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Abstract

In this paper we consider estimation of common structural breaks in panel data models
with interactive fixed effects which are unobservable. We introduce a penalized principal
component (PPC) estimation procedure with an adaptive group fused LASSO to detect the
multiple structural breaks in the models. Under some mild conditions, we show that with
probability approaching one the proposed method can correctly determine the unknown num-
ber of breaks and consistently estimate the common break dates. Furthermore, we estimate
the regression coefficients through the post-LASSO method and establish the asymptotic
distribution theory for the resulting estimators. The developed methodology and theory are
applicable to the case of dynamic panel data models. The Monte Carlo simulation results
demonstrate that the proposed method works well in finite samples with low false detection
probability when there is no structural break and high probability of correctly estimating
the break numbers when the structural breaks exist. We finally apply our method to study
the environmental Kuznets curve for 74 countries over 40 years and detect two breaks in the

data.
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1 Introduction

As the availability of panel or longitudinal data increases in the last few decades, panel data
studies have become increasingly popular among a wide group of statisticians and econome-
tricians. Analysis of panel data sets has various advantages over that of purely time series or
cross-sectional data sets. A relatively less exploited advantage of the panel data is that it pro-
vides researchers with more flexibility to model cross-sectional dependence over individual units
and uncover possible structural changes over time. Structural breaks are, indeed, quite common
in many areas such as economics and finance, and may occur for various reasons. For example,
the celebrated environmental Kuznets curve may shift as a result of a growing public awareness
of environmental issues, a technological breakthrough, or an international coordination and co-
operation on environmental protection. If such structural changes are ignored in the modelling,

subsequent statistical analyses may lead to incorrect inferences or misleading predictions.

In recent years, there has been a growing literature on the estimation and test of structural
breaks in panel data models. Generally speaking, most of the existing literature falls into two
categories depending on whether the parameters of interest are allowed to be heterogenous across
subjects or not. The first category focuses on homogenous panel data models (c.f., De Watcher
and Tzavalis, 2012; and Qian and Su, 2015b) and the second category considers estimation
and inference of common breaks in heterogenous panel data models (c.f., Bai, 2010; Kim, 2011;
Baltagi et al., 2015). Despite the vast literature on multiple structural breaks in the time
series framework (c.f., Csorgd and Horvéath, 1997; Bai and Perron, 1998; Qu and Perron, 2007;
Harchaoui and Leévy-Leduc, 2010; Chan et al., 2014; Qian and Su, 2015a), most of the existing
work on panel structural breaks focuses on the estimation and inference of a single structural
break in panel data models. The only exception is the paper by Qian and Su (2015b) which
considers shrinkage estimation of common breaks in panel data models. However, Qian and
Su’s (2015b) modelling framework does not allow the existence of cross-sectional dependence,
which limits the applicability of their techniques as cross-sectional dependence commonly exists

in many panel data sets nowadays (such as the panel climate and environmental data).

In this paper, we aim to estimate multiple structural breaks in panel data models with

cross-sectional dependence which is described through the unobservable interactive fixed effects.



Such a cross-sectional dependence structure has received increasing interest in the analysis of
panel data in recent years; see, for example, Pesaran (2006), Bai (2009), Bai and Li (2014), and
Moon and Weidner (2014, 2015). However, to the best of our knowledge, there is virtually no
work on estimating multiple structural breaks in panel data models with interactive fixed effects
and possible dynamic structure (such as the dynamic autoregressive panel data models). As in
Qian and Su (2015b), we apply the shrinkage idea through the adaptive group fused LASSO
(AGF-LASSO) to estimate the multiple structural break dates. Nevertheless, the existence of
the unobservable interactive fixed effects in our model makes the estimation techniques and the
development of the asymptotic theory much more involved than those in Qian and Su (2015b). In
Section 2 below, we introduce a novel penalized principal component (PPC) estimation procedure
via AGF-LASSO to estimate both the regression coefficients and the factor loadings. Similar
to the sparsity result in the high-dimensional variable selection literature (c.f., Fan and Li,
2001, 2006), we establish the consistency for the detection of multiple structural breaks, which
indicates that both the number of breaks and the break dates can be consistently estimated.
Furthermore, we also estimate the regression coefficients through the post-LASSO method and
then establish the asymptotic distribution theory of the resulting estimators, which generalizes
the results in Bai (2009) and Moon and Weidner (2014) where there is no structural break.
The simulation studies show that the proposed PPC method has a high probability of correctly
estimating the number of breaks when the structural breaks exist in panel data models, and a
low probability of false detection when there is no structural break. Furthermore, we study the
environmental Kuznets curve for 74 countries over 40 years by using our method and find that

there exist two structural breaks in the data.

The rest of the paper is organized as follows. Section 2 introduces the model and the PPC
estimation method. Section 3 gives the asymptotic properties for the PPC estimator as well as
the post-LASSO estimator. Section 4 discusses the determination of the number of the factors
and the choice of the tuning parameter in the PPC estimation procedure and reports the Monte
Carlo simulation results. Section 5 gives the empirical application of the proposed model and
method. Section 6 concludes the paper. Appendices A and B give the assumptions and the
proofs of the asymptotic results, respectively. Some technical lemmas as well as their proofs are

collected in Appendix C of the supplemental document.

Notation. For an m x n real matrix A we denote its transpose as A’, its Frobenius norm as
|A||l (= [tr(AA")]Y/?), its spectral norm as Al (= [ (AA’)]l/Q), and its Moore-Penrose

Nmax



generalized inverse as A1, where p,.. (-) denotes the maximum eigenvalue of a square matrix.
Let P4 = A(A’A)Y A" and M 4 = I,,, — P4, where I, is an m x m identity matrix. When
A is symmetric with m = n, we use u,(A) to denote its rth largest eigenvalue by counting
multiple eigenvalues multiple times, and p,,,,.(A) and p,;,(A) to denote the largest and smallest
eigenvalues of A, respectively. Let vec(A) be the vectorization of A and Tr(A) the trace of a
square matrix A. Let 0 denote a null matrix or vector whose size may change from line to line,
and 1{-} be the usual indicator function. The operator 2 denotes convergence in probability,
B convergence in distribution, and plim probability limit. We use (N,T) — oo to denote that

both N and T pass to infinity jointly.

2 Model and estimation

In this section, we first introduce a panel data model with interactive fixed effects and an

unknown number of structural breaks, and then propose the PPC estimation method.

2.1 The model

Let Yj; be the dependent variable for subject ¢ measured at time t where ¢ = 1,..., N, and

t=1,...,T. We consider the following panel data model with interactive fixed effects
Y;'t = B;X’Lt + A;ft + Eit, 1= 1, veey N, t= 1, ...,ZT7 (21)

where X;; is a p x 1 vector of explanatory variables, §; is a p x 1 vector of unknown slope
coefficients which may change over time, A; and f; denote an Ry X 1 vector of unobservable factor
loadings and common factors, respectively, both of which may be correlated with X;;, and €
is the idiosyncratic error term. The dimension of the unknown coefficient vector, p = pyr, is
allowed to be diverging as (IV,T) — oo, and the dimension of the vectors for the factor loadings
and common factors, Ry, is a fixed positive integer. Throughout the paper, we denote the true
value of a parameter vector with a superscript 0. For instance, B?, )\? and f? denote the true
values of B;, A; and f;, respectively. We allow the regression coefficients to vary over the time
and model (2.1) thus includes the classical linear panel data models with interactive fixed effects
(c.f., Pesaran, 2006; Bai, 2009; Moon and Weidner, 2015) as a special case. As in these papers,
we assume that both the cross-sectional size N and the time series length T pass to infinity,

which is called as “large dimensional panel” in the literature.



In this paper we assume that the true regression coefficients {B?,...,ﬁ%} exhibit certain
sparse nature such that the total number of distinct vectors in the set is given by m" + 1, which
is unknown but typically much smaller than the time series length 7. We allow m® = mT to be

divergent at an appropriate rate as T' — oco. More specifically, we let

Bl =a) fort="T, .., T) —1with j=1,..,m°+1,

where we adopt the convention that 7 = 1 and Tglo gn=I+1 The indices T]Q, j=1,..,m°,

Y unobserved break points/dates and the number m" + 1 denotes the

indicate that there are m
total number of regimes. We are interested in estimating the unknown number of structural
breaks, the unobservable break dates, and the regression coefficients in different regimes. Let
B = (8 87) s am = (1) A= (A, A0y s ANy F = (f1, for ooy fr)s and Ty, =
(T1, ..., T,,) . Throughout the paper, we use m?, a?no = (a(l)’, ...,a%oﬂ)/ and 7;20 = (Tlo, ”'7T7’(I)’LO>
to denote the true number of structural breaks, the true vector of distinct regression coefficients,

and the set of true break dates, respectively.

2.2 PPC estimation

We consider the PPC estimation of the unknown components ([30, A°, FO), the true values of
(B, A, F) Let Y; = (Ylt, . YNt), and X; = (Xlt, e XNt),. In order to apply the PPC method,

we define the objective function through

N T T
Qi (A F) = 37 230 (= Xy =N+ 7 i =il @2)
t=2

i=1 t=1

which can be written as

T
1 L
NT Z - XiBy — Aft) (Ve — XeBy — Afi) + T Z Wy Hﬁt -
t=1 t=2
where v = yy7 > 0 is a tuning parameter and w; is a data-driven weight defined by

we = |8y = Bea|| 5 t=2,.0T, (2.3)

ﬁt, t =1,...,T, are the preliminary estimates of the regression coefficients ,, and « is a user-
specified positive constant that usually takes value 2 in the literature. In this paper, the pre-
liminary estimation {Bt,t =1,..., T} is constructed to minimize the first term of the objective

function in (2.2) by ignoring the penalization device.



By concentrating F' out in the first term of the objective function (2.2), we can readily obtain

the following objective function

T
Qur (B.,A) = Qur (B, A) + %> i |8 = B4 (2.4)
t=2

where
T

QNT (BA) = NlT Z (Y — Xtﬁt)/ M (Ye — Xif3y) .-

Following Moon and Weidner (2014), we can further concentrate A out in (2.4) and obtain the

objective function

T
QntH (B) = Qnr (B %Z e 18 = Beall (2.5)
t=2
where .
Qwr (8 Z o [ 0 (= X8 (Vi = X' | (2.6)
r=Rop+1 t=1

It can be seen that the penalization device in the above objective functions is closely related
to the literature on the adaptive LASSO (Zou, 2006), the group LASSO (Yuan and Lin, 2006),
and the fused LASSO (Tibshirani et al., 2005; Rinaldo, 2009). The use of the Frobenius norm ||-||
for the vector difference 5, — 5;,_; generalizes the fused LASSO to the group fused LASSO; and
the use of the weights {uw;} makes the LASSO procedure adaptive. Therefore, we can call our

penalized estimation procedure as an adaptive group fused LASSO (AGF-LASSO) procedure.

Following Bai and Ng’s (2002) principal component method under the identification restric-
tions that A’A/N = I'p, and F'F is a diagonal matrix, the minimizers to the objective function

defined in (2.4), B = (B;, ,B/T)/ and A satisfy that

N ~ ~

B = arg min QN1 (B, A), (2.7)

and

T
[ > (Y= %) (v = X3 | A = AV s (2.8)

where V yr is a diagonal matrix consisting of the Ry largest eigenvalues of the matrix in the
square brackets in (2.8) arranged in descending order. Furthermore, the common factor F° can

be estimated by

~ ~ ~ A~

F = (fi,foy . fr) with f;= N_lA/(YZ — X13,). (2.9)



An iterative algorithm based on (2.7) and (2.8) can be implemented in practice to estimate 8
and A°. Note that the above calculations are different from those in the existing literature such
as Bai (2009) and Lu and Su (2015) by switching the role of A and F', because the regression

coefficients are heterogeneous over time.

With the estimated regression coefficients Bt, the set of estimated break dates are given
by T = (Th,...,Ty) where 2 < Ty < ... < Ty, < T such that |8, — 3,1 # 0 at t = T}
for j = 1,...,m. The set Ty, divides the time interval [1,7T] into 7 + 1 regimes such that the
parameter estimates remain constant within each regime. Notice that if T = T, the last break
occurs at the end of the sample and the (1 + 1)th regime has only one time series observation
for each cross-sectional unit. Let Ty = 1 and Tm+1 =T+ 1. Define &; = &; (7'm) = IBTJ’—I as the
estimate of ag for j = 1,...,m + 1. In the sequel, we usually suppress the dependence of &; on

= . ~ ~ N A /
Ty (or the tuning parameter ) unless necessary. For example, we let éu;, = (84,85, ..., &5, 1)

which denotes olm(j'm) = [&1(7'751)/,562(7—7%)/7 cee dm+1(7—m)/],-

3 Asymptotic properties

In this section, we give the large sample theory including the consistency of the proposed PPC

estimator and the limiting distribution of the post-LASSO estimator.

3.1 Consistency of the PPC estimator

We start with the consistency result of the PPC estimator 3 with preliminary convergence rates.

Theorem 3.1 Suppose that Assumptions 1 and 2(i)(ii) in Appendix A holds. Then we have
(i) B = BI*/T = Op (p/N +1/T) = Op (8,31). and (ii) |[B, = 87| = Op (6,7 ), where
Sp.Nn1 = min(y/N/p, VT).

Theorems 3.1 (i) and (ii) establish the preliminary mean square and point-wise convergence
rates of {Bt}, respectively, which is a very general result by allowing the existence of multiple
jumps or drops in the regression coefficients. As we allow the regression coefficients vary over
time, there is less observational information available for the estimation of each regression coef-
ficient (compared with the model without any structural break). This would in turn affect the
estimation accuracy of the factor loading matrix and convergence rates for the parameter esti-

mators. The divergent dimension of the regression coefficients at each time point further slows



down the convergence rates. It is easy to find that the total number of the unknown elements
in the set {B?} is pT'. Hence, it is not surprising that in Theorem 3.1 we can only obtain the
Op (5; }VT) convergence rate for the PPC estimator Bt, which is much slower than the optimal
root-(NT') rate obtained by Bai (2009) and Moon and Weidner (2014) (after bias correction)
when there is no change point for the regression coefficients and the dimension of the regression

coefficients is fixed.

Recall that 7'720 = {Tlo, ...,TT%O} denotes the set of true break dates. Let 7¢ = {2,....,T}
\72. Let 69 = 89, 61 = B3y, 0) = 8) — Y, and 6, = B, — B,_; for t = 2,...,T. The following
theorem establishes the detection consistency, which, in some sense, is analogous to the sparsity

result in the high-dimensional variable selection literature.

Theorem 3.2 Suppose that Assumptions 1 and 2 in Appendiz A hold. Then

(N’ljiﬂr)rioo P(Hétﬂ =0 forallt € T°) =1.

Theorem 3.2 shows that with probability approaching one (w.p.a.l), all the zero vectors
in {9?} must be estimated as exactly zero, which is a well-known sparsity result in the high-
dimensional variable selection literature (c.f., Fan and Li, 2006). On the other hand, by Theorem
3.1(ii), we know that the estimators of the nonzero vectors in {9?} are consistent by noting that
B, — B, consistently estimates # = 87 — 8% . A combination of Theorems 3.1 and 3.2 implies
that the AGF-LASSO penalty has the ability to identify the true regression model with the
correct number of structural breaks and the correct break dates, which is stated in the following

corollary.
Corollary 3.3 Suppose that Assumptions 1 and 2 in Appendiz A hold. Then (i)

lim P (m=m’) =1,
(N, T)—o0

and (ii)

: T 0 0
(N}Tlggoo P(Ty = T2, ..., o = T%) = 1.

3.2 Post-LASSO estimation

We next introduce the post-LASSO estimation of the regression coefficients, which can improve

the convergence rate of the PPC estimation given in Theorem 3.1. For any p(m + 1)-dimensional



vector o, = (oe’l,...,o/mﬂ) and T, = {Th,....,Trn} with 1 < Ty < ... < T}, < T, we define the

objective function by

1 Fin 2
Qnr(om, A F;Ty) = NT Z (Yie — Xjyo; — X f)
j=1 t=T;_; i=1
1 ™ i—1
= N7 (V; — Xy — Afy) (V2 — Xioj — Afy). (3.1)
J=1t=T;_1

By concentrating F' out in the above objective function, we readily obtain the following post-
LASSO objective function

m+1 T;—1
Anr (o AsTo) = == > Y (Vi — Xpa)) MA (Y — Xi0). (3.2)

j=1t=T;_,
Let & (Tm) = [@1(Tm)'s oo ms1(Tr)']" and A (Tin) = [M (T, - AN(Ti)]” denote the mini-
mizers of the objective function defined in (3.2) for given Ty,. By setting 7,, as T = (Tl, ey Tm),
the set of the estimated break dates constructed in Section 2.2, we obtain the post-LASSO es-

timators &, = & () and A = A(T5,).

We next study the asymptotic distribution of the post-LASSO estimators. Corollary 3.3
above implies that w.p.a.1 m = m° and Tj = TJQ for j = 1,...,m". Hence, it follows that d;,
is asymptotically equivalent to the infeasible estimator e,,0(7,,0) which is obtained only if one

knows the set 7;20 of the true break dates. Let 7;(T") = TJQ — T]Q_l,

Byr(1) = [Byri(1), . Bypmoy1(1)']" and
Bnr(2) = [Bn71a(2,1) = By1i(2,2) s o, BNrimo11(2,1) — Bygmos1(2, 2)/]I7

where for j =1,....m" 4+ 1
1 1 - 1
Byrj(1) = 5 Z XiMj ee "Ao (& AO’Amo)+(TF0/F0)+fE,

1
Z XA AO’AO) (TFO’FO NTZ foeleyr),

a2 = iy S XA AN (L (G )



and ef = %Zzzl Xgt€s With xg = fg’(%FO’FO)+ftO, e = (e1,...,er) with g, = (51t7---75Nt)/'
We then define
Byt = Q3 [Bryr(1) + Byr(2) — Byr(3)],

where Qn7 and Byp(3) are defined in Appendix A. Let

Dyt = diag{\/m, SRV NTmO—I-l(T)} ® Ip,

where ® denotes the Kronecker product, and S be a k” x p(m® + 1) matrix with full row rank

and k° being a fixed positive integer.

Theorem 3.4 Suppose that Assumptions 1-8 in Appendiz A hold. Then conditional on m =

m?, we have

SD 7 (& — a® + Byr) -2 N(0, SQFQ,978),
where Qo and Q1 are defined in Assumption 3 in Appendix A.

