible to deterministically decide which 
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packet has precedence when acquiring a shared resource and which packet has to wait, i.e. which 

packet does not suffer interference and which does. If that relation is known, it is possible to 

quantify the amount of interference that each packet will suffer from other packets of higher 

priority (i.e. the time it has to wait for them to release the shared resources).  

In order to reason more formally about our NoC, we rely on definitions regarding the 

behaviour of the NoC we are interested in analysing.  

 

Definition 1 (Packet). A packet packeti = (srci, dsti, tri, priorityi, payloadi) defines the data 

transmitted from one core to another in the NoC, where src and dst are the address of the packet’s 
source and destination over the NoC (e.g. 1 to 16 in Figure 1); tr is the release time of the packet; 

priority is an integer number denoting which packet has higher priority to acquire shared resources; 

and payload is an integer number denoting its flit count. 

 

Definition 2 (Route). A route routei is a deterministic set of links (calculated using the XY routing 

algorithm) that a packet needs to traverse to go from its src address to the dst address. XY routing 

is used here because it is a common choice in many NoC architectures, but this is not a requisite. 

The proposed approach can use any deterministic routing algorithm. 

 

In the next paragraphs we show how interference analysis can be used to accelerate NoC 

simulation. 

4.1 Interference analysis 

In order to simulate the NoC’s packet latency, it is necessary analyse the possibility of 

interference from higher priority packets over lower priority ones (following the classic textbook 

notion of interference as the ability to affect the temporal behaviour [Burns and Wellings 2009]). 

First, we define the conditions for interference between packets. 

 

Definition 3 (Interference condition). A packet packeti can interfere with a packet packetj if and 

only if priorityi > priorityj and routei  routen  . 

 

Intuition: Consider two packets packetA and packetB, where the first packet has a higher priority. 

By using priority preemptive arbitration of NoC links, it is straightforward to see that packetA can 

influence the temporal behaviour of packetB but not the contrary. Still, this can only occur if the 

routes followed the packets share at least one NoC link, otherwise no contention and therefore no 

interference is possible.  

 

To reason about interference patterns across the whole NoC, we use a graph-based formulation. 

Therefore, we define an interference graph as a directed acyclic graph (DAG) that reflects the 

interference relations between all the packets being carried by a NoC, based on Definition 3. In 

such graph, each packet is represented as a node and each directed edge denotes an interference 

relation (see Fig. 3): if the routes of any two packets intersect, there will be an edge between their 

respective nodes, and the edge will be directed from the lowest to the highest priority packet. 

Based on a simple inspection of the interference graph, it is possible to decide whether at a 

particular point in time a packet is active (transmitting) or inactive (waiting for arbitration). 

 

Definition 4 (Active packet). A packet packeti is said active at time t if and only if the node 

representing it in the interference graph has no direct successors which are active, otherwise the 

packet is inactive. 

 

Intuition: The interference graph represents Definition 3, which states the conditions when 

interference between packets can occur. However, due to the displacement of time, contention 

from higher priority packets may cease and lower priority packets can transmit. Therefore, a 

packet is considered active if and only if no other interfering packet is transmitting at a certain 

time t. Conversely, a packet is inactive at time t as it is unable to transmit due to contention. 

 

 



In order to detail these ideas, consider the following example. 

 

Example. Consider the scenario shown in Fig. 3.a, where at a time t = t’ the NoC is 

carrying the following packets: packet1 = (4, 1, tr1 < t’, p1, payload1); packet2 = (3, 2, tr2 < t’, 
p2, payload2); packet3 = (5, 13, tr3 < t’, p3, payload3); and packet4 = (2, 13, tr4 < t’, p4, payload4). 

The respective routes are shown as arrows in Fig. 3.a, making clear which NoC links 

they use and thus whether they intersect. Assuming that p1 > p2 > p3 > p4, Fig. 3.b shows 

the interference graph for that NoC at t = t’.  
The interference graph in Fig. 3.b shows the nodes representing active packets in grey and the 

nodes representing inactive packets in white. Now, let us assume that at t = t’’ a new packet is 

released before packets 1 and 3 are delivered (which means that 2 and 4 have not finished either, 

as they are both inactive). The new packet, which appears as a dashed line in Fig. 3.a, is packet5 

= (4, 3, t’’, p5, payload5), and p5 > p1. Fig. 3.c shows the updated interference graph at t = t’’. 
Notice that due to Definition 4 the active status of some nodes had to be updated as well.  

