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We investigate the processes that lead to the generation of mean flows in two-dimensional

anelastic convection. The simple model consists of a plane layer that is rotating about

an axis inclined to gravity. The results are two-fold: firstly we numerically investigate the

onset of convection in three-dimensions, paying particular attention to the role of stratifica-

tion and highlight a curious symmetry. Secondly, we investigate the mechanisms that drive

both zonal and meridional flows in two dimensions. We find that in general non-trivial

Reynolds stresses can lead to systematic flows and, using statistical measures, we quantify

the role of stratification in modifying the coherence of these flows.
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I. INTRODUCTION

Geophysical and astrophysical flows are often turbulent and characterised by the presence of

a wide-range of temporal and spatial scales. It is often the case that systematic large-scale flows

that vary on long timescales co-exist with shorter lived turbulent eddies. Famous examples of such

large-scale flows are the zonal jets so visible at the surface of the gas giants1,2, the turbulent jet

stream of the Earth3 and the strong zonal and meridional flows in the interior of the Sun which are

interpreted as the observed differential rotation and meridional circulations4.

A central question for fluid dynamicists is then to determine the role of the smaller-scale tur-

bulent flows in modifying the systematic (or mean) flows. In some cases the turbulence will act

purely as a dissipation or friction and act so as to damp any mean flows that occur. However in cer-

tain circumstances (usually when rotation is important) the turbulence may act as an anti-friction5

and play a key role in driving and maintaining the mean flows. This mechanism is complicated by

the tendency of the mean flows to act back on the turbulence and modify its form; a process that

often determines the saturation amplitude of the mean flows. These are complicated interactions

and although much progress has been made (as discussed briefly below) there is still much that is

not understood.

Here we focus on a simple model where the turbulence is driven by a thermal gradient leading

to convection. Owing to its importance in planetary and stellar interiors, this has been an extremely

well studied problem, with many theoretical and numerical studies performed both in Cartesian

(local)6–10 and spherical (both shell and full sphere) geometries11–18. We note that, in order to

capture some effects of vortex stretching in a spherical body, Busse 19 introduced an annulus model

for its relative simplicity. This geometry has been used in attempts to model the zonal flow on

Jupiter. For example, Jones et al. 20 used a rotating annulus model in a two-dimensional (2d) study

and incorporated the possibility of boundary friction which allowed for the more realistic multiple

jet solutions to be found more easily. Rotvig and Jones 21 examined this annulus model more

extensively and identified a bursting mechanism that occurs in the convection in some cases.

We wish to focus on the role of stratification in altering the dynamics of the mean flow and

so focus on a simple plane layer model in two dimensions allowing us to access some parameter

regimes more easily than in other, more complicated geometries. The plane layer model, when the

axis of rotation is allowed to vary from the direction of gravity, can be used to represent a local

region at different latitudes of a spherical body. This paper builds on previous, largely Boussinesq,
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studies in a Cartesian domain which are summarised here - though this is by no means a complete

review.

Much of the previous work using a local model makes the Boussinesq approximation so

that density variations are neglected except in the buoyancy force22,23. For example, Julien and

Knobloch 9 studied nonlinear convection cells in a rapidly rotating fluid layer with a tilted rotation

vector. They performed an asymptotic analysis and concluded the orientation of the convec-

tion rolls affects the efficiency of mean flow generation. Hathaway and Somerville 6 performed

three-dimensional (3d) simulations of convection in layers with tilted rotation vectors and no slip

boundary conditions. They found that the horizontal component of the rotation vector gives a

preference for cells aligned with the rotation axis which produces dynamical changes that drive a

mean flow. There have also been a number of studies analysing the role of shear flow in a rotating

plane layer. Hathaway and Somerville 8 considered Boussinesq convection in a rotating system

with an imposed shear flow. The imposed flow was constant in depth, but varying in latitude. They

found in the non-rotating case that the convection extracts energy from the mean flow and reduces

the shear, but in the rotating case the convection can feed energy into the mean flow and increase

the shear. Hathaway and Somerville 7 studied the interaction between convection, rotation and

flows with vertical shear. They performed 3d simulations with no slip boundary conditions and

found that in cases with vertical rotation the convection becomes more energetic by extracting

energy from the mean flow. However, for cases with a tilted rotation vector the results depend

on the direction of the shear. Saito and Ishioka 10 revisited the problem of the interaction of con-

vection with rotation in an imposed shear flow. They were able to examine a larger region of

parameter space than Hathaway and Somerville 8 and identified a feedback mechanism in which

the convection interacts with the rotation in such a way that leads to an accelerated mean flow.