Despite the use of different notations and proof strategies, Q@ Bnr(1) and Q%,Bnr(2)
correspond to the terms —C and —B in Bai (2009) or —W~!B3 and —W !B in Moon and
Weidner (2014), respectively. However, these two papers assume that the dimension p is fixed and
there is no structural break on the regression coefficients. Hence, our asymptotic distribution
theory is derived under a more general framework. Like the term —W~'B; in Moon and
Weidner (2014), 3B n7(3) arises here because we allow the regressor vector X;; to contain
lagged dependent variable (e.g., Y; ¢—1) and it is vanishing under Bai’s (2009) conditions A-E that
include the independence between €5 and (Xjs, )\?, 1Y) for all i, ¢, j, s and thus rule out dynamics
in the regression equation. As Bai (2009) remarks, in the absence of both serial/cross-sectional
correlations and heteroskedasticity and under his Assumption D, all of these three bias terms are
asymptotically negligible. In the general case, the bias terms of the post-LASSO estimates can
be removed by constructing a bias-corrected estimate. Following Bai (2009) in the case of static
panels or Moon and Weidner (2014) in the case of dynamic panels, one can easily construct a
bias corrected version of our post-LASSO estimate. We omit the details as the extension is quite
straightforward.

Note that the above theorem holds without requiring that N and 7" diverge to infinity at the
same speed and the latter condition was assumed in both Bai (2009) and Moon and Weidner
(2014). For the easiness of presentation, we need to assume that 7;(7") = T]Q - T]Q_1 o T/mY in

Assumption 3(ii) in Appendix A, which implies that each regime specific regression coefficient

10



vector ozg-) can be estimated at the same convergence rate Op(y/pm?/(NT)) after possible bias
correction. Apparently, it is possible to weaken this last assumption to T]Q — T]Q_1 — oo and
then we can anticipate that &; (7,,)’s would have different convergence rates to their true values

across different regimes.

4 Practical issues in model estimation and simulation study

In this section we first discuss the determination of the number of factors and the choice of the
tuning parameter « in the PPC estimation procedure, then introduce the algorithm to implement
the estimation method, and finally conduct a set of Monte Carlo experiments to evaluate the

finite sample performance of the proposed method.

4.1 Determination of the number of factors

In the above analysis we assume that the number of factors Ry is known. In practice, one has to
determine it from data. Here we use R to denote a generic number of factors and assume that
it is bounded from above by a finite integer Rpnax > Ro. We propose a BIC-type information
criterion to determine Ry before embarking on the AGF-LASSO procedure.

Let Bu Rs ft, r and )\Z r denote the PCA estimators (without the penalization device) of j;,
fi,r and \; g by assuming R factors in the model using the normalization rule: AfRA r/N =1Ig
and F', Fp is a diagonal. Note that we have made the dependence of the parameters and their

. . . !/
estimators on R explicitly here. Let B = (B/l,Rv ey ﬁIT7R> . Define

% ZTj (Yi- Xibor) (Yi- XtBt,R)/] -
t=1

Following Bai and Ng (2002), we consider the BIC-type information criterion defined by

1 N
V(R Br) =~ D M
r=R+1

BIC(R) =InV(R,Bg) + pi R, (4.1)

where p; = py yr is pre-determined which plays the role of In (NT) /(NT) in the case of the
conventional BIC criterion. Let R = arg ming<g<g,,., BIC (R), which estimates the number of

the factors.

Theorem 4.1 Suppose that Assumptions 1—4 in Appendiz A hold. Then

P(R:R()) — 1 as (N,T) — oc.

11



The above theorem shows that the use of BIC (R) can consistently estimate Ry. To implement
the above information criterion, one needs to choose the penalty coefficient p;. Following Bai
and Ng (2002), we can set

(N+T)p. [ NT (N+T)p.
n="pnp yiz) ="y ()

where 67 = min{v/N, T} is defined as in Section 3. The penalty coefficient in Bai and Ng
(2002) corresponds to p = 1 in the above definitions of p;. In our simulations we use the first

specification of p, and search for R in the range of {1,2,...,5} when Ry = 2.

4.2 Choice of the tuning parameter

We now discuss the choice of the tuning parameter v in the PPC estimation procedure, which

is an important issue when the penalized methodology is used in practice. Let

&, = G, (Tin,) = [61(Ti, ) s ooes i 11 (T, )]
denote the set of the post-LASSO estimates of the regression coefficients based on the break
dates in ’fdmﬂ{ = T (7), where we make the dependence of various estimates on v explicitly.
Let 6’2(7%7) = QNT(de,A,F; ﬁﬁw)’ where F' is defined similarly to F' in (2.9) with A and
Bt replaced by A and dj(’f'mw) when Tj_l <t< Tj — 1. We then propose to select the tuning

parameter v by minimizing the following information criterion:

IC(y) = In [6*(Ts,)] + pap(y + 1), (4.2)
where py = py yo is pre-determined such that p, — 0 and padir — 00. Let 4 =argmin,, IC (7).
Theorem 4.2 Suppose that Assumptions 1-2 and 3(ii) and 5 in Appendiz A hold. Then
P (1h5 =m®) — 1 as (N,T) — cc.

The above theorem shows that by minimizing IC (), we can obtain a data-driven 4 that
ensures the correct determination of the number of breaks. When we minimize the objective
function in (4.2), we do not restrict v to satisfy Assumptions 3(i) and (iii) in Appendix A. If
these two additional conditions also hold, we know from Corollary 3.3 that 7y = m® w.p.a.l.
But in practice, it is hard to ensure such conditions and Theorem 4.2 becomes handy.

In the following simulation, we choose p, = clog(min(N,T"))/ min(N,T), where c is a positive

constant. This choice of p, satisfies the two restrictions specified above. To implement the

12



information criterion in practice, we find an upper bound for the tuning parameter that

» Ymax>
would yield zero break in every data generating process (DGP), and a lower bound ~,,;, that
would yield many breaks. We then search for the optimal tuning parameter on the 20 evenly-
distributed logarithmic grids in the interval [V, VYmax)- L0 determine ¢, we use a data-
driven method that is similar to the one in Hallin and Liska (2007). Specifically, given an
Ny > 0, we examine subsamples (Yi, Xit), ¢ = 1,...,N;, t = 1,...,T, where j = 1,...,J and
No < Ny <--- < Nj = N. We examine a range of possible values for ¢, say [¢min, Cmax], Where
Cmin leads to a large number of breaks and cp,.x leads to zero break for all choices of . For each
¢, we find the number of breaks in each subsample, 1, with j = 1,...,J. Let m, = % ijl mj,
we select the smallest ¢ € [cmin, Cmax] that satisfies S, = %Z (M — mC)Q =0and m. < T —1.

Intuitively, the constant ¢ should be chosen such that the estimated number of breaks is constant

across the subsamples. In our simulations we set N; = N —J 4 j and J = 3.

4.3 Implementation of the estimation method

The implementation of the PPC estimation method consists of two steps. In the first step, the
preliminary estimation Bt is obtained along with the estimated number of factors R. Given
a generic number of factors, Bt is obtained by minimizing the first term of Q NT (,8, A, F) in
(2.2). The minimization problem is solved using an iterative algorithm based on (2.7) and (2.8)
with QNTN(B,A) replaced by QNT(ﬁ,A), the first term of QNTW(,B, f\) The starting values
for the iteration are chosen to be the pooled least squares estimates, assuming that coefficients
are time-invariant and that no factor structure exists.

In the second step, given a generic tuning parameter v, we use the following iterative algo-
rithm to minimize Q NTp (,[3, A, F), yielding the set of breaks corresponding to . Let 61 = (3,
and 6, =3, — B,_1,t=2,...,T,and let @ = (61,...,07),

(1) Initialize ®), which implies an initial set of breaks and an initial estimation of parameters

in each regime.

(2) Given the initial set of breaks and parameter estimates, calculate factors F® using eigen-

value decomposition, where the superscript (' denotes the i-th iteration.

(3) Given F update %) (or equivalently %)) that minimizes QNT’7 (B,A) in (2.4). This

calculation utilizes a block-coordinate-descent algorithm similar to Qian and Su (2015b).
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The updated o) implies a new set of breaks, and the post-LASSO procedure is used to

obtain new estimates of parameters in each regime.

(4) Repeat (2)-(3) until [|0® — 80~V drops below a pre-determined threshold. Use the post-

LASSO procedure to obtain the final estimate of parameters, factors and their loadings.

In the above iterative algorithm, the starting values for the iterations are chosen to be the
preliminary estimates of the coefficients obtained in the first step. The post-LASSO procedure
minimizes Qnr (am, A F; Tm) in (3.1) with 7, replaced by the estimated set of break dates
in each iteration and with the starting values chosen to be the pooled least squares estimates
as in the first step. Finally, we obtain the set of break dates using the tuning parameter that

minimizes |C () defined in (4.2).

4.4 Simulation

We consider the following data generating processes:
Y;t :ﬁltZit+/82tXit+)\;ft+guita i = 17"'7N7 t= 17"')Ta

where f; = [f;(1), ft(2)], and \; = [Ai(1), )\i(2)]/ are two-dimensional random vectors, and

o DGP-1 (benchmark): X; "% N(0,1), Zi = 1, \; “&" N(0, I5), f "% N(0,I3), both A;
and f; are independent of X, u - N(0,1) and is independent of X;;, A; and fi;

e DGP-2 (serial correlation in the common factor and heteroskedasticity in the error): X,
Zit, and \; are defined as in DGP-1, each of the two element in f; is an AR(1) process
with unit variance: fi(k) = 0.5f,_1(k) + (k) with e = [ex(1),&(2)] "< N(0,0.75I5),
wir = (0.75 4 0.1522) i, with 07, " N(0,1) and independent of X;;, A; and f;;

e DGP-3 (dependent factors and serial correlation in the error): X;; = 0.5\, f; + 0.5(\.t +
Fl0) + % with 7%, "% N(0,1) and « = (1,1)’, Zi and \; are defined as in DGP-1, f,
is defined as in DGP-2, for each i, u; is an independent ARMA(1,1) process with unit

variance such that wi; = 0.5u;—1 + € + 0.5¢/",_;, where € <y N(0,3/7).
e DGP-4 (dynamic panel): X =Yi; 1, Zit i N(0,1), A; and u;; are defined as in DGP-1,
ft is defined as in DGP-2.
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In order to evaluate the performance under different noise levels, we select the free parameter
o to be either 0.5 or 1. In DGP-1 with no breaks, ¢ = 1 roughly corresponds to a signal-to-noise
ratio of 1. We also experiment on different levels of factor loadings A; and find that the impact

of the magnitude of the factor loadings on the performance of our method is small.

DGP-1 serves as the benchmark case where both the regressor and the idiosyncratic error
are sequences of strong white noise. DGP-2 introduces serial correlation in the common fac-
tor f; and conditional heteroskedasticity in the model errors. DGP-3 allows the dependence of
both the factor loadings and common factors on the regressor. In addition, DGP-3 introduces
serial correlation into the model errors, so the estimated model may be dynamically misspec-
ified. DGP-4 has a dynamic panel AR(1) structure. We experiment on four combinations of
dimensions: (N,T) = (40,40), (N,T) = (80,40), (N,T) = (40,80), and (N,T) = (80,80). The
data-driven method to select both the constant ¢ in p, and the tuning parameter v is computa-
tionally intensive. As a result, we set the number of Monte Carlo replications to be 250, which

might be smaller than usual but good enough for our purpose.

For the DGPs 1-3, we set 3, = B9, = 1 for all ¢ when no break exists, 5;; = 89 = 1{1 <
t < T/2} when there is one break, and 81, = B9y = 1{1 < ¢ < |T/3]} + 1{T/2 <t < T} when
there are two breaks. For the DGP-4, we set 3, = B, = 0.5 for all ¢ when there is no break,
B1e = Boy = 0.5- 1{1 <t < T/2} when there is only one break, and 8, = 9, = 0.5-1{1 <t <
|T/3|}+0.5-1{T/2 <t < T} when there are two breaks.

We first evaluate the probability of falsely detecting breaks when there is no break in the
simulation design. Then we experiment on the DGPs with one or two breaks. We evaluate the
probability of correctly detecting the number of breaks and the accuracy of break date estimation
when breaks are detected. Tables 1, 2 and 3 report simulation results for the above DGPs. The
first panel of Table 1 reports the percentages of falsely detecting breaks when there is no break
(m® = 0). The second and the third panels report the percentages of correctly estimating the
number of breaks when the true number of breaks is one and two, respectively. In Table 2,
we report the ratio of average Hausdorff distance (HD) between the estimated and true sets
of breaks to T, i.e., 100-HD(’7A%1,7'”20) /T, conditional on correct estimation of the number of
breaks. Here the average is taken over 250 replications and the HD between two sets A and
B is defined as HD(A, B) = max{D (A, B), D (B, A)} with D (A, B) = supycpinfaea |a — b|.
The mean squared or absolute errors of the parameter estimates are roughly proportional to the

Hausdorff error of the break-date estimation and hence are not reported. In Table 3 we report
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the percentages of correctly estimating the number of factors in the Monte Carlo replications.

We summarize the major findings from these tables. (i) When there is no break in the
DGPs, the probabilities of falsely detecting breaks decline to zero as either N or T increases.
(ii) When there are one or two breaks, the probabilities of correctly estimating the number of
breaks converge fairly quickly to 100% or near 100% as both N and T increase. The detection
procedure performs slightly better at lower idiosyncratic noise levels (o = 0.5) than at higher
noise level (o = 1). The performance is robust to serial correlation in the common factor, serial
correlation and conditional heteroskedasticity in the errors, and the dependence of both the
factors and their loadings on the regressor. For the dynamic panel (DGP-4), the procedure
performs less satisfactorily. However, this may be due to the fact that the signal-to-noise ratio
in this case is roughly 1/3, much less than that in the other three DGPs. (iii) Conditional on the
correct estimation of the number of breaks, our procedure estimates the break dates accurately,
which can be seen from Table 2 (iv) Finally, Table 3 shows that the BIC-type information
criterion specified in (4.1) can accurately determine the number of factors for the interactive

fixed effects structure.

5 An empirical application to the environmental Kuznets curve

The environmental Kuznets curve (EKC) has become a standard feature in the environmental
policy literature. It hypothesizes that the relationship between income and the emission of
chemicals like sulfur dioxide (SO2) and carbon dioxide (CO2) or the natural resource usage has
an inverted U-shape, which is similar to the relationship between income and inequality in the

Kuznets curve hypothesis in economics. In this section we consider the following specification:

cit = Boy + Brayit + Bogyie + Ba€it + Ni fe + wie,

where c¢;; represents the logarithm of per capita CO9 emission for country ¢ in year ¢, y;; represents
the logarithm of per capita income (gross domestic product, abbreviated as GDP), e;; represents
the logarithm of per capita consumption of energy, f; is a vector of unobservable common factors
and JA; is a vector of factor loadings. Our data-driven BIC criterion determines that the number
of factors is five. The controlling of energy consumption in EKC studies was used in the time
series regression setting in Ang (2007), and the panel data setting in Apergis and Payne (20009,
2010), Lean and Smyth (2010), Arouri et al. (2012) and Farhani et al. (2014). The panel data
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Table 1: The probabilities for falsely detecting breaks when there are none and of correctly
detecting the breaks when there are breaks

DGP o N=T=40 N=40,T=80 N=80,T=40 N=T=80
m® =0, % of falsely detecting breaks when there are none.

1 0.5 0 0 0 0
1 0 0 0 0

9 0.5 0 0 0 0
1 0.4 0 0 0

3 0.5 2.8 1.2 0.4 0
1 1.2 0 0.4 0

4 0.5 0 0 0 0
1 0.4 0 0 0

m® =1, % of correctly detecting one break

1 0.5 100 100 100 100
1 98.8 99.6 100 100

9 0.5 100 100 100 100
1 99.6 99.2 100 100

3 0.5 99.2 100 100 100
1 91.6 98 100 99.6

4 0.5 97.6 99.6 100 100
1 79.2 76.8 95.2 98

m® =2, % of correctly detecting two breaks

1 0.5 100 100 100 100
1 99.2 98.4 100 100

9 0.5 99.6 100 100 100
1 98 99.2 100 100

3 0.5 99.2 100 100 100
1 87.2 92.4 98 99.2

4 0.5 94 92.8 99.2 100
1 54.8 58.4 94 94.4
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Table 2: Estimation accuracy for the break dates when there is one or two structural breaks

DGP o N=T=40 N=40,T=80 N=80,T=40 N=T=80
m’ =1
1 0.5 0.000 0.000 0.000 0.000
1.0 0.000 0.005 0.000 0.000
9 0.5 0.000 0.000 0.000 0.000
1.0 0.005 0.000 0.000 0.000
3 0.5 0.000 0.000 0.000 0.000
1.0 0.066 0.051 0.000 0.000
4 0.5 0.020 0.030 0.000 0.000
1.0 0.423 0.540 0.037 0.092
m’ =2
1 0.5 0.000 0.000 0.000 0.000
1.0 0.010 0.005 0.000 0.000
9 0.5 0.000 0.000 0.000 0.000
1.0 0.010 0.015 0.000 0.000
3 0.5 0.000 0.000 0.000 0.000
1.0 0.006 0.011 0.000 0.005
4 0.5 0.027 0.032 0.000 0.000
1.0 0.246 0.300 0.011 0.053

Note. The table reports 100 - HD(7:,7.20)/T, averaged over 250 replications.

studies in the existing literature, however, assume that the coefficients are constant over time.
In our specification, we not only introduce the interactive fixed effects in the panel data models
but also allow time-varying coefficients that may capture the instability of the EKC brought by

the changing social, political, and economic environment in the past few decades.

We obtain the panel data set from World Bank Development Indicators. The CO9 emission is
measured in metric tones per capita, income is measured using per capita real GDP in constant
2000 USD, and energy consumption is measured with kilogram of oil equivalent per capita. The
time frame is selected to be 1971-2010. We exclude OPEC countries, small countries whose
populations are less than six million, and other countries with missing observations during the

time span. In total, we have N = 74 countries and T = 40 time points.

