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Abstract 
Hertz contact theory has been widely used for the determination of cell elasticity based on AFM 
indentation experiments. In light of the adhesive contact between AFM tip and cell, this study 
applied Johnson-Kendall-Roberts (JKR) model to fit the indentation force-displacement (F-D) 
curves reported previously. A MIN6 cell has been modeled as first a sphere and then a flattened 
cell with different thicknesses. The results have shown that both basic JKR model and “generalized” 
JKR model can best describe the unloading force-displacement behaviors of the indentation 
curves. The Young’s modulus of the cell and the work of adhesion of the cell-indenter interface are 
obtained. In comparison to the Hertzian contact model, the JKR model provides obviously better 
fitting to the experimental results, indicating the adhesion is significant in the cell interaction. 
 
KEY WORDS: JKR model; AFM indentation; Young’s modulus; Work of adhesion 
 
1. Introduction 
 
The atomic force microscope (AFM) is a powerful instrument for studying topographical and 
mechanical properties such as elastic modulus and viscoelasticity, and hardness of biological 
materials (Dulińskaa et al., 2006). The high resolution and reasonably fast speed of AFM 
measurements have made it possible to investigate the topography and mechanical properties of 
living biological cells or tissues (Ikai et al., 1997; Nowakowshi et al., 2001). Generally, AFM 
investigation of living cells or biological tissues can provide detailed information about 
topography of cytoplasm membrane and cellular mechanical properties. These topography and 
mechanical properties are reliable indicators of cellular physiological status because they are 
determined by cytoskeleton together with the cytoplasm membrane and numerous proteins (Lekka 
et al., 2001). Any change in cellular physiology may cause alternations in its topographical or 
mechanical behaviors. As a result, the correlations between cytoskeleton and its topographical and 
mechanical properties could lead to possible medical diagnosis of pathological cells by comparing 
these properties determined from AFM indentation with its normal counterpart. A pioneering 
example using AFM in medical diagnostics was reported by Zachee (Zachee et al., 1992) where 
changes in shape of red blood cells were observed in patients after splenectomy. Another typical 
example was given by Lekka (Lekka et al., 2001) to show that chitosan has more significant effect 
on stiffness of normal cells than cancer cells.  

The adhesion between cells or micro-particles is interfacial property affected by combination of 
cyto-membrane and cytoskeleton. The adhesion, characterized as adhesion force, is mainly 
derived from van der Waals forces when two uncharged particles approach into contact. Thus, 
detection of variation in cell adhesion behavior may serve as alternative method for 
single-cell-based diagnostics. Therefore, since the adhesion between the cell membrane and the 
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micro-particle is crucial, a model that could accurately describe this process would be necessary 
for results interpretation. 

At micro-nanometer level, the significance of adhesion force between two contacting bodies 
under gravitational force increases with reduction in body size, surface roughness and contact load 
(Cho and Park, 2004). As a result, adhesion forces are inevitably associated with performance in 
atomic force microscopy (AFM) indentation which in turn provides a method to quantitatively 
study cell adhesion (Alessandrini and Facci, 2005; Maciaszek et al., 2014). The work of adhesion 
(regarded as magnitude of energy needed per unit area for new surface) has been used to 
characterize cell adhesion (Sirghi et al., 2008).  

In this study, we first consider the cell in a spherical shape, and have applied 
Johnson-Kendall-Roberts (JKR) model to fit the force-displacement curves obtained from AFM 
indentation experiments (Siamantouras et al, 2014a). Then we treat the cell as a layer with finite 
thickness to provide more realistic modeling. In this regard, a more “generalized” JKR model 
(Shull, 2002) is used to fit the force-displacement curves. We found that both models provide good 
agreement with experimental results of force-displacement curves. The “generalized” model has 
the potential to be implemented in various studies that are investigating malignant cells for the 
accurate detection of work adhesion in AFM indentation.  

 
2. Methodology 
   
2.1 Data preparation 
Atomic force microscopy was used as a force spectroscopy tool to record force-displacement (F-d) 
curves from living MIN6 cells. The cells were maintained in physiological temperature (37ºC) in 
all experiments. The protocol for the tissue culture has been described in details elsewhere (Hills 
et al., 2012). A tipless cantilever, from ArrowTM (TL1, Nanoworld AG, Switzerland) with force 
constant of 0.03N/m was used. Recording of F-d curves was conducted in liquid media (CO2 free 
DMEM). To perform single cell indentation experiments, a spherical microbead (11 μm in 
diameter) was manually attached on the cantilever and the spring constant was then determined to 
be 0.059 N/m by using the thermal noise method after attachment (Siamantouras et al., 2014b). 
The depth of indentation was calculated by subtracting the deflection of the cantilever from the 
displacement of the piezo-actuator for a given spring constant (JPK Data Processing, Berlin, 
Germany). The data used for testing the theoretical model were extracted from the recently 
reported AFM indentation experiments of pancreatic cells (Siamantouras et al., 2014a), in which 
Hertz contact model was applied to analyse F-d curves for calculating the Young's modulus (E) 
between two sets of data with different elasticity. In this paper, we have used MIN6 cells cultured 
for 48h with low glucose which are named as Sample A and cells cultured in 48h +R568 are 
named as Sample B (Siamantouras et al., 2014b).  
 