This mechanism operates when the sign of the shear flow is opposite to the vertical component of

the rotation axis and relies upon the sinusoidal form of shear flow they imposed. Currie 24 studied

the generation of mean flows by Reynolds stresses in Boussinesq convection both in the absence

and in the presence of a thermal wind and showed whether convection acts to increase or decrease

the thermal wind shear depends on the fluid Prandtl number and the angle of the rotation vector

from the vertical.

In many astrophysical systems the fluid is strongly stratified (e.g., in stellar and some planetary

interiors) and therefore density changes across the layer (that are neglected by the Boussinesq ap-

proximation) may play a significant role. Therefore, there exist studies where fully compressible
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convection has been simulated25–27 but the full equations are computationally intensive to solve

owing to the necessity of accurately tracking sound waves. However, for systems where there are

a large number of scale heights involved but that remain close to being adiabatic, the anelastic

equations are an improvement on the Boussinesq equations28–30. Furthermore, the anelastic equa-

tions allow for density stratification across the layer whilst still filtering out fast sound waves thus

making studying a compressible layer more computationally accessible.

In this paper we use the anelastic approximation to investigate the effects of stratification on

both linear and nonlinear convection, focussing on the role stratification plays in altering the dy-

namics of mean flows. In other words, we extend the work of Hathaway and Somerville 6 to

include the important effects of stratification.

By considering density variations across the fluid layer one cannot take both the dynamic vis-

cosity µ and the kinematic viscosity ν of the fluid to be constant (since µ = ρν where ρ is the fluid

density) therefore, a choice has to made. Similarly, one cannot take both the thermal conductivity

k and the thermal diffusivity κ of the fluid to be constant and again, a choice has to be made.

The results can depend on these choices (see, e.g., Glatzmaier and Gilman 31). In this paper we

consider a formalism where ν and k are constant. Anelastic formalisms also differ depending on

whether entropy or temperature is diffused in the energy equation30. If one diffuses entropy then

temperature can be eliminated as a variable from the formulation; for simplicity, this is often the

approach taken in nonlinear studies and is the choice we make here. Further differences between

anelastic formalisms arise from whether one takes the vertical axis to be parallel or antiparallel

to gravity. Typically, in Boussinesq formulations the vertical axis increases upwards, whereas in

compressible studies it is taken downwards. In order to ease the comparison with Boussinesq

models, we take the vertical axis to increase upwards in line with Mizerski and Tobias 32 . The

existing studies of anelastic convection, linear and nonlinear, each consider a different formalism

(discussed below) and therefore care has to be taken when comparing across the different models.

The onset of compressible convection in a local Cartesian geometry, using the anelastic approx-

imation, has been studied in a number of papers. The earliest of these studies includes the work

of Kato and Unno 33 who studied the onset of convection in an isothermal reference atmosphere.

As an alternative, it is common to assume a polytropic reference atmosphere, as we do here. For

example, Jones et al. 34 considered a polytropic, constant conductivity model in a Cartesian geom-

etry in which rotation, magnetic field and gravity were taken to be mutually perpendicular. This

is different to the configuration in this paper as we consider rotation that is oblique to gravity.
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More recently, Mizerski and Tobias 32 investigated the effect of compressibility and stratification

on convection, using the anelastic approximation, in a rotating plane layer model where rotation

and gravity were aligned; they compared a model with constant k with one with constant κ whilst

keeping ν constant throughout and they chose to diffuse entropy. In this paper we essentially con-

sider the constant conductivity case of Mizerski and Tobias 32 but we allow the rotation vector to

tilt from the vertical in order to model behaviour at mid-latitudes of a spherical body. To date,

the only other study examining the linear stability of compressible convection in this tilted f-plane

geometry is that of Calkins et al. 35 who compared the onset of convection in compressible and

anelastic ideal gases on a tilted f-plane. The majority of the results from that paper are concerned

with comparing the anelastic equations with temperature diffusion with the fully compressible

equations, and so those results are not directly comparable with ours. They do however, also con-

sider an entropy diffusion model but in contrast to the work here, they take µ constant and have

the vertical axis pointing downwards.

