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‡School of Computer Engineering, Nanyang Technological University, Singapore

Email: sfahmy@ieee.org

Abstract—Hardware accelerators implement custom architec-
tures to significantly speed up computations in a wide range
of domains. As performance scaling in server-class CPUs slows,
we propose the integration of hardware accelerators in the
cloud as a way to maintain a positive performance trend.
Field programmable gate arrays (FPGAs) represent the ideal
way to integrate accelerators in the cloud, since they can be
reprogrammed as needs change and allow multiple accelerators
to share optimised communication infrastructure. We discuss
a framework that integrates reconfigurable accelerators in a
standard server with virtualised resource management and com-
munication. We then present a case study that quantifies the
efficiency benefits and break-even point for integrating FPGAs
in the cloud.

I. INTRODUCTION

Cloud Computing promises shared elastic access to unlim-
ited compute resources in a similar view to traditional utilities
like the power grid. Virtualisation enables efficient scaling
and sharing as user needs change. Established cloud service
models offer access to virtualised hardware, to tuned applica-
tion design platforms, or simply to self-contained application
software hosted in the cloud. A key driver behind the increase
in demand for cloud computing has been the exponential
increase in use of mobile computing devices that often lack the
computational power to complete complex tasks such as voice
recognition. Computing in the cloud benefits from server-grade
CPUs with advanced computational datapaths, large caches,
and multiple cores.

While the flexibility, scalability, and affordability of cloud
computing are well established, performance and efficiency
remain matters of concern. By virtue of the virtualisation of
resources, the distributed communication among sometimes
disparate nodes, and fluctuations in demand, running complex
applications can be challenging [1]. Furthermore, the perfor-
mance of server CPUs is not scaling at the rates previously
observed [2]. Poor computational performance due to the over-
heads of virtualisation can also severely impact response time
and hence user experience, even for simpler tasks. Efficiency is
also becoming a major concern as datacenters start to consume
a noticeable proportion of the world’s energy budget.

One strategy discussed for overcoming stalled performance
scaling is to incorporate heterogeneous resources better suited
to complex computation [3]. GPUs can offer significant perfor-
mance benefits but cloud integration can be troublesome, since

the architectures are designed to be used monolithically [4].
Hence, they are generally offered as a fixed resource using the
Infrastructure-as-a-Service (IaaS) model, leading to potential
under-utilisation and over-provision. GPUs are also power-
hungry, and hence, do not contribute significantly to improving
energy efficiency.

FPGAs have also been explored more recently. They can
offer significant speed-up in execution of a wide variety of
tasks and are also significantly more power-efficient [5], [6].
Recent developments are easing the integration of FPGAs in
the datacenter. At the server hardware level, IBM’s POWER8
Coherent Accelerator Processor Interface (CAPI) [2] allows
tighter coupling between the processor and a co-processing
peripheral. Intel’s XEON+FPGA integrates an FPGA with a
XEON processor in a single chip package, and their recent
purchase of Altera underlines the importance of hardware
accelerators in the datacenter. Microsoft recently presented a
comprehensive demonstration of the benefits of FPGAs in the
datacenter applied to the Bing search algorithm [7].

These initial proofs of concept make the case for a more
serious investigation of FPGAs as a general cloud computing
resource. So far, however, FPGAs have only been used as static
accelerators, designed once and used for a single function. In
the cloud context, the ability to modify accelerator functions at
runtime in a multi-user environment is essential. This requires
new techniques in hardware design, interfacing, accelerator
management, OS integration, and programming models. In this
paper, we present some background on FPGAs, then detail a
platform for integrating virtualised accelerators on FPGAs, and
finally, present a case study that quantifies potential benefits.

II. BACKGROUND

A. Field Programmable Gate Arrays

Field programmable gate arrays (FPGAs) are commercial
off-the-shelf silicon devices that can be programmed to im-
plement custom digital circuits. Fundamentally, they consist
of a mesh of basic circuit resources that can be combined
to create complex architectures. The key performance and
power benefits are realised by designing custom computational
datapaths suited to a particular application. An architecture is
described in a hardware description language (HDL), or more
recently using high level algorithmic code, and automated
tools work out how to build it using the components in the



FPGA, how they should be arranged on the grid of the FPGA
and connected, finally generating a bitstream — a binary file
loaded into the FPGA to implement the circuit.

By exploiting paralellism in an algorithm and tailoring
the computational datapath(s), an FPGA accelerator offers
a significant performance improvement over software on a
processor, often consuming significantly less power. Compared
to ASICs, there is no manufacturing process, turnaround time
is significantly reduced, and the design can be changed at any
time simply by loading a new bitstream.