 
2.2 Theoretical model 
A conventional method to determine cellular elastic modulus is to fit the force-displacement curve 
obtained from AFM indentation with Hertz contact model (Demichelis, et al., 2015). When an 
AFM indenter approaches a cell, the molecules (atoms) of the two surfaces interact mainly by Van 
Der Waals forces and hence the adhesion force is inevitable in cell-indenter interaction. This 
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adhesion force has been studied by many researchers (Zhang and Zhang, 2008, Sirghi et al., 2008, 
Maciaszek et al., 2014). Therefore, it is desirable to take cell adhesion into consideration for the 
determination of its mechanical properties in cell AFM indentation.  

In general, the cells spread on substrate in various shapes, some like spheres and some like 
pancakes (Hills et al., 2012; Siamantouraset et al., 2014a). Therefore, we consider cells have either 
spherical or flattened shapes as shown in Fig. 1 (a, b), respectively.  

 

 
(a) 

 

(b) 

Fig. 1 Schematic diagrams of the AFM bead tip in contact with cells of (a) spherical shape and (b) flattened shape. 

 
In this study, the cell is firstly treated as homogeneous, incompressible and linear elastic sphere 

with a typical diameter of 25µm, where the pre-stress tension in cyto-membrane can be neglected 
(Sirghi et al., 2008) (assumption of pure elasticity of the cell will be justified in the next section). 
Here, the assumption of homogeneity is given and thus a global equivalent elastic model of the 
cell can be studied (Ladjal et al., 2009). Moreover, only pure elastic deformation occurs in loading 
and unloading stages with no plastic deformation being considered.  
  Conventionally, both DMT (Derjaguin et al., 1975) and JKR (Johnson et al., 1971) models are 
applicable to adhesive contact between two micro-particles. Elastic behavior of adhesive contacts 
can be determined by the so-called Tabor parameter μ (Tabor, 1977) given by 

𝜇 =  �𝑅∆𝛾
2

𝐸∗2𝑧03
�
1 3⁄

(1) 
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where ∆γ is the work of adhesion (magnitude of energy released when per unit area of interface is 
generated), 𝐸∗ = [(1− 𝜈12) 𝐸1 + (1− 𝜈22) 𝐸2]⁄⁄ −1 is the effective Young’s modulus, (𝐸1, 𝜈1 
and 𝐸2, 𝜈2 denote elastic modulus and Possion’s ratio of the two contacting spheres, respectively), 
R is the reduced radius of curvature (𝑅 = (1 𝑅1 + 1 𝑅2⁄⁄ )−1), where 𝑅1 and 𝑅2 denote the 
radius of the two contacting spheres, and 𝑧0 is the atomic equilibrium distance at which the 
repulsive force equals to attractive force. In general, the DMT model holds for small and stiffer 
spheres (μ˂0.1) whilst JKR model is preferable for large and compliant spheres (μ˃5) (Song and 
Komvopoulos, 2011). Tabor parameter can be regarded as the ratio of the elastic surface 
displacement at the instant of separation to the effective range of surface force characterized by 
the atomic equilibrium distance (Johnson and Greenwood, 1997; Song and Komvopoulos, 2011). 
For the adhesive contact between a cell and a polystyrene bead, the radius of MIN6 cell 𝑅𝑐𝑐𝑐𝑐 is 
typical of 12.5 μm, and the elastic modulus 𝐸𝑐𝑐𝑐𝑐 of cell is in the order of several hundred Pascal. 
The previous studies have found the value of 𝐸𝑐𝑐𝑐𝑐 is about 500Pa by using Hertz contact theory 
to fit the F-D curve of an AFM indented MIN6 cell (Siamantouras et al, 2014b). The work of 
adhesion ∆γ ranges from 20 to 100 μJ/m2, and here we assume ∆γ to be 50 μJ/m2 (Sirghi et al., 
2008). A typical value for 𝑧0 is 0.5 nm while cell is treated as incompressible which means its 
Poisson’s ratio 𝜈𝑐𝑐𝑐𝑐 = 0.5. The elastic modulus of the bead can be treated infinite since it is very 
rigid compared with the delicate cell. Substituting these parameters into Eq. (1), the Tabor 
parameter is calculated approximately µ = 556 and thus JKR model is more preferable in this case 
(µ>5).  