In contrast to the Boussinesq systems, there have been relatively few studies of mean flow

generation by convection under the anelastic approximation in a local model. Rogers and Glatz-

maier 36 did model penetrative convection in a system where a convective region is bounded below

by a stable region and Rogers et al. 37 presented 2d simulations of turbulent convection using the

anelastic approximation in a non-rotating system. However, most relevant to the work we under-

take here is the study of Verhoeven and Stellmach 38 who used 2d anelastic simulations of rapidly

rotating convection in the equatorial plane (gravity and rotation perpendicular) to support a com-

pressional Rhines-type mechanism predicting the width of jets driven in such a rapidly rotating

system. In their study, as we do, Verhoeven and Stellmach 38 take ν constant and consider an

entropy diffusion model, however, in contrast to our work, Verhoeven and Stellmach 38 take κ

constant.

Our study, using a local model, allows us to focus on the effect of stratification on mean flow

generation without many of the complicating features of a spherical geometry, say. However our

model still incorporates some important physical features that are expected to play a role in the

determining the dynamics of many astrophysical objects, namely stratification on the f-plane.

This paper is organised as follows: in section II, the model and governing equations are pre-

sented. In section III, we aim to add to the existing literature discussed above by carrying out

3d linear stability analysis and present a new symmetry of which technical details are given in

an appendix. In section IV, we analyse the role of stratification in mean flow generation at mid-
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latitudes using a 2d local model, focussing on the differences from Boussinesq models. This work

complements previous Boussinesq and fully compressible studies in a Cartesian domain, as well

as the global anelastic models considering mean flows.

II. MODEL SETUP AND EQUATIONS

We consider a local plane layer of convecting fluid rotating about an axis that is oblique to

gravity, which acts downwards. The rotation vector lies in the y-z plane and is given by Ω =

(0,Ω cosφ,Ω sinφ), where φ is the angle of the tilt of the rotation vector from the horizontal, so

that the layer can be thought of as being tangent to a sphere at a latitude φ. In this case, the z-axis

points upwards, the x-axis eastwards and the y-axis northwards.

We denote the fluid density, pressure, temperature, entropy and velocity by ρ, p, T , s and u =

(u, v, w) respectively. The anelastic equations are then found by decomposing the thermodynamic

variables into a reference state (denoted by the subscript ref) and a perturbation. The reference

state depends on z only and is assumed to be almost adiabatic. The departure from adiabaticity is

measured by a small parameter, ε given by

ε ≡
d

Hr

(

∂ lnTref

∂ ln pref
−

∂ lnTref

∂ ln pref

∣

∣

∣

∣

ad

)

= −
d

Tr

[(

dTref

dz

)

r

+
g

cp

]

= −
d

cp

(

dsref

dz

)

r

, (1)

where d is the layer depth, Hr = pref
gρref

= − dz
d ln pref

is the pressure scale height, cp is the specific

heat at constant pressure, g is the acceleration due to gravity, the subscript ad indicates the value for

an adiabatic atmosphere and a subscript r denotes a value taken at the bottom of the layer, z = 0.

ε will also be a measure of the relative magnitude of the perturbations and we assume

|p|

pref
≈

|ρ|

ρref
≈

|T |

Tref
≈ |s| ≈ ε $ 1, (2)

so that the perturbations are small compared to the reference state.

It is useful to write the equations in a dimensionless form, using d as the length scale and the

thermal diffusion time d2

κr
as the time scale, where κ is the thermal diffusivity. In this case, the

leading order equations are given by
[

∂u

∂t
+ (u ·∇)u

]

= −∇

(

p

ρref

)

+ RaPrsêz − Ta
1

2PrΩ× u+
Pr

ρref
∇ · ς, (3)

∇ · (ρrefu) = 0, (4)

ρrefTref

[

∂s

∂t
+ (u ·∇)(sref + s)

]