The results are summarized in Table 4. The information criterion defined in (4.2) selects
a tuning parameter that identifies two breaks (/m = 2) in 1990 and 1992. In the first regime
of 1971-1990, the EKC hypothesis is confirmed, as the coefficient on the squared income is
significantly negative, implying an inverted U-shape. The elasticities of CO2 emission per capita

with respect to real income per capita in the regime is (0.198 — 0.02y), where y denotes the
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Table 3: The probabilities for correctly estimating the number of factors

DGP o N=T=40 N=40,T=80 N=80,T=40 N=T=80
ml =0
1 0.5 100 100 100 100
1 98.8 100 100 100
9 0.5 100 100 100 100
1 100 100 100 100
3 0.5 100 100 100 100
1 98 100 100 100
4 0.5 100 100 100 100
1 98.8 100 100 100
m’ =1
1 0.5 100 100 100 100
1 99.6 100 100 100
9 0.5 100 100 100 100
1 100 100 100 100
3 0.5 100 100 100 100
1 97.6 100 100 100
4 0.5 100 100 100 100
1 98.4 100 100 100
m’ =2
1 0.5 100 100 100 100
1 99.6 100 100 100
9 0.5 100 100 100 100
1 100 100 100 100
3 0.5 100 100 100 100
1 97.6 100 100 100
4 0.5 100 100 100 100
1 98.8 100 99.6 100
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Table 4: A panel data estimation of the EKC for 74 countries from 1971 to 2010

m Variables 1971-1989 1990-1991 1992-2010 IC
Intercept —5.816(0.075)¢ —4.641(1.168)¢ —6.222(0.187)¢
Vit 0.198(0.020)° 0.028(0.239) 0.332(0.037)°
p Y2 ~0.010(0.001)° 0.004(0.014) —0.017(0.002)° -5.948
eit 0.847(0.003)° 0.798(0.041)° 0.821(0.005)¢
Intercept —5.841(0.037)¢
Yit 0.248(0.010)°
0 y2 —0.013(0.001)¢ -5.940
eit 0.842(0.002)°

Note. Superscript a,b and ¢ denotes significance level at 10%, 5%, and 1%, respectively. Standard errors

are given in parentheses.

logarithm of real GDP per capita. The threshold, or the turning points of the EKC, occurs at
the per capita income of 19,900 USD (2000). The second regime is a short one, covering only
two years, 1990 and 1991. In this regime, the coefficients on both y;; and yft are statistically
insignificant. The signs of these coefficients do not point to an inverted U-shape. This suggests
that, using a short panel or cross-section data set collected in a certain time period, one may
reject the EKC hypothesis, while a longer panel data would arrive at the opposite conclusion.
In the third regime of 1992-2010, the EKC hypothesis is again confirmed. The elasticities of
COg emission per capita with respect to real income per capita in the regime is (0.332 —0.034y),
implying a threshold of 17,400 USD (2000). Comparing with the first regime, we may conclude
that the EKC has shifted leftward in the past two decades. The second regime of 1990-1991
may be regarded as a transition period from the first regime to the second regime, which is
more environment-friendly. We also report in Table 4 the case of zero break (i = 0), where
coefficients are assumed to be constant. Here the EKC hypothesis is also confirmed, with a
threshold at 13,900 USD (2000). Interestingly, the panel data model with constant regression
coefficients paints the most optimistic EKC. If we estimate the regression coefficients in the
panel data model with two structural breaks detected by the PPC method, however, we see a

more cautious picture for the EKC.

6 Conclusions

In this paper, we study the estimation of the panel data models with interactive fixed effects

and multiple structural breaks, which substantially generalizes the existing work which either
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considers the panel models with interactive fixed effects but no structural break (c.f., Bai, 2009),
or the panel models with multiple structural breaks but under cross-sectional independence (c.f.,
Qian and Su, 2015b). We develop a novel PPC estimation procedure with the AGF-LASSO
penalty function to consistently estimate both the regression coefficients and the factor loadings.
Under some regularity conditions, we show that both the unknown number of structural breaks
and the unobservable break dates can be consistently estimated. In order to further improve
the convergence rates, we also estimate the regression coefficients (in different regimes) through
the post-LASSO method and then establish the asymptotic distribution theory of the resulting
estimators. In particular, the developed shrinkage estimation methodology and the asymptotic
theory are also applicable to the case of dynamic panel data. We introduce two data-driven
methods to determine the number of factors and choose the tuning parameter involved in the
PPC estimation procedure, respectively. The simulation studies show that the proposed PPC
method has a high probability of correctly estimating the number of breaks when the structural
breaks exist in the simulation design, and a low probability of false detection when there is no
structural break. We apply our method to study the EKC for 74 countries over 40 years and
find two breaks in the panel data.

Appendix

We first give in Appendix A some regularity conditions that are used to derive the asymptotic
results. Then we provide some technical lemmas and prove the main theoretical results in
Appendix B. The proofs of the technical lemmas are given in Appendix C of the supplemental

document.

A Assumptions

We start with the introduction of some notation. Denote

Snr = min(vV'N,VT), 6, nr = min(y/N/p,VT),

ANT = min aQ — OéQ
1< <m0 H Jj+1 J

A% = max |la?., — Y.

y ANT o2 OH j+1 ]H

Let & = L cnejfor 1 < 4,5 < N, and €5, = SN eneys for 1 < t,5 < T. Defi
i v €iteje for 1 <ii,j < N, and & i1 Eit€is for 1 <t, s < T. Define

QNT = @NT — ¢7\/'T7 @NT = diag(@l, ceey (bm0+1)’ @TVT = ( ;k)lgj,k§m0+1’
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where

1 T]0—1 ] TJ.O—l T0-1
_ / * /
®; = Nt;(T) Z XeM po Xy, Py = NT7;(T) Z Z Xst X M g0 Xs,
J t=T9_, J t=T9 | s=T)_,

7i(T) = TO T0 L and g = fY(F FO’FO) f2. In order to prove the asymptotic results stated

in Sections 3 and 4, we make the following assumptions.

Assumption 1 (i) There exist two positive definite matrices ¥ p and X, such that
Lpopo By Laopo By
T "N ’

Furthermore, both the common factors f? and the factor loadings AY have finite 8-th moments.

(11) Let the regressor X; satisfy maxj<i<7 || X¢|| = Op (pl/ZNl/Q), and

. : —1 v/ —1 v
Co < it min puoyin (N7 XGMAXG) € max ey (N7 XGXe) <€

w.p.a.1l, where 0 < ¢; < ¢}, < 0o, and infp is taken with respect to A such that L A'A =Ig,.
(iii) Let € = (e1,...,e7). The idiosyncratic error term e;; satisfies E[e;;] = 0 and E[ y] < ¢ for
each i and ¢ and HEH op =max(yv/N V/T). where c. is a bounded positive constant. Furthermore,

max_E[|| X/es]|?] = O(pN), max E[|AY|?] = O(N), E[|AYeF°|?] = O(NT),

1<s,t<T 1<t<T

T T
 Jax E[ YD cussnil] = 0r?), a d | max q[l szztgjsgtgsH | =omvere 4,

t=1 s=1 t=1 s=1
where v, can be either 1 or f7.
(iv) Assume that max;<; j<n Var(§;;) = maxi<; j<n Var(ZtT:1 eitejr) = O(T), and there exists

o;j > 0 such that ’E(fij)’ < 04T and Zf\il Zjvzl afj = O(N). Furthermore, we have

T

1rgta<>;E[§;<§ts>} O(N? + NT), [HZZ Ve 1] = o(wvrr?).

t=1 s=1

Assumption 2 (i) The tuning parameter v satisfies that
y=o0(1), ymAysS, T =O(1) as (N,T) — oo

where £ is the user-specified positive constant defined in (2.3).

(7i) Let the following restrictions hold:
SpNTANT — 00, Ay =O0(p'/?), pN~V2+p!PT71/2 = o(1) as (N,T) — oo
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(iii) Let 7(5’;4]'\]1T — o0 as (N, T) — o
Assumption 3 (i) There exists a positive definite matrix €2y such that HQNT — QOHSp =op(1).

(7i) There exist 0 < ¢; < ¢& < oo such that

c, T . ciT
TO < min 7(7) < max 74(T) < 5.
m 1<5<mO+1 1<5<mO+1 m

(iii) Letting Ay = S.7_ | A% eler, maxi<;<1 E(A?) = O(N?(N +T)).
T9—1

(iv) Letting W, Ny = ﬁzt;ﬂ) 1Xt’MAo(st —¢f) for j = 1,..,m +1 and Wyr =
b
(W1 N s Wio g nyp)'s there exist Byt (3) and €5 such that

S.Dnr[Wnr — By (3)] 25 N(0, S,.9,8.),

where D y7 is defined in Section 3.2, S, is an arbitrary k° x p(m + 1) matrix with full row rank,

and kY is a fixed positive integer.
(v) Let (NT)1/2/5p Nt =o0(1) and p/é, N7 = 0o(1) as (N,T) — oo
Assumption 4 As (N,T) — oo, p; — 0 and 5123’NTp1 — 00.

Assumption 5 (i) For any 0 < m < m?, there exists a positive constant cg such that

m+1 Tj—1
H%mlgi?TA? 2 Z 18 — 5" > cs.
" j=1t=T;_,

where «,,, and 7, are deﬁned in Section 3.2.
(ii) As (N, T) — oo, W (PN172 4 p/2T1/2) = o (1)
(iii) As (N, T) — oo, m pp2 — 0 and 5P7NTpp2 — 00.

Remark A.1. Assumption 1 imposes some standard moment conditions on Xy, f7, )\? and
git, which are analogous to those in the existing literature such as Bai and Ng (2002), Bai
(2009), Bai and Li (2014), Lu and Su (2015), and Moon and Weidner (2015). As we allow p,
the dimension of the regression coefficients, to be divergent, some of our moment conditions
might be slightly stronger than those in the literature. Assumptions 1(iii) and (iv) allow weak
form of cross-sectional dependence and serial dependence among X, f2, )\? and ;. In partic-
ular, unlike Pesaran (2006) and Bai (2009), we do not assume independence between €;; and
(Xjss oA ) for all 4, 4,t, s, and our theories are thus applicable to the dynamic autoregressive
panel data models with interactive fixed effects. Assumption 2 imposes some mild restrictions

on the tuning parameter v and the jump sizes of the regression coefficients, which can be easily

23



justified. For example, assuming that the jump sizes are bounded away from zero and infinity
and N ~ T, Assumption 2 can be simplified to v = o(1), ym°(N/p)'/? = O(1), p = o(N'/?)
and v(N/p)"t1D/2 5 0o, Assumption 3 imposes some additional conditions for the proof of
the asymptotic distribution theory of the post-LASSO estimation, which can be verified under
some primitive conditions. For example, if we assume that {e;, )\?} are independent across %
and for each i, {e;;} is a martingale difference sequence with respect to the o-field generated by
(Citety ity fO sy fOAY) and {es, Xyt } satisfy some strongly mixing conditions, then the
moment condition in Assumption 3(iii) holds. Assumption 4 indicates that p; has to shrink to
zero at an appropriate rate to avoid both over-selection and under-selection of the number of
factors. Assumptions 5(i)(ii) impose conditions to avoid the selection of model with fewer breaks
than the true number by using an information criterion proposed in Section 4.2. Assumption

5(iii) parallels Assumption 4.

B Proofs of the main asymptotic results

In this appendix, we give the detailed proofs of the asymptotic results in Sections 3 and 4. We
start with two technical lemmas whose proofs are provided in Appendix C of the supplemental

document.

Lemma B.1 Suppose that Assumption 1 in Appendiz A holds and pN—Y2 4 pt/27-1/2 — =o0(1).
Let B = (61,. .,BT) be the preliminary estimates of the regression coefficients which mini-
mize, QNT(,B,A), the first term of the objective function defined in (2.4). Then Hﬁt - B H =
Op (pl/?N_l/2 +T_1/2) = Op (6;}\@) for any t = 1,2,...,T, where 6, N7 is defined as in
Appendiz A.

Lemma B.2 Suppose that Assumption 1 Appendiz A holds and let nyp = %23:1 18, — BY)12.

Then we have
(i) N7 Zthl(Bt - 5?)’X{MA515 Op (5;) NT”%%)
(i1) Z?zl fYAYM e, = Op (5 +4, NTn%%), and
ﬁn)ﬁfzﬁ;eﬂPA—vPAda=:OP®&T)
We next give the proof of Theorem 3.1 by using the above two lemmas.

Proof of Theorem 3.1. (i) Recall that the penalized estimate of B° is denoted by ,3 =
(Bll, - B/T)/ and the estimated factor loading matrix is denoted by A. Note that

— XiBy = Xo (B — B,) + A°f + &4 (B.1)
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Then, by (B.1) and using the fact that M ,oA°? = 0, we have

[ N1t (B A +Q<J>VT,t(5taA)]
=1
+% > an[1B = Beall - 1182 - B4l]
teT?y
+1 Z wt[HBt - BthH - Hﬁg -

T
teTe

H\H

QNTq (B,A) - QNTKY (:30>A0) =

], (B.2)

where
Qura(Bu D) = [(Be— B XIMAX, (B, — B0) — 2(B, — B9) XIMAA) 4 f'A”M A" FY].

QX1 (B A) =

z|=zl-

— Q(Bt — Bg)/X,;MAet + 2ftO’AO'MAat — e Pies + e;PAoet}.

As 3% — B9 | =0 for t € T°, the last term on the right hand side of (B.2) satisfies that

% Z u')t[HBt_BtAH - Hﬂg_ﬁ?_lu] - % Z '

teTe teTe

(B.3)

By the triangle inequality, the Cauchy-Schwarz inequality, Lemma B.1 and Assumption 2(ii) in
Appendix A, we can prove that

S a[llB - Bl - 189 - 52ll] < oramm) X 18- 8|
teT?, teT?
1/2
< Op(ANp)(m*)Y? B, - B2

0
teT

1/2
< Op(ARE)(m OT”?( Zuﬁt mH) :

Note that Assumption 2(i) implies that v(m°)/2T—1/2A% = 0(5;}\@) where 6, y7 = min(\/N/p, VT).
This, together with the above argument, indicates that

T Z wt[ — B Wl =1182 = 5?71\@ =op (‘Z}v:ﬂ?}v/%) : (B.4)

tETO

By Lemma B.2, we can readily show that
1/2
*ZQNTt /Btv OP <5N?Z“+5pNT ]\?T) (B5)
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Combining (B.4) and (B.5), we have

T
R a A 1 A _ _
Quroy(B.A) = Qe (8% A%) = 3~ Qv (81 M) + Op (035 + 6,57 ). (B6)
t=1
Define the vectors:

ds =B —B° and dy = —vec(M4A?),

1
N1/2

where vec(-) denotes the vectorization of a matrix; and define the matrices:

A 1 N

A = —diag(X{MAXl,...,X’TMAXT), B = (FYF") @Iy, and
~ 1 0

C = N1/2 [fl ® M Xl,--',fT®M[\XT]7

where ® denotes the Kronecker product. It is easy to verify that

T
fo 't - 1~~~
Z (515 - 5?) XiM § Xy (ﬁt - 5?) = TdﬁAdﬁ’

t

- 3= g-
Il

B

T
. 1 . Lor oo
(B = BY) XIMRAOf = o ZTV{MAAOf? (B — B?)/XQMA} = fd/ACd,&
t=1

t

1

Al A A

T
1
Z FYAYM AL SO = TZTr(M AALFO P AV M A) dABdA,
t=1

where we have used the following facts on matrix calculation: Tr (A1A2A3) = vec (Al) (A2 ®
I)vec(As) and Tr(A1AA3A,) = vec' (A1) (Az @ A))vec(Af) with k being the size of the

column vectors in As. Using the above notations, we may show that
1 d 1, / / 1, /
T > QB A) = T(dﬁAdﬁ —2d,Cdg + dyBd,) = T(dﬁpdﬁ +d,Bd,), (B.7)
t=1

where D = A—C'B" ¢ and d, = &A—B+C’&5. By Assumption 1(i), we may show that the min-
imum eigenvalue of %B is bounded away from zero w.p.a.l, i.e., there exists a positive constant
¢1 such that p;, (B/T) > ¢ for sufficiently large T'. We next show that umax(é’lé’/T) =op(1).
Letting vy = fYfP, it is easy to verify that

VllXiMAXl VngiMAXQ VlTX{MAXT
NN 1 VngéMAXl V22XéMAX2 VQTXéMAXT
cC=—
N . . .
VTlX'}MAXl VTQXI}MAXQ VTTX%MAXT
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Letting

VllXiMAXl I/12X{MAX2 VlTXiM[\XT
~ 1 0 VQQX&MAXQ VQTXéMAXT
Ci=—

N . . .
0 0 VTTX%MAXT

and Cy = Ldiag(vi1X{M 4 X1, ..., vrr XM 4 X7), we have
c'c=¢c+¢C -¢, (B.8)

By the fact that the eigenvalues of a block upper/lower triangular matrix are the combined
eigenvalues of its diagonal block matrices, Weyl’s inequality, and Assumptions 1(i) and (ii), we

have

Al A

Tﬁl”max(c C) Tﬁl{Qlu’max(él) - :U’min(éd)}

20 e[| 7] o (N X{M 5 X0)

Op(T™1)Op(TH*)Op(1) = Op(T75/4),

IN

IN

where we use the fact that maxi<,<r ||f2|> = Op (T1/4) by Assumption 1(i) and the Markov
inequality. On the other hand, we note that the minimum eigenvalue of A is positive and
bounded away from zero w.p.a.1l. Hence, the matrix D is asymptotically positive definite as its
minimum eigenvalue is positive and bounded away from zero w.p.a.1l by using the above facts.

Then, by (B.7) and (B.8), we can readily show that there exist two positive constants ¢z and c3

such that .
Co \ ~ ~
flldﬁHZ + eld]® < Z N1 (Bis A), (B.9)
which indicates that
Hd,8H2 + csllds | + OP(5N2T +9, NTU%;QF) < QNT(B, A) — QNT(ﬁO,AO). (B.10)

Multiplying both sides of (B.10) by 51237NT and noting that %H&BHQ = nyr and Qnr (B,f\) —
Qnt (B°,A%) <0, we readily show that

}1/2

26 nrnt + Op(1) + Op(1) - [62 npinr] '~ < 0. (B.11)

When 51237 N1 is sufficiently large, the first term on the left hand side of (B.11) would dominate

the other two terms, which would lead to a contradiction. Hence, we must have that 6]2)7 NTINT
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is stochastically bounded, implying that nyp = Op (pN A *1) . This completes the proof of
Theorem 3.1(i).

(ii) The proof for the point-wise convergence result is similar to the proof of Theorem 3.2(ii)
in Qian and Su (2015b), where the condition ym°A 58, n7 = O(1) in Assumption 2(i) is used
to handle the penalty term. We omit the details to save space.