Within the cloud context, FPGAs represent a promising
accelerator platform due to this application flexibility that pre-
serves the generality of the resource. Furthermore, an FPGA
can be shared spatially between distinct, isolated accelerators
that can be reprogrammable at runtime. This allows for a more
fine-grained approach to using hardware resources that fits the
ideas of scalability and sharing that are so fundamental in the
cloud.

B. Coupling FPGAs with Processors

The reconfigurable computing community has explored the
coupling of FPGAs with general purpose processors for a
long time [8]. Traditionally, the FPGA has acted as a stand-
alone accelerator with communication through I/O interfaces,
resulting in high communication overheads. Over time, the
FPGA has been brought closer to the CPU, resulting in
higher communication bandwidth and lower latency [9]. More
recently, integrated systems on chip, combining both general
purpose processors and FPGAs have emerged, such as the
Xilinx Zynq, offering extremely high data bandwidth between
the processor and FPGA, allowing for high performance
applications with interleaved hardware and software execution.
Coupling is of great importance as slow communication can
severely decimate the potential benefits of acceleration [10].
Recent FPGAs support very high bandwidth serial communi-
cation interfaces, including PCI Express (PCIe), allowing them
to be integrated in standard computing infrastructure, with
saturated interface bandwidth. Developments such as CAPI
will enhance this coupling further.

C. Partial Reconfiguration

Apart from the reprogrammability of FPGAs, partial re-
configuration could be key to adoption in the cloud. Just as
the virtual CPUs allocated to users are abstracted from the
physical CPUs of a server, allowing scaling and sharing, hard-
ware accelerators should also be virtualised on the hardware
resources. Partial reconfiguration is where only a part of the
FPGA is reconfigured instead of the whole device. Multiple
accelerator slots can host independently-managed accelerators
that do not interfere with each other, while the communication
infrastructure remains in place throughout operation.

Partially reconfigurable regions (PRRs) are defined, as
shown in Fig. 1, each able to host different accelerators. Partial
bitstreams contain all the configuration information required to
place an accelerator into a PRR. The static region is the part of
the FPGA that is not reconfigured at runtime and contains all
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Fig. 1. Partial reconfiguration of an FPGA to allow separate accelerators to
be loaded into distinct slots.

the communication interfaces and reconfiguration management
circuitry. Partial reconfiguration also allows for much faster
reconfiguration of accelerators.

III. EXISTING WORK

Incorporation of FPGAs in the datacenter is a relatively
new area of research. One proposed application is to pro-
vide better security and privacy by offloading sensitive data
processing into hardware since possible attack vectors are
limited [11]. Netezza’s data warehousing appliances perform
complex data filtering on FPGAs, with additional compres-
sion/decompression performed by spare resources [12]. Mi-
crosoft’s Catapult architecture represents the first detailed
investigation of applying FPGAs within an enterprise-level
datacenter application [7]. The document ranking part of Bing
search is accelerated using hardware split across 8 FPGAs
within a rack. They report almost doubled throughput in search
ranking at a cost of only 10% increased power consumption
and 30% increased total cost of ownership. Baidu presented
accelerated neural networks on FPGAs in the datacenter of-
fering an order of magnitude better performance at minimal
additional power cost [13]. In [14], the authors present FPGAs
in the cloud as standalone resources, treated separately from
standard (server) resources. In this setup the whole application
must run in the FPGA and traditional FPGA reconfiguration
over JTAG means extra cabling is required and reconfiguration
is slow. FPGAs were also explored for implementation of
core functions in intelligent personal assistants (IPAs), with
their performance per Watt exceeding CPUs and GPUs by a
significant margin [15].

Open source interface frameworks have emerged allowing
FPGAs to be integrated in PCs with communication through-
put between the host and FPGA close to the limits of modern
PCIe interfaces [16]. Reconfiguration and communication over
a single PCIe interface has also been demonstrated [17],
enabling accelerator swapping and overcoming the need for
extra cabling and drivers which can be problematic in a tightly
managed datacenter environment.

Key challenges to be addressed for a cloud-centric integra-
tion of FPGAs are:
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Fig. 2. Proposed FPGA in the cloud architecture.

• Support for dynamically reconfigurable accelerators to
support changing application needs with low latency

• Maximising communication throughput to multiple accel-
erators with fair, segregated sharing

• Maximised usage of FPGA resources at all times through
efficient scheduling and allocation

• Easy integration of accelerated tasks within software
applications

The work we have seen to date focusses primarily on FPGAs
as static accelerators or as monolithic devices brought online
for a particular task. We explore the benefits of virtualised
dynamically reconfigurable accelerators, with a view to using
FPGAs as a general computing resource alongside standard
resources.