= ∇ · [Tref∇(sref + s)]−
θ

ρrefRa

ς
2

2
, (5)
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p

pref
=

T

Tref

+
ρ

ρref
, (6)

s =
1

γ

p

pref
−

ρ

ρref
, (7)

where ςij = ρref

[

∂ui

∂xj
+

∂uj

∂xi
− 2

3
(∇ · u)δij

]

is the stress tensor with ς
2 ≡ ς : ς = ςijςij . θ is the

dimensionless superadiabatic temperature gradient and γ is the ratio of specific heats at constant

pressure to constant volume. In this case the dimensionless parameters are the Rayleigh, Taylor

and Prandtl numbers given by

Ra =
gd3

κrν
, Ta =

4Ω2d4

ν2
and Pr =

ν

κr

, (8)

respectively. Again, note in our formalism that we assume the kinematic viscosity ν and the

turbulent thermal conductivity k = ρrefcpκ (where we now interpret κ as the turbulent thermal

diffusivity) to be constant. Furthermore, we use a model that takes the turbulent thermal conduc-

tivity to be much larger than the molecular conductivity and so equation (5) contains an entropy

diffusion term but not a thermal diffusion term; Braginsky and Roberts 30 discuss models including

both terms. In addition, we have employed a technique introduced by Lantz 39 and Braginsky and

Roberts 30 to reduce the number of thermodynamic variables29,40.

In this paper, we consider a time-independent, polytropic reference state given by

Tref = 1 + θz, ρref = (1 + θz)m, pref = −
RaPr

θ(m+ 1)
(1 + θz)m+1, (9)

sref =
m+ 1− γm

γε
ln(1 + θz) + const with

m+ 1− γm

γ
= −

ε

θ
= O(ε), (10)

where m is the polytropic index and −1 < θ ≤ 0. We note in this model there is no adjustment of

the reference state by any mean that may be generated.

The equations (3)-(7) are similar to those given in case (1) of Mizerski and Tobias 32; the key

difference here however is the introduction of a tilted rotation vector, Ω = (0, cosφ, sinφ). In this

formalism, the anelastic equations (3)-(7) reduce to the Boussinesq equations in the limit θ → 0

and so θ can be thought of as a measure of the degree of compressibility. However, a more intuitive

measure is given by

χ =
ρref |z=0

ρref |z=1

= (1 + θ)−m. (11)

As χ is increased, the density contrast across the layer is also increased. Furthermore, it is common

in the literature to use Nρ, the number of density scale heights, as a measure of the stratification.

Note, θ, χ and Nρ are related by the following relations: Nρ = lnχ = ln(1 + θ)−m.
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With the reference state specified, we solve the anelastic equations subject to impenetrable,

stress free and fixed entropy boundary conditions.

III. LINEAR THEORY

Here we perform linear stability analysis of the 3d system in order to obtain information about

the preferred modes of convection at onset. We linearise the anelastic equations (3)-(5) by per-

turbing about a trivial basic state and neglecting terms quadratic in the perturbation quantities. We

then assume the perturbations are given by

(s, w, ζ) = Re
{

[S(z),W (z), Z(z)] ei(kx+ly)+σt
}

. (12)

Here k and l are the x and y wavenumbers respectively such that a2 = k2+ l2 and σ = σR + iσI =

σR + iω is the complex growth rate. S(z) is the amplitude function for s, W (z) is the amplitude

function for w and Z(z) is the amplitude function for the vertical vorticity ζ = ∂v
∂x

− ∂u
∂y

. Taking

the z-component of the curl and double-curl of the momentum equation to eliminate the pressure,

along with the entropy equation, results in the following equations for the amplitude functions W ,

Z and S:

σZ =Ta
1

2Pr

[

sinφ

(

DW +
mθ

1 + θz
W

)

+ cos φilW

]

+ Pr(D2 − a2)Z +
Prmθ

1 + θz
DZ, (13)

− σ[D2W − a2W +
mθ

1 + θz
DW −

mθ2

(1 + θz)2
W ] = RaPra2S

+Ta
1

2Pr[sinφDZ +
mθ

1 + θz
cosφikW + cosφilZ]− PrD4W + 2Pra2D2W

−Pra4W +
3Prm(2−m)θ4

(1 + θz)4
W +

2Prmθ

1 + θz
a2DW +

2Prm2θ2

3(1 + θz)2
a2W

−
2Prmθ

1 + θz
D3W +

Prm(4−m)θ2

(1 + θz)2
D2W −

3Prm(2−m)θ3

(1 + θz)3
DW, (14)

σS −
W

1 + θz
=

1

(1 + θz)m
(D2 − a2)S +

θ

(1 + θz)m+1
DS, (15)

to be solved subject to the boundary conditions:

S = 0, W = 0, DZ = 0 and D2W +
mθDW

(1 + θz)
= 0 on z = 0, 1. (16)
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Note, to simplify notation, we have used Dn to mean dn

dzn
. We solve this linear eigenvalue problem

using the built-in bvp4c solver of Matlab.