The completion time of a packet can be found by checking at which point in time it has been 

cumulatively active for the duration of its no-load latency (which is known in advance and does 

not depend on the state of the network). For example, let us assume that at time t = t’’’ packet 3 

has been active long enough to be delivered to its destination core. At that point, the interference 

graph must be again updated (Fig. 3.d) and the latency of packet 3 can be easily calculated as t’’’ 
– tr3 i.e. its completion time minus its release time.  

  

 

 
(a) 

 

    
 

(b)   (c)   (d)  
 

Fig. 3. Example traffic scenario (a) and respective interference graph at different points in time:    

(b) t = t’, (c) t = t’’, (d) t = t’’’. 

4.2 Lightweight simulation component implementation 

The model described in the previous subsection has been implemented as a simulation component, 

which encapsulates the behaviour of the complete NoC interconnect (as shown in Fig. 2). Such 

component was conceptually designed to interface with a variety of simulation frameworks, and 

relies on the assumptions that it should be able to: 
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- Ask the simulation framework for the current time; 

- Ask the simulation framework for a pure event
1
 at a specific time in the future; 

- Be notified when a specific processing core sends a packet into the NoC; 

- Deliver a packet to a specific destination core.   

 

Internally, the simulation component must maintain the state of the NoC interconnect (i.e. 

interference graph) and perform the interference analysis to calculate the latency of each packet. 

For performance reasons, we represented the state of the NoC as a list plist of all packets, 

sorted by their priority. Each entry includes the parameter tuple packeti of the respective packet 

and additional information required by the proposed algorithm to calculate the delivery time of 

each packet:  

- interferencei is the set of undelivered packets {packetj, packetk,…, packetn} whose route 

shares at least one link with routei and whose priority is higher than priorityi        

(Definition 1);   

- activei is a boolean value that denotes whether packeti is active, as opposed to made 

inactive by any active packetn   interferencei;  

- tai is the time packeti last became active;  

- remainingpayloadi is the number of flits yet to be delivered at dsti.  

 

Algorithm 1 describes the behaviour of the simulation component when a processing core sends a 

new packet into the NoC interconnect. It first initialises the parameters representing the new 

packet, then it searches over all other packets in the NoC for those that should be added to the new 

packet’s interference set (based on route intersections and priority ordering).  It then adds the new 

entry to plist, keeping it sorted by packet priority. 

Algorithm 1. Send Packet over Network-on-Chip 

Input: packeti, list of all packets plist, current simulation time ctime. 

Output: incremented plist. 

remainingpayloadi = payloadi; activei = false; routei = routing(srci, dsti); 

for each packetn in plist { 

 if (routei  routen   ) { 

  if (priorityi < priorityn) {add packetn to interferencei;} 

  else {add packeti to interferencen;}  

 }  

} 

add (packeti, interferencei, activei, tai, remainingpayloadi) to plist; 

requestUpdate(ctime) ; 

 

 
As described in the previous subsection, active packets are all those that have no active packets in 

their interference sets, so the typical case is that several packets will be active at the same time on 

a NoC as long as their routes do not intersect. When packets enter or exit the NoC, interference 

sets may change and therefore the active status and interference sets of all packets may need to be 

updated. In the proposed implementation, we use pure events to request updates as they are 

common feature in almost every event-based simulation framework. For example, an update is 

requested at the exact time that a packet enters the NoC (requestUpdate function, last statement in 

Algorithm 1).  

Algorithm 2 describes the proposed update algorithm, used to discriminate which packets in plist 

are active, and to request additional updates for the time when active packets are likely to 

terminate.  

Every time an update is triggered, the simulation component iterates over plist and updates the 

status of active and inactive packets according to changes on their interference set (i.e. a packet 

becomes inactive because a new packet is added to its interference set, or becomes active because 

 
1 Pure events have a timestamp but no data attached to them. They can be used to activate simulation 

components at a specific time even if they do not receive events from any other component. 



all active packets in its interference set terminated or became inactive). Because plist is sorted by 

packet priorities, we can guarantee that when the algorithm iterates over a given entry of plist, all 

possible changes to the respective interference set have already been committed (because a packet 

can only suffer interference from higher priority packets).  