IV. CLOUD FPGA FRAMEWORK

Our framework integrates a PCIe based FPGA board into
a standard datacenter server. The FPGA is partitioned into
separate accelerator slots. The PCIe interface manages recon-
figuration of the accelerators and movement of data into and
out of them. Accelerator functions are either stored in a library
on the host machine as partial bitstreams or can be uploaded
by the user.

We have extended a previous open-source partially recon-
figurable FPGA test platform [17] to support multiple inde-
pendent accelerators and added the required software frame-
work to enable accelerator management. The communication
interface is implemented in the FPGA static logic and can
manage multiple accelerators concurrently. A built-in arbiter
guarantees fair communication bandwidth to every accelerator
when multiple accelerators are communicating with the host
server. Accelerators are also configured over PCIe, providing
superior reconfiguration performance and avoiding the need
for external cabling.

We have developed software infrastructure to manage low-
level communication through a driver and high-level virtu-
alisation through a hypervisor. When an accelerator is to be
configured in the FPGA, the hypervisor decides on the optimal
PRR to host it and initiates reconfiguration. The hypervisor
also maintains a list of PRRs and configured accelerators to
avoid unnecessary reconfiguration when a required accelerator
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Fig. 3. A vFPGA (PRR) showing interface signals and adapters.

is already present in the FPGA and not in use. An outline of
our platform is depicted in Fig. 2.

A. Hardware Infrastructure

To host FPGAs in the cloud, standard datacenter servers are
used with commercially available FPGA development boards.

1) Host Servers: The server CPUs run the software com-
ponents for user request, FPGA resource, and communication
management. The servers also maintain a database of hardware
accelerators in the form of a bitstream library which can be
augmented with custom user designs. Servers can host multiple
FPGA boards of varying logic capacity and performance.
Using off-the shelf FPGA boards offers easy upgradability
and ensures minimal cost. These FPGA boards are interfaced
through a PCIe Gen 3×8 interface and come with on-board
DRAM for FPGA off-chip storage.

Each physical FPGA is divided into multiple partially
reconfigurable regions (PRRs), which act as virtual FPGAs
(vFPGAs) for hosting accelerators. vFPGAs are interfaced
with the host FPGA’s PCIe and DRAM physical interfaces
for communication and data storage. The logic to manage
these physical interfaces is implemented in the FPGA static
logic, meaning it is not reconfigured during FPGA uptime.
An interface switch ensures each vFPGA is served in a fair
manner with round robin arbitration for access to the PCIe
and DRAM data streams. vFPGAs can also be prioritised with
higher bandwidth if application needs are different. The switch
also implements independent DMA controllers to manage
data transfer between each vFPGA and the server. Each
physical FPGA has a reconfiguration controller, which enables
partial reconfiguration of the vFPGAs using a dedicated DMA
controller for high-speed partial bitstream transfer from the
server.

2) Virtual FPGAs (vFPGAs): A vFPGA is the smallest
FPGA instance available to cloud users, and the size can be set
based on anticipated demand, but also changed through a full
reconfiguration of the FPGA. A vFPGA can be configured
with a compatible partial bitstream to implement a virtual
FPGA accelerator (vFA). A vFPGA can host multiple vFAs,
whose size in terms of FPGA resources is smaller than that of
the vFPGA. To enable portability and simplify vFA design,
the vFPGAs all have a standard interface: a single AXI4-
Stream interface to the PCIe core and another AXI4-Stream



interface to external DRAM. Two other stream interfaces
connect adjacent vFPGAs, enabling accelerator chaining. Each
vFPGA also has an address/data interface accessible over
PCIe, an interrupt interface, and clock and reset signals, all
used to manage the functioning of the vFAs it hosts.

Every stream interface to/from a vFPGA is integrated with
the rest of the FPGA fabric through adapters as shown in
Fig. 3. These adapters are essentially AXI4-Stream based
asynchronous FIFOs, which enable the logic within the vF-
PGA (vFAs) to run at a different clock frequency from the
interface. This is important as some vFAs may not be able to
run at the interface line rate.

When multiple vFPGAs are active simultaneously, it is
important to make sure that the communication bandwidth
between the host and the vFPGAs is fairly partitioned. Lack
of bandwidth management leads to hosted vFAs suffering
from data starvation, leading to performance degradation. A
hardware arbitrator in the FPGA ensures bandwidth is equally
partitioned between all the active vFPGAs using modified
round-robin arbitration that considers only active vFPGAs.
This allocation is completely abstracted from the vFPGAs
ensuring a clean partitioning between them. Similarly, in
the host driver, separate DMA buffers are reserved for each
vFPGA to ensure data isolation.

