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On triangle-free graphs that do not contain a

subdivision of the complete graph on four vertices

as an induced subgraph

Nicolas Trotignon∗ and Kristina Vušković†

December 22, 2015

Abstract

We prove a decomposition theorem for the class of triangle-free
graphs that do not contain a subdivision of the complete graph on
four vertices as an induced subgraph. We prove that every graph of
girth at least 5 in this class is 3-colorable.
AMS Classification: 05C75

1 Introduction

Here graphs are simple and finite. We say that G contains H when H is
isomorphic to an induced subgraph of G. We say that a graph G is F -free
if G does not contain F . For a family of graphs F , we say that G is F-free
if for every F ∈ F , G does not contain F . Subdividing an edge e = vw of a
graph G means deleting e, and adding a new vertex u of degree 2 adjacent
to v and w. A subdivision of a graph G is any graph H obtained from G
by repeatedly subdividing edges. Note that G is a subdivision of G. We
say that H is an ISK4 of a graph G when H is an induced subgraph of G
and H is a subdivision of K4 (where K4 denotes the complete graph on four
vertices). ISK4 stands for “Induced Subdivision of K4”.
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LABX-0070) of Université de Lyon, within the program Investissements d’Avenir (ANR-
11-IDEX-0007) operated by the French National Research Agency (ANR).

†School of Computing, University of Leeds, Leeds LS2 9JT, UK; and Faculty of Com-
puter Science (RAF), Union University, Knez Mihajlova 6/VI, 11000 Belgrade, Serbia.
Partially supported by EPSRC grant EP/K016423/1 and Serbian Ministry of Education
and Science projects 174033 and III44006.

1



In [2], a decomposition theorem for ISK4-free graphs is given (see The-
orem 2.1) and it is proved that their chromatic number is bounded by a
constant c. The proof in [2] follows from a theorem by Kühn and Osthus [1],
from which it follows that c is at least 2512. It is conjectured in [2] that
every ISK4-free is 4-colorable. The goal of this paper is to prove a stronger
decomposition theorem for ISK4-free graphs, under the additional assump-
tion that they are triangle-free (see Theorems 2.2 and 3.8). We also propose
the following conjectures, prove that the first one implies the second one
(see Theorem 2.7), and prove both of them for graphs of girth at least 5 (see
Theorem 5.2). A complete bipartite graph with partitions of size |V1| = m
and |V2| = n, is denoted by Km,n.

Conjecture 1.1 Every {triangle, ISK4, K3,3}-free graph contains a vertex
of degree at most 2.

Conjecture 1.2 Every {triangle, ISK4}-free graph is 3-colorable.

Outline of the paper

In Section 2, we state several known decomposition theorems, and derive
easy consequences of them for our class. In particular we prove that Con-
jecture 1.1 implies Conjecture 1.2. In Section 3, we prove our main decom-
position theorem. In Section 4, we give some properties needed later for
the class of chordless graphs (graphs where all cycles are chordless). In Sec-
tion 5, we prove Conjecture 1.1 for graphs of girth at least 5. In Section 6,
we give structural results for some series-parallel graphs that might be of
use to prove Conjecture 1.1.

2 Decomposition theorems

In this section, we provide the notation needed to state decomposition the-
orems for ISK4-free graphs, and we state them.

A graph G is series-parallel if no subgraph (possibly not induced) of G is
a subdivision of K4. Clearly, every series-parallel graph is ISK4-free. When
R is a graph, the line graph of R is the graph G whose vertex-set is E(R)
and such that two vertices of G are adjacent whenever the corresponding
edges are adjacent in R.

For a graph G, when C is a subset of V (G), we denote by G[C] the
subgraph of G induced by C and we write G \C instead of G[V (G) \C]. A
cutset in a graph G is a set C of vertices such that G \ C is disconnected.
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A star cutset is a cutset C that contains a vertex c, called a center of C,
adjacent to all other vertices of C. Note that a star cutset may have more
than one center, and that a cutset of size 1 is a star cutset. A double star
cutset is a cutset C that contains two adjacent vertices x and y, such that
every vertex of C \ {x, y} is adjacent to x or y. Note that a star cutset of
size at least 2 is a double star cutset.

A path from a vertex a to a vertex b is refered to as an ab-path. A
proper 2-cutset of a connected graph G = (V,E) is a pair of non-adjacent
vertices a, b such that V can be partitioned into non-empty sets X, Y and
{a, b} so that: there is no edge between X and Y ; and both G[X∪{a, b}] and
G[Y ∪{a, b}] contain an ab-path and neither of G[X∪{a, b}] nor G[Y ∪{a, b}]
is a chordless path. We say that (X,Y, a, b) is a split of this proper 2-cutset.
The following is the main decomposition theorem for ISK4-free graphs.

Theorem 2.1 (see [2]) If G is an ISK4-free graph, then G is series-
parallel, or G is the line graph of a graph of maximum degree at most 3,
or G has a proper 2-cutset, a star cutset, or a double star cutset.

Our first goal is to improve this theorem for triangle-free graphs. Some
improvements are easy to obtain (they trivially follow from the absence of
triangles). The non-trivial one is done in the next two sections: we show that
double star cutsets and proper 2-cutsets are in fact not needed. We state the
result now, but it follows from Theorem 3.8 that needs more terminology
and is slightly stronger.

Theorem 2.2 If G is a {triangle, ISK4}-free graph, then either G is a
series-parallel graph or a complete bipartite graph, or G has a clique cutset
of size at most two, or G has a star cutset.

We state now several lemmas from [2] that we need. A hole in a graph
is a chordless cycle of length at least 4. A prism is a graph made of three
vertex disjoint paths of length at least 1, P1 = a1 . . . b1, P2 = a2 . . . b2 and
P3 = a3 . . . b3, with no edges between them except the following: a1a2, a1a3,
a2a3, b1b2, b1b3, b2b3. Note that the union of any two of the paths of a prism
induces a hole. A wheel (H,x) is a graph that consists of a hole H plus a
vertex x 6∈ V (H) that has at least three neighbors on H.

Lemma 2.3 (see [2]) If G is an ISK4-free graph, then either G is a series-
parallel graph, or G contains a prism, or G contains a wheel or G contains
K3,3.
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A complete tripartite graph is a graph that can be partitioned into three
stable sets so that every pair of vertices from two different stable sets is an
edge of the graph.