Since we assume a reference state that is close to being adiabatic, we use m = 1.495 in all

calculations. Berkoff et al. 41 demonstrated that the anelastic approximation gives a good approxi-

mation to fully compressible calculations even when the reference state is super-adiabatic, finding

a 2% error even when ε ∼ 10; but as mentioned above, we prefer to remain close to the adiabatic

state, where m = 1.5.

A. Effect of χ on the onset of convection

Figure 1 (a)-(c) show the critical Rayleigh number, wavenumber and frequency against Nρ for

north-south (NS) convection rolls with Pr = 0.1 and φ = π
4
. NS convection rolls are those whose

axis is aligned in the y-direction (l = 0) and similarly, east-west (EW) convection rolls are those

whose axis is aligned in the x-direction (k = 0). These are distinct when φ ̸= π
2
, i.e., when

rotation is oblique to gravity. For NS rolls, we observe that solutions with a positive frequency

and those with a negative frequency are distinct unlike in the Boussinesq case42 - we will examine

this symmetry breaking in more detail in the next section. For small Ta, the negative branch is

preferred but this changes to the positive branch as Ta is increased. For the cases shown, the

positive solution always has the smaller critical wavenumber and critical frequency. In addition,

the minimumRacrit occurs for Nρ > 0, with both the minimumRacrit and the Nρ at which it occurs,

increasing with Ta. Another feature of figure 1 (a)-(c) is the difference between the positive and

negative frequency solutions; this can be seen in the larger variation of kcrit with increasing Nρ for

the positive case. In a similar study, Calkins et al. 35 found that the critical Rayleigh number is a

monotonic function of stratification. This difference could arise because of a number of different

modelling choices. First, as discussed in the introduction, Calkins et al. 35 take constant µ where

we have constant ν. Second, the parameter regime considered is very different to that covered here;

they choose to focus on the rapidly rotating case (Ta ∼ 1010) at Pr = 1. Finally, and perhaps

most importantly, the definition of Ra is different between our models (the difference resulting

from the fact that we take z pointing upwards and ν constant in contrast to Calkins et al. 35 who

take z pointing downwards and µ constant.) Indeed, Calkins et al. 35 do comment that their critical

Rayleigh number is not a monotonic function of stratification if evaluated away from the bottom

boundary. We note that for vertical rotation we should recover the linear results of Mizerski and

9



Tobias 32 and indeed we do (though we do not present that case here). These differences highlight

the important role of stratification in modifying the convection since the results are sensitive to

whether µ or ν is held constant in the model as well as where Ra is defined.
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FIG. 1. Critical Rayleigh number (a), (d), wavenumber (b), (e) and frequency (c), (f) against Nρ for NS (a)-

(c) and EW (d)-(f) rolls when Pr = 0.1, φ = π
4 . Solid lines represent solutions with ωcrit > 0 and dashed

lines represent solutions with ωcrit < 0. In red (thinnest line) Ta = 104, in blue (thin line) Ta = 105, in

black (thick line) Ta = 106 and in purple (thickest line) Ta = 107.

Figure 1 (d)-(f) show the equivalent to figure 1 (a)-(c) for EW rolls. Now, k = 0, and there

is no distinction to be made between the solutions with positive and negative frequency as they

have the same critical values, hence we only plot the positive frequency solutions (we discuss this
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hidden symmetry in more detail in the next section). The behaviour is very similar to that in the

NS case, but Racrit is higher in the EW case, so that NS rolls are preferred, in agreement with

Calkins et al. 35 and also with linear Boussinesq systems, e.g., Hathaway et al. 43 .

B. Symmetry considerations

As highlighted in the previous section, when χ ̸= 1 (Nρ ̸= 0) and l = 0 (NS rolls), there is a dis-

tinction to be made between solutions with a positive critical frequency and those with a negative

critical frequency. However, when k = 0 (EW rolls), even when χ ̸= 1, there is still a symmetry

and the positive and negative branches have the same |ωcrit|. We might expect that breaking the

up-down symmetry of the system, via the introduction of a vertical density stratification, would

cause a break in symmetry of the eigenvalue spectrum, and hence result in different frequencies

for the positive and negative branches. Instead, when k = 0, the eigenvalues remain in com-

plex conjugate pairs. We see that in figure 2 (a) and (c), the introduction of a vertical stratification

across the layer has, as expected, broken the symmetry of the eigenvalue spectrum - they no longer