We have thus completed the proof of Theorem 3.1. |

Proof of Theorem 3.2. To prove the sparsity, it is equivalent to showing
P(HétH # 0 for some t € T¢) — 0 (B.12)

as (N, T) — oco. We consider two cases: (i) 2<t<T—1landte€ T and (ii)t=T and t € T°.
Recall that &, y7 = min(p~/2N1/2 T1/2),

For case (i), there would be two possible circumstances: (i.1) ¢t + 1 = TJQ € T2, for some
j=1,...,m% and (i.2) t +1 € T¢. We invoke subdifferential calculus (e.g., Bersekas, 1995,
Appendix B.5) to obtain the following Karush-Kuhn-Tucker condition with respect to (3, to the

objective function in (2.4):

-2 P B — B . BtJrl — B,
SpNT | =7 Xe M 3 (Ve — Xi3y) + iy = — Y1 7= | =0, (B.13)
N B = B Ber1 = Byl
where for any p x 1 vector a with |la|| = 0, a/||a| is defined as an arbitrary p x 1 vector

with Frobenius norm smaller than or equal to 1. Let Uyt = %X{MA (Yt — XtBt), Unt2 =

Yy bibio1 and U NT3 = ')/thrlM. Following the proof of Theorem 3.1 and using
18:=B.-a| [
Lemma B.2, we may show that
op,NT|[UnT 1| = Op(1). (B.14)

If circumstance (i.1) holds, by Lemma B.1 and Assumption 2(ii), we have

Wit = |Ber — Bell ™" < [1%1;210 HO‘(;H - oz?” + OP((S;}VT)}? = Op(ANT), (B.15)

which together with Assumption 2(i), indicates that
Sp.NT||UNT 3l = Op(vdp,nTANT) = Op(1). (B.16)
However, for case (i) with 2 <t <T —1 and ¢t € T¢, by Lemma B.1, we may show that w.p.a.1
e = (|8, = Be—all ™" = OO (B.17)
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for some positive constant C. Hence, it is not difficult to see that when 6; #0,
dp.NTIIUNT 2| > C’yé’;f]\}T — 00 (B.18)

by using Assumption 2(iii). By (B.14), (B.16) and (B.18), the equation (B.13) cannot hold

as (N,T) — oo. Hence, 0, can only take the value of 0 at which ||0;]| is not differentiable.

Furthermore, as an implication of the above result, if ¢t = TjQ — 1€ T¢ for some j = 1,....m",

then we have

By — Bi_1 BTJOA - BTJ@&

Hﬁt _Btilu P7NT7wT]. 1 P( ) ( )

Op, NT YWy

5T]071 - BTJ@JH N

We next prove (B.12) for circumstance (i.2). Following the above argument, we can show

that when ¢ = TjQ — 2 and éTJQ_Q # 0,

Bt B Bt—l

5p’NT — — 0
18 = Be | ’

N Xf{MA (Y;f - Xtﬁt) = 0p(1), 5p,NT’Y’wt

(B.20)

which, together with (B.19), implies that (B.13) cannot hold as (N, T) — co. Hence, f50_, can
J

only be 0. Deducting in this way until we reach ¢t = TJQ_I + 1 € T¢, we can complete the proof
of sparsity for case (i).

For case (ii), note that the consequence of the Karush-Kuhn-Tucker condition with respect
to B leads to

/ p . ﬁT - BTfl _
XoM i (Yr — XpBp) + yir——5——| =0. (B.21)
By — Br||

As there is only one penalty term in (B.21), the proof is much simpler than that for case (i).

1

OpNT | 37

Hence, we omit the details here.
We have completed the proof of Theorem 3.2. |

Proof of Corollary 3.3. By Theorem 3.2, as (N,T) — oo, no time point in 7° can be identified
as the break time, which implies that m < m?. On the other hand, by Theorem 3.1, for any

te Ty,
0ul| = 1B = Bica|| = 118 = Bi_i|| + Op(6, ) = |167]] + Op (5, p)
t t t—1 t t—1 P\ NT t P\ NT />
which indicates that [|69] = Op(ég’]l\,T) if6, =0 (ie., t e T2, is not identified as a break point).

However, the conclusion ||69] = Op (5; \r) would violate the condition 6, y7An7r — 0o which
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is assumed in Assumption 2(ii). Hence, each time point in 7;20 must be identified as the break

time, which implies that M = m® w.p.a.1 and thus both the results (i) and (ii) are proved. B

To prove the asymptotic distribution theory for the post-LASSO estimator in Theorem 3.4,
we need to use the following lemma whose proof is given in Appendix C of the supplemental
document. Let A0 = /N\(TTQO) be the infeasible estimator of the factor loadings in the post-
LASSO estimation procedure, H = (% F”F%)(+A” Amo)f/j\}T, and &,,0 = &,,0(T?,), where
V nr will be defined later in (B.25).

Lemma B.3 Suppose that the conditions in Theorem 3.4 hold. Then,
(i) for each j =1,...,m" + 1, we have
91
S X{(Mj —Myo)ertByr; (2, 1)” — Op (5];;(7710)—1/2”& —a| +§; NT)

—70
7T.7'—1

el

where 7;(T) and Bnr,(2,1) are defined as in Theorem 3.4;
(ii) for each j = 1,....,m" + 1, we have

,_ T9-1
1 J
O ! *
moH f XM roe +BNT,'(1)
HNTJ ZO: ) ' N;(T) t:%‘): A ’
]
—Bnr,j(2,2) + (@] 31> Jm0+1)( N H =0Or (pépNT( o~ 2Hamo - +5PNT>

where € = %Zstl Xst€s) @;k, 1 <4,k <m®+1, are defined at the beginning of Appendiz A,
and Byt (1) and By1(2,2), j = 1,...,m° + 1, are defined as in Theorem 3.4.

We are now ready to prove Theorem 3.4.

Proof of Theorem 3.4. Let Gy = {T] = T]Q for j =1, ...,mo}. By Corollary 3.3, we readily
have
P{SDNT(dfn — ao) S C"ﬁl = mo}
- P{SDNT(dm —a®) €C,Gr|m = mo} + P{SDNT(dm —a’) €C,G5|m = mo}
- {SDNT( o —al) e c} +o(1), (B.22)
where C C R¥, G% is the complement of G7 and &0 = &,,0(Tp0) is the infeasible estimate

of a’. Hence, throughout the proof, we can replace 7 and TJ (j = 1,...,m) by m® and T]Q,
respectively, which would not affect the asymptotic distribution of the post-LASSO estimator.
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Letting m = m® and T} = TJQ in the objective function (3.1), we have

mo+1 Ty—1
Qnr (o, A, F3 To) Z Z (Vi = Xeaj — Afy) (Vi — Xecj — Afy),
J=1 =17 |
and
1 m0+1 Tjofl )
mI;HQNT(amO,A,F;T,,?Zo) = ﬁ z:l ; (Y;g — XtOéj) MA(Y% — Xtaj). (B23)
J=1 =19 ,

Recall that A0 = ./1(7;20) which is defined as in Lemma B.3. Let

NT(AmO) = diag{él(Amo),...,i’mo_’_l(Amo)} and

~ ~ ~ ~ /
N(Ao) = [E1(R0)s o Eo 1 (B )|

=i

[1]:

~ o~ 701 ~ = 701
where ®;(A,0) = ﬁzt]To X{M~ o, Xt, and Ej(A,0) = Wzti@‘ll X{MAmDY} for

j=1,...,m%+ 1. Then, the solution ( a0, Amo) to the minimization of the objective function

n (B.23) satisfies

o = BN (A0)EnT(Ay) With Gpo; = O (A0)Z5(A0), (B.24)
and
1 + T]'—l
NT Z Z Xtozmo]) (Y;g — Xtdmoj)/ Ao =A,0ViyT, (B.25)

where @,,0; is the j-th p-dimensional element of &0 and V nyr is a diagonal matrix consisting
of the Ry largest eigenvalues of the above matrix in the square brackets in (B.25) arranged in

descending order.

To simplify the notation, we further let A = ]\mo in the remaining proof when no confusion

can arise. For j = 1,...,m® + 1, using the expression that Y; = Xtoz? + A0 ¢ for t €
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[TJO 1,T — 1] and the fact that M 3 A = 0, we have

-1
Ej(A) = Nrj Z X{M g (X0 + A°f + &)
_TO
) -1 -1
< et
- X[M X |of + X/M;(A° — AET) 0
NT]( Z t t NTJ Z t )ft
t=T7 , t T
T9-1
! J XM
+NTj(T) > XiMjge
tzT;Ll
Plugging the above expression into the formula of &,,0; in (B.24) yields
) -1
*+\ £0
) £y +N7'J( t; X{M je. (B.26)

-1
Pj(A) (G0, — a?) = XM
J ( J J NT] t %O: ¢
We first consider the second term on the right hand side of (B.26). By Lemma B.3(i)

91
1
HN Z X|M e — Z X! M qoet + Byr (2, 1)”
(T 75( t
] 1
= 0p (s 1( >—1/2ua —aOHMPNT) (B.27)

NT
m” + 1. On the other hand, for the first term on the right hand side of (B.26)

for each j =1, ...
by Lemma B.3(ii), we have
T0 1 T0 1
HN Z XMy (A"~ A B0+ S XIM et + By (1) - Byry(2.2)
7i(T N7;(T) t=T0_,
| = 0p (5352 )Gm, — a1l + 6,31 (B.28)

(@;1, . 7CI>ijo+1)(6zmo
Recall that Qn7 = ® 7 — PNy With @y and P, defined at the beginning of Appendix

A. Then, using the definitions of Bn7(1) and Byp(2) in Section 3.2, the definition of Wy
. . B

in Assumption 3(iv), the condition (NT)Y/? = 0(5p ~N7) in Assumption 3(v) as well as (B.26)
(B.29)

(B.28), we have
ISDy7 [Qn7(6m0 — &) + Byr(1) + Bar(2) — Warl|| = op(1).
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Furthermore, by Assumptions 3(i)(iv) and noting that €2y is positive definite, we have

SD 1[0 — a” + Byr] 25 N(0, SQFQ,QFS),
where Byr = QJJ(,T [BNT(l) + Bnyr(2) — BNT(S)}. We have thus completed the proof of
Theorem 3.4. |

To prove Theorem 4.1 in Section 4.1, we need the following lemma whose proof is given in

Appendix C of the supplemental document.

Lemma B.4 Suppose that the conditions in Theorem 4.1 hold. Then

(i) there exists a cr > 0 such that plim infin 7)o {V(R,BR) — V(R07BRO)} > cp for each
R with 1 < R < Ry,

(ii) V(R, B) — V(Ro, Br,) = Op (%,?w) for each R with R > Ry,

Proof of Theorem 4.1. The proof is analogous to that of Corollary 1 in Bai and Ng (2002).
For notational simplicity, let V (R) = V(R, Bg) for all R. Note that

BIC(R) — BIC(Ry) =In[V (R) /V (Ro)] + (R — Ro) p1.

We discuss the following two cases: (a) R < Ry, and (b) Ry < R < Rpax-

For case (a), by Lemma B.4(i), V (R) /V (Ro) > 1+¢p and thus In [V (R) /V (Rp)] > €y/2 for
some €9 > 0 w.p.a.1l. This, in conjunction with the fact that (R — Rp) p; — 0 under Assumption
4, implies that BIC (R) — BIC (Rp) > €p/4 w.p.a.l. It follows that

P(BIC(R) —BIC(Ry) >0) — 1
as (N,T) — oo for any R < Ryp.
For case (b), we apply Lemma B.4(ii) and Assumption 4 to obtain
P(BIC(R) —BIC(Rp) >0) = P(In[V(R)/V (Ro)]+ (R— Ro)p; >0)
= P(Op(1)+ (R—Ro)py0s nyp >0) = 1

as (NV,T) — oo for any Rp < R < Rmax. Consequently, the minimizer of BIC (R) can only be
achieved at R = Ry w.p.a.1. That is, P(R = Ry) — 1 for any R € [1, Ripay] as (N, T) — co. W

Let T, consist of T, = {T1,...,Tn} such that 2 < T} < ... < T, <T,Tp =1 and Tp,41 =
T + 1; and let Ty, consist of T, = {T1, ..., T)n} such that 7,0 C Ty, 2 < Ty < ... < Ty, < T for

m® < m < Mmax. To prove Theorem 4.2, we need the following two useful lemmas.
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Lemma B.5 Suppose that the conditions in Theorem 4.2 hold. Then there exists a positive

constant ¢,, such that
. . m?
min inf

0Sm<m0 Tm€Tm TA%VT m

[52(Tm) - 52(700)] >cm+op(l).

Lemma B.6 Suppose that the conditions in Theorem 4.2 hold. Then we have

, max sup (512,,NT }&Q(Tm) - 52(7;20)‘ =0p(1).
m <mgmmax TmeTm
Proof of Theorem 4.2. Denote I' = [0, v,,.x), @ bounded interval in RT, which is divided into

three subsets I'g, ' and ', as follows
FOZ{’yEF:mvzmo}, F_:{'yefzm7<m0}, andF+:{7€F:m7>m0}.

Clearly, I'g, I'_ and 'y denote the three subsets of I' in which the correct-, under- and over-
number of breaks are selected by the AGF-LASSO procedure, respectively. Recall that &, =
(&1(7;;17)’, ...,dm,y_i,_l(’fdm,y)/), and A(’f’mv) denote the post-LASSO estimators of the regression
coefficients and factor loadings based on the break dates in 7A'm7 =T () = (T (7)), .., me (7)),
where we make the dependence of various estimates on 7 explicit. Recall that 62(77%) =
Q NT(dmw .7\(72m ); 7Admw) Let 10 = ’Y?VT denote an element in I'g that also satisfies the conditions
on 7 in Assumptions 2(i) and (iii), and let 7;(7°) be the AGF-LASSO estimate of the true break

0

date T]Q using the tuning parameter 4°. For any 7° € I'y, we have 7.0 = m® w.p.a.1, and by

Corollary 3.3,

Y

i P (Tj(yo) =79, j=1, mo) — 1.

It follows that w.p.a.l &2(77;%0) = 5%(T2,). By the proof of Lemma B.5 in Appendix C of the
supplemental document,
1 m0+1 TJO—].
G (Too) = 7 > > Y= Xa;(Too)] Mg [Ys — Xo&j(Tpo)]

NT <4
J=1 =17 | +1

1 o
— ) e+ Op(épj\,T) = o,

|
=
~
B

t

1

where 03 = limn 1) o0 ﬁZthl E [e}e¢] . Thus 52(720) Lt o3 and IC (’yo) = ln(&Q(TngO)) +
pop(m® +1) 5 In(o?) as pop (m®+ 1) = o (1) by Assumption 5(iii). We next consider the cases

of under- and over-fitted models separately.
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Case 1 (Under-fitted model with 1, < m°): By Lemma B.5 and Assumption 5(iii),

P ( inf 1C(y) > IC (70)> =P ( inf m;] [m (5—2(%%)/&2(7;20)) + pop (10y — mo)} > 0)

~er_ T NT

>P(c/2+0p(1) >0) = 1

where c is a positive constant.
Case 2 (Over-fitted model with 1, > mP): For given T, = {T1, ..., Ty} € Ton, we let Tppe o =
{Tl, Ty, .., T +mo} denote the union of 7, and 7;20 with elements ordered in non-descending

order: 2<T) <Th < --- < Tm*erO < T for some m* € {0,1,...,m}. Let

<dm(Tm),1~X (Tm)) = arg min)QNT (Qtm, A; Trn)

am,A

Tm) ; Tm) and let 6%(T,,« o) be anal-

subject to A’/A/N=Ipo. Let %(Tpn) = Qnr(Gm(Tr), A (T;
< 6%(Ty) for all T,, € Ty,

ogously defined. In view of the fact that 6%(7,,+ o)
5;2;,NT [62(Tm*+m0) - UNT] Op(1)

uniformly in 7,, € T,, by Lemma B.6, and (5?,’ NTPPy — 00 by Assumption 5(iii), we have

<mf IC(y) > |C(70)>

el'y

> o (min it {5 [ )] + e m )] > 0)

> P ( 0<Ini<n Helf {5p NT [ln (02(Tm*+mo)/62(Tmo))] + 512,,NT,02]9 (m — mo)} > 0)

- 1 B

We have completed the proof of Theorem 4.2 |
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Supplementary Material for

“Panel Data Models with Interactive Fixed Effects
and Multiple Structural Breaks”

This supplemental document provides the proofs of all the technical lemmas in Appendix B

of the main document.

C Proofs of the technical lemmas

In this appendix we give the detailed proofs of the technical lemmas used in Appendix B. Before
proving Lemma B.1 on the convergence rates of Bt, we give some preliminary results. Let
b = (b},05,...,b/) where b; is a p-dimensional column vector and let C' be a positive constant

whose value may change from line to line. Recall that dy7 = min(\/ﬁ , VT ).

Lemma C.1 Suppose that Assumption 1 in Appendiz A holds. Then we have
(i) supp supy ‘ﬁ Zle bQX{MAet‘ = Op(pN~Y/2 4 p'2T-1/2),
(ii) supa |t Sy JPAY M ac| = Op(63%),
(iii) supa | g Y1y P act| = Op (973,
(iv) R Sf_ &t P poey = Op(N~Y),
where supy, is taken with respect to b such that ||b|| < C(pT)
to A such that +A'A = Ig,.