When a packet becomes active, another update event is requested for the time it is likely to 

terminate (calculated according to the no-load latency of its remaining flits, denoted by the 

function noLoadLatency). If the packet is forced into inactivity before that time, that update event 

is cancelled and a new one will be scheduled when the packet is next activated.  

Finally, updates must check if each active packet has already reached its destination by 

checking whether it was active for long enough to send all remaining flits. If that is the case, its 

entry is removed from plist, its latency is calculated and the packet is sent out to the target 

processing core. 

 

Algorithm 2. Update Packet List 

Input: list of all packets plist, current simulation time ctime. 

Output: updated plist, latency of packets delivered at current time. 

for each packeti in plist { 

if (activei) { 

remainingpayloadi = remainingpayloadi – sentFlits(ctime - tai); 

tai = ctime; 

  if (remainingpayloadi  = 0) {  

remove packeti from plist; 

deliver packeti to destination; 

output latencyi  = ctime – tri. 

}     

  for each packetn in interferencei { 

          if(activen) {activei = false;}  

     } 

 } 

 else {  

  if (!activen for all packetn in interferencei ){ 

         activei = true;  
tai = ctime;   

         requestUpdate(currenttime + noLoadLatency(remainingpayloadi)); 

     }  

 } 

} 

 

 

4.3 Discussion 

The proposed approach can substantially reduce simulation time because it simulates the system 

only at the time instants when packets enter or exit the NoC, rather than every clock cycle or flit 

transmission. This reduces the computational overhead by reducing the number of updates to the 

simulation model. Rather that simulating every flit transferred over every link, the proposed 

approach is able to update the simulation model directly to the point that is relevant to the 

simulation user: when a packet is delivered to the destination (so its latency can be calculated). 

Compared to a cycle-accurate simulator, the potential speed up of the proposed model is directly 

proportional to the length of the packets and the hop count of their paths across the NoC (i.e. 

speed-up can be larger if the packets are larger and routes are longer). 

However, the proposed approach assumes route intersection and priority ordering as the only 

prerequisites for interference between packets (Definition 3). This is not necessarily the case in 

practice. In wormhole switching networks, it is possible that a packet will not suffer interference 

from another with intersecting route and higher priority. This is because in wormhole switching a 

packet will gradually occupy its route from source to destination (“growing” phase), and the other 
way around when it finishes transmission (“shrinking” phase). Furthermore, if the flit count of a 



packet is less than the hop count of its route, it will never fully occupy that route. The gaps left by 

such a packet can be used by another packet without causing any interference.  

In such specific cases, the proposed model will assume interferences which could not occur in 

reality (e.g. packet A on its growing phase shares the last link of its route with the first link of the 

route of packet B, which is on its shrinking phase already). As a consequence, obtained latency 

figures may be higher than reality, and the overestimation will grow with the increase of the ratio 

between route hop count and packet flit count (i.e. the latency overestimation can be larger if 

routes are longer and packets are smaller). 

Furthermore, overestimation of latency in high-priority packets may lead to underestimation of 

latency of low-priority packets that do not share links with them, due to the problem of indirect 

interference identified in [Shi and Burns 2008]. This happens because the overestimation of the 

latency of a high-priority packet may result on the excessive blocking of packets that could cause 

interference on a low-priority packet. Because of that excessive blocking, low-priority packets will 

not suffering the interference they would in the real system (or will suffer a reduced amount of it), 

and will therefore have potentially a lower latency.    

In any case, the proposed model will never underestimate the latency of a packet if compared 

with a cycle-accurate model or a real system under the same interference scenario.  

Finally, the proposed model does not guarantee that the worst-case latency of a packet will be 

found. The worst-case latency of a given packet will always depend on a specific interference 

pattern that arises from a specific packet release scenario. If such a scenario is actually simulated, 

then the proposed model will produce the worst-case latency for that packet (just as every other 

simulator), but there is currently no technique that can determine the exact scenario that leads to 

the worst-case packet latency in priority-arbitrated Networks-on-Chip. To find actual worst-case 

latency bounds, one must use the analytical models reviewed in Section 2, such as [Shi and Burns 

2008]. 