B. Software Infrastructure

Managing hardware resources requires a number of software
components tailored to this task.

1) FPGA Driver: This is responsible for managing low
level PCIe input/output operations, DMA buffer management
and interrupt management. Our driver implementation main-
tains separate buffers and interrupt queues to manage data
transfer to each vFPGA enabling concurrent, partitioned DMA
operations to multiple vFPGAs.

2) Application Programming Interface (API): A supplied
API enables users to easily integrate vFAs in their software.
API functions enable data transfer between the host server
and vFAs, between off-chip DRAM and vFAs, vFA interrupt
management, and vFPGA reconfiguration. To initiate a data
transfer, the source and destination are passed as arguments
to the relevant API function. The framework, with the help of
the driver, configures the appropriate DMA controller in the
FPGA to initiate the operation. Each data transfer is synchro-
nised based on interrupt signals from the corresponding DMA
controller.

The public reconfiguration API only allows access to vFAs
stored in the accelerator library. However, a private reconfigu-
ration API can be exposed to users to support implementation
of their own vFAs subject to security considerations.

3) Hypervisor: The hypervisor is implemented as part
of the cloud virtualisation layer, supporting management of
FPGA resources.

Resource Management: When the cloud supports multiple
vFPGAs and multiple FPGA boards, a resource manager is
required to manage them. The allocation of vFAs to vFPGAs
is hidden from the user in the same way that they would not

know which physical CPU core a vCPU is run on. This enables
the management infrastructure to consolidate resources for
best performance and efficiency. We implement a resource
manager that considers the correlation between vFA size
and vFPGA size. The resource manager maintains a list of
available vFPGAs, which accelerators they each support, and
their allocation status. It also has access to the accelerator
database, where partial bitstreams corresponding to different
vFAs targeting multiple vFPGAs are stored.

When a user requests an accelerator, a new software thread
is generated to serve it. It requests a specific vFA reconfig-
uration and later manages data movement between the host
and the vFA. When the resource manager receives a vFA
reconfiguration request, it selects the smallest vFPGA capable
of hosting it from the pool of free vFPGAs. The hypervisor
makes sure that only a single vFPGA is reconfigured at any
time, since partial reconfiguration is not preemptive. Once a
vFPGA is selected, it is marked as busy in the vFPGA list and
the configured accelerator is also noted. If a vFPGA cannot be
allocated, the user request is rejected and the corresponding
software thread is destroyed. A vFPGA is returned to the
free pool once the request has been serviced. Once freed, a
subsequent request for the same accelerator can be serviced
without reconfiguring. Unused vFPGAs can also be configured
with blank partial bitstreams to reduce power consumption.

If the resource manager is unable to find a free vFPGA
to host the accelerator, the user request is rejected, and the
request can be processed in software instead. By selecting
the smallest possible vFPGA for the accelerator, the resource
manager tries to maximise the number of vFPGAs available
for implementing larger accelerators, thus minimising request
rejections. Presently, vFPGA allocations are non-preemptive
and a vFPGA is returned to the free pool only after fully
servicing a user request. It is clear that vFPGA granularity
must be chosen to reflect the types of accelerators and expected
user workloads for benefits to be maximised.

Security Management: Using FPGAs in a shared infras-
tructure environment can create security issues, since users
with the ability to reconfigure FPGAs might launch malicious
attacks through corrupt bitstreams. This can be circumvented
either through abstracting the accelerator library so no direct
accelerator configuration is allowed, or through extra security
steps during the client accelerator design process. Features
such as bitstream encryption and CRC insertion are supported
by FPGA implementation tools and bitstream authentication
and error checking are supported in the FPGA silicon.

We implement additional bitstream authentication to prevent
potential malicious bitstreams using bitstream watermarking.
In the server, every new bitstream is authenticated based
on the watermark before being used for reconfiguration and
implementation scripts are secured to prevent tampering.

4) Middleware: This is the software running on the client
machine which enables it to access the cloud services. We
have developed a prototype lightweight middleware interface
that enables users to send accelerator requests (or custom vFA
bitstreams) and container software using the cloud API, then
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send input data to the cloud using the server’s IP address,
before receiving the resulting processed data. The middleware
uses Linux sockets with TCP/IP to access the server.