Fig. 1(a) illustrates schematically the spherical cell subjected to a micro-bead indenter. 
According to JKR model, the applied indentation force F and the indentation depth δ are related 
by: 

𝛿 = 𝑎2

𝑅
− �2𝜋𝑎∆𝛾

𝐸∗
     (2) 

                 

𝑎 = �3𝐹𝑅
4𝐸∗

�1 + 3𝜋∆𝛾𝑅
𝐹

+ �6𝜋∆𝛾𝑅
𝐹

+ �3𝜋∆𝛾𝑅
𝐹

�
2
��
1 3⁄

    (3) 

     
where a is contact radius, ∆γ is the work of adhesion (magnitude of energy released when per unit 
area of interface is generated),  
𝐸∗ = [(1− 𝜈𝑐𝑐𝑐𝑐2) 𝐸𝑐𝑐𝑐𝑐 + (1− 𝜈𝑏𝑐𝑎𝑏2) 𝐸𝑏𝑐𝑎𝑏]⁄⁄ −1 is the effective Young’s modulus, (𝐸𝑐𝑐𝑐𝑐 ,𝜈𝑐𝑐𝑐𝑐 
and 𝐸𝑏𝑐𝑎𝑏 ,𝜈𝑏𝑐𝑎𝑏 denote elastic modulus and Possion’s ratio of the cell and probe, respectively). 
Because the AFM tip is rigid compared with the soft cell, the second term in the square brackets 
can be treated as null and thus 𝐸∗ = 𝐸𝑐𝑐𝑐𝑐 (1− 𝜈𝑐𝑐𝑐𝑐2)⁄ . 
R—the reduced radius of curvature (𝑅 = (1 𝑅𝑐𝑐𝑐𝑐 + 1 𝑅𝑏𝑐𝑎𝑏⁄⁄ )−1 ), where 𝑅𝑐𝑐𝑐𝑐  and 𝑅𝑏𝑐𝑎𝑏 
denote the radius of the cell and indenter respectively.  
It can be seen from above equations that if no adhesion is assumed (work of adhesion ∆γ = 0), the 
equations (2) and (3) are reduced to Herzian contact model. 
 
3. Results and Discussions 
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(a) 

 

 
(b) 

Fig. 2 Example of force-versus-displacement curves obtained by AFM indentation on (a) sample A and (b) sample 

B cells. 
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Fig. 2 shows the result of force against displacement corresponding to MIN6 cells. The 
micro-bead was initially made contact to the cell with the applied force of 100 pN as the baseline. 
The maximum indentation depth of cell is approximately 0.7μm. Thus, the substrate effect is 
negligible since the indentation is smaller than 10% of the sample thickness (ISO14577-4; 
Dimitriadis et al., 2002; Jung et al., 2004).  

 
3.1 Verification of Cellular Viscous Properties  
The enclosed area between the loading and unloading curves where force is positive (compressive 
force) reveals that the cell exhibits viscoelastic property, as shown in Fig. 2. The gap suggests the 
energy supplied by the tip is not fully recovered by the cell (while in an absolute elastic material it 
will be fully recovered), which confirms that living cells are viscoelastic (Alcaraz et al., 2003). 
The viscoelastic behavior is ascribed to intrinsic viscoelasticity of the cytoplasm (Koay et al., 
2003). Viscous relaxation time is one typical time scale for characterizing this viscoelastic 
behavior which causes difference in force indentation measurements if different indentation 
velocities are applied (Li et al., 2008; Rosenbluth et al., 2006). The influence of viscosity effect on 
cell indentation can be reduced or even neglected if an indentation is performed in a time that is 
much longer than the force relaxation time of the cell (A-Hassan et al., 1998). Therefore, before 
fitting JKR model to the experimental data, the viscous relaxation time of the cell-AFM 
indentation system has to be estimated and then the evaluated viscous relaxation time can be 
compared with the characteristic time of indentation (loading time). In general, elastic properties 
are derived from the unloading curve as the unloading process is of purely elastic nature. As we 
assume there is no plastic deformation occurs in the cell indentation, thus the energy loss is 
considered due to viscoelastic properties. Viscoelastic Hertz contact model can be fitted to the 
loading part of the F-d curve to determine the viscous relaxation time. According to Hertz model 
(Hertz, 1882), if the cell is regarded as pure elastic, the dependence of indentation force (F) on 
indentation depth (δ) is expressed as: 