5. EXPERIMENTAL RESULTS 

In this section, we evaluate the simulation speed-up and the accuracy of the proposed model (LSI 

– lightweight simulation), with regard to a cycle-accurate model (CA) of the NoC architecture 

described in Section 3. According to Cai and Gajski’s taxonomy of transaction-level models [Cai 

and Gajski 2003], the proposed LSI model is classified as “Transaction model” (i.e. approximate-

timed computation and approximate-timed communication) while the CA baseline is classified as 

“Cycle-accurate communication model” (i.e. approximate-timed computation and cycle-accurate 

communication). In such cases, the interconnect simulation dominates the simulation time of the 

processing elements, therefore motivating the research presented here. 

For the following experiments, we customised the architecture described in Section 3 and 

assumed a 2D-mesh topology, 32-bit flit size, router input ports with eight virtual channels and 

two-position buffers each, XY routing, operating at 100 MHz. Three different configurations for 

each model were produced, a 4x4 mesh with 16 cores, a 6x6 mesh with 36 cores and a 10x10 

mesh with 100 cores. We implemented all models using the same simulation framework, namely 

UC Berkeley’s Ptolemy II [Eker et al. 2003], and we compared the performance of the proposed 

LSI models against the corresponding CA baselines under a number of application-specific loads 

(i.e. testbenches).  

To evaluate the simulation speed-up, we compare the simulation time of both models (i.e. for 

how long each of them executes, in wall-clock time) for a given target time (i.e. the length of 

application time that is simulated). Our goal is that LSI’s simulation time is much lower than CA’s 
simulation time, for the same target time.  

Accuracy is then evaluated by calculating the difference between the packet latencies found 

using both models. Assuming the latency of CA as the correct one, our goal is to have the 

difference as small as possible. 

Several experiments were performed, and on each of them we connect equivalent LSI and CA 

models in turn to the same testbench, i.e. the same set of cores running the same set of tasks. In 

this paper, we assume non-blocking interfaces between the cores and the NoC simulation model, 

which is akin to assuming unbounded local memory at each core: cores can keep producing 

packets even if the previous ones have not been transferred, and packets can always be delivered 

at a destination core even if previous packets have not been consumed. This is to ensure that both 



models receive each packet at the exact same target time on their NoC interfaces, allowing us to 

focus on the accuracy of the behaviour of the proposed NoC model against a CA baseline, without 

influence of the behaviour of the processing elements.  The only difference between the 

testbenches is that CA’s network interface transfers packets flit-by-flit into the NoC simulator, 

while in LSI it forwards to the simulator a single event that carries a timestamp and the data 

referred in 4.1 as the tuple packeti. 

For the first set of experiments, we used as a benchmark the application presented in [Shi et al. 

2010], which models the stereoscopic video processing, navigation and stability control 

subsystems of an autonomous vehicle (AV). The version of the application considered here 

comprehends 32 tasks and 38 inter-task fixed-priority communications. Two operating modes will 

be considered for the stereographic video processing and visual odometry subsystems:  

 high resolution (HR), with VGA frame resolution (640x420 pixels), 16-bit colour 

depth, 25 frames per second;  

 low resolution (LR), with QVGA frame resolution (320x240 pixels), same colour 

depth and frame rate. 

Each application task has worst-case execution times ranging from 0.01 to 150 milliseconds. 

Inter-task communications are carried by packets with fixed-size payloads, the smallest with 512 

flits and the largest 38400 flits (blocks of video frames in HR mode) or 9600 flits (likewise, in LR 

mode). 

Firstly, we need to establish that our baseline is in line with the state-of-the art in NoC 

simulations, so we compare the simulation times of both our CA and LSI models with a model of 

a NoC with priority-arbitrated virtual channels in Booksim 2 [Jiang et al. 2013], an open source 

cycle-accurate NoC simulator developed at Stanford University. We use AV LR application traces 

(i.e. timestamps of the release of packets) to subject the three models with the same load. 

Simulation times for the execution of 2 seconds of the AV application over each of the models 

configured with a 4x4 topology and a NoC frequency of 100 MHz are shown in Figure 4. 

Simulations were run on an 8-core Intel i7 PC running at 3.4 GHz. It can be seen that both cycle-

accurate models have simulation times at the same order of magnitude, and Booksim 2 is 

approximately 3 times faster than our Ptolemy II CA model (partly because it is implemented in 

C++ and is compiled to native code, while Ptolemy II is interpreted by a Java Virtual Machine). 