appear in complex conjugate pairs. However, counter-intuitively, when k = 0 (subfigure(b)), the

symmetry is not broken and the eigenvalues remain in complex conjugate pairs, in an analogous

way to the Boussinesq case (χ = 1). Evonuk 44 and Glatzmaier et al. 45 describe a mechanism that

is perhaps responsible for this difference between NS and EW rolls. The crux of their argument is

that the vorticity equation (curl of equation (3)) contains a term proportional to Ω(∇ · u), which

is in general, non-zero for anelastic convection. However, in our system, the x-component of this

term is zero and so it does not have an effect on EW rolls, whereas, the y-component of this term

is non-zero and so it does have an effect on NS rolls.

To investigate the symmetry of the EW solutions further, we look at the eigenfunctions, |W (z)|,

|Z(z)| and |S(z)| as a function of depth as in figure 3. The eigenvalues, as explained before, are a

complex conjugate pair for both χ; in (a) σ = 8.0489±11.3672i and in (b) σ = 4.8626±17.1070i.

It is clear from the plots that, in the Boussinesq case, (a), the eigenfunctions are symmetric about

z = 0.5, whereas when a stratification is added, (b), the corresponding eigenfunctions possess no

obvious symmetry, despite the fact the eigenvalues are a complex conjugate pair. This result is

non-intuitive and so we give a proof of the maintenance of the symmetry when k = 0. Essentially,

the proof consists of forming the adjoint problem and then showing that the eigenvalue spectrum

is symmetric; since the details are technical, they are included in the Appendix.
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FIG. 2. Real and imaginary parts of growth rate plotted against each other for different Ra whilst Ta = 105,

Pr = 0.1, φ = π
4 , χ ≈ 31. In (a) l = 0, k = 3, in (b) k = 0, l = 3 and in (c) k = 3, l = 3. The arrows

indicate the direction of increasing Ra. When k = 0 there exists an unexpected symmetry in the eigenvalue

spectrum.

IV. NONLINEAR RESULTS

This section extends the work of section III to the nonlinear regime, allowing us to examine the

mean flows driven by the system. For these nonlinear results we restrict ourselves to the 2d system

which lies in the plane of the rotation vector, the y-z plane, i.e., ∂
∂x

≡ 0.

We solve the nonlinear equations (3)-(7) using a streamfunction, ψ(y, z), defined by

ρrefu = ρrefux̂+∇× ψ(y, z)x̂ =

(

ρrefu,
∂ψ

∂z
,−

∂ψ

∂y

)

. (17)

and so ∇ · (ρrefu) = 0 is automatically satisfied. We then write the equations in terms of ψ and

ω ≡ ∇× u · x̂ = −
∇2ψ

ρref
−

d

dz

(

1

ρref

)

∂ψ

∂z
,

and solve them for ω, u, s and ψ using a Fourier-Chebyshev pseudospectral method with a sec-

ond order, semi-implicit, Crank-Nicolson/Adams-Bashforth time-stepping scheme; for details see

Currie 24 and references within. v and w are then straightforward to obtain from ψ.

For diagnostic purposes, we decompose ω, u, s and ψ into means (horizontal averages) and

fluctuations; where the mean (denoted by an overbar) is defined as, for example,

ū(z, t) =
1

L

∫ L

0

u(y, z, t) dy, (18)

where L is the length of the computational domain.
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FIG. 3. Eigenfunctions. The solutions |W (z)|, |Z(z)| and |S(z)| as a function of z for k = 0, l = 2,

Ta = 105, Pr = 0.1, φ = π
4 , Ra = 2× 105 and (a) χ = 1, (b) χ = 100. The solid line corresponds to the

solutions with ω > 0 and the dotted lines to solutions with ω < 0.

A. Bifurcation structure and large-scale solutions

In the limit θ → 0 (χ → 1), our anelastic system reduces to a Boussinesq system. As is

typically seen in the Boussinesq case, if Ra is slowly increased from its critical value (with other

parameters fixed) then the solutions in the anelastic system undergo a series of bifurcations. An

example is shown in figure 4 which shows time series of the Nusselt number (Nu) at different Ra.

We define Nu to be the ratio of the total heat flux to the conductive heat flux in the basic state.

Clearly the system undergoes a number of bifurcations via steady, oscillatory, quasiperiodic and

chaotic solutions, en route to chaos (Ruelle-Takens-Newhouse route to chaos46,47). We note that

some hysteresis of the solutions was observed, depending on the initial conditions used; however,

a full investigation of the bistability is not examined here.