Y2 4nd sup A 1S taken with respect

Proof of Lemma C.1. (i) Note that 1 ?:1 V, X[ Mpe, = 7 ?:1 b, X{et— xbp Zle b, X;AN g

if %A’A = Ip,. By Assumption 1(iii) and the Cauchy-Schwarz inequality, we have
d d 1/2 d 1/2
[ Db Xie] = (D lel®) - (D IXied?) ™ = Op (pTN'2) (C)
t=1 t=1 t=1
for ||b||%2 = ZtT:l |b¢]|> < CpT. On the other hand, by some elementary calculations, we have

T T T
S UXIAN=| < S [AIANE] < mas [ XA] D b |4
t=1 t=1 - t=1

IN

) T N 1/2 ) 12
amax (XA (Sl ?) (S A=)
- t=1 t=1

1



By the restriction on A and Assumption 1(ii), we have

max | X1 AH = 1I£1ta<XTtI‘ (A'X;X[A) < WA [y (X7 Xy) |A|? = Op(N?). (C.2)

On the other hand, using %A’ A = Ip, and Assumption 1(iii), we have

T
z:||A'5t||2 = ZTr ‘eietA) = Tr(A'ee’A)
t=1

< N HeHsp Tr(A’/A/N) = NR, Hsugp =Op(N(N +T)). (C.3)

It follows that .
1> BX{AN g | = Op(p'*(N?TV? + N3T)), (C.4)

t=1

as ||b|| < C(pT)*/2. Then, by (C.1) and (C.4), we can complete the proof of (i).
(ii) By the definition of M A and noting that +A’A = I',, we have

T T
1 07 A O 1 07 0/ 07 A O/ /
SN Mpe = =Y YA § : AYAA
NT £ Ji AT NT £ fi N2T I <t

By Assumptions 1(i) and (iii), we readily have

Z JAe| = Z L£2) Z |A%i|?)"* = Op(VNT). (C.5)
On the other hand, as in the proof of (C.4) above we can show
T
1> FAYAN | = Op(NT'/? + N3/2T). (C.6)
t=1

We then complete the proof of (ii) by using (C.5) and (C.6).
(iii) As %A’A = Ig,, we have ﬁ Zle eiPpey = ﬁ Zthl efAAN'ey, which together with
(C.3), completes the proof of (iii).

iv) Using Assumption 1(iii) and the fact +AYA° Ry A under Assumption 1(i), we have
N

T T
1 / 0/ A0 H 1 or_ ||2
_ < o
‘NT;EtPAOEt‘ = NH( A A) NT;HA =l
= Op(N™1)-0p(1)-Op(1) = Op(N7), (C.7)
which completes the proof of (iv).
We has thus completed the proof of Lemma C.1. |



Lemma C.2 Suppose that Assumption 1 in Appendiz A holds and pN =2 4 pt/27-1/2 = o(1).
Let B = (5/1, ,B/T)’ and A = (/\,1,,)\/]\,), be the preliminary estimates of B° and A° which
minimize QNT(B,A), the first term of the objective function defined in (2.4). Then

T

1 . B 3

7 D118, = BYIE = Op (pN 12 4 p2T712) = op(1),
t=1

Proof of Lemma C.2. The proof of this lemma is similar to that of Theorem 3.1 in Appendix

B of the main document. Notice that

Qnt (B, A NTt (B, A (C.8)

’ﬂ \

IIMH

i[ — XiB,) M (Y, — X3, ] =

and
- XtBt = Xt(ﬁg - Bt) + Aofto + E¢. (C.9)

Then, by (C.8) and (C.9) and using the fact that M ,oA" = 0, we have

Qnr(B.A) — Qnr (8% A°)

T
1« 1
= 20| (Ve ) Mg (Y= XiBy) — (Vi — XuB7) M po (Vi — X))
t=1
_ Iyl O XM i X (B, — B 3, — BY) XIM A ) + fYAY M ;A f)
- TZN[(ﬁt—Bt) YA t(ﬁt_ﬁt)_z(ﬁt_ﬁt) VL A ft+ft A ft}
t=1
1 - 1 07 A O/ / /
+= ZN[ — BY))' X{M ze, + 2f)'A MA&—atPAat—l—etPAost}. (C.10)
t=1

By Lemma C.1 above, we can prove that

T
> [—2 (B,—BY) XM jei+2f A" M —g;PAeng;PAogt} = Op(pN 2 4pt27~1/2).
t=1

1

NT
(C.11)
Let dg = B — B° and dy = ﬁvec(MAAo) where vec(:) denotes the vectorization of a

matrix. Define

. 1 .

A = —diag(X{MAXl,...,X’TMAXT), B=(F"F% @Iy, and
. 1 0

C = Nl/Q[f1®M X1, ., fp @ M i Xr],



where ® denotes the Kronecker product. It is easy to verify that

(B, — B0 XIM X, (B, — BY) = oy Adss,

M=

t=1

3~ 3~
M=

T
p 1 . 1., ..
(B = B0 XIMAAC D = <= S T { MR (B, - 67)' XMy | = )\ Cds,
t=1

t=1

and .
1 1., . .
07 A O/ 0 0 £0 £07 A O/ _
§ AYM A f) = T;:l Tr(MAA FOFUA MA) = 5dyBdy,

where we have used the following fact on matrix calculation that Tr (A1 A2A3) = vec’(Al) (A2 ®
Ik)vec(A;;) and that Tr(A1A2A3A4) = vec’(Al) (Ag ® Aﬁl)vec(Ag) with %k being the size of
the column vectors in Az (in the first equation). With the above notations, we may show that
Ty _

>~ (3= 80 XIM X3y — B7) = 2(B, — B0) XIMGA S + f A M A |

N
t=1

Nl—= =

(d3Ads — 2d,Cdg + dyBdy) = (dgbdg +d Bd.),

where D = A — ¢'B7C and d, = dy — B+C’d5. By Assumption 1(i), we may show that
the minimum eigenvalue of %B is bounded away from zero w.p.a.l, i.e., there exists a positive
constant ¢4 such that g, (B /T) > ¢4 w.p.a.l. Using a decomposition similar to (B.8) in
Appendix B, we can readily show that umaX(C’C/T) = op(1). By Assumption 1(ii), we can
also show that the minimum eigenvalue of A is bounded away from zero w.p.a.1, i.e., there exists
a positive constant ¢, (defined in Assumption 1(ii)) such that g, (A) > ¢, w.p.a.l. Hence, we
have proved that the matrix D is asymptotically positive definite as its minimum eigenvalue is
positive and bounded away from zero w.p.a.l.
Note that

%(d’ﬂbdﬁ +d.Bd.) + Op(pN~2 + p'2T712) < Qur(B,A) — Qur(8°,A%) <0, (C.12)

d, Bd, is asymptotically nonnegative, and d,ﬁDdg > c5||ds|> where cs is a positive constant. Tt
follows that &[|dg|> = % 3°/_, 16, — Y2 = Op(pN~'/2 + p!/2T=1/2) = 0p(1), completing the
proof of Lemma C.2. [ |

Lemma C.3 Suppose that Assumption 1 in Appendiz A holds and pN—Y2 4 pt/27-1/2 = o(1).
Let H=Hpyp = (%FO’FO) (%AO’A) VX;T, where V nr is analogously defined as V yr in (2.7)
with B, replaced by 3,. Denote iy = * ZtT:1 18; — BY2. Then we have

4



(i) [|A — AH[* = Op (557 + i),

(ii) (A — A°H)'AYH = Op (532 +i¥2),

(iii) L (A — A°HI)'A = Op (632 + i3,

(iv) L(A'A — H'AYAH) = Op (532 + iil2),

(v) HP P oyl = OP(5NT+U%72“)

(vi) NT Zs 1(A AOH) EsYs = Op((SNT—i—ml\{T) with v, =1 or f2, and
(vii) g Yy [[(A — ACH) e||? = Op (1 + NT~H (033 + ityr)).

Proof of Lemma C.3. (i) By (2.7) and (C.9) and letting d; = 8, — 82, we have

AV — A°HV yr

T
1
- [ﬁ Z (Y = Xu,) (v Xtﬂt)}A AHV yp
t=1
1 T M . .
N {W Z [ = Xide + A°f) + 0] [ - Xody + A°f) + Et]/}A —AHV yr
t=1
T
1 .
- NT Z Xidid X;A Z Xody f'A”A NT Z Xidyei A Z A fPd XA

Z A’ fPeA — NT Z erdi XA + — NT Z cefAYA + —— ZetstA

Zumj. (C.13)
j=1

Noting that Tr (AB) < Tr(A) Tr(B) for conformable positive semidefinite matrices A and
B, |A|| = Op(N'/?) and maxj<i<r pi2,5, (X/X;/N) = Op (1) by Assumption 1(ii), we have
1 Iz !
= 5 2> Tr(Xididi X{AA X d.d, X))

N2T?
t=1 s=1

2 T 2
< |4 {];T;Tr<xtdtd; } (Al {NTdeXXtdt}

2
4] umx(xtxt/zv}{liudtu} Op(Nikr). (G0
t=1

1<t<T

2

IN



Noting that Tr (AB) < Tr (AANY2 Ty (BB’)l/2 for conformable matrices A and B, we have

lanTol® = N§T2 szZTjTr(Xtdtf?’AO’AA’AOf?d;X;>
» t=1 s=1 1 -
< HA‘ (A A) s 0D Te(Xudy f{' fl X))
t=1 sle )
< 5 A tmea”a0/m) (; S TP X X 1)} 2)
2 t=1 . )
< HA’ f o (AYAY/N) [@%’%“ma" (Xt’Xt/N)] (;Z\\dt! Hf?H)

— 0p(N)Op(1 antuﬂzuﬁ P = 0p (Niyr),  (C.15)

and analogously

linTall® = Op (N< ZH/Bt Bt\|2>> = Op (Niiyr) - (C.16)

Noting that 31, [le]|> = Op(NT) by Assumption 1(iii) and max)<i<7 fimay (XiXt/N) =
Op(1) by Assumption 1(ii), we can show that

T T T T
. 1 . .y 121
linral? = <o D0 O Tr(Xudiet AR e,dl X1) < HAH o 2 2 Tr(Xediefe d, X1
t=1 s=1 t=1 s=1

W E sy
2
< %HAHQ L@&XTMM (X/X,/N ] {;fj el Hdtll}
1
< op<1>;iuetu antu = Op (Nityr) (C.17)
t=1

and analogously
N~
lintsl* = Op (T D18 - 5?HQ> = Op (NijnT) - (C.18)
t=1

The analysis of the remaining three terms is similar to the proof of Theorem 1 in Bai and

Ng (2002) by switching the roles of f; and \;. For uyr s, using the fact that AYAY = Op(N),



|A|| = Op(N'/?) and Assumptions 1(iii) and (iv), we can prove that
1

T T T T
1 .. . .
livrsl? = s Do 20 Tr(ACPAR S fUAY) = 5 ST Tr( e AR e U AYA)
t=1 s=1 t=1 s=1

T N N .
LSS S S e s )

i=1 k=1 t=1 s=1
1 N N V2 /N N T T 2\ 1/2
- o (S ) (XSS et
=1 k=1 i=1 k=1 || t=1 s=1
1 N | T T 2\ 1/2
S = D3 3l ) D) SETW I = Op(N/T) (€19
i=1 k=1 |l t=1 s=1
and
1 T T , 1 T T ,
liveal? = <o 2o D0 Tr (cefPAYARAfEL) = 5S> Tr (AYAA'A S0 1Y)
t=1 s=1 t=1 s=1
1 T T
= or (T DD e ) = Op(N/T). (C:20)
t=1 s=1

By the assumption that maxi<; j<ny E [H ZL ZST:1 5it5j35255H2i| = O(N?T? + T?) in Assump-

tion 1(iii), we can similarly prove
linrs|® = Op(N/T). (C.21)
By (C.13)—(C.21), we can prove that
%HAVNT — A°HV yr||” = Op(03% + iing)- (C.22)

Premultiplying (C.13) by A/, and using the identification restriction on A: %A/A = Ig,,
(C.22) and Lemma C.2, we may show that

Vot — (leA’A‘)) (,}FO’F0> (leAO’A> = op(1). (C.23)

Furthermore, applying (C.12) in the proof of Lemma C.2 and noting that the matrix B is

positive definite, we can show that

1 1 1 . 1.
FAYMGAY = ZAVAY <NA0’A> <NA’A0> = op(1),

7



which together with Assumption 1(i), implies that %A/AO is asymptotically invertible and thus
V nr is also asymptotically invertible. We can then complete the proof of (i) by using this fact
and (C.22).

(i) Observe that by (C.13)
1 8
N(A—AO )'AH = NZVNTUNTJA H= NZUNTJ. (C.24)

By Assumption 1(i) and (C.14), we can readily prove

1, ..
<
N”UNT,1|| = <

Analogously, by (C.15) and (C.16), we can prove that

1 - |
N1/2 > NV ozl - <N1/2HAOHH> = Op (nT) - (C.25)

= 0p (#42) and il = 0p (i¥3). (C.26)

For u;*VT;,), by the definition of @7 3, we have
n 1 + T /
_u}(VT,B = —VNTUEVT,sAOH = WVNTZAEtd;SXéAOH

- NTVNTZHAO’gtd’X A°H+N—VNTZ (A — AH) e, d, X]A°H

UNT 30 + UNT 35 (C.27)

By the Cauchy-Schwarz inequality and Assumptions 1(ii) and (iii), we have

1/2 . 1/2
x 1 .
lanT 30l < = Z |AYedy|| < C ( Z A e ) (T Z \dtHQ> =0p ((NUNT)1/2> :

t=1
(C.28)
Similarly, with the help of Lemma C.3(i), we can also prove that
1/2
ol = Op (Niyr + Noybi7) (C.29)
By (C.27)-(C.29), we have
1/2
Sliseral = Op (i + 63i3) (C.30)
Similarly, we can also show that
1 1/2
HUNTGH =Op (UNT + 5NT77]\;T> (C.31)

8



For u;‘VT75, by the definition of uxy7 5, we have
Urs = NTV NT Z H' A fYA"A°H + V NT Z — AH) e, fYAY A H

= Unrsa T UNT S (C.32)
By Assumptions 1(i) and (iii), we have

T
[inr sall < C%H S TAY )] = OP(%HAO'&‘FOH) —0p <N1/2T71/2) . (C.33)

t=1
Using Lemma C.3(i), we can also prove that
[ayr sl = Op (Ninr + N6 - (C.34)
y (C.32)—(C.34), we have
L. . _
NHUNT,SH =Op (77NT + 5N2T) . (C.35)
Noting that AN = Op(N) and using the assumption E[HAOIEFOH2] = O(NT) in Assumption
1(iii), we can also show that
1., . _ L. . _
NHUNTJH =Op (77NT + 5N2T) and NHU*NT,SH =Op (77NT + 5N2T) . (C.36)

By (C.24)-(C.26), (C.30), (C.31), (C.35) and (C.36), we can complete the proof of (ii).

(iii) and (iv) The proofs of (iii) and (iv) can be completed by using the results in Lemmas
C.3(i) and (ii).

(v) Note that

Pi—Proy=AAA)TA - AH(H A"AH) H'A” = ZUNTJ, (C.37)

where

vty = (A—AYH)(H'AYAH)" (A - A°H),

int2 = (A- AOH) (F'AYA°H) " H'AY,

inrs = (A AYH)[(A'A)" — (H'AYA°H)*) (A~ A°FD),

inra = (A—ACH)[(A'A)Y — (F'AYA°H) " H'A,

ONT,5 — AO ( AOIAOH)JF(A—AOH)”

INT6 = AOI_‘I[(A’A)-i- . (H’AOIAOI_‘I)+] (A . AOI_‘I)/’

onrr = ACH[(A'A)" — (H'AYA°H) " H'A”.

9



Using the results in Lemmas C.3(i) and (iv), we can prove (v).
(vi) The proof is analogous to that of part (ii) and thus omitted.
(vii) By Assumption 1(iii) and part (i),

T
L . 07 / 2 . L . 07 / I 07 )
NT;H(A ACED )2 = NTTr((A AYE) e/ (A — AYH)
1 2 1 . 0/ & 07
< el Tr((A — AFD)' (A - AVFD))
= Op((1+ NT )63 +inr))-
We have thus completed the proof of Lemma C.3. |

With the above three lemmas, we are ready to give the proof of Lemma B.1.

Proof of Lemma B.1. Let Qn7(8;, A) be defined as in (C.8), 3 and A be defined in Lemma
C.2, and H be defined in Lemma C.3. Note that

. . . o + . o +
Yo — XiBy = Xe(B) — B) + AH Y + (A" — AH ) f} +ev. (C.38)
The preliminary estimate 3, which minimizes Qn7.¢(8;, A) (with respect to 3,) satisfies that

1 , 1 1 . o
(FXIMAX) (B, = BY) = - XiM i+ - XIM4 (A = AH) f7, (C.39)

as M AA = 0, where 0 is a null matrix or vector whose size may change from line to line.

We first consider the term %X{M Act- Notice that

1

1 1
NXgMAet = NXgMAost + NX{(MA — M po)e. (C.40)

By the definition of M 40, we have
1

1 1
NX,gM Aoct = —Xjer — = XA (AYAY)TAYe,. (C.41)

N N

By Assumption 1(iii), we can show that for each 1 <t < T
1 _
S Xiedl = 0p <p1/2N 1/2). (C.42)
By Assumptions 1(i)—(iii), we can show that for each 1 <t < T
0 0 1/2 L Yorro0 TP
XA = Op(N), ||AY] = Op(N'?) and | —=AYA") = >t
t N A

which imply that
1
IXIAY(AYA) A = Op (N*l/Q) . (C.43)

10



Thus, by (C.41)—(C.43), we have
1
SIXIM poei]| = Op (pl/zN_1/2> : (C.44)

To derive the order of X/ (MA — MAo)et, we need to investigate the term M ; — M 0. By
(C.37), we have

—(Mj — M o) = A(AA)"A — A’H(H' AYAH)"H'AY = ZUNTJ (C.45)
We next show that
1 7
LR o)l = Op(03%): (.46)
j=1

To save the space, we only consider the case of j = 5. Other cases can be studied similarly. For

X,ONT 564, note that
ONTs = AOI'{(H’AOIAOI_'I)+(A . AOI_'I)/,
— AH(H'A"AH) "V (AV Np — APHV y7),
8
= AH(HA"AH) ' Var (Y any), (C.47)
j=1
where 4n7,j, j = 1,...,8, are defined in the proof of Lemma C.3(i) above. By the fact that both

H and V yp are asymptotically invertible and similar to the proof of Lemma C.3(i), we readily

prove that

/

5
. ./ A . .
XIACH (F'AYACH) Ve | S iy +ivrs | e = Op (635 + 034Ny - (C48)
=1

1
N

Meanwhile, by Assumptions 1(i)(ii) and noting that

T

i L3 "] = g EL 607 04 )

by Assumption 1(iv), we can prove that

1 L o
N HX,{AOH(H’AO’AOH)+ V}TumﬁstH

T /
1 ) o\ ot 1 .
= = X/A"H(H AA°H) "V (NT ;:lesdgng) &t

1

T /
ZA Xsdsslsst
s=1

11



and

1
N2T

IN

1 & A Y2
_ </ 2
N (wZHAXSdS ) '(mz”eégt”)
s=1 s=1
T 1/2
- or (s (3 2mer) )

which together with Lemma C.2, indicate that

T
./

E A X dsele

s=1

1 - . .
= HX,gAOH(H’AU’AUH)+ V;TugvTﬁgtH = Op (5];;77}@) . (C.49)
Similarly, we can also show that

N HXt’AOH(H/AU’AOH)JFV;\F,T{LQVTJQH

T ! T
1 . s . .t 1 . 1
= X|AYH (H'AYAH) "V yp (M;ssfg’Ao’A> etl| = Op (1) 3770 z; fo e,
LT 1/2 L 1/2
= op ) (FSIRF) (3 lell) =onloih) 0

Then, by (C.48)—(C.50) and using the fact that 7y = op(1) in Lemma C.2, we can readily
prove that

% | XionTsee]| = Op (O5r) - (C.51)
Then we complete the proof of (C.46), which implies that

1
v IXE(M g = M jo)e|| = Op (57) (C.52)

We next consider the term %X{MA (AO — AH+)f?. Note that
LXIM (A= AE) 0 = L XIM o (A~ AET) O+ - X1 (M4 — M yogy) (A"~ AETT) f9
Nt A t T NOUTAH t T NTTA A'H t

(C.53)
Applying Lemmas C.3(i) and (v), we can find that +X/M sz (A — AHJr)ftO is the leading

term, which will be the major focus in the following proof. Note that
A~ AT = (AYHV g — AV )V
We can apply the decomposition (C.13) for AYHYV yr— AV yrp, use the fact that MAOHAOﬂ =

0 and both H and V yp are asymptotically invertible, and then obtain

1
N

3 8
P 1 . . ct et
X{M o5 (A" — AH )ftO:—NXgMAOH > inr+ Y unry | VrH £ (C.54)
7=1 7=6

12



Similar to the proof of Lemma C.3(i) and using the decomposition A = (A—AOH) +AH, we

may prove that

8
. . . o+ ot —_ .
XM jogy | tnry +inrs + Y vy | VrH ' || = Op (S5 + finr). (C.55)
=6

z| =

Meanwhile, letting x,, = f (3 F” FO)+ f?, we may also obtain

T
1 . o+ ot 1 e e b e
XM yogrive2 Ve H [ = 555 Y XM o Xodo fOAYAV yp H [
s=1
1 T
= w7 > XIM jo gy XX grds- (C.56)
s=1
Note that
Lo ' o P 1o
NXtMAXt(/Bt = Bi) ~ NXtMAOHXtdt, (C.57)

where a £ b denotes a = b(1+op(1)). By (C.39), (C.44), and (C.52)—(C.57), we have

T

1 1 _ _ .