Fig. 4 shows our middleware protocol for accessing li-
brary accelerators. Users initially request the cloud service
by sending a connection request to the cloud server. If the
request is accepted, the hypervisor pushes the request onto
a FIFO and acknowledges it. When the client receives an
acknowledgement, it can request a specific vFA using a
predefined accelerator tag. The hypervisor resource manager
tries to allocate a vFPGA for the vFA; if one is allocated,
an acknowledgement is returned and the client sends the
input data. The software thread on the server reconfigures the
vFPGA with the requested vFA, sends it the input data, and
receives the processed data, which is then sent back to the
client along with a data request acknowledgement. This is
currently mostly a proof of concept, and we are developing
more advanced features.

V. CASE STUDY

We have implemented the proposed cloud hardware in-
frastructure on a Xilinx VC709 FPGA board containing a
XC7VX690T FPGA, supporting PCIe Gen 3×8, and hosting
8GB of on-board memory. It is hosted in an HP Z420 with an
Intel Xeon E5-1650 v2 CPU running at 3.5 GHz with 16GB
of RAM. The large FPGA offers ample resources for complex
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Mapper scheduler

Reducer

256

32 32 32 32

PCIe Data Stream
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Count 1 Count 2 Count 3 Count 4

Fig. 6. vFA architecture for word count.

accelerators. Our custom hardware logic for PCIe and DRAM
communication and reconfiguration management consumes
about 7% of the FPGA area and is implemented statically.
The remainder of the FPGA is divided into 4 vFPGAs as
shown in Fig. 5, allowing this implementation to host up to
4 independent accelerators concurrently. A new vFA can be
configured in under 16 ms.

As an application case study, we built a map-reduce accel-
erator for word counting, which finds the number of occur-
rences of a specified word in a large data set, useful in data
mining applications. The vFA receives a 256-bit data stream
at 250 MHz over PCIe. A mapper scheduler passes the data
to one of a number of mappers, that each count the number
of occurrence of the specified word. Data is stored in a 256-
bit to 8-bit asymmetric FIFO which buffers data locally and
splits it into distinct characters that are sequentially moved
into a shift register. When a non alpha-numeric character
is encountered, it is compared with the query word and if
they match, an internal counter is incremented and the shift
register is flushed. The accelerator design is highly scalable
supporting a large number of parallel mappers in a single
vFA. We built multiple vFAs targeting the same vFPGA with
1–64 mappers. The outputs of all the mappers are connected
to a single reducer, which periodically adds the output from
all the mappers and finds the total count. This value can be
read-back through the PCIe interface. A software version of
the application was implemented in C based on the efficient
Boyer-Moore algorithm [18].

Software performance saturates at 8 mappers as the server
processor cannot efficiently support more threads, resulting in
a peak throughput of 40.8 MB/s. A single hardware mapper
provides up to 240 MB/s throughput and as the number of
mappers increases, the performance improves up to over
6.8 GB/s for 32 mappers, beyond which there is no significant
improvement as the PCIe bandwidth is saturated (86%). All
experiments start with a file of given size buffered in memory
and the results being stored to memory, so the hardware results
include all required movement of data to and from the FPGA.
This performance gap of 166× varies by application, but over
a full order of magnitude is possible for many classes of
applications.
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We also investigated performance per Watt and quantified
the cost of virtualising the FPGA with distinct slots for
separate mappers and separate management of the vFAs. The
standalone idle power consumption of the target server is
about 75 W. The VC709 board consumes 24 W, with negligible
change when running accelerators. The software application
consumes an extra 70 W (145 W total) when at peak through-
put. The vFPGA resource management threads result in a total
CPU power consumption of 128 W at peak throughput. Fig. 7
shows the significant gap between hardware and software, and
shows that even factoring in the software management of the
vFAs and the reconfiguration time to load them, the efficiency
of the virtualised hardware (blue line) remains 2 orders of
magnitude higher.

Adding an FPGA board adds a fixed power consumption
overhead to the server, so we consider how much usage
the FPGA requires before this overhead is amortised. Fig. 8
shows that the virtualised FPGA implementation surpasses the
software only computational efficiency once the FPGA is used
over 12% of the time.

VI. CONCLUSION

Integration of heterogeneous hardware resources in the
cloud offers an opportunity to significantly improve perfor-
mance and computational efficiency, while overcoming stalled
CPU performance scaling. FPGAs offer the advantages of high

communication bandwidth shared among multiple accelerators
and dynamic loading of accelerators at run time through partial
reconfiguration.

We have presented a prototype framework for integrating
virtualised FPGA accelerators in the cloud using partial recon-
figuration and virtualised communication interfaces. We also
detailed a case-study that demonstrates that even with the vir-
tualisation overhead, FPGAs offers a significant improvement
in computational efficiency over software.
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