𝐹 = 4√𝑅
3(1−𝜈2)𝐸𝛿

3 2⁄    (4) 

where E, ν denote the Young’s modulus and Poisson’s ratio of the cell respectively. For its 
viscoelastic counterpart, both Radok (Lee and Radok, 1960) and Ting (Ting, 1966) offered a 
general solution to linear viscoelastic Boussinesq problem provided the contact radius is 
non-decreasing as mutual approach increases. According to their theory, substituting the elastic 
modulus in the Hertz contact model with the modulus-displacement convolution in the time 
domain leads to the relationship between the indentation depth and the applied force as (Yu et al., 
2013): 

𝐹(𝑡) = 4√𝑅
3(1−𝜈2)𝐸(𝑡) ∗ [𝛿(𝑡)]3 2⁄   (5) 

where E(t) is the relaxed modulus, and  

𝐸(𝑡) ∗ [𝛿(𝑡)]3 2⁄ = ∫ 𝐸(𝑡 − 𝜉) 𝑏
𝑏𝑑

𝑡
𝑑=0− [𝛿(𝜉)]3 2⁄ 𝑑𝜉    (6) 

In our indentation experiment, because the bead approached and detached the cell in a constant 
speed, the indentation depth can be described as: 

𝛿 = 𝑣𝑡  (7) 
where v denotes the constant speed. In order to determine the viscoelastic response for this 
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indentation system, Eq. (5) is transformed into the Laplace domain and solved for stress/strain 
ratios: 

𝐹(𝑠) = 4√𝑅
3(1−𝜈2)

𝐸(𝑠) · 𝛿(𝑠)3 2⁄   (8) 

where 𝐹(𝑠) = ∫ 𝐹(𝑡)𝑒−𝑠𝑡𝑑𝑡,∞
0  𝐸(𝑠) = ∫ 𝐸(𝑡)𝑒−𝑠𝑡𝑑𝑡,∞

0  and 𝛿(𝑠)3 2⁄ = ∫ [𝛿(𝑡)]3 2⁄ 𝑒−𝑠𝑡∞
0 𝑑𝑡 

Substitution of Eq. (8) with Eq. (7) yields: 

𝐹(𝑠) = 4√𝑅𝑣3 2⁄

3(1−𝜈2)
𝐸(𝑠) · 𝛤(5 2⁄ )

𝑠5 2⁄   (9) 

Where Γ(•) is gamma function. In this study we applied a Kelvin model to describe the 
viscoelasticity of MIN6 cells shown in Fig. 3. Here E denotes the Young’s modulus and η is the 
viscosity coefficient. 
 

 
Fig. 3 Schematic diagram of Kelvin model where a dashpot is in parallel with a spring undergoing the same 

deformation. 

 
Thus, the constitutive relationship for the cell is: 

𝜎 = 𝐸𝐸 + 𝜂 𝑏
𝑏𝑡
𝐸  (10) 

where σ and ε denote stress and strain for any point within the cell. Transforming Eq. (10) into its 
Laplace domain yields: 

𝜎(𝑠)
𝜀(𝑠)

= (𝐸 + 𝜂𝑠)  (11) 

where 𝜎(𝑠) = ∫ 𝜎(𝑡)𝑒−𝑠𝑡𝑑𝑡∞
0 , 𝐸(𝑠) = ∫ 𝐸(𝑡)𝑒−𝑠𝑡𝑑𝑡∞

0 . 

According to the correspondence principle (Lee and Radok, 1960), the general elastic and 
viscoelastic solutions can be combined in the Laplace domain to obtain an equation describing the 
modulus of Young’s modulus: 

𝐸(𝑠)������ = 𝜎(𝑠)
𝜀(𝑠)

= (𝐸 + 𝜂𝑠)   (12) 

Substituting of Eq. (9) with Eq. (12), and transforming the Laplace form back into its time domain, 
yielding: 

𝐹(𝑡) = 4√𝑅𝐸𝑣3 2⁄

3(1−𝜈) �𝑡3 2⁄ + 3
2
𝜏𝑡1 2⁄ � (13) 

where τ = η/E is the relaxation time. 
It should be born in mind that Kelvin model is just one special circumstance of three-element 

solid and the estimated viscous relaxation time should coincide in order with its Kelvin 
counterpart if the loading curve is fitted by a more universal three-element model. However, since 
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this model can allow an explicit expression between force and time, Kelvin model is preferred 
herewith for simplicity of calculation.  
  