Lemma 2.4 (See [2]) If G is an ISK4-free graph that contains K3,3, then
either G is a complete bipartite graph, or G is a complete tripartite graph,
or G has a clique-cutset of size at most 3.

We now state the consequences of the lemmas above for triangle-free
graphs.

Lemma 2.5 If G is a {triangle, ISK4}-free graph, then either G is a series-
parallel graph, or G contains a wheel or G contains K3,3.

proof — Clear from Lemma 2.3 and the fact that every prism contains a
triangle. 2

Lemma 2.6 If G is an {ISK4, triangle}-free graph that contains K3,3, then
either G is a complete bipartite graph, or G has a clique-cutset of size at
most 2.

proof — Clear from Lemma 2.4 and the fact that complete tripartite
graphs and clique-cutsets of size 3 contain triangles. 2

It is now easy to prove the next theorem.

Theorem 2.7 If Conjecture 1.1 is true, then Conjecture 1.2 is true.

proof — Suppose that Conjecture 1.1 is true. Let G be a {triangle, ISK4}-
free graph. We prove Conjecture 1.2 by induction on |V (G)|. If |V (G)| = 1,
the outcome is clearly true.

If G containsK3,3, then by Lemma 2.6, either G is bipartite and therefore
3-colorable, or G has a clique-cutset K. In this last case, we recover a 3-
coloring of G from 3-colorings of G[K∪C1], . . . , G[K∪Ck] where C1, . . . , Ck

are the connected components of G \K.
If G contains no K3,3, then by Conjecture 1.1 it has a vertex v of degree

at most 2. By the induction hypothesis, G \ {v} has a 3-coloring, and we
3-color G by giving to v a color not used by its two neighbors. 2
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3 Proof of the decomposition theorem

Appendices to a hole

When x is a vertex of a graph G, N(x) denotes the neighborhood of x, that
is the set of all vertices of G adjacent to x. We set N [x] = N(x) ∪ {x}.
When C ⊆ V (G), we set N(C) = (∪x∈CN(x)) \ C. When G is a graph, K
an induced subgraph of G, and C a set of vertices disjoint from V (K), the
attachment of C to K is N(C) ∩ V (K), that we also denote by NK(C).

When P = p1 . . . pk is a path and 1 ≤ i, j ≤ k, we denote by piPpj the
pipj-subpath of P . Let A and B be two disjoint vertex sets such that no
vertex of A is adjacent to a vertex of B. A path P = p1 . . . pk connects A
and B if either k = 1 and p1 has a neighbor in A and a neighbor in B, or
k > 1 and one of the two endvertices of P is adjacent to at least one vertex
in A and the other is adjacent to at least one vertex in B. P is a direct
connection between A and B if in G[V (P ) ∪ A ∪ B] no path connecting A
and B is shorter than P . The connection P is said to be from A to B if p1
is adjacent to a vertex of A and pk is adjacent to a vertex of B.

Let H be a hole. A chordless path P = p1 . . . pk in G \H is an appendix
of H if no vertex of P \{p1, pk} has a neighbor in H, and one of the following
holds:

(i) k = 1, N(p1) ∩H = {u1, u2} and u1u2 is not an edge, or

(ii) k > 1, N(p1) ∩H = {u1}, N(pk) ∩H = {u2} and u1 6= u2.

So {u1, u2} is an attachment of P to H. The two u1u2-subpaths of H
are called the sectors of H w.r.t. P .

Let Q be another appendix of H, with attachment {v1, v2}. Appendices
P and Q are crossing if one sector of H w.r.t. P contains v1, the other
contains v2 and {u1, u2} ∩ {v1, v2} = ∅.

Lemma 3.1 If G is an {ISK4, K3,3}-free graph, then no two appendices of
a hole of G can be crossing.

proof — Let P = p1 . . . pk and Q = q1 . . . ql be appendices of a hole H of G,
and suppose that they are crossing. Let {u1, u2} be the attachment of P to
H, and let {v1, v2} be the attachment of Q to H. So {u1, u2} ∩ {v1, v2} = ∅
and w.l.o.g. u1, v1, u2, v2 appear in this order when traversing H. W.l.o.g.
u1 is adjacent to p1, and v1 to q1.

A vertex of P must be adjacent to or coincident with a vertex of Q, since
otherwise H ∪P ∪Q induces an ISK4. Note that {p1, pk}∩{q1, ql} = ∅. Let
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pi be the vertex of P with lowest index that has a neighbor in Q, and let qj
(resp. qj′) be the vertex of Q with lowest (resp. highest) index adjacent to
pi. Note that pi is not coincident with a vertex of Q.

First suppose that i = k. If j 6= l then H ∪ P ∪ {q1, . . . , qj} induces an
ISK4. So j = l. In particular, no vertex of P is coincident with a vertex of
Q, and pkql is the only edge between P and Q. If k 6= 1 then H ∪Q ∪ {pk}
induces an ISK4. So k = 1 and by symmetry l = 1. SinceH∪{p1, q1} cannot
induce a K3,3, w.l.o.g. u1v1 is not an edge. Let H ′ be the u1v1-subpath of
H that does not contain u2 and v2. Then (H \H ′) ∪ {u1, v1, p1, q1} induces
an ISK4. Therefore i < k.

If pi has a unique neighbor in Q, then H ∪ Q ∪ {p1, . . . , pi} induces an
ISK4. Let H ′

Q be the sector of H w.r.t. Q that contains u1. If pi has exactly
two neighbors in Q, then H ′

Q ∪ Q ∪ {p1, . . . , pi} induces an ISK4. So pi
has at least three neighbors in Q. In particular, j′ 6∈ {j, j + 1}. But then
H ∪ {p1, . . . , pi, q1, . . . , qj , qj′ , . . . , ql} induces an ISK4. 2

Lemma 3.2 Let G be an {triangle, ISK4, K3,3}-free graph. Let H be a
hole and P = p1 . . . pk, k > 1, a chordless path in G \ H. Suppose that
|N(p1) ∩H| = 1 or 2, |N(pk) ∩H| = 1 or 2, no vertex of P \ {p1, pk} has a
neighbor in H, N(p1)∩H 6⊆ N(pk)∩H and N(pk)∩H 6⊆ N(p1)∩H. Then
P is an appendix of H.

proof — Assume not. Then at least one of p1, pk has two neighbors in H.
If one of p1 or pk has one neighbor in H and the other one has two neighbors
in H, then H ∪ P induces an ISK4. So |N(p1) ∩ H| = |N(pk) ∩ H| = 2,
and hence (since G is triangle-free) both p1 and pk are appendices of H. By
Lemma 3.1, p1 and pk cannot be crossing. So for a sector H ′ of H w.r.t. p1,
N(pk) ∩H ⊆ H ′. But then H ′ ∪ P induces an ISK4. 2

Wheels

Let (H,x) be a wheel contained in a graph G. A sector is a subpath of
H whose endvertices are adjacent to x and interior vertices are not. Two
sectors are consecutive or adjacent if they have an endvertex in common.