Whilst it is typical for the system to undergo this series of bifurcations, Currie 24 reported on a
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FIG. 4. Time series of Nusselt number (Nu) for the case when Pr = 1, Ta = 105, φ = π
4 , χ = 5 and (a)

Ra = 4× 104, (b) Ra = 4.2× 104, (c) Ra = 4.6× 104, (d) Ra = 7.5× 104.

regime in which steady, large-scale solutions that are efficient at transporting heat by convection

are found to exist in Boussinesq convection. Large-scale here means the largest scale possible in

a box of a given size. In the Boussinesq system such solutions have also been seen in non-rotating

2d Rayleigh-Bénard convection48,49. In the anelastic system, we have found that such large-scale

solutions are also able to exist even when the stratification is introduced; though interestingly,

they may no longer correspond to steady (time-independent) solutions. For example, figure 5(a)

shows a snapshot of the large-scale steady solution that exists when χ = 1, i.e., in the Boussinesq

limit and 5(b) shows the equivalent large-scale solution when χ = 10. Whilst (a) corresponds

to a steady solution, (b) is weakly time-dependent. For comparison, the dominant wavenumber

of the equivalent solutions for the cases in figure 4, is about four times that of these large-scale

solutions (e.g., see figure 5(c)). It is important to note that here we only consider L = 5, but we

would expect the width of the computational domain to have an effect on the emergence of the

large-scale solutions. In general, a more detailed parameter study, which we do not carry out here,

is required to examine more closely in which regimes such large-scale solutions exist. Though the

existence of large-scale solutions is of interest, the primary aim of this paper is to determine the

role of stratification in modifying mean flows.
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FIG. 5. Contours of ψ(y, z) for solutions when L = 5, Ra = 8 × 105, Ta = 105, Pr = 1, φ = π
6 , (a)

χ = 1 and (b) χ = 10. (c) shows ψ(y, z) for the parameters in figure 4 (a).

B. Generation of mean flows

We investigate how the strength and direction of mean flows driven in our plane layer system

are affected by stratification. In all simulations presented we fix the length of our computational

box to be L = 5. To begin, we fix Pr = 1, Ra = 2× 105, Ta = 105, φ = π
4

and consider ū and v̄

for three different stratifications (see figure 6). In (a), χ = 1.5 (close to Boussinesq) in (b), χ = 5

and in (c), χ = 10. Even though the critical Rayleigh number changes with χ and Ra is fixed

in these cases, the degree of supercriticality is not vastly changed - ranging from approximately

5.8 to 6.2 times the onset value. A striking feature present in all of the flows shown in figure

6 is that of strong oscillations. These oscillations are likely to be inertial oscillations that arise

here because the Rossby number is of order one and so rotation and convection are of roughly

equal importance50. Such oscillations were also observed in the fully compressible calculations of
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Brummell et al. 26 . In figure 6 (a), where χ is close to one, i.e., almost Boussinesq, we see that the

flows are almost symmetric but, when the strength of stratification is increased, the extent of the

asymmetry of the mean flows is also increased. For example, the positive flow of v̄ in the upper

half-plane only just penetrates down into the lower half-plane for χ close to one, but for stronger

stratification it penetrates further into the layer. ū is more time-dependent and harder to interpret

than v̄, but the asymmetry is still evident. The asymmetry results from the fact that, with stress

free boundaries, the horizontal mass flux must be zero. From figure 6, other effects of increasing

the stratification appear to be that the maximum velocity achieved by the flow decreases as χ

increases, but the flows become more systematic. By systematic we mean a flow with a definite

mean in the sense that the velocity fluctuations (including oscillations) produce a significant mean

when averaged in both horizontal space and time.

Our results share some common features with those found in previous 3d studies. For example,

we see strong systematic shear flows driven when the rotation vector is oblique to gravity as

were seen in the Boussinesq calculations of Hathaway and Somerville 6 and the fully compressible

calculations of Brummell et al. 26 . Furthermore, the asymmetries introduced in the layer when

stratification is added are also present in the flows of Brummell et al. 26 . We also find that ū

and v̄ are comparable in size; a similar feature is also found in Hathaway and Somerville 6 and

Brummell et al. 26 . This is likely to be a result of the horizontal periodic boundary conditions

artificially enhancing the meridional flow. We also note that there are some differences between

the flows driven here and those in the previous work of Hathaway and Somerville 6 and Brummell

et al. 26 . The most obvious difference being that the sense of ū is reversed (whilst the sense of

v̄ coincides). We also tend to find that the percentage of energy in the mean flows compared to

the total energy is larger in our cases. We expect these differences result from the difference in

parameter regimes considered and also the 2d nature of our system.