 
(a) 

 

  
(b) 
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(c) 

Fig. 4 Typical force-versus-time curves during loading part and the best fitting curves by using Kelvin model for (a) 

sample A and (b) sample B. (c) Viscous relaxation time of the two type cells. The data are presented as average 

values with standard deviations. 

 

Fig. 4(a) and (b) show the force-time curves obtained from the loading part and their best fitting 
curves by Kelvin model corresponding to MIN6 cells. The determined viscous relaxation time of 
MIN6 cells is shown in Fig. 4(c). The average value of viscous relaxation time of sample A is 
0.0125 sec which is less than one tenth of loading time as seen in Fig. 4(a), and for sample B, the 
value is 0.0043 sec which is almost 1/60 of the loading time as shown in Fig. 4(b). As a result, the 
influence of viscoelasticity can be excluded if the MIN6 cell is treated as pure elastic.  
 

3.2 Fitting results by using JKR model of bead on spherical cell 
Fig 5 (a, b) present typical results of the force-displacement curves obtained by AFM indentation 
and the best fitting curves by using JKR model for the retraction part of MIN6 cells. During the 
loading stage (as illustrated in blue lines in Fig. 5), the sensed reaction force is dominated initially 
by the stiffness of the AFM cantilever and then by the stiffness of the measured cell. For the 
unloading process, as show in red lines in Fig. 5, the indentation force decreases to a negative 
region which represents adhesive forces between the cell and the indenter. The adhesion force is 
characterized as a short-range force and will not significantly affect the force-displacement curve 
during the loading stage. Before the contact breaks, the short-range adhesion force start to show 
the effect, and thus the adhesion force is characterized as pull-force (the negative force region in 
Fig. 5(a, b)) which is needed to overcome the adhesion force during indenter retraction. 
Consequently, only the retraction stage, as shown in red lines in Fig. 5(a, b), can be used to 
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facilitate a direct fitting by JKR model even though theoretically speaking both loading and 
unloading parts are influenced by adhesion force (Sirghi et al., 2008). It can be seen that the JKR 
model fits very well with most of the unloading curve data except for the beginning part. This is 
because the initial unloading part was influenced by the creeping effect of the cell-indenter 
interaction. Therefore, the JKR model can best describe the experimental results of the unloading 
curve as shown above.  
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(c) 

 

 

(d) 

Fig. 5 Typical force-displacement curves and the best fitting curves by using JKR model for (a) Sample A and (b) 

Sample B cells. (c) and (d) show the results of Young’s modulus and work of adhesion respectively.  
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force of 1357 pN. Afterwards, the force decreases monotonically to zero and then becomes 
negative as the indenter retracts. The force decreases and then bottoms at its minimum value 
implying the bead begins to detach the cell. A further retraction of the probe suggests the 
indentation force begins to yield accompanying with some sudden abrupt decrease of adhesion 
force as shown in Fig. 5(a, b). This jump-off phenomenon is very commonly observed in some 
cell AFM indentation experiments. In practice this part of the retraction curve is difficult to model 
and many efforts have been made previously. Pethica (Pethica and Sutton, 1988) simulated the 
instability in the process of contact between probe and substrate by using molecular dynamics 
(Lennard-Jones potential) and concluded the jump-off instability is universally ascribed to the fact 
that both the probe and substrate materials are prone to maintain their respective cohesive force 
and optimize their respective embedded energy. Sirghi (Sirghi et al., 2008) observed this jump-off 
instability in their mouse fibroblast AFM indentation experiments and attributed this sudden 
decrease of adhesion force to discontinuous decrease of tip-cell membrane contact area. Fitting 
JKR model to this abrupt force variation will cause errors in determination of the work of adhesion 
and thus this abrupt discontinuous part after maximum adhesion force has been discarded during 
fitting.  
  Fig. 5(c, d) show the fitting results of extracted Young’s modulus and work of adhesion from 24 
of sample A and 3 of sample B force-displacement curves by using JKR model of bead on 
spherical cell. Fig. 5(c) shows the average elastic modulus for sample A cells is 380Pa, and 
sample B is 570Pa, whilst the average work of adhesion is 36.7μJ/m2for sample A   and 
15.4μJ/m2 for sample B, as shown in Fig. 5(d). It is worth noting that the determined work of 
adhesion coincides with the previously reported values (Sirghi et al., 2008) in the same order of 
magnitude.   

 
Fig. 6 Effect of maximum indentation depth on the calculated Young’s modulus. 

 
It is worth to note that the force loading speed of AFM indentation was kept constant of 5µm/s 
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various indentation depths on the calculated Young’s modulus is shown in Fig. 6, where the cell 
was modelled as a sphere. It can be seen from Fig. 6 that calculated Young’s modulus is fairly 
consistent over the indentation depth up to 1.9µm. 
 