XM po gy Xedy — o > XIM jo g Xoxds|| = Op <p1/2N V2 4 p=12 4 77NT) . (C.58)
s=1

Let Lyr = diag{%X{MAoHXl, ey LX’TMAOHXT} and Lyr. be the T x T block matrix
with the (¢, s) block being X, M ,o0 g XsX s By (C.58), we may show that

(Lnt — LNT,*)dﬁ = Ry, (C.59)

where élg is defined in the proof of Lemma C.2, Ry = (R}, ..., R}) with

T
_ _ . 1 _ 1,
|Rell = Op (pN"V2 4772 4 i) and = S (IR = Op (pN 7!+ T+ ir)
t=1

Using the arguments as used in the proofs of Theorem 3.1 and Lemma C.2, we can prove that
L7 — LT, is asymptotically positive definite with the smallest eigenvalue bounded away from

zero. Hence, (C.59) indicates that

T

1 . 1 . _ _ )

=gl = = 318, — B2 = Op (PN + T+ ifkr) (C.60)
t=1

which, in conjunction with the definition of 79y, in the statement of Lemma C.3, implies that

%Hdgw = Op (pN~! +T71), and strengthens the consistency result in Lemma C.2. By the fact

13



that the matrix +X/M yo0X; is positive definite as well as (C.58) and (C.60), we can prove
that
[ 8] = 0 (232 715) = 0 (353)

for each t, completing the proof of Lemma B.1 in Appendix B. |

Proof of Lemma B.2. (i) Using the argument in the proof of Lemma C.2 (with some mod-
ifications), we may prove that nyr = op(1). Then, following the proofs of (C.44) and (C.52)

above, we can readily show that

ZHXt'MA&‘tH =Op(pN~'+T7). (C.61)

N2 T
NTt1

Furthermore, by the Cauchy-Schwarz inequality, we have
1 T

T
G - 1
ﬁ ;(/Bt_/@(t)),XéMAEt = OP(pl/Q(SN%F) . <T

t=1

N
5 —B(t)H ) =0p (5pNTn}V/§) (C.62)

(i) As A”M 40 = 0, we have >/_| fUAYM e, = S0, fYAY (M 4 — M po)e;. Similar to
the decomposition in (C.37), we have

7
Pi—Propg=AAA) A~ AHHA"AH)"H'AY = vy, (C.63)
j=1
where H = Hyp = (#F"F°) (+AYA)V ., Vy7 is defined in (2.7), and vy, j = 1,...,7,
are analogously defined as on7; in the proof of Lemma C.3(v) with A and H replaced by f&
and H, respectively. We only need to show that

7
Z YAV (Y owrg)ei| = Op (635 + o N7 ) - (C.64)

Jj=1

Z FYAY (M 4 — M po)e
t=1

When (A, H) is replaced by (A, H), it is easy to verify that the convergence results in
Lemma C.3 still hold with 7, replaced by nyp. By Assumption 1(iii),

T

> AV f)

t=1

= Op(VNT), (C.65)

which together with Lemma C.3 (with some modifications to allow the replacement of 7y, A,

and H by n NT» A, and H, respectively) indicates that

1 = Op((NT) V2635 +y2)). (C.66)

T
Z FYAY (unr2 + UnTa + UNTT) €
=1
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On the other hand, note that

/

T 8
Do D uwrg | et (C.67)
t=1 \j=1

T

Z (AVNT - AOHVNT>/€tftO
t=1

where unt j, j = 1,...,8, are defined similarly to @7 ; in the proof of Lemma C.3 (i) with /Bt
and A replaced by Bt and A, respectively. Let ds = f8 . — B Then, by the definition of UNT,;j

and using Assumptions 1(i)—(iii), we can prove that

T T
SN A Xdod Xl ff
= 0p(T)- ) IIFY IIZHd %1 X sl

t=1

~ Op (Nl/QTpl/anT) 7 (C.68)

and

T
Z AAOfOG X e, O
=1s

i

T
1721 Z I 11 £ 1 X el

= (NWT( )1/2)- (C.69)

By analogous arguments, we can also show that

— Op(N'2Ty)3). (C.70)
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On the other hand, using Lemma C.3 we can show that

T 1 T T ;o
ZU/NT,SEtfz? = NT ZZASSd;XQEtf?
t=1 t=1 s=1
T A Ll
= LIS x| LS Y (A - Ay edxs, ftOH
t=1 s=1 t=1 s=1
1 I 1/2 L T 2\ 1/2
< [H]| (MZHAE)Est) WZ dyy " Xlef?
s=1 s=1 s=1
1 L 1/2 L 2\ 1/2
+ (NTZH(A—AOH)/&S\Z> NTZ d, ZXlétft
s=1 s=1
= Op (T(PWNT)UZ) +Op ((1 + NVETV2) (630 + ﬁ]\{T)T(pTINTfﬂ)
= Op (L4 NPT 4+ NPT T ()2 (€.1)
and analogously
T T T ,
Younrseft|| = o |[Do D A A e Y
t=1 t=1 s=1
L |z
N /
- Z Z H'Aeo [N fE)| + 5o 1D D (A= AoH ) eu fI A1 f}
s=1t=1 s=1t=1
T
1 - /
< |Hll w7 HAO’ FOIP + o D (A = AoH ) e f|| [ AYF?||
s=1
_ ()()AkOp<Aﬂ”TU2®NT%—lp)). (C.72)

Using the fact that under Assumptions 1(i) and (iv)

2 T T T
< (ZZ ||e;at1\2> (Z ||fg\|2> =Op (T’N(N +T)), (C.73)

= s=11t1=1 to=1
we have
T T
Z“?VT,es&tfto = 7 ZZAXstEIS&tfP
t=1 t=1 s=1
) T 1/2 T T 2\ 1/2
Ny A
< X 2 . / 0
< N e A X (;H%H) Zl tzlesatft
— Op(T™Y) - Op (Tl/%}@) .Op (TNW(NV2 n T1/2))
= Op (WFNTY? + N2T)). (C.74)
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Notice that

T T
2 :2 :“’ / 0
A€S5S8tft

t=1 s=1
T T T T

< — Z Z H'Ajeselei fO|| + —= Z Z (A — AoH) esclerf?
t=1 s=1 t=1 s=1

For the first term on the right hand side, by the Cauchy-Schwarz inequality and Assumption
1(iii) and (C.73) we may show that

1 T vz, p p 1/2
rlH (Z uAaesu?> - (Zuzegetff\f)
s=1

s=1 t=1
= Op((NT)™V2)Op(TNY2(NY2 + TY2)) = Op((NT)/? +T).

T T
N Z Z H/A6585;5tf130

t=1 s=1

IN

For the second term on the right hand side, by Lemma C.3(vii) (with yz, A, and H replaced
by nyr, A, and H, respectively), we have

T T T 1/2 1/2
— 1D (A-AoH) el fY|| < <J\;T > I(A - AoH)'€s||2> (NlT Sl Zs eef?| )
t=1 s=1 s=1 s=1
— Op ((1 + NP2y 5oL }V/j%)) Op (T n N1/2T1/2)
= 0p ((T+ N6k +37) ) -
It follows that .
> unrsef?|| = Op (NT)2 4 T+ Nyl7) (C.75)
t=1

Finally, noting that | Zzzl Z;le f¥elefP| = Op(NT) by Assumption 1(iv), we can also show
that

— Op(N). (C.76)

y (C.67)—(C.76), we have

T
7 |2 (AVr = A’HV ) a0 f?|| = Op (675 + 0, ko) (C.77)
=1
With this, we readily prove that
S
NT > HAY(onra + onts + onTs + onTe)ed|| = Op (5]_\7?[‘ + 0, Nl %121) (C.78)
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which together with (C.66), leads to (C.64). Hence, we complete the proof of (ii).
(iii) This follows from Lemmas C.1(iii) and (iv). [

Before proving Lemma B.3 in Appendix B, we need to introduce two technical lemmas.
The first lemma is similar to Lemma C.3 with the preliminary estimates replaced by the post-
LASSO estimates. Let A0 = [X(Trgo) be the infeasible estimate of the factor loadings in the
post-LASSO estimation procedure, H = (£ FYF") (iAO’ A mo)f/j\,T with V yr defined in the
is the

proof of Theorem 3.4 in Appendix B, and 7y = mD >t "+ [ —oz?||2, where @0

j-th p-dimensional element of the infeasible estimate @,,0 = @0 (T2).

Lemma C.4 Suppose that the conditions in Theorem 3.4 hold. Then we have
‘ ~ =12 _ .
(i %HAmO ~ AH|]" = Op (357 + 7int),
(ii) L (Ao — AYH) AYH = Op (532 + ix2),
(iii) ( mo — AOH) Ao = Op(5NT + 77]1\{%)
(iv) L (Ao Ao — H'AYAYH) = Op (532 + iiN2),
~1/2
(v) ”PAmO — Progll = O (05} + 7).
(vi) %7 ZSTZI(Amo —A’H)' ey = OP(5]_\/T + 771/2) with v4 =1 or f2, and
(vit) §7 St [(Ao — A°H)'ey|[ = Op((1+ NT )03 + fin))-

Proof of Lemma C.4. The proof is analogous to that of Lemma C.3. Hence, we only sketch
it. For notational simplicity, we let V = V yr, and 7 Mj = Qpoj 9 ji=1,..,m°+1. By (B.25)
in the proof of Theorem 3.4, we have

A,V —A’HV

O+1 T —1
- Z Z Xtamo])(Yt_XtdmOj)/ Ao — A’HV
J=1l =17 |
[ 1 m0+l T]Q_l
~ ~ / ~ ~ ~
-~ |NT Z Z (= Xuij + A f) 4 &) (= Xy + A°f) + 1) | Ao — A°HV
J=1 =19 ,
mo+1 T)—1 ) mo+1 T)—1 mo1 T0-1
S D ID IR WESLE S S Y USRI Sl B L
=l = TO j=1 t:T;Ll j=1 ¢= TO

18



m0+1 T]Ofl T m0+1 Tjofl

_ﬁ Z Z Aof X Amo + NLT ZAoftOg;Amo - NLT Z Z 5t7~7;X£Am0

= 70
Jj=1 t=T) |

1
+ﬁ Z e fUAY A0 Z ereb Ao
8
= Z aNTJ‘. (079)

Then following the proof of Lemma C.3 with A and d; replaced by Amo and 7);, respectively,

and using Assumption 3(ii), we can readily prove Lemma C.4(i). Note that

1

N(Amo —~A’H)'A’H = Z V iilyy A E Z N - (C.80)
Then following the proof of Lemma C.3(ii) and using Lemma C.4(i), we readily prove Lemma

C.4(ii). The results in (iii) and (iv) can be proved by combining Lemmas C.4(i) and (ii). Similar

o (C.37), we have the following decomposition:

7
Pi .~ P =N (An0A,0) Ao — ACH(H'AYAH) H'AY = oyr;,  (C.81)
j=1
where

inta = (Apo — AH)(H'AYA°H)" (A0 — A°H),

int2 = (Apo— AH)(H AYAH)"H'A”,

ints = (Apo — ACH)[(ALoA0)" — (H AYAH) (A0 — A°HY)',

inta = (Ao — A°H)[(ALoA,0) " — (H AYAH) " |H'A”,

tnrs = AH(EAYAYE) (A0 - AVEH).
inte = AYH[(A ’
ﬁNT,? = Aoff[(A
By (C.81) and Lemmas C.4(i) and (iv), we can prove (v). The proofs of (vi) and (vii) parallel

to those of Lemmas C.3(vi) and (vii). We have thus completed the proof of Lemma C.4. [

Lemma C.5 Suppose that the conditions in Theorem 3.4 hold. Then we have

. ~ 0 p—
(i) izt = o gt lGmo; — 9l* = Op (6, 37).
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(ii) % (Apo—A"H)'s, = H' ($FF")" (7 XL, 12k ) +0p (033 (m) /2 G0 — ])

+Op<pNT)fo7’t—1 ST,

=1 a0 i (FP A AT (A o) TP=1 /A0 (A0 A0V
(iii) xetry | g XIACH (H'AYACH) ™ (Ao — AH) 1= 3,70 X/A® (A”A)
J— j—

(RO F)" (3 S0 125i0) | = O (53 m®) 7 [t = )40 (5r) for = 1o+
1,
(iv) 3 S | (Ao = ACHY = £ = Op (6,37).

Proof of Lemma C.5. As the proof of the convergence rates for &,,0 in (i) is similar to the
proof of Lemma B.1, we omit the details. Furthermore, the results in (iii) and (iv) can be easily
proved by using (ii). Hence we only focus on the proof of the result in (ii).

Note that for any t =1, ..., T,

1
N

8
(Ao — A°H) 'z = LV (R ¥~ AHVY e = LV (D e = (C.82)

by using (C.79) in the proof of Lemma C.4. By Lemma C.5(i), Assumptions 1(ii), (iii) and 3(ii),

and the Jensen inequality, we have

1 1 meat T
ot -+ G Lo
NHV UQVTJEtH = NoT Vv Z Z Ao X X e
k=1 s= TIS 1
TP -1
= Op(N2T7") [ Ao | ma syl z Il 3 x|
5= T]? 1
= Op (P2NT iy ) = Op (5;5%). (C.83)

By Lemmas C.4(i) and C.5(i) and Assumptions 1(iii), (iv) and 3(ii), we can show that

N H V+ﬂIJVT,35t H

mO0+1 TO 1 mO0+1 TO 1
- Z Z HAO’gsnkX’z-:t + Z Z A0 — Aoff)/ssﬁ;Xgat
k=1 s= TIS 1 k=1 s= TIS 1
mO+1 TP—1 mO+1 TP -1
= Op(N2T7Y) | D Ml Do A e[ Xbee]| + [ Ao = APH| D Il D lesll]| Xied]|
k=1 s=Ty_, k=1 s=Ty_,
= Op (N"'(pitg)"'2) + Op (NY2(05% + 1) i) )
= Op (N 1(p77NT)/ +5pNT> (C.84)
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By Assumptions 1(i), (iii) and 3(ii), and Lemma C.5(i), we have

1 1 mot1 T
-+ -~ +
NV “§VT,45t = N2TV Z Z AmoXsnka’AO' ¢
k=1 s= TIS 1
mO+1 Tlg_l _, N
= Op(N2T) - 3 il | D2 1AL XA DS Aee
k=1 s=T0_, i=1
= Op (635p(m) /&0 — a°])). (C.85)
Analogously, we can show that
l~+~/ _ 5-L 0\—1/2 % _ 0 C
NV Unraet = Op (Oyp(m?) ™ Flege — a7 ) . (C.86)

By Assumptions 1(iii) and (iv), we can prove that

T /
V+€L/NT5€?5 = N2T + (Z A° é?gls]\mo> €t
s=1
) szOAOISt + N2T (Z AolestIAOI )
+ ~\/
= ¥ X (R - AH) eufiAe0p (mu > A%, A%, H)

T
_ v+ ™ (Ao — ACH) <, f2AY%, + Op (55%) (C.87)
s=1

By Assumptions 1(ii), (iv) and Lemma C.5(i), we have

1 1 mO+1 T£*1
Y =+ <~/ ~
~V Unreet = eV ) Ao Xl | e
k=1 s=17 |
mO+1 T;S—l -, N
= Op(N2T71) - > il | D2 A0 XD cueis
k=1 s= T}C 1 =1
= Op (5 (m) 2 G0 — )] (C.88)

By the definition of H and noting that V;T is diagonal, we have

+
E: 07 20
NT EEt]— <FF>

1 ~ 4+ 1 ~ 4+
~V Uy et = (NV AmoA0>
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By the definition of 47 g and Assumption 3(iii),

T T
- 1 - / .
V+U/IVT,8€t = NvaJr; (Amo —AOH> €s€/s€t+ V H Z:: Veseler
T
1 [ —
- ‘]\[QTVvJr Z (Amo - AO ) 555;5t + OP (51\[%) . (090)

1

@
Il

Combining the results in (C.82)—(C.90) yields

1, - (1 L b e /
(s =AY e B (PR NTXN&E+NWW’§X:W— H) e fAe
s=1

+ﬁf/+ ZT; (]\mo — AOIZI>,55£’SEt + Op (5;5)\7T)

s=

+0p (S (m") @0 — afl]) (C91)

By Assumptions 1(i) and (iv), the first term on the right hand side of (C.91) is Op (5]7\,2T); by As-
sumptions 1(iii) and Lemmas C.4(vi) and C.5(i) we can show the second term is Op (5;}VT5]_\/1T>;
by Assumptions 1(iii) and (iv) and Lemma C.4(vii) and , we can show the third and fourth terms

are Op ((5p }VT(S]_VT> It follows that

% (Am‘) - AH ) =Or (5;11VT5TV1T) : (C.92)

By (C.92) and following the above arguments, we can further show that the second and third
terms on the right hand side of (C.91) is Op (5; ‘;)VT) . This completes the proof of Lemma
C.5(ii). [

Proof of Lemma B.3. For notional simplicity, we let A = Amo throughout this proof.
(i) Noting that

—(Mz —Mpo)=AAA)"A — AH(HA"AH) H'A” = ZUNTk (C.93)

and by using the decomposition (C.81), we have

1 ;-1 . T0-1 .
/ o / -
N7;(T) Z Xt(MA - MAo)et = _NT-(T) Z X ZUNT,k Et. (C.94)
! =17, J =T}, k=1
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By (C.94), Lemmas C.4(i), (iv) and C.5(iii), we can prove that for any j = 1,...,m" + 1,