Nonetheless, we can also see that our proposed LSI model is more than two orders of magnitude 

faster than both baselines. 

 

 
 

Fig. 4. Simulation speed comparison between Booksim 2 and Ptolemy II-based CA and LSI 

models, for 4x4 NoC topology under the load the AV LR application. 

    

Once we established that our CA baseline is in line with the state-of the art in NoC simulation, 

we can use it for the remainder of the paper, both for the sake of fairness (as it is based on the 

same simulation framework as the proposed LSI model) and because it is not limited to 

application traces, which are unable to capture the application-level structure and associated task 

dependencies (e.g. the reply to a request may be sent even before the request has been fully 



received and processed, because the reply was statically timestamped and the request was delayed 

due to NoC congestion).  

To avoid the shortcomings of trace-based simulation, we use application models to generate 

the computation and communication load to the simulation model, following the three-layer 

approach proposed in [Indrusiak et al. 2010] and [Ost et al. 2013]. That approach does not require 

statically obtained traces, and actually co-simulates an application with the platform in order to 

effectively release tasks and communication packets only when their pre-conditions are met (e.g. 

timer expired, precedence or dependencies are satisfied). In this case study, we assume that tasks 

communicate only after they finish execution, and that they always execute for their worst-case 

execution time. This is simply to ensure fairness in the comparison between LSI and CA 

simulators, and it is not a limitation of the proposed model. In regular usage, any task 

representation can be used, and packets can be injected to the NoC at any arbitrary time. 

In Figure 5, we present an extensive comparison of the simulation times for the execution of 2 

seconds of the AV application using 5 different experimental scenarios for each of CA and LSI 

models: 

 CA / LSI  6x6 HR: cycle accurate / proposed model of a 6x6 NoC running the high 

resolution mode of AV 

 CA / LSI  6x6 LR: cycle accurate / proposed model of a 6x6 NoC running the low 

resolution mode of AV 

 CA / LSI  4x4 HR M1: cycle accurate / proposed model of a 4x4 NoC running the 

high resolution mode of AV using a non-optimised task mapping M1 

 CA / LSI  4x4 HR M1: cycle accurate / proposed model of a 4x4 NoC running the 

high resolution mode of AV using an optimised task mapping M2 

 CA / LSI  4x4 HR M1: cycle accurate / proposed model of a 4x4 NoC running the 

low resolution mode of AV  

Figure 5 (a) shows the simulation time in a linear scale, but since the speed up of the proposed 

models is so large – up to 5 orders of magnitude - it is impossible to see their simulation times (as 

they appear to be zero). Figure 5(b) displays the same data but uses a logarithmic scale over the Y 

axis, allowing for a better visualisation of the simulation times of the proposed models. 

Simulations were done on an Intel Core Duo PC at 3.02 GHz. 

 

 
 

 

Fig. 5. Simulation speed comparison between CA and LSI models, for two topologies (4x4 and 

6x6) under the load imposed by two configurations of the AV application (HR and LR), with 

simulation time shown in (a) linear scale and (b) logarithm scale (in seconds) 

 

(a)              (b) 



Looking carefully at the plotted data, it is possible to see a number of scenarios with similar 

levels of performance: 

 Two of the cycle-accurate models executing the high resolution mode of the AV 

application are the slowest: CA 6x6 HR and CA 4x4 HR M1. This is because they 

simulate the load with the largest packets (due to the HR video frames) and the 

longest routes (because of the larger NoC or the non-optimised task mapping), and the 

simulation time of a CA model is directly proportional to the number of flits and the 

number of hops they go through (as discussed in subsection 4.3). 

 The cycle-accurate model executing the third type of HR load (CA 4x4 HR M1) has a 

slightly better level of simulation performance (clearly seen in Fig. 4.a), as the 

application mapping is better and results in smaller number of hops for each packet to 

go through. 

 The fastest CA models are those running the low resolution mode of the AV 

application, and the one modelling a 4x4 NoC is slightly faster due to the lower hop 

counts each packet goes through. 

 The performance of the proposed LSI models is nearly indistinguishable, regardless 

of the mode of the application or the size of the NoC. Such results provide evidence to 

back the claims made in subsection 4.3: the simulation speed of the proposed models 

increases only with the number of packets and the interference between them, and it 

does not increase with the size of the packets or the hop count of their routes.    