Throughout this section we use the following notation for a wheel (H,x).
We denote by x1, . . . , xn the neighbors of x in H, appearing in this order
when traversing H. In this case, we also say that (H,x) is an n-wheel. For
i = 1, . . . , n, Si denotes the sector of (H,x) whose endvertices are xi and
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xi+1 (here and throughout this section we assume that indices are taken
modulo n). For i = 1, . . . , n, edges xxi are refered to as spokes.

A path P is an appendix of a wheel (H,x) if the following hold:

(i) P is an appendix of H,

(ii) each of the sectors of H w.r.t. P properly contains a sector of (H,x),
and

(iii) x has at most one neighbor in P .

Lemma 3.3 Let G be an ISK4-free graph. Let P be an appendix of a wheel
(H,x) of G, and let H ′

P be a sector of H w.r.t. P . Then H ′
P contains at

least three neighbors of x. In particular, H ′
P contains at least two sectors of

(H,x).

proof — Let {u1, u2} be the attachment of P to H. Since P is an appendix
of (H,x), H ′

P contains at least two neighbors of x. Suppose H ′
P contains

exactly two neighbors of x. If x has a neighbor in P , then H ′
P ∪ P ∪ {x}

induces an ISK4. So x does not have a neighbor in P . Since P is an appendix
of (H,x), H ′

P properly contains a sector of (H,x) and so w.l.o.g. x is not
adjacent to u2. Let H

′′
P be the other sector of H w.r.t. P , and let x′ be the

neighbor of x in H ′′
P that is closest to u2. Note that since H ∪ {x} cannot

induce an ISK4, n ≥ 4, and hence x′ 6= u1 and x′u1 is not an edge. Let H ′

be the x′u2-subpath of H ′′
P . Then H ′

P ∪H ′ ∪ P ∪ {x} induces an ISK4. 2

A wheel (H,x) of G is proper if vertices u ∈ G \ (H ∪ N [x]) are one of
the following types:

• type 0: |N(u) ∩H| = 0;

• type 1: |N(u) ∩H| = 1;

• type 2: |N(u)∩H| = 2 and for some sector Si of (H,x), N(u)∩H ⊆ Si.

Lemma 3.4 Let G be a {triangle, ISK4}-free graph. If (H,x) is a wheel of
G with fewest number of vertices, then (H,x) is a proper wheel.

proof — Let u ∈ G \ (H ∪N [x]). It follows from the following two claims
that u is of type 0, 1 or 2 w.r.t. (H,x), and hence that (H,x) is proper.

(1) For every sector Si of (H,x), |N(u) ∩ Si| ≤ 2.

Otherwise, Si ∪ {x, u} induces a wheel with fewer vertices than (H,x), a
contradiction. This proves (1).
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(2) For some sector Si of (H,x), N(u) ∩H ⊆ N(u) ∩ Si.

Assume otherwise, and choose i, j ∈ {1, . . . , n} so that u has a neighbor in
Si \ Sj and in Sj \ Si, N(u)∩ (Si ∪ Sj) is not contained in a sector of (H,x)
and |j − i| is minimized. W.l.o.g. i = 1 and 1 < j < n (since the case
when j = n is symmetric to the case when j = 2). Let u′ (resp. u′′) be
the neighbor of u in S1 that is closest to x1 (resp. x2). Let uj (resp. uj+1)
be the neighbor of u in Sj that is closest to xj (resp. xj+1). Let P be the
u′′uj-subpath of H that contains x2. Note that by the choice of i, j, vertex
u has no neighbor in the interior of P and uj 6= xn. Since G is triangle-free,
xj+1x1 is not an edge, and if j 6= 2 then x2xj is not an edge.

First suppose that u has at least two neighbors in S1. Then by (1), u
has exactly two neighbors in S1. If uj+1 = xj then j 6= 2 (by the choice of
i, j), and hence S1 ∪ {x, u, xj} induces an ISK4. So uj+1 6= xj . If uj+1x2
is an edge, then ux2 is not an edge (since G is triangle-free) and hence
S1 ∪ {x, u, uj+1} induces an ISK4. So uj+1x2 is not an edge. But then
S1 ∪ {x, u} together with uj+1Sjxj+1 induces an ISK4.

Therefore u has exactly one neighbor in S1, and by symmetry it has
exactly one neighbor in Sj . If j = 2 then S1 ∪ S2 ∪ {x, u} induces an ISK4.
So j > 2. If P contains at least three neighbors of x, then (since j < n and
uj 6= xn) P ∪ {x, u} induces a wheel with center x that has fewer vertices
than (H,x), a contradiction. Therefore P contains exactly two neighbors of
x. But then j = 3, uj 6= x4 and hence S1 ∪ S2 ∪ {x, u} together with x3S3uj
induces an ISK4. This proves (2).