T9-1
1 J
X, (M M B 2.1
N7;(T) t; ( a0)er+ Byrj(2,1)
=79,
/ ~ 7~
< N Z Xt(-z ONT,)Et|| + N (T) Z XionT56¢ — BNT,j(2,1)
’ t:Tjofl J=1,#5 J t:T;Ll
1 91
Bl ) Z Xionrser — Bnr,j(2,1)|| + Op (6 Lm®) Y2, — o H_|_5pNT)
J
7 1
= Op (3 () 2y — 0]+ 8 (c.95)

which completes the proof of Lemma B.3(i).
(ii) Noting that for any j = 1,...,m" 4+ 1,

-1 -1

0 L ' Ing - (AOFTY, _ AT\ T T 0

NT Z XMy AH")f| = Nr. D) > XIMi(A’HV —AV)V'H'f},
i tTO I =10

and V H = (%AO’[X)Jr(%FO’FO)JF, by the decomposition (C.79), we have

TO 1
Z X/Mz (A" — AH ) [P

tTO

= NT] Z XM (ZUNTZ)< AO’A) (;FO’FO)+ft°. (C.96)

NT]

We next analyze each term on the right hand side of the equation (C.96).
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For [ = 1, by the definition of 471, Assumptions 1(i)(ii), and Lemma C.5(i), we have

1 To : 1 07 A * 1 07 770 * 0
/ /
N (7] t; XMAuNT1<NA A) (TF F) fi
j—1
1 et T 1 1 +
_ S LoAOrR L 500 170 0
= t; X/ M NT ;; X i XA (NA A) (TF F) 1}
k—1
1 0+1 TO 1 TO 1
= 0rar X P oy & X M CA)
t T) | s=T}
= Op (pityr) = Op (papNT< )2 G — a°))) (C.97)

For | = 2, by the definition of uxy7 2, we have
1 i 1 tr1 +
X M 7A0/A *FO/FO 0
N t%; wivea (5A"A) (7 i

mO41 1)1 TP-1 1 -
- L X s ()

k=1 ¢= TO | 8= TO_1
T)-1 T9-1

mO+1
- S v & e
k=1

0 0
L‘TlsT1

= = [(A), s 801 (A)] (G0 — @), (C.98)

+ =, % T9-1 T0—1
where x,, = f¥(£FYF°)" f? and % (A) = WJ(T) ZtiT]Q_l ZsiT,S_l X5t Xt M 5 Xs. By Lem-

mas C.4(v) and C.5(i), we may show that

[€54(8) = @5 = O (p0, () ") 1<k <m 41, (C.99)

T9-1 T0_1
where ®%, = W >0 ZsiTg_l Xt X7 M p0Xs. Hence, by (C.98), (C.99) and the Cauchy-

=T15_,

Schwarz inequality, we have

TO 1
1 * 1 07 170 * 0 * 0
Ny (T) Z X;M jinT 2 <NA ‘A, ) (TF ’F) A+ (@51, @ o) (G0 — @)

58 8] o) (8 )

= O (8, hr(m®) /2 G0 — ) (C.100)
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For [ = 3, by the definition of 4n73, Assumptions 1 and 3(ii), as well as (C.92), we have

T0-1
1 < / ~ 1 07 A " 1 0/ 0 " 0
N (T) > X[Mgiinrs (NA A) (TF F) 1!
J t=T0,
) -1 mO+1 TO-1 ) Nt i
= No(D) Z XM NT 2 Z XA (NAO/A) (TFO/FO) 17
J t=T9_, k=1 s=T0 |
(1) m’+1 71 TPl
- i > Il S Y x| (Al + 4 - AE) 1]
t=T) , s=T}_,
= Op (05 (m") 2|0 — a”]]) (C.101)

To study the next two terms, we can apply the arguments used in the proof of Lemma C.3(ii)
and show that +[|X/(A” — I~{+)|| = Op(p*/ 2037 + 77]1\;%) This, in conjunction with Lemma
C.4(iii), implies that

%HX{MA(AO ~AH")| =0p ( 1252 + 77%%) (C.102)
and similarly for j = 1,--- ,m® 4+ 1,
T9-1
1 J M- (AY — AR 0| — 1/25—2 | ~1/2
N (1) tz%@:lHXtMA(A —AH )| |1 H—Op( S+ i ) (C.103)
p

For [ = 4, by the definition of 4n7 4, (C.103), and Lemma C.5(i) and noting that MA[X =0,

. Til X/M i <1A0’Jx>+ <1F0’F0>+ £
N7;(T) 1 FEATNTA N T t
- Til XMz (A"~ AH") 1%1 Til 071, X1 A <1A0’Zx>+ <1F0’F0)+f0
- N@ | T NT & 4 s AN T t
mO+1 T9-1 191
= 00| s Znnknt; ; Jocin 5 (A0 — AF) /A 212
1S 1

~ Op (5;,}VT<m“>*1/2||amo o).
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For | = 5, by the definition of 475, Assumptions 1(i)(iii), (C.103), and Lemma C.5(iv), we

have

IN

T01

1 +/1 +
X/ M AYA —FY RO 0
N7;(T) Z AUNTS <N ) < !

tTO

1
N;(T) Z XM

t=T7 s=1
T9-1
1 \ /M AO
- X -
N2T7;(T) t; M (

j—1

) TJQ—l
- X/M~
+N2T7j (T) t_; !

TO 1
Or | Sz Z | XMz (A

t,O

TZl > |lxim

tTO s=1

+Op NQT

OP <5p?VT+6pNT( ) 1/2||dm0_

T
( NT D AVl A

N~

1AO/A * 11;10/1;10 * 0
(N ) (T ) i

0.7 A0 10/~+10/0+0
Zf ‘A (NA A> <TF F) 1!

!

ZO/AAO)

1 o=\ /1 *
(NAOIA> (TFO/F0> ftO

T
—AH)|[| 3 s A1
s=1

o).
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For [ = 6, by the definition of iy and Assumptions 1(i)-(iii), 2(ii) and 3(ii), we have

IN

T9-1
1 JZ: X'M il iAO/A " lFO’FU +f0
NTi(T) ||, 45 ERATNTO N T t
i
1 -1 mO+1 TP— ) + i
X/M” X/ *AO/A *FOIFO 0
N7 ,(T) 2, XiMj NT 2 Z Sl (N > (T i
J t=T9_, k=1 s=T0 |
thsnkX’A (AO’A) (FO’FO) f?
N7;(T) T =T s N T
N7;(T) 1 NT =T N T
) 91 mO+1 TP—1 1 + /1 +
+ X AO AOIAO Ao,é"S le (AO/A> <FO/F0> f?
| > wE Y wa) (3
— Op <p1/25;}w( )20 — a0]]) (C.106)
For | =7, by the definitions of ux7 7 and x;, we have
e 1 T +
XM 7A0/A *FO/FO 0
T z sives (5A%A) (7 s
TO ' 1 & 1 1 *
= N Z X M (W Z Esf£/A0/A> <NAO/A> <TFO,FO> ft()
7i(T t T, s=1
. T;Ll T ) -1
o / / o
= m Z ZXstXtMA05s+m Z ZXstXt(MA MAO)ES
I =10 s=1 I =10 | 5=l
) -1 -1
= N ( Z XtMAoet NT Z ZXstXt M MA0)€S; (0107)
T2 =79, i t T | s=1
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where ¢} = %Zil Xs:€s- On the other hand, following the proof of Lemma B.3(i) and (C.95)

in particular, we may show that

T9-1
1 J
—_ Z ZXSth(MA—MA0)85—|-BNT’]'(2,2)
NTTj(T) 2=
“10
= Op (53p(m) /2 Gmy — 0l +6, %1 - (C.108)
Hence, it follows that
) TO 1 . ) ) TO 1
X\t 07 0\t £0
N (T) Z XMAuNT7( AYA) (TF FOT £ — N () Z X|M poei + Bnr;(2,2)
t= TO t= TO
= Op (05 (m’ >—1/2uamo—a°||+6w) (C.109)

For | = 8, by the definition of uxy7 35, we have

T01

1 Z XM« i L Aok - 1 porgo +fo
Nr,(T) EEATNTS \ T t

] 1
T9-1

1 J 1 - A L oz g 0/ 70 " 0
— - / _ - / - / - /
- NTj(T)t; KMz (NT26585A> (NA A> (TF F> i
= -1 S=
o0_
1 ! 10/*—‘_10/04_0_
= N, > XiMyec'h SAYA) (ZFYF) = Bur,(1). (C.110)
=T} ,
By (C.96), (C.97), (C.100), (C.101), (C.104)—(C.106), (C.109) and (C.110), we can complete the

proof of Lemma B.3(ii).

We have thus completed the proof of Lemma B.3. |
Let
. . . / o T R, o 9 ’
Ap = (ALR,...,AMR) and Kp = Z — XiB 1) (Y — XuBy g) A = (ALR,...,)\N,R> .

In order to prove Lemma B.4 in Appendix B, we first need to prove the following technical

lemma.

Lemma C.6 Suppose that Assumptions 1 and 2 in Appendiz A hold and R > Ry. Define the
Ry x R matriz HR = (%FO’FO) (%AO’A}O with the Moore-Penrose generalized inverse I'{;; =
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H} (2)

Let VNT’R denote an R x R diagonal matriz consisting of the R largest eigenvalues of the

-+
Hpy(1 . .
[ r (1) ], where H;(l) and H;(Q) are Ry X Ry and (R — Ro) x Ry matrices, respectively.

N x N matriz ﬁZil(Y} - XtBth)(Y} - XtBt,R)/ where the eigenvalues are in decreasing
order along the main diagonal line. Write Ap = [AR(l),AR(Q)} and Hp = {I.{R(l), HR(Q)} ,
where Agr(1), Ar(2), Hgr(1), and Hgr(2) are N x Ry, N x (R— Ry), Ry x Ro, and Ry X
(R — Ry) matrices, respectively. Furthermore, write VNT,R = diag{VNT’R(l),VNT,R@)},
where V y7.r(1) denotes the upper-left Ry x Ry submatriz of V 7 r. Then we have

(i) & | K — 888" = 0p (5,3r).

(ii) & H]x'foR _ H'RAO'AOHRH — Op (5;}VT) ,

(i) & ||An (1) = ARV 1) = O (5,32)) amd | B[ = 0p (5,30)

(iv) HH;(QH — Op(1) and HH;@)H =0p (0,41)

Proof of Lemma C.6. (i) When R > Ry, we can follow the proof of Lemma C.2 and show
that

T

. 1 :

R =7 D NBur =B = op(1),
t=1

Next, using Y; — Xt/Bt,R =AY by + Xy (B — Bt,R) and dtﬁ = Bt,R — (Y, we have

(Y — XeBy ) (Y — XuBy p) Ar — A°Hp

N

Ar—A"Hp =

~
Il
—_

. . /. .
[~ Xudin+ AV + ] [~ Xodin + A + =] An - ACHg

|
~ N N
iNgE

B

T T
. . . 1 . 1 . .
Xydy,rdy g X AR — T ; Xods pfYAY AR — ~T ; Xds petA g

t=1
1 & 1 & 1 &
2 : 0 0 j/ /A 2 : 0 £0_7 A } : 7 /A
_7’1" - A ft dt,RXtAR + N*T £ A ft EtAR - NT — Etdt,RXtAR

T T
1 07 A O7 A 1 /A
—5 AYAp+ =Y el
tNT 2 eele R+ NT 2 FIEAR

8
> g (C.111)
j=1

Following the proof of Lemma C.3(i), we can readily show that +||ig||?> = Op (5% + i1g) -
Then we readily have %HI‘R — AOﬂR]|2 = Op (5]\,27, + f]R). With this, we can apply the argu-
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ments used in the proof of Theorem 3.1 to show that np = Op (5;?\@) . Then we may complete
the proof of (i).

(ii) Noting that

L RpKp — - HpAYAH 5
N N

%(AR ~ AEI ) (Ap — AYEIp) + %(AR — AEIR) AYET 5 + %H'RA“’(.KR _ AYEp),
the convergence result (ii) follows from the triangle and Cauchy-Schwarz inequalities, Lemma
C.6(i), and the fact that [|[A°Hg||> = Op (N).

(iii) Let V z and V g (1) denote the probability limits of V' ~NT.r and 1% ~NT.R (1), respectively,
as (N,T) — oo. Recall that Hp= ﬁFO’FOAO’AR and %A}%AR = Ig. As the application of
PCA method, we have the identity

S

1

NT — XiBy g) (Y — XiBy g) Ar = ARV N1 8-

t=1

Pre-multiplying both sides of the above equation by A}% /N and using the normalization %A}%A R=

IR yields
T

Z — XiByg) (Vi — XiByg)' | Ar =V rg,

N2T

which together with Y; — XtBt,R = X, (B — 5t,R) + AP f0 + &4, yields

1
N2T

RACFYFOAYAR + dyr g = VNT,Ra

where

dNT,R = N2T Z [Xt /Bt,R)(B? - Bt,R)lX{ + evel + Xo(B7 — Bt,R)ftOlAO,

+A°f) (/Bt - 5t,R) 'X{ + Xy(8) - Btﬁ)d& +e(B) — Bt,R)IXé
+A° fPel + e f'AY] A

8
> dp;.
=1
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Following the proof of Lemma C.3, it is easy to show that |[dy7 r|| = Op (513 NT) by proving

that drj;, j = 1,2,...,8, are either Op(<5 NT) or of smaller order. For example,

finall = o [ [0 - B - x| A
=1
1. 12 1 & _q2
N HARH Hma (XXt /N) > HB? - 5t,RH =Op (5;3\@) 7
=1
1|, [& : 1. (2
| oo [ A | Do miet| Al| < o el | AR = 0r (633)
=1
and
ldrsll = NQT ZXt — B ) FAY AR
T NG
< LAl o A% (i) (; > 8- ) L)
< Op ( /2> =Op (5;,}\11’) .
Then
NéT LACFYFOAY A = Vinr g — dyrr 2 Vi (C.112)
Observe that NéTA’ AYFYFOAYA i has rank Ry at most in both finite and large samples.

Let Ant (1) = 5AYAgR (1) for I = 1,2 and B = £ FYF°. Then

Ay () ErANT (1) Al (1) ZpAnr (2)
Ay (2)BrAnr (1) Ay (2) ZpAnT (2)

1
N2T

A/RAOFO/FOAO/AR _

Note that 35 = X + 0p(1) by Assumption 1(i). Following the proof of Lemma A.3(ii) in Bai
(2003), we can show that plimy 1) e AN7 (1) EpAyy (1) = V(1) which has full rank Ro.
This ensures that NéTA/ AYFYFOAY A j has rank Ry in large samples and Ay (2) SrANT (2) Lt
0. Then A’y (1) SrANT (2) 2o by the Cauchy-Schwarz inequality. By the asymptotic nonsin-

gularity of 5, this also implies that Ay7 (2) = op(1) and Ay (1) LA (1) for some Ry x Ry
nonsingular matrix A (1). Consequently, we have

1

S FUFOAY AR (1) L srAa)

Hp(1) =

and

1 .
FYFOAYAR (2) = op(1).

HR(z):ﬁ
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Then Hp (1) is asymptotically nonsingular and H p has rank Ry.
By the definition Ap = 7 S (Y — XtBt,R)(Yt - XtBt,R),AR and the identity ST
(Y, — XtBt’R)(Yt - XtBt,R)/AR — ARV n7. from the PCA, we have

1
N

o . 2 1 . . 07 2
RO [

1. - . 2 190, . . 2

N HARVNT,R (1) — AOHR (1)” + N HARVNT,R (2) — AOHR (2)H .
.o . 2

Lemma C.6(i) implies that - HARVNT,R (1) -~ A’Hpg (Z)H = Op (6;?\@) for [ = 1,2. Since

V & (1) is nonsingular, it follows that

% HAR —AHi (1) V}Tﬁ (1)”2 =Op (5;3\@)
and
|Varr O] < [V Q| + |[Vare ) = Vi || = 0r ).

In addition,

1 . 2 2 - . 2 200, . 2
N HAOHR (2)H < N HARVNT,R (2) - A°Hp (2)H ty HARVNT,R (2)H
= 0r (5,37) + 0r (5;31) = Op (5,37).
because
% HARVNT,R (2)H2 < [Milax (VNT,R(Q))} HARHQ /N=R [iu?nax (VNT,R(Q))}

and
i (VNT.R()) < iy (ARAFYFOAYAr/(N*T)) + |duvr.ll = ldnr.al = Op (3,47 )

where 1 1 1(+) denotes the (Ro+1)-th largest eigenvalue of the square matrix in the parentheses.
In view of the fact that

% | a0, (2)H2 _ %Tr (Fr(2) Hp 2 AYA%) > o, (AYAY/N) |5 (2)] ’

)

we have

@ < [ (AAN)] 7 L A%, )" = 05 (572).
N
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(iv) Since Hp is right invertible asymptotically, by Proposition 6.1.5 in Bernstein (2005,
p.225), the R x Ry generalized inverse H ; of Hp is given by

et g [ HR) (HaE) _lzﬂxn]
Hyy = Hy [Hully] = @) (Bpiry) | [ HR@) |

Then by Lemma C.6(iii)

Jtraw| < || | (Fres) | = 0r ). ana
] = o] ()| - 0 (7).
We have thus completed the proof of Lemma C.6. |

Proof of Lemma B.4. (i) The proof is similar to that of Lemma C.2. Notice that

!

1
QnT(B,AR) = ﬁt:l — XiB) M, (Vi — Xi8,).

Using Y; — XiB; g = Xo(B8] — By.g) + A’ fY + &1, we have

0 > Qnr(Br,Ar) — Qnr(8°, AR)

T

= % Z [(Y - XtBt R)/MAR(Y% - Xt/Bt,R) - (Y - Xtﬁg)’MAR(Y; — Xtﬁ?)}
t=1
T

1 . o
= 72 |Bun— B XM Xil(Bn = B0) — 2By p — B XM s A

t=1
9 I

—WZ&R 5t 'X{M Agct:
t=1

By Lemma C.1(i) (with Ry and A being replaced by R and Ag), we can prove that
1 I

ﬁ Z(/Bt,R - 5?)/X£MAR€1§ =Op ( 1/25;NT)

t=1

Let c'lij =Br—B%and dy g = ﬁvec(MARAO). Define

. 1 . .
Ap = diag(X]M X1, ..., Xp M Xr) and Cp = Y@My Xi,... fp® My Xrl.

N1/2
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Then
1 Lor. .
7 0 | Bur = B XIM g, Xe(B = B9) = 2B — ALY XM 4, A
t=1
1., - - 2. ..
= 5o pArdsr - deLRCRdB,R.