 

The accuracy of the packet latency figures produced by the proposed model against the CA 

reference can be seen in Figure 6. The X axis shows the application inter-task communications, 

identified by their priority. The green and purple bars show, respectively for the CA reference and 

the proposed LSI model, the average latency values for all packets of each communication 

(obtained over 2 seconds of application execution). The latency values are normalised by each 

packet’s length in flits, so the plotted values are effectively the average latency per flit, in seconds. 

Each bar has whiskers to indicate the best-case and peak packet latencies of each inter-task 

communication. In the second plot of Figure 6, the percent error of the proposed model for the 

average and peak latency are shown, respectively, as a green triangle and a blue X. It can be see 

that in all cases the error is less than 13%. The overall aggregate error, which is the sum of all 

errors for each individual packet, divided by the number of simulated packets, is 1.68%. The error 

for best-case latency was not plotted because it is negligible or zero in all cases (as the best case 

latency is usually the case when packets do not suffer any congestion, therefore their latency is 

actually their no-load latency). 

 

 

 
Fig. 6. Normalised latency of each inter-task communication obtained by CA and LSI models 

under the load of the AV application, and percent error of LSI against CA reference.  



The second set of experiments uses the H264DL4x4 benchmark from the MCSL 1.1 

benchmark suite [Liu et al. 2011], which accurately models the behaviour of a video decoding 

application and includes 76 distinct inter-task communications. Given the dataflow behaviour of 

the application, it can be seen as a simpler case study as the previous one (which is time-triggered), 

as it is easier to avoid contention over the NoC and thus avoid latency variability. We have run 

simulations with several different mappings of the application onto a 4x4 NoC, and have found 

that the proposed model accelerates simulation by 3-4 orders of magnitude in all of them, in line 

with the previous experiment. In many cases, given the limited contention on the network, we 

found that that the proposed model’s error is zero for most flows, and the highest average and peak 

latency error is in the order of 5%. For a more challenging comparison, we have hand-picked a 

task mapping that tries to maximise contention on the network (i.e. communicating tasks are 

always mapped to distinct cores to maximise over-the-network traffic). Albeit unrealistic for a real 

design, as it is highly inefficient, it can be used as a sort of stress test to evaluate the performance 

and accuracy of the proposed model. Figure 7 shows the comparison between CA and LSI 

simulation times for that specific mapping, and LSI still achieves nearly four orders of magnitude 

speed-up. However, as shown in Figure 8, in such case the proposed model’s error is more 
significant: up to 40% for the peak latency and also occasional underestimations, due to a 

difference in interference scenarios (because of packet dependencies) and the indirect interference 

issues discussed in section 4.3. Nonetheless, the overall aggregate error is only 2.62%. 

  

 
Fig. 7. Simulation speed comparison between CA and LSI models for H.264DL benchmark 

mapped onto a 4x4 NoC, logarithm scale (in seconds).  

 

 

 
Fig. 8. Normalised latency per inter-task communication obtained by CA and LSI models of a 4x4 

NoC under the load of the H.264DL benchmark, and percent error of LSI against CA reference for 

peak latency.  



In the third set of experiments, our goal was to evaluate the scalability of the proposed 

approach in terms of size and complexity of the application using the NoC as communication 

media. Firstly, we create a set of random packet flows that periodically send a packet with a 

random length to a random destination over a 4x4 NoC. We then simulated, in turn, 20, 40, 60, 80 

and 100 of those flows for 2 seconds of target application time over CA and LSI models, and 

measured the host simulation time for each case. The results depicted in Figure 9 show that the 

scalability of our approach is similar to the CA model, but again with a speed-up that exceeds 

three orders of magnitude. The percent error of our model against CA for peak, average and best-

case latencies was below 1% in all runs. 

 

 
Fig. 9. Simulation time of CA and LSI models of a 4x4 NoC under synthetic loads with                       

varying number of packets.  

 

Moving further on the scalability analysis, we run a fourth series of experiments to investigate the 

effect of different packet and route lengths over larger networks. Experiments were performed on 

10x10 NoCs, comparing the simulation performance and accuracy of the LSI models against the 

CA baseline under synthetic traffic of varying packet sizes and loads. New tasks were added every 

0.1 seconds, representing an increasing load upon the NoC and a progressively more complex 

interference graph structure. Sources and destinations were selected randomly, and packets were 

injected by every active task every 0.1 seconds.  