2

Lemma 3.5 Let G be a {triangle, ISK4, K3,3}-free graph. Let (H,x) be a
proper wheel of G with fewest number of spokes. If (H,x) has an appendix,
then (H,x) is a 4-wheel.

proof — Assume (H,x) has an appendix. Note that by Lemma 3.3, if P
is an appendix of (H,x) then each of the sectors of H w.r.t. P contains
at least two sectors of (H,x). If (H,x) has an appendix such that one of
the sectors of H w.r.t. this appendix is Si ∪ Si+1 for some i ∈ {1, . . . , n},
then let P be such an appendix and H ′

P = Si ∪ Si+1. Otherwise, let P be
an appendix of (H,x) such that for a sector H ′

P of H w.r.t. P , there is no
appendix Q of (H,x) such that H ′

P properly contains a sector of H w.r.t.
Q. Assume further that such a P is chosen so that |V (P )| is minimized. Let
H ′′

P be the other sector of H w.r.t. P . W.l.o.g. we may assume that H ′
P

contains x1, . . . , xl, l ≥ 3, and does not contain xl+1, . . . , xn. Let {y1, y2} be
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the attachment of P to H such that y1 ∈ Sn \ xn and y2 ∈ Sl \ xl+1. Let
P = p1 . . . pk and w.l.o.g. assume that p1 is adjacent to y1, and pk to y2.
Let S′

n be the x1y1-subpath of Sn, and S′
l the xly2-subpath of Sl. Let H

′ be
the hole induced by H ′

P ∪ P . Note that since l ≥ 3, (H ′, x) is a wheel.

(1) (H ′, x) is a proper wheel.

Let u ∈ G \ (H ′ ∪ N [x]) and assume that u is not of type 0, 1 or 2 w.r.t.
(H ′, x). Note that u 6∈ H. Since (H,x) is a proper wheel, u must have a
neighbor in P . Let P ′ = y1Py2. Let u1 (resp. u2) be the neighbor of u in P
that is closest to y1 (resp. y2). Note that sectors S1, . . . , Sl−1 of (H,x) are
also sectors of (H ′, x).

First suppose that N(u) ∩H ′ ⊆ S′
n ∪ S′

l ∪ P . Since (H,x) is proper, u
cannot have a neighbor in both S′

n and S′
l. If u has a neighbor in S′

n \ y1,
then by Lemma 3.2 and since u has a neighbor in P , P ∪ u contains an
appendix Q of (H,x) such that a sector of H w.r.t. Q is properly contained
in H ′

P , contradicting our choice of P . So u does not have a neighbor in
S′
n \ y1, and by symmetry it does not have a neighbor in S′

l \ y2. Since u
is not of type 0, 1 or 2 w.r.t. (H ′, x), u1 6= u2, and since G is triangle-free,
u1u2 is not an edge. Let P ′′ be the chordless path from y1 to y2 in P ∪ u
that contains u. Since the length of P ′′ cannot be less than the length of P ,
by the choice of P , there is a vertex p ∈ P such that u1p and u2p are edges.
Since G is triangle-free, u is not adjacent to p, and hence u has exactly two
neighbors in P ′. Since u is not of type 2 w.r.t. (H ′, x), x must be adjacent
to p. But then S′

n ∪ S′
l ∪ P ∪ {x, u} induces an ISK4.

Therefore u must have a neighbor in (S1 ∪ . . . ∪ Sl−1) \ {x1, xl}. Since
(H,x) is proper, for some i ∈ {1, . . . , l − 1}, N(u) ∩H ⊆ Si. Suppose that
u is of type 2 w.r.t. (H,x). W.l.o.g. u is not adjacent to x1. Let pj be
the vertex of P with lowest index adjacent to u. If j = k then, since G is
triangle-free, not both pk and u can be adjacent to xl, and hence H∪{u, pk}
induces an ISK4. So j < k, and hence H ∪ {u, p1, . . . , pj} induces an ISK4.
Therefore u is of type 1 w.r.t. (H,x). Recall that by our assumption that u
has a neighbor in (S1 ∪ . . . ∪ Sl−1) \ {x1, xl}, u is not adjacent to x1 nor xl.
But then H ∪ P ∪ {u} contains an ISK4. This proves (1).

So (H ′, x) is a proper wheel. Since it cannot have fewer sectors than
(H,x) and by Lemma 3.3, it follows that y1 = x1, y2 = xl and l = n − 1.
But then by the choice of P , l = 3, and hence (H,x) is a 4-wheel. 2

A short connection between sectors Si and Si+1 of (H,x) is a chordless
path P = p1 . . . pk, k > 1, in G \ (H ∪N [x]) such that the following hold:
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(i) N(p1) ∩ (H \ {xi+1}) = {u1}, u1 ∈ Si \ {xi+1},

(ii) N(pk) ∩ (H \ {xi+1}) = {u2}, u2 ∈ Si+1 \ {xi+1}, and

(iii) the only vertex of H that may have a neighbor in P \ {p1, pk} is xi+1.

Lemma 3.6 Let G be a {triangle, ISK4, K3,3}-free graph. Let (H,x) be a
proper wheel of G with fewest number of spokes. Then (H,x) has no short
connection.

proof — Suppose (H,x) has a short connection P = p1 . . . pk. Assume
that (H,x) and P are chosen so that |V (P )| is minimized. W.l.o.g. p1 is
adjacent to u1 ∈ S1 \ x2 and pk to u2 ∈ S2 \ x2. Let S

′
1 be the u1x1-subpath

of S1, and let S′
2 be the u2x3-subpath of S2. Let SP be the u1u2-subpath of

H that contains x2. Let H
′ be the hole induced by (H \ SP )∪P ∪ {u1, u2}.

(1) n ≥ 5

If n = 3 then H ∪ {x} induces an ISK4. If n = 4 then H ′ ∪ {x} induces an
ISK4. Therefore, n ≥ 5. This proves (1).

(2) (H,x) has no appendix.

Follows from (1) and Lemma 3.5. This proves (2).

(3) Vertex x2 has a neighbor in P \ {p1, pk}.

Assume not. If x2 has no neighbor in P , then S1 ∪ S2 ∪ P ∪ {x} induces an
ISK4. So w.l.o.g. x2 is adjacent to p1. Then u1x2 is not an edge, since G
is triangle-free. If x2 is not adjacent to pk, then S′

1 ∪ S2 ∪ P ∪ {x} induces
an ISK4. So x2 is adjacent to pk, and hence u2x2 is not an edge. But then
S′
1 ∪ S′

2 ∪ P ∪ {x, x2} induces an ISK4. This proves (3).

(4) (H ′, x) is a proper wheel.