To quantify the flow properties described above, we consider the mean and variation of the

flows in time, and see how they vary with χ and z. In figure 7, we plot the time-averaged mean

for ū and v̄ along with error bars corresponding to the standard deviation (Σ) from that mean. The

first comment we make is that the error bars are significant and the departure of the maximum flow

speed (given by the colorbars in figure 6) from the average is also significant; this is because of the

oscillations present in the flows (as discussed above). Further, in (a) we see that Σ(ū) is smallest

near to mid-layer and grows as we move out towards the boundaries but in (b), Σ(ū) is smallest

at a deeper layer. This behaviour is also seen in Σ(v̄), where for χ = 1.5, the standard deviation
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FIG. 6. Contour plots of the mean flows ū and v̄. In (a) χ = 1.5, in (b) χ = 5 and in (c) χ = 10. In all

cases Pr = 1, Ra = 2× 105, Ta = 105 and φ = π
4 .

is fairly even across the layer but with its smallest value at approximately mid-layer; whereas for

χ = 10, the smallest standard deviation is found at much smaller z. Note also, the mean of ū and

v̄ is close to zero at z = 0.5 in (a), but there is a significant flow at z = 0.5 in (b). These measures

characterise the behaviour we saw in the time-dependent plots in figure 6. As a percentage of its

mean, Σ(ū) is larger than Σ(v̄), indicative of the more time-dependent behaviour of ū we also

observed in figure 6 . Figure 8 shows how the standard deviation varies with z for a number of

different χ. In general, we see that for stronger stratification Σ is reduced. This behaviour is
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FIG. 7. Mean (black curve) and standard deviation (error bars) of ⟨ū⟩ and ⟨v̄⟩ for Pr = 1, Ra = 2 × 105,

Ta = 105, φ = π
4 and (a) χ = 1.5, (b) χ = 10. As χ is increased the more systematic flow occurs at lower

z.

particularly evident in the lower depths of the layer (smaller z). It is also evident that for Σ(v̄),

the minimum of the standard deviation occurs at a deeper level in the layer as χ is increased. For

Σ(ū), the trend is not so clear, however, the flows corresponding to larger χ have a minimum at a

lower z than the flows corresponding to smaller χ. Therefore, there are fewer fluctuations at lower

levels with increasing χ, and it is this that results in the relatively large time-averaged mean at this

level.

Reynolds stresses are known to drive mean flows6,26. To analyse their role in mean flow gener-

ation, we consider the mean equations obtained by horizontally averaging the x and y components
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of the momentum equation, i.e.,

Prρref⟨ū⟩ =
Pr

Ta
1

2 sinφ

∂

∂z

(

ρref
∂⟨v̄⟩

∂z

)

−
1

Ta
1

2 sinφ

∂(ρref⟨vw⟩)

∂z
, (19)

Prρref⟨v̄⟩ = −
Pr

Ta
1

2 sinφ

∂

∂z

(

ρref
∂⟨ū⟩

∂z

)

+
1

Ta
1

2 sin φ

∂(ρref⟨uw⟩)

∂z
, (20)

where we have averaged in time and assumed a statistically steady state so that ∂
∂t
⟨ū⟩ = ∂

∂t
⟨v̄⟩ =

0. The quantities ρrefuw, ρrefvw are the Reynolds stresses terms, they measure the correlation

between the horizontal and vertical velocity components. With a tilted rotation vector we might

expect these correlations to be nonzero6. We note, from equations (19) and (20), that it is the

z-derivative of ρrefvw that drives ū and the z-derivative of ρrefuw that drives v̄. In what follows,

for both equations (19) and (20), we refer to the term on the LHS as the Coriolis term, the first

term on the RHS as the viscous term and the second term on the RHS as the Reynolds stress (RS)

term.

The factor of ρref in the Coriolis terms of equations (19) and (20) means that, in theory, for two

different χ, if the driving terms on the right-hand side are of the same size, then the case with the

largest χ will yield the largest ū and v̄, i.e., at any fixed z, if