3.3 Fitting results by JKR model of bead on flattened cell  
In the previous section, we have assumed the cell as a sphere subjected to AFM indentation. The 
contact radius is small enough compared with the thickness of the cell, and thus the cell can be 
treated as semi-infinite space. However, the cells in the petri dish normally have flattened shapes. 
The height of the cell may be reduced to a finite-size compared with contact radius and in this 
regard the extracted parameters will be influenced by the effect of finite size. In this section, we 
consider the cell to be flattened with finite thickness and this represents a more realistic model. In 
this study, we first propose a thickness value of 25μm, the same as the diameter of the spherical 
cell. Compared with the bead on a spherical cell, the effect of finite-size on the determined 
parameters needs to be verified. For simplicity, the cell can be regarded as a flat sheet with finite 
thickness subjected to AFM indenter as illustrated in Fig. 7(a).  

 

(a) 

 

 
(b) 

Fig. 7 (a) Schematic diagram of the non-adhesive (Hertzian) contact between a rigid bead and an elastic layer with 

finite thickness h. (b) Scheme of the adhesive contact between a rigid bead and an elastic layer. 

 

First, the contact is treated as non-adhesive, frictionless, and for this case, Shull et al., (1998) 
gave a semi-empirical approximation for the dependence of applied load 𝑃′, indentation depth 𝛿′ 
and compliance C on the contact radius a as 
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𝑃′ = 𝑃ℎ(𝑎)𝑓𝑝 �
𝑎
ℎ
� , 𝑓𝑝 �

𝑎
ℎ
� = 1 + 𝛽(𝑎

ℎ
)3  (14) 

𝛿′ = 𝛿ℎ(𝑎)𝑓𝛿 �
𝑎
ℎ
� , 𝑓𝛿 �

𝑎
ℎ
� = 0.4 + 0.6𝑒(−1.8𝑎

ℎ )  (15) 

 

𝐶 = 𝐶ℎ(𝑎)𝑓𝑐 �
𝑎
ℎ
� , 𝑓𝑐−1 �

𝑎
ℎ
� = 1 + [ 0.75

(𝑎 ℎ⁄ )+(𝑎 ℎ⁄ )3
+ 2.8(1−2𝜈)

(𝑎 ℎ⁄ )
]−1 (16) 

 

where 𝑃ℎ  and 𝛿ℎ  are the externally applied load and indentation depth respectively 
corresponding to a contact radius a in Hertzian contact model. 𝐶ℎ is the compliance of Hertz 
contact model with a contact radius a. 

𝑃ℎ(𝑎) = 4𝐸𝑎3

3(1−𝜈2)𝑅
 (17) 

𝛿ℎ(𝑎) = 𝑎2 𝑅⁄  (18) 

𝐶ℎ(𝑎) = 1
2𝑎𝐸∗

 (19) 

where β = 0.15 for the frictionless case, and β = 0.33 for the full-friction case. 𝑓𝑝(⋅) and 𝑓𝛿(⋅) 
are geometric factors which mediate the effect of thickness. From Eq. (14) and (15), it is shown 
that 𝑃′ and 𝛿′ will reduce to 𝑃ℎ and 𝛿ℎ when h˃˃a.  
  Second, by analogy to the derivation of JKR model, Shull (Shull, 2002) developed the 
“generalized” JKR model to describe the adhesive contact between a rigid indenter and a flat sheet 
with finite thickness as shown in Fig. 7(b). In this “generalized” model, the expressions for the 
energy release rate ℊ  is extended to the adhesion of relatively thin layers by using the 
approximation of compliance given by Eq. (16). Simple expressions are only available for 
incompressible materials with ν = 0.5 as 

ℊ = (𝑃′−𝑃)2

8𝜋𝐸∗𝑎3
𝑓𝐺𝑝 �

𝑎
ℎ
� , 𝑓𝐺𝑝 �

𝑎
ℎ
� = 0.56+1.5(𝑎 ℎ⁄ )+3(𝑎 ℎ⁄ )3

[0.75+(𝑎 ℎ⁄ )+(𝑎 ℎ⁄ )3]2
 (20) 