By (1) (H ′, x) is a wheel. Assume it is not proper and let u ∈ G\(H ′∪N [x])
be such that it is not of type 0, 1 or 2 w.r.t. (H ′, x). Note that u 6∈ H,
and hence u is of type 0, 1 or 2 w.r.t. (H,x). It follows that u must have
a neighbor in P . Let pi (resp. pj) be the vertex of P with lowest (resp.
highest) index adjacent to u.

First suppose that N(u) ∩ H ′ ⊆ S′
1 ∪ S′

2 ∪ P . Then |N(u) ∩ H ′| ≥ 3.
If u does not have a neighbor in (S1 ∪ S2) \ {x2}, then u has at least three
neighbors in P and hence p1PpiupjPpk is a short connection of (H,x) that
contradicts our choice of P . So u has a neighbor in (S1∪S2)\{x2}. W.l.o.g.
N(u) ∩ (S1 \ {x2}) 6= ∅. Since (H,x) is proper, N(u) ∩ (S2 \ {x2}) = ∅. If
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u has a unique neighbor in S1, then j > 2 (since G is triangle-free and u
has at least two neighbors in P ) and hence upjPpk is a short connection
of (H,x) that contradicts our choice of P . So u is of type 2 w.r.t. (H,x).
If j = 1 then |N(u) ∩ H ′| = 3 and hence H ′ ∪ {u} induces an ISK4. So
j > 1. If ux2 is an edge then j > 2 (since G is triangle-free and u has
at least three neighbors in H ′) and hence upjPpk is a short connection of
(H,x) that contradicts our choice of P . So ux2 is not an edge. If x2 has
no neighbor in pjPpk and u2 = x3, then let Q = pjPpkx3. Otherwise let
Q be the chordless path from pj to x2 in (S2 \ S

′
2) ∪ {pj , . . . , pk, u2}. Then

S1 ∪Q ∪ {x, u} induces an ISK4.
Therefore, for some l ∈ {3, . . . , n}, u has a neighbor in Sl \ {x1, x3}.

Since (H,x) is proper, N(u) ∩ H ⊆ Sl. If j = 1 let Q = up1, if i = k let
Q = upk, and otherwise let Q be a chordless path in (P \ {p1, pk}) ∪ {u}
from u to a vertex of P \ {p1, pk} that is adjacent to x2 (note that such a
vertex exists by (3)). By Lemma 3.2 Q is an appendix of H. In particular,
u is of type 1 w.r.t. (H,x). Let u′ be the neighbor of u in H. Since by (2)
Q cannot be an appendix of (H,x), w.l.o.g. j = 1 and l = n. Note that
u′ 6= x1 and u1 6= x2. Let pt be the vertex of P with lowest index adjacent
to x2 (such a vertex exists by (2)). If u′ = xn then S1 ∪ {x, u, u′, p1, . . . , pt}
induces an ISK4. So u′ 6= xn. If If u1 6= x1 then S1 ∪ {x, u, p1, . . . , pt}
together with the x1u

′-subpath of S1 induces an ISK4. So u1 = x1. But
then Sn ∪ {x, u, p1, . . . , pt, x2} induces an ISK4. This proves (4).

By (4) (H ′, x) is a proper wheel that has fewer sectors than (H,x), a
contradiction. 2

Lemma 3.7 Let G be a {triangle, ISK4, K3,3}-free graph. Let (H,x) be
a proper wheel of G with fewest number of spokes. Then for every i ∈
{1, . . . , n}, (N [x]\H)∪{xi, xi+1} is a star cutset separating Si from H \Si.

proof — Assume not. Then w.l.o.g. there is a direct connection P =
p1 . . . pk from S1 \ {x1, x2} to H \ S1 in G \ ((N [x] \ H) ∪ {x1, x2}). Note
that the only vertices of H that may have a neighbor in the interior of P
are x1 and x2. Since (H,x) is proper, k > 1 and p1 and pk are of type 1 or
2 w.r.t. (H,x). Let i ∈ {2, . . . , n} be such that N(pk) ∩H ⊆ Si.

First suppose that no vertex of {x1, x2} has a neighbor in P \ {p1, pk}.
By Lemma 3.2, P is an appendix of H. In particular, p1 and pk are both of
type 1 w.r.t. (H,x). If i 6∈ {2, n} then P is an appendix of (H,x). It follows
from Lemma 3.5 that n = 4 and i = 3. But then, since p1 has a neighbor in
S1 \ {x1, x2}, (H,x) and P contradict Lemma 3.3. So i ∈ {2, n}, and hence
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P is a short connection, contradicting Lemma 3.6. Therefore, a vertex of
{x1, x2} has a neighbor in P \ {p1, pk}.

Let pj be the vertex of P \ p1 with highest index adjacent to a vertex of
{x1, x2}. W.l.o.g. pjx2 is an edge. We now show that if p1 has two neighbors
in S1 \ x2, then x1 has a neighbor in P \ p1. Assume not. Then p1 has two
neighbors in S1 \x2 and x1 does not have a neighbor in P \p1. Since p1 is of
type 2 w.r.t. (H,x), p1x2 is not an edge. But then H and p1 . . . pj′ (where
pj′ is the vertex of P with lowest index adjacent to x2) contradict Lemma
3.2.

Suppose i = 2. If pk has two neighbors in S2\x2, then S2∪{x, pj , . . . , pk}
induces an ISK4. So, pk has a unique neighbor in S2 \ x2. If x1 does not
have a neighbor in P \ p1, then p1 has a unique neighbor in S1 \ x2 and
hence P is a short connection of (H,x), contradicting Lemma 3.6. So x1 has
a neighbor in P \ p1. Let pt be such a neighbor with highest index. Then
ptPpk is a short connection of (H,x), contradicting Lemma 3.6. So i 6= 2. If
i = n then either pjPpk is a short connection of (H,x) contradicting Lemma
3.6, or Sn ∪ {x, x2, pj , . . . , pk} contains an ISK4.

Therefore, i ∈ {3, . . . , n−1} and pk has a neighbor in H \ (S1∪S2∪Sn).
By Lemma 3.2 applied to H and pjPpk, vertex pk is of type 1 w.r.t. (H,x)
and x1pj is not an edge. But then pjPpk is an appendix of (H,x). By
Lemma 3.5 it follows that n = 4 and i = 3. But then, since pk has a
neighbor in S3 \ {x3, x4}, (H,x) and pjPpk contradict Lemma 3.3. 2

We say that a graph G has a wheel decomposition if for some wheel
(H,x), for every i ∈ {1, . . . , n}, (N [x]\H)∪{xi, xi+1} is a cutset separating
Si from H \ Si. We say that such a wheel decomposition is w.r.t. wheel
(H,x). Note that if a graph has a wheel decomposition, then it has a star
cutset.