It follows that
1. .o 2. .. 3
de,RARdB,R - TdA,RCRdB,R +Op (p1/25p’}VT> <0.

This, in junction with the fact that

iy nCripn| < [dynins]” [d,nChCnisn]
< vl s iz €]

implies that
1., . . 2 . . Ly B
gndndsn = a7z [ dnn| s (s (CrCr/T) ] + 00120, ) <0

Using a decomposition similar to (B.8) in Appendix B, we can readily show that umaX(C’;%C’ r/T)
= op(1). By Assumption 1(ii), pyi(AR) > ¢ w.p.a.l. and ||da g|| = Op (1). Tt follows that
1, 1o~
pldsal® = 7 32 1o = 501 = or (1)
Note that
V(R Br) = min Qur (B, Ar)

subject to ARARr/N = Ig.Let s, (B) = p, [Z?zl (Y; — X:8,) (Y — X:8,) /T} For any R < Ry,

we make the following decomposition:

1 N 1 Ry B
VR =F 2 vB)+ gﬂ 5¢(8) = 51 (B) + 52k (8)

Noting that Sy (8g) > S (BRO) = V(RO,/@RO), we have

V(R Br) = V(Ro.Br,) = [S1(Br) = $1(Br,)| + Ser(Br) = Ser(Bp).
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Let 0 = i, (+ S0y [AYF0 1A + eiel + Xu(8) = Bop)(8) — Bp) X{] ) - Notice that

[ () — o2

T
1 . .
< || 20 { A%+ et AY) + [AOFP(B) = B Y X+ X8 - B ) A
t=1
a8 = Bur) Xt X8 = Buwll} |
T T T
< ZISTAYG| ST A - B Xl e S 80— B X
— NT o t <t NT o t t t, t NT P t t, t
= sp = sp = sp

Under Assumptions 1-2 and using the fact that %]!dg,RH2 = op(1), we can readily show that
the second and third terms in the last expression are op(1). The first term is Op((N T)fl/ %) by
Assumption 1(iii). It follows that

V

Ro
. 1
S:r(Br) 2 > s2+op(1)
r=R+1

Ro
1
> &7 > e (A"FYFOAY) +0p (1)
r=R+1
> (Ro—R) Mmin(FO/FO/T)Mmin(AO/AO/N) +op (1)

= (RO - R) Mmin(EF):u’min(EA) +op (1) ’

where the second inequality follows from Weyl’s inequality. In sum, we have

phm (N ’}%f—)oo V(R? IBR) - V(R07 BRO) > CR, CR= (RO - R) Mmin(ZF)Nmin(EA)/27

completing the proof of Lemma B.4(i).
(ii) Recall that V(R, Br) = ming a, Qnr (8, AR) subject to AR AR/N = Ip. Noting that

V(R, E’R) = QNT(BR, AR), by the triangle inequality, we have
V(R Br) — V(Ro. Br,)
’QNT(BRyA — R) - Qnr(8°, AO)‘ + ‘QNT(BRO, Ar,) — Qnr(8°, A°)

Qnt(Brs Ar) — QNT(BOaAO)‘ :

IN

< 2 max
Ro<R<Rmax

It suffices to show that Qnr(Br, Ar) — Qnr (8o, Ao) = Op (5;3\@) for each R € [Ry, Rmax]-

o + . . . . .
Let H p denote the Moore-Penrose generalized inverse of H r such that H p H ; = IR,; see, for

35



example, the proof of Lemma C.6(iv). Noting that Y; — X;8Y = A%f? 4+, and M ,oA" = 0, we

may show that
1 T
Qnr (8%, AY) = N; — X80 M po(Y: — X:89) = NTZEtMAoet

Let & = ¢4 — (AR — AOHR)HthO. Noting that
~XiBp = (KB + A ) - XiByg
= Xu(B) ~ Bup) + RRH R + e+ (A Hp — Kp)Hpff
= Xu(B) = Brr) + ArHpf) +2
and MARJVXR = MAR (ARVNT,R> = 0, we have
1 T

QNT(BR; AR) = ﬁ (Yt - XtBLR)/MAR (Yt - XtBt,R)

~~
Il
R

[Xt(ﬁg —Bur) + 54 / My, [Xt(ﬁ? — Bur) +&

~+

I
— 5‘»—\
M=

Sl
—

T

1 . .

= NT M Et NT E (Be,r — 5?)/X£MARXt(Bt,R - 87)
=1 =1

NTZ M Xi(By g — B7)
= L+ Ig — 215.
We next prove Lemma B.4(ii) by only showing that
~ Qur(8° A%) = 0p (5,37)
and
L=0p (537) I=0r(53)
First, using & = ¢, — (Agr — A°HRg)H ; f?, we make the following decomposition:

T
1 o . .-t o . o+
ho= s Z[ft — (Rp— A°Hp)H p f0) M [eo — (Kg — A°H g)H  f{)]
- NT th ArSt T NT wa?/H (Ap— A"Hp)Mj e

1] . . +
Z FUH (AR — AH )My (Kp — A°Hg)H p,f}

11,1 - 211,2 + 11 3.
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Using the arguments as in the proof of Lemmas C.1(iii)(iv), we can show that

T

N 1 _ -
Iy = Qur(8°,A%) = = > el(Pyo = Pyn)er = Op (033) = Or (%,?VT) .
t=1
For I 2, we have
T
1 ot (X or 07 0
Ly = NTZ_;ftHR (AR—AHR) Et—izftH AR AHR)P

= L — I1,2.

Using the decomposition in (C.111) and Lemma C.6(i), we can readily show that Ij 12, =
Op (5;?\@). By the Cauchy-Schwarz inequality, the fact that P Ag is a projection matrix, and
Lemma C.1(iii),

L 1/2
[T120| < NTZ‘SQPAR&]
=1

1/2
||

= 0r (5ykr) - Or (038) = Op (5737,

where the following result which can be proved by Lemma C.6 has also been used:

IN

1 & . C o2
NiZH AR—AOHR)HthOH

- A | | Zuft §

— 0p (0,31). (C.113)

Thus we have I1 2 = Op (5;; NT) Similarly, using the fact that M ; is a projection matrix and
by (C.113),

0 -2
Iz < NT ACEILR)EL L f0 H (%,m) .

As a consequence, we may complete the proof of Iy — QNT(,BO,AO) = Op(éz;?\,T) for each
R € [Ry, Rmax]-
Next, by Assumption 1(ii) and the fact that M An is a projection matrix and that np =

T Simt 18,7 —B7II> = Op (5;3\@) , we have

i H 5tR @s X M 4 Xt(BtR 575)H max  fhyax (XtXt/N) g =Op (5;3\7T> :

1
N 1<t<T
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To study I3, we apply & = &; — (.7\3 - AOI.{R)I'{;ftO and M =Iy—P; and make the
following decomposition:
T

o : 0
I; = NT — E:SMARXt(Bt,R - B¢)

T T
1 . 1 .
= NT Z e Xi(Byr — BY) — NT ;ggpARXt(ﬁt,R - BY)
Z PO (R — A°HR) M Xi(By 5 — B9)
= 13,1 — 13,2 —I33.

By the Cauchy-Schwarz inequality, Assumptions 1(ii)-(iii), the fact that

T T
1 . 2 B 1 B
== > HBt,R - B?H =Op (@,jw) T D &Py et =0p (637), tumax(My,) =1,
t=1 t=1

and Lemma C.6(i), we have

T 1/2
PRI ZEQXtX#t] i’ = Op(p">N~2)0p(6, N y) = Op (5;,?\@) :

N2T
L =1
o 1/2 LT 1/2
[I32] < NT Zd&PAREt] NT Z(ﬁt,R — B X[ Xe(By.r — BY)
L t=1 t=1

< Op (0% tmax (X{Xe/N) 257 = O (8737)
and
1/2
53] < NTthO’H (Ag— A°H ) M (AR—AOHR)H;JCE]
L 1/2
ﬁz BtR 51& XtXt(ﬁtR 5t)
t=1
1
< [ a0 Fr | Zufou] L (X 1

= 0p(6,hr)0p (1) Op(5, 1) = Op (0,37

Hence I3 = Op ((5;3\@) . In sum, we have shown that QNT(,BR, AR)—QNT (By, Ao) = Op (6;?\@)
for each R € [Ro, Rmax|, completing the proof of Lemma B.4(ii). [ |
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Proof of Lemma B.5. Let

T;—1
1 m+1 1j
Dyt (0, A; Tr) = N7 Y Y (V= Xpoy) Ma (Vi — Xeaj) — ehey]
j=1t=T;_1

and 637 = w7 S°1, €hes. Note that

(dm(Tm),]&(Tm)) =arg min Dyt (Qm, A; T) s

(ama

and

52 (Tm) — 52(T %) = [62(Tom) — 0%1] — [62(T20) — 5%7]

with 62(Trm) — 637 = DNT(@m(Tim), A(Tm); Tr). We prove the lemma by showing that (i)

mO

P [T o] = o (1) e
and (ii)

mO

TA%
We first show (C.114) in (i). We make the following decomposition:

(62(Tm) — 6%7) > c+op(l) w.p.a.l for some c> 0. (C.115)

mo41 Tj—1
eSS e v
/ J=1 =17 |
mO+1 T]Q*I
- NT z:l Z}: [Xt(a? — Q) +A0ft0 +€t]/MA [Xt(a;? — &) —i—AOff +5t]
J=1 ¢=T9_
mO+1 Tg(‘)ill
= Y EMge o FAYMEAY S (0 — 6 XM Xl — &)
J=1 =17 |

+ 26\ M 5 Xi(a — &) + 2, Mg A £ + 2fY AV M 3 Xy (o) — &;)]

dinT + donT + d3NT + 2danT + 2d5NT + 2deNT,

where we suppress the dependence of &; = &;(T?,) and A= ./1(7;20) on 79, for notational
simplicity. By Lemma C.1(iii),

T T
1 1
leT = ﬁ Z&;M&gt = ﬁ ngft + OP ((S;V?T) = 5-?VT + OP (5]7\[%) .
t=1 t=1
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Using the preliminary results in Lemmas C.4 and C.5(i) and Theorem 3.4, we may show that
diNT = OP<(5;?VT) for = 3,4,6. Using M 50A” = 0 and (C.79), and decomposing M 5 —M po =
—(Px — Ppo) as in (C.81), we can readily show that

T
1 0/ A0 0 40 -2
donT = NT;ft/A /(M]\_MAO)A fe =0p (6p,NT>v and

T
1 -
dsnr = w7 t;g; (Mz — Mpo) A°f) = Op (6P3VT> :

It follows that

*(To) — 037 = Op (5;?VT) , (C.116)
which, together with Assumption 2(ii), leads to (C.114).
We now show (C.115) in (ii). We consider three cases: (a) m® = 1, (b) m® = 2, and (c)

3 < m® < Muyay. For case (a) of m% =1, if n < m®, we have m = 0 and T, = To = @. The true

model contains one structural break:

v Xial +AOf) g if1<t<TY 1,
t:
Xiad + AOf + e TV <t < T

while the working model that ignores the structural break in the regression coefficient is
Vi =Xeo+ A°f) +e, 1<ELT,
where e, is the error term. Note that 6%(7p) = w7 S (Y- Xia) Mz (Y; — X&), where

~ 1
(&, A) = argmin —

min —— (Y; — Xya) Ma (Y; — Xia)

E

t=1

subject to A’/A/N = Ip,, and we suppress the dependence of & and Aon 7. Using V; — Xia =
X:(BY — ) + A0 + &4 and Lemmas C.1(i)(ii), we can readily show that

(Y;g — XtOé)/ MA (}/t — XtOé)

E

1

o~
I

[Xe(8) — @) + AF2 4 ] M [X(8) — @) + A°f + ]

~~
Il

1

Il
Z‘H Z‘H Z‘H
~ ~ ~
Mﬂ

]~

[X:(8Y — @) + A% fY) Ma [Xo(8) — @) + Af)] + Z eter + Op(p'/6, \r)

o~
Il

1
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uniformly in a and A such that A’A/N = Ig, and ||a| < Cp'/2. It follows that

T
i 1 _—
4(Ty) = N*Z AYe+0%r +Op(0'%5, jyr)
- .
. L o o =2 1/25—1
= A: A’Xl/lﬁzIRo NT EKMA}/I‘, +0NT + OP( 6p NT)
1 N A
= NT Z H Z 'l +a%r + Op(p 1/25;;}\/7’)
r=Ro+1
1 N s
Z NT Z H Z 18y —@)(87 — &) X{| +o%r + Op(p /25;7}\@)
r=Rop+1 =1
1 T
- NTA A/A/N Ir [Z XMAXt(/B _&) +6—%VT+OP(p1/25;,}VT)
o lt=1
> ZHﬂt—aH + %7 + Op (0?6, ),

where Y; = X;(3) — &) + A%f?, the second and third inequalities follow from Weyl’s inequality
and Assumption 1(ii), respectively. Consequently, we have by Assumptions 5(i)-(ii)

mO

W [6’2(76) 75-?VT] Z CxC5 +0P (1),
NT

where cg is defined in Assumption 5(i). We have completed the proof of (C.115) for case (a).

In cases (b)-(c), it suffices to consider the case where m = m® — 1 (If m < m® — 1, one can
always augment the set 7, by m® — 1 — m true break points which are not inside 7,, to make
D7 (6 (Tm), A (Tmn) ; Tr) smaller). For the case (b) with m = 1, we consider three subcases:
(b.1)2<T <TP, (b.2) T < Ty < TP, and (b.3) TY < Ty < T. In the subcase (b.1), [1,7} — 1]
does not contain a break point while [T, 7] contains two true break points T} and 79. Observe
that

Ty—1

B ~ 1 ~ /
Dyr(@ (T AT T) = o 20 { V= Xuaa (T Mg Ve = Xea (T)] = el }
t=1
1 T
7 2 {1V = Xeda(TOI M g ) [¥s = Xeo(T0)] - et}
t=T1
= Dn71+ Dn7p.
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Noting that the interval [1, 77 — 1] does not contain a break point, using the arguments as used

in the study of case (a), we can readily show that

T —1
Dnrj > %x Z Ha(f — 641(7'1)H2 + Op( 1/25;:NT)
t=1

Similarly, we can show that

T
Dyt > C% Z 187 — &2(7'1)}{2 + Op( 1/25p NT)-

t=T1

Then by Assumptions 5(i)(ii)

0
m -~
Faz DPnr(aa(Th), A(Th); Th)
TA?VT NT\C&1\{/1 1 1
mo Cx i 125
= TAZ. ZHal—alTl I”+ % Z}Iﬂt—azﬂH +Op(p'/26; 4 7)

t T

> Cm;{lg;TAQ Z Z 82— ag|* +op 1

_] 1t= T] 1
> Cgcgtop (1).

In the subcase (b.2), both [2,77 — 1] and [T}, T] contain a break. As in subcase (b.1), we

can show that

0 -~
TZ?VTDNT(&I(Tl)’A(Tl);ﬂ)
0 T1—1
> me ) Z Hﬁt _041 7-1 H + Z H/Bt _a2 7-1 H +O0p pN 1/2 +pl/2T_1/2)
TA% ., t 7
> C$OrtrluanzTA2 Z Z Hﬁt—a]H > cycg +op(l).

jltle

The proof for the subcase (b.3) is analogous to that for the subcase (b.1). Hence, the conclusion
(C.115) follows in the subcase (b). Case (c) can be studied analogously. This completes the

proof of the lemma. |
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Proof of Lemma B.6. For 7,, € T,, with m® < m < mmax, we recall that

F(Tw) = Qnr(&m(To), A (Tw) ; Ton)

1 m+1 Tj—1
j=1 tZTj 1
m+1 Tj—
- 12;{1 ﬁ Z; t ; (Y: — Xp5)' M3 7. (Ve — Xpoyj)
J j—1

and 6% = w7 S°T ehes. In view of the fact that

52(T2) > 6%(Tw) and 6%(T,0) = 6%r + Op(6; %7)

m+1
0 < 63(T00) = 6°(Tm) = G — 6°(Tw) + Op(8, 3p) = > Ity + Op(8, %p),  (C.117)
j=1
. T,—1
where Jyr,; = —inf, S (@), Sj (@) = 57 ZtiTj,l [(Yt — Xia) M&(Tm) (V: — Xia) — gler| and
[Tj-1,T; — 1] does not contain any break point for j = 1,...,m + 1. Let a?,m = B%_l and
- - ; —1 .
&jm = &;(Tm) = argming S; (o) = (Zt T MA(T )Xt) Zt T 1 X{ MA(Tm)Y; for j =
1,...,m + 1. As in the proofs of Lemma C.4( ) and Theorems 3.1 and 3.4, we can show that
LA (T) — A% = OP(5;§VT) and [|ajm — af,, |l = OP((S;}VT). Then using Y; — X;ajm =
g+ AV + Xt(oz%m — &jm), We have

T;—1
. 1 X . .
Si(Gjm) = 5 {(Yt — XiGjm) Mgy (Yo = XiGijm) — Eift}
t=T;—1
, Bl
~ ’ ~
= ﬁ {[5,5 + Aofto + Xt(Oéam - Oéj7m):| MA(Tm) [515 + Aofto + Xt(ag{m - Oz]'7m)] - 52&}
t:Tj_l
4 bl L b
= <7 Y. PRt NT Z AT Mg g (A7
t=T5_1 t=T5_1
; Tl g Tl
0 0 0 £0
TNT > (- Gjm) X MR (7 Xt (O = Gjm) + NT > Mz, A
t=Tj 1 t=Tj 1
Tj—1 g Tl
~ 07 A O 0 ~
TNT ; eM g 7. Xt (@ (@m — Gjm) + NT ; fi' A Mg 7\ Xy (@fm = Gjm)
t=T;_1 t=T;_1

Sj1 + Sj2 + 53+ 2554 + 255 + 25j6.
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By Lemma C.1(iii),

m+1 _1 T
Z Sj’l = NT ZEQP]X(Tm)st =0Op (5]7\/27«) .
=1 =1

In addition, we can show that

m—+1 T
1
D Sz = 1o DAY (MR g ) — Mao)ASL = O (5,37)
j=1 t=1
m+1 1 M+l ) ;-1
S Sia < 7> ol sl D e (XIXe/N) = Op (8,37
J=1 J=1 t=Tj—1

and similarly Z;n:ll S;1 = Op (5;3\@) for | = 4,5,6. Then by (C.117), 6*(Tw) — o3 =

Op (5;?VT> for all m € {mo +1, ...,mmax} and T, = {T1, ..., Tyn}, which completes the proof
of Lemma B.6. [}
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