ℊ = 𝐸∗(𝛿′−𝛿)2

2𝜋𝑎
𝑓𝐺𝛿 �

𝑎
ℎ
� ,𝑓𝐺𝛿 �

𝑎
ℎ
� = 1 + 2.67 �𝑎

ℎ
� + 5.33 �𝑎

ℎ
�
3
 (21) 

where 𝑃′ and 𝛿′ are the applied load and indentation depth corresponding to contact radius a as 
given by Eq. (14) and (15) when adhesion is absent. 𝑓𝐺𝑝(∙) and 𝑓𝐺𝛿(∙) are also geometric 
correction factors. By letting ℊ = ∆γ, equilibrium is reached and thus the externally applied load P 
and indentation depth δ are related by the contact radius a by transforming Eq. (20) and (21) into 

𝑃 = 𝑃′ − �8𝜋𝐸∗𝑎3∆𝛾𝑓𝐺𝑝−1(𝑎
ℎ

) (22) 

𝛿 = 𝛿′ − �2𝜋𝑎∆𝛾
𝐸∗

𝑓𝐺𝛿−1(𝑎
ℎ

) (23) 

where P and δ are the indentation force and depth respectively in flattened cell indentation. 
 



15 
 

-7 -6.8 -6.6 -6.4 -6.2 -6 -5.8 -5.6 -5.4 -5.2 -5
-400

-200

0

200

400

600

800

1000

1200

1400

Displacement of the polystyrene Bead (mm)

Fo
rc

e 
(p

N
)

 

 
Approach
Retraction

Best fit by generalized JKR model (E = 350Pa, Dγ = 8.5mJ/m2)

Approach

Retraction

(a) 

-1 0 1 2 3 4 5 6 7

-500

0

500

1000

1500

2000

2500

Displacement of the polystyrene Bead (mm)

Fo
rc

e 
(p

N
)

 

 
Approach
Retraction

Best fit by generalized JKR model (E = 275Pa, Dγ = 24.65mJ/m2)

Approach

Retraction

 
(b) 

 



16 
 

 
(c) 

 

 
(d) 

Fig. 8 Typical force-displacement curves and the best fitting curves by using “generalized” JKR model for (a) 
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sample A and (b) sample B cells. The results of (c) Young’s modulus and (d) work of adhesion for both sample 

cells determined by all the models in this study. 

 

 

Table 1 Mechanical properties of cells. 

Values of Young’s modulus determined by the two JKR models. 

Cell Type Bead on 

Spherical Cell 

(Pa) 

Bead on Flatten 

Cell Case 1(Pa) 

Bead on  

Flatten Cell Case 

2(Pa) 

Bead on Flatten 

Cell Case 3(Pa) 

Bead on Flatten 

Cell Case 4(Pa) 

sample A 570±107 434±72 343±55 291±45 171±16.7 

sample B 383±20 270±18 207±20 206±14 54±4 

Values of Young’s modulus determined by Hertz (non-adhesive) models. 

Cell Type Bead on 

Spherical Cell 

(Pa) 

Bead on Flatten 

Cell Case 1(Pa) 

Bead on  

Flatten Cell Case 

2(Pa) 

Bead on Flatten 

Cell Case 3(Pa) 

Bead on Flatten 

Cell Case 4(Pa) 

sample A 585±67 330±62 295±61 233±50 92±27 

sample B 360±53 263±6 230±26 183±20 63±8 

Values of work of adhesion determined by the two JKR models. 

Cell Type Bead on 

Spherical Cell 

(μJ/m2) 

Bead on Flatten 

Cell Case 1 

(μJ/m2) 

Bead on Flatten Cell 

Case 2 (μJ/m2) 

Bead on Flatten 

Cell Case 3 

(μJ/m2) 

Bead on Flatten 

Cell Case 4 

(μJ/m2) 

sample A 15.39±3.73 11±2.5 10.6±2.5 10.1±2.9 9.92±2.32 

sample B 36.67±7.64 36.7±4.4 26.3±4.9 25±4.2 19.3±3.08 

 
Fig. 8(a) and (b) present the aforementioned force-displacement curves obtained by AFM 

indentation and the best fitting curves by the “generalized” JKR model with thickness of 25 μm. It 
is suggested that the “generalized” JKR model can also fit well the experimental results of the 
unloading curve.  

Fig. 8(c) and (d) show the fitting results of determined Young’s modulus and work of adhesion 
from the aforementioned 27 force-displacement curves (24 from sample A, and 3 from sample B) 
and the calculated values are listed in Table 1. For pancake shape modelling, we have applied the 
‘generalized’ JKR model on flattened cells with variable thickness of 25 μm (case 1), 14 μm (case 
2), 9 μm (case 3) and 3 μm (case 4). As mentioned before, the cells may have spread on substrate 
with different shapes and thicknesses. Thus the penetration depth within 10% of the film thickness 
could not be guaranteed in reality. To accommodate the situation, we have chosen the possible 
film thickness from the thickest (case 1) to the thinnest (case 4).  
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Fig. 9 Comparison of Young’s modulus values computed by JKR and Hertz models. 