Theorem 3.8 If G is a {triangle, ISK4}-free graph, then either G is a
series-parallel graph or a complete bipartite graph, or G has a clique cutset
of size at most two, or G has a wheel decomposition.

proof — Assume G is not series-parallel nor a complete bipartite graph.
By Lemma 2.5 G contains a wheel or K3,3. By Lemma 2.6 if G contains a
K3,3 then it has a clique cutset of size at most two. So we may assume that
G does not contain aK3,3. So G contains a wheel. By Lemma 3.4 G contains
a proper wheel, and hence by Lemma 3.7 G has a wheel decomposition. 2
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Theorem 3.9 If G is a {triangle, ISK4, K3,3}-free graph, then either G is
series-parallel or G has a wheel decomposition.

proof — Assume G is not series-parallel. By Lemma 2.5 G contains a
wheel. By Lemma 3.4 G contains a proper wheel, and hence by Lemma 3.7
G has a wheel decomposition. 2

The following corollary is needed in the next section.

Corollary 3.10 If G is an ISK4-free graph of girth at least 5, then either
G is series-parallel or G has a star cutset.

proof — Follows directly from Theorem 3.9 because K3,3 contains a cycle
of length 4. 2

4 Chordless graphs

A graph G is chordless if no cycle in G has a chord. Chordless graphs were
introduced in [2] as roots of wheel-free line graphs, and it is a surprise to us
that we need them here for a completely different reason in a very similar
class. A graph is sparse if every edge is incident to at least one vertex of
degree at most 2. A sparse graph is chordless because any chord of a cycle
is an edge between two vertices of degree at least three. Recall that proper
2-cutsets are defined in Section 2.

Theorem 4.1 (see [3]) If G is a 2-connected chordless graph, then either
G is sparse or G admits a proper 2-cutset.

The following theorem is mentioned in [3] without a proof, and we need
it in the next section. So, we prove it for the sake of completeness.

Theorem 4.2 In every cycle of a 2-connected chordless graph that is not
a cycle, there exist four vertices a, b, c, d that appear in this order and such
that a, c have degree 2 and b, d have degree at least 3.

proof — We prove the result by induction on |V (G)|. If G is sparse (in
particular, if |V (G)| = 3), then it is enough to check that every cycle of
G contains at least two vertices of degree at least 3, because these vertices
cannot be adjacent in a sparse graph. But this true, because a cycle with all
vertices of degree 2 must be the whole graph (since G is connected), and a
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cycle with a unique vertex of degree 3 cannot exists in a 2-connected graph
(the vertex of degree at least 3 would be a cut-vertex).

So, by Theorem 4.1 we may assume that G has a proper 2-cutset with
split (X,Y, u, v). We now build two blocks of decompositions of G as follows.
The block GX is obtained from G[X∪{u, v}] by adding a marker vertex mY

adjacent to u and v, and the block GX is obtained from G[Y ∪ {u, v}] by
adding a marker vertex mX adjacent to u and v. By the definition of proper
2-cutsets, |V (GX)|, |V (GY )| ≤ |V (G)|. Also, GX and GY are chordless and
2-connected. So we may apply the induction hypothesis to the blocks of
decomposition.

Let C be a cycle of G. If V (C) ⊆ X ∪ {u, v}, then C is a cycle of GX ,
so by the induction hypothesis we get four vertices a, b, c, d in C. We now
check that a vertex w ∈ V (C) has degree 2 in G if and only if it has degree
2 in GX . This is obvious, except if w ∈ {u, v}. But in this case, because of
mY and because w lies in a cycle of GX that does not contain mY , w has
degree at least 3 in both G and GX . This proves our claim. It follows that
we obtain by the induction hypothesis the condition that we need for the
degrees of a, b, c and d. The proof is similar when V (C) ⊆ Y ∪ {u, v}.

We may now assume that C has vertices in X and Y . It follows that
C edge wise partitions into a path P = u . . . v whose interior is in X and a
path Q = u . . . v whose interior is in Y . We apply the induction hypothesis
to GX and CX = uPvmY u. So, we get four vertices a, b, c and d in CX

and they have degree 2, ≥ 3, 2, ≥ 3 respectively (in GX). These four
vertices are in C and have the degrees we need (in G), except possibly when
|{a, c}∩ {u,mY , v}| = 1. In this case, we may assume w.l.o.g. that a = u or
a = mY , and we find in place of a a vertex of degree 2 in Y ∩V (CY ), where
CY = uQvmXu. This vertex exists by the induction hypothesis applied to
GY and CY . 2

5 Degree 2 vertices

Lemma 5.1 Let G be a 2-connected ISK4-free graph of girth at least 5.
Then for every pair {x, y} of vertices of G such that x = y or xy ∈ E(G),
V (G) \ (N [x] ∪N [y]) contains a vertex of degree 2 in G.

proof — We prove the statement by induction on |V (G)|. The statement
is true for the smallest 2-connected graph of girth at least 5: C5. We now
prove the induction step. There are two cases.
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Case 1: G has no star cutset. In particular, G has no clique cutset, and it is
series-parallel by Corollary 3.10. We claim that G is chordless. Otherwise,
some cycle C of G has a chord ab. Thereofore, C is formed of two ab-paths
R and R′, both of length at least 2. Since {a, b} is not a clique cutset of
G, some path S of G is disjoint from {a, b}, has one end in R, the other
one in R′, and is internally disjoint from C. Therefore, C, ab and S form a
subdivision of K4 (that is in G as a subgraph), and this contradicts G being
series-parallel. This proves our claim.