Figure 10 illustrates the performance the LSI and CA models deliver for a 10x10 NoC with 

packets varying in size between 20 to 100 flits (selected uniformly randomly on each packet 

injection). The LSI model delivers approximately 4.2 orders of magnitude performance 

improvement. In such a large NoC the longer mean route lengths contribute to an increased 

performance advantage for the LSI model, since the CA model incurs event load for every 

individual hop that every data flit crosses. Figure 10 also displays the performance in an identical 

10x10 NoC but with reduced packet sizes (between 4 to 40 flits).  The advantage for the LSI 

model is now 3.9 orders of magnitude, slightly less than before since less data is transmitted in 

each packet.  

Considering the latency prediction accuracy of the first 10x10 NoC case, the normalised 

latencies per flow for both models are presented in Figure 11. The relative errors in peak and mean 

normalised latency, and a histogram of these are presented in Figures 12 and 13 respectively. 

Since the interference graphs are considerably more complicated, and the routes are now longer 

relative to the minimum packet size, the potential errors are now larger.  However, the error 

histogram shows that the modal error for a flow is still around 1.5%, and the other relative errors 

are typically normally distributed around 25 - 30% overestimates. There is however a significant 

tail of outliers in both directions due to the issues discussed in subsection 4.3. The overall 

aggregate error for the case with packets between 20 and 100 flits is 28%, and 67% in the case 

with packets between 4 and 40.  
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Fig. 10. Simulation time of CA and LSI models of a 10x10 NoC under synthetic loads with                   

varying packet sizes. 

 

  
Fig. 11. Normalised latency per inter-task communication obtained by CA and LSI models of a 

10x10 NoC under synthetic loads with varying packet sizes. 

 

 
Fig. 12. Percent error of LSI against CA reference in the simulation of a 10x10 NoC under 

synthetic loads with varying packet sizes. 

 



  
Fig. 13. Histogram of percent error of LSI against CA reference in the simulation of a 10x10 NoC 

under synthetic loads with varying packet sizes. 

6. CONCLUSIONS 

In this article, we propose a fast and accurate simulation model for a specific Network-on-Chip 

architectural family, namely those with priority-preemptive arbitration. We have shown that such 

architecture can be modelled with a high level of accuracy at an abstraction level which is higher 

than clock cycle level or network flit level. By doing so, we were able to devise simulation models 

that only need to be updated at the points when packets enter or leave the Network-on-Chip, 

reducing substantially the computational effort, and therefore the time, to simulate such models 

when compared with cycle-accurate or flit-accurate models. We describe in detail the internal 

workings of the proposed model, including its formulation as an interference graph and the 

algorithms used by the model to handle new packets and packet deliveries.  

Extensive experimental work was performed with three NoC topologies (4x4, 6x6 and 10x10) 

under the load of two realistic benchmarks, one of them with five different operation modes, and a 

large number of synthetic benchmarks. Experiments have shown that the proposed models 

simulate 3-5 orders of magnitude faster than an equivalent cycle-accurate model, for all 

benchmarks and NoC topologies. Results also show that unlike cycle-accurate models, the 

proposed model does not increase the simulation time when handling longer packets or packets 

with longer routes, which is an attractive feature when simulating larger networks.  

Such a significant speed-up is due to the fact that the proposed simulation models take 

advantage of the predictable timing behaviour of the underlying NoC platform, and reduces 

significantly the number of simulation events that must be processed. While a cycle-accurate 

model has to handle simulation events to resolve the propagation of every packet flit over every 

NoC link, as well as all the link arbitration and flow control mechanisms at every NoC router, the 

proposed model only needs two simulation events per packet: when they enter and when they exit 

the NoC.  

The significant speed-up provided by the proposed models comes at the expense of accuracy, 

but in most experiments the accuracy of the proposed model exceeded 70%. In situations when 

small packets are transmitted over large routes across the NoC, however, the proposed model can 

produce significant overestimates. Nonetheless, the accuracy figures reported here are either in 

line or better than the state-of the-art, while delivering speed-ups which are 1-5 orders of 

magnitude higher than those obtained by the state-of-the-art on abstract and TLM NoC simulators.   
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