 
For comparison purpose, we have also applied Hertzian contact model from Eq. (14)-(19) for 

both the spherical and pancake shapes to fit the loading part of the force-displacement curves, and 
the results are plotted in Fig. 9 and also listed in Table 1. The results show that the calculated 
Young’s modulus of the MIN6 cells decreases as the modelled cell thickness reduces. In general 
the values obtained by JKR models are slightly higher than those by Hertz models, but there is no 
significant difference. The reason for this may be due to the small adhesive force existed between 
the indenter tip and the concerned cells. When the adhesive force increases, the JKR model would 
give more realistic estimation of the elastic modulus of the material. 

The results clearly demonstrate that the elastic modulus of Sample A is in general higher that of 
Sample B. For the determined work of adhesion of cells, Sample B is much higher than Sample A. 
This indicates that sample B cells are softer and exhibit higher adhesion. 
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Fig. 10 Results of Young’s modulus (bold solid lines) and work of adhesion (thin solid lines) for Sample A (blue 

lines) and Sample B (red lines) with four thickness cases. 

 
  Fig. 10 presents a direct comparison between the four cases for sample A and B in terms of 
Young’s modulus (Pa) and work of adhesion (μJ/m2). The determined work of adhesion of Sample 
A maintains almost the same value of 10 μJ/m2 regardless of the cell thickness, while the 
counterpart sample B decreases dramatically as cell thickness decreases (see the red thin solid line 
in Fig. 10), which is attributed to the fact that softer material (sample B) is more sensitive to the 
substrate effect. For both samples, the determined Young’s modulus decreases as the cell thickness 
decreases. This trend seems inconsistent with the general perception that substrate effect may lead 
to an increase in the calculated Young’s modulus. However, it should be born in mind the situation 
in this study is very different and can be explained as follows. For the four cases, we use different 
thicknesses to fit the same force-displacement curve. If we use Eq. (14) – (16) to fit the loading 
part of the F-d curve, the compliance C would be fixed regardless of the cell thickness. 
Substituting Eq. (19) into (16) yields  

𝐶 = 𝑓𝑐(𝑎 ℎ⁄ )
2𝑎𝐸∗

 (24) 

For the same contact radius a, smaller thickness h corresponds to larger 𝑎 ℎ⁄ , resulting to lower 
𝑓𝑐(𝑎 ℎ⁄ ), and hence the determined 𝐸∗ should decrease in order to keep the same compliance C. 
Although we used Eq. (22) and (23) to fit the retraction part of the F-d curve, the involvement of 
work of adhesion will not alter the effect of cell thickness on the determined Young’s modulus in 
general, and conclusively, thinner thickness will produce lower Young’s modulus by fitting the 
same F-d curve. It is worth to note that the case 1 and case 4 are two extreme situations and cases 
2 and 3 are more realistic representation of the concerned cells in this study.   
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4. Conclusions  

In this paper, the adhesion between the surface of polystyrene micro-bead and cyto-membrane of 
biological cells has been investigated. The adhesion at the contact between AFM tip and the cell, 
Johnson-Kendall-Roberts (JKR) model has been used to fit the force-displacement curves obtained. 
The effect of viscoelasticity of cell under the AFM indentation can be neglected since the extracted 
viscous relaxation time is very small compared with the loading time period. The MIN6 cell has 
been modeled as first a sphere and then a flattened cell with different thicknesses. Firstly, the cell 
and the indenter are modeled as two spheres, and the JKR model has been applied to fit the 
experimental data of the retraction part of the force-displacement curves. Secondly, the indented 
cell is treated as a layer with four different finite thicknesses, and “generalized” JKR model is used 
to fit the same force-displacement curves. The results have shown that both the basic JKR and 
“generalized” JKR models can describe very well the behavior of the unloading force-deformation 
curves. The “generalized” JKR model can be used for more realistic cell modelling with various 
cell thicknesses and both models can identify the property variations of the two types of cells. 
Unequivocally, work of adhesion determined by both the JKR models demonstrates a 
moderate adhesion existing between the AFM tip and the cell. Such a result may be explained 
by a twofold reason: the AFM tips were not functionalized and the indentation experiments 
were conducted in liquid medium. The former resulted in insignificant specific adhesion, 
while the latter gave rise to low non-specific adhesion. Overall, the JKR models (basic and 
generalized) are preferred than Hertz model, if there exists significant adhesion at the 
interface. JKR models provide a valuable insight in the potential influence of the adhesion 
between AFM tip and cell on the determination of cell elasticity. 
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