If G \ (N [x]∪N [y]) contains a cycle, then by Theorem 4.2, it contains a
vertex of degree 2 (inG). It follows that we may assume thatG\(N [x]∪N [y])
is a forest F . So, let u be a leaf (that is a vertex of degree at most 1) of F .
We may assume that u has at least two neighbors v, w outside of F (since
otherwise, u has degree 2). These two neighbors must be adjacent to x or y,
but since G has no C4, we have x 6= y, and we may assume that v is adjacent
to x and w is adjacent to y. Also, u has neighbors only in V (F ) ∪ {v, w}.
Hence u has degree 2, unless it has a neighbor in F . In this last case, F has
a second leaf u′ and there is a path P in F from u to u′. By the same proof
as we did for u, u′ has two neighbors v′, w′ not in F and v′x,w′y ∈ E(G).
Now, we see that G contains a cycle with a chord, a contradiction.

Case 2: G has a star cutset C. We suppose that C is inclusionwise minimal
among all possible star cutsets and is centered at c. W.l.o.g. we suppose that
x and y are both in G[C ∪ X] where X is a component of G \ C, and we
consider another component Y .

We claim that G[C ∪ Y ] is 2-connected. Indeed, suppose for a contra-
diction that G[C ∪ Y ] has a cutvertex v. Since G is 2-connected, |C| ≥ 2.
By the minimality of C, every vertex of C \ {c} has a neighbor in Y and
if |C| = 2, then c also has neighbors in Y . It follows that v /∈ C. So, v
is in fact a cutvertex of G, a contradiction. We proved that G[C ∪ Y ] is
2-connected.

We now apply the induction hypothesis to {x, y, c} \ X in the graph
G[C ∪ Y ]. This gives a vertex in G \ (N [x] ∪N [y]) that has degree 2 in G.
2

Theorem 5.2 Every ISK4-free graph of girth at least 5 contains a vertex
of degree at most 2 and is 3-colorable.

proof — It is enough to prove that every ISK4-free graph of girth at least 5
contains a vertex of degree at most 2. For the sake of induction, we prove
by induction on |V (G)| a slightly stronger statement: every ISK4-free graph
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of girth at least 5 on at least two vertices contains at least two vertices of
degree at most 2. If |V (G)| = 2, this is clearly true. If G is 2-connected, it
follows from Lemma 5.1 applied twice (once to find a vertex x of degree 2,
and another time to find the second one in G \ N [x]). So, we may assume
that G is not 2-connected and has at least 3 vertices, so it has a cutvertex v.
The result follows from the induction hypothesis applied to G[X ∪ {v}] and
to G[Y ∪ {v}] where X and Y are connected components of G \ {v}. 2

6 Series-parallel graphs

A graph G together with two of its vertices x and y such that xy ∈ E(G) or
x = y, have the (x, y)-property if V (G) \ (N [x] ∪N [y]) contains a vertex of
degree 2 in G. Instead of (x, x)-property, we simply write x-property. The
(x, y)-property is very convenient for us, because it ensures the existence of
vertices of degree 2, and also because, as shown in the previous section, it
is well preserved in proofs by induction. When squares are allowed, there
are graphs in our class that do not have the (x, y)-property, for intance the
graphs represented in Fig. 1 do not have the x-property when x is a vertex
with maximum degree in the graph. In order to prove Conjecture 1.1, it
is therefore of interest to understand fully the triangle-free series-parallel
graphs that do not have the (x, y)-property. This is what we do in the next
lemmas.

Lemma 6.1 Let T be a tree, and suppose that the vertices of T are labelled
with labels x and y (each vertex may receive one label, both labels, or no
label). One and only one of the following situations occurs.

• In T , there exist two vertex-disjoint paths P and Q, and each of them
is from a vertex with label x to a vertex with label y (possibly, P and/or
Q have length 0).

• There exists v ∈ V (T ) and two subtrees of T , Tx and Ty such that:

1. V (Tx) ∪ V (Ty) = V (T );

2. V (Tx) ∩ V (Ty) = {v};

3. Tx contains all vertices of T with label x and Ty contains all
vertices of T with label y.

proof — It is clear that not both outcomes hold, because if the second
holds, then v must be on every path from a vertex with label x to a vertex
with label y, so no two such paths can be vertex-disjoint.

16



Figure 1: A series-parallel graph and an ISK4-free graph

If the second situation does not occur then it implies that for every vertex
v of the tree, there exists a connected component of T \ v that contains a
vertex with label x and a vertex with label y. Thus for every vertex v, orient
the corresponding edge (the one pointing towards this connected component)
out from v. Because, |E(T )| < |V (T )| some edge uv has to be oriented both
ways, which means that the two components of T \uv contains vertices with
both labels, which clearly implies the first situation. 2

A bad triple is a triple (G, x, y) such that the following hold:

• G is a graph and x and y are vertices of G.

• G does not have the (x, y)-property.

• If x 6= y, then G has the x-property and G has the y-property.

It is clear that for every graph G and all vertices x, y ∈ V (G) such that
x = y or xy ∈ E(G), one of the following cases holds:

• G has the (x, y)-property;

• (G, x, x) is a bad triple;

• (G, y, y) is a bad triple;

• (G, x, y) is a bad triple.

Indeed, if G does not have the x-property, then (G, x, x) is a bad triple.
Similarly, if G does not have the y-property, then (G, y, y) is a bad triple.
So, we may assume that G has the x-property and the y-property. If G has
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the (x, y)-property, then we are done, and otherwise, all the requirements in
the definition of bad triples are fulfilled. It follows that a structural descrip-
tion of bad triples really discribes all triples (G, x, y) such that G does not
have the (x, y)-property. Such a description is given in the next lemma for
triangle-free 2-connected series-parallel graphs with no clique cutset. Note
that in the next lemma, we do not require the girth of the graph to be at
least 5.

Lemma 6.2 Let (G, x, y) be a bad triple, and suppose that G is triangle-
free, 2-connected, series-parallel, has at least 5 vertices, and has no clique
cutset. Then, G can be constructed as follows (and conversely, all graphs
constructed as follows are triangle-free, 2-connected, series-parallel, have
least 5 vertices, and have no clique cutset).

• If x 6= y, then build two non-empty trees Tx and Ty, not containing
x, y, and consider the tree T obtained by gluing Tx and Ty along some
vertex v (so V (Tx) ∩ V (Ty) = {v}).

• If x = y build a non-empty tree T , and set Tx = Ty = T .

• Add vertices of degree 2, each of them either adjacent to x and to some
vertex in Tx, or to y and some vertex in Ty, in such a way that the
following conditions are satisfied:

1. |N(x) \ {y}|, |N(y) \ {x}| ≥ 1;

2. every vertex of T that has degree 2 in T has at least one neighbor
in (N [x] ∪N [y]) \ {x, y};

3. every vertex of T that has degree 1 in T (so, a leaf of T ) has at
least two neighbors in (N [x] ∪N [y]) \ {x, y};

4. every vertex of T that has degree 0 in T (this happens only when
|V (T )| = |V (Tx)| = |V (Ty)| = 1) has at least three neighbors in
(N [x] ∪N [y]) \ {x, y}.

proof — Let (G, x, y) be a bad triple, and suppose that G is triangle-free,
2-connected, series-parallel, has at least 5 vertices, and has no clique cutset.

(1) G is chordless.

Suppose that some cycle C of G has a chord ab. Thereofore, C is formed of
two ab-paths R and R′, both of length at least 2. Since {a, b} is not a clique
cutset of G, some path S of G is disjoint from {a, b}, has one end in R, the
other one in R′, and is internally disjoint from C. Therefore, C, ab and S
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form a subdivision of K4 (that is in G as a subgraph), and this contradicts
G being series-parallel. This proves (1).

(2) Every cycle of G contains at least two vertices of degree 2.

If G is a cycle, our claim clearly holds. Otherwise, it follows directly from (1)
and Theorem 4.2. This proves (2).

(3) All vertices in N(x) ∪N(y) distinct from x and y have degree 2.

Suppose w.l.o.g. that a neighbor of x, x′ 6= y has degree at least 3. Let u and
v be two neighbors of x′ distinct from x. Because G is triangle-free, u and v
are non-adjacent to x. Since G is 2-connected, there is a path P = u . . . v in
G \ x′. So, C = x′uPvx′ is a cycle of G. Note that C does not go through
x, for otherwise xx′ would be a chord a C, a contradiction to (1).

By (2), C contains two vertices a and b of degree 2. Vertices a and
b must be adjacent to x or y because they have degree 2 and G does not
have the (x, y)-property. If a and b are both adjacent to x (in particular,
when x = y), then C must go through x (because a and b have degree 2), a
contradiction.

Hence, at least one of a or b is adjacent to y, not to x, and in particular,
x 6= y. If C does not go through y, then C, x and y form a subdivision
of K4, contradiciting G being series-parallel, so C goes through y. If x is
adjacent to a or b, then again C, x and y form a subdivision of K4. So, a
and b are both adjacent to y, not to x. Since G has the y-property (from the
definition of bad triples), there is a non-neighbor x′′ of y that has degree 2,
and since G does not have the (x, y)-property, x′′ is a neighbor of x, distinct
from x′ because x′ has degree 3. Since G is 2-connected, there exists a path
Q = x′′ . . . c from x′′ to C in G \ x. If c 6= x′, y, then x, Q and C form
a subdivision of K4, a contradiction to G being series-parallel. Otherwise,
c ∈ {x′, c} and xc is a chord of some cycle of G, a contradiction to (1). This
proves (3).

(4) N [x] ∪N [y] ( V (G).

Otherwise, V (G) = N [x] ∪ N [y] and all vertices of G are adjacent to x or
y. If x = y, then V (G) = N [x], a contradiction since G is triangle-free and
2-connected. So, x 6= y.

Let x′ 6= y be a neighbor of x. By (3), x′ has degree 2. Its other neighbor
y′ is non-adjacent to x (because G is triangle-free), so it must be adjacent to
y, and by (3), y′ has degree 2. Since G contains at least five vertices, there
must be other vertices, so w.l.o.g. another neighor x′′ of x. Again, x′′ has
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degree 2, a neighbor y′′ (distinct from y′ because y′ has degree 2), and y′′ is
adjacent yo y. Now, xx′y′yy′′x′′x is a cycle of G that has a chord (namely
xy), a contradiction to (1). This proves (4).

(5) (N [x] ∪N [y]) \ {x, y} is a stable set.

Otherwise, let u and v be two adjacent vertices in (N(x) ∪ N(y)) \ {x, y}.
By (3) they have degree 2, so {x, y} is a clique cutset that separates them
from V (G) \ (N [x] ∪N [y]) that is non-empty by (4). This proves (5).

(6) G \ (N [x] ∪N [y]) is a tree T .

Since (G, x, y) is a bad triple, V (G) \ (N [x]∪N [y]) contains only vertices of
degree at least 3 (in G), so by (2), it cannot contain a cycle. Also G\(N [x]∪
N [y]) is connected, because otherwise let A and B be two components of
V (G) \ (N [x]∪N [y]). These two components must attach to disjoint sets of
neighbors of x and y, because all neighbors of x and y (except x and y) have
degree 2 by (3). It follows that {x, y} is a clique cutset, a contradiction.
This proves (6).

Let us now give label x (resp. y) to all vertices of T that have a neighbor
adjacent to x (resp. y). Let us apply Lemma 6.1 to T .

If the first outcome holds (so in T , there exist two vertex-disjoint paths
P and Q, and each of them is from a vertex with label x to a vertex with
label y), then we reach a contradiction as follows. Let P = px . . . py and
Q = qx . . . qy where px, qx have label x and py, qy have label y. So, let p′x
be a neighbor of px that is adjacent to x, and let p′y, q

′
x and q′y be defined

similarly. Observe that p′x, p
′
y, q

′
x and q′y are distinct, because all neighbors

of x and y distinct from x and y have degree 2 by (3). Now the cycle
xp′xpxPpyp

′
yyq

′
yqyQqxq

′
xx has a chord (namely xy), a contradiction to (1).

Hence, the second outcome holds, so we keep the notation v, Tx and Ty

from Lemma 6.1. Note that T can be obtained by gluing Tx and Ty along v.
It follows that G can be constructed as we claim it should be. By (6) and (4),
we really need to consider a non-empty tree. By (3), we have to add vertices
of degree 2, and by (5), they all have one neighbor in {x, y} and the other
one in T . The last three conditions are here to ensure that the vertices of
T really all have degree at least 3.

We do not prove the converse statement (every graph constructed as
above is a bad triple, is triangle-free, 2-connected, series-parallel, has at
least 5 vertices and has no clique cutset). It is easy to check and we do not
need it in what follows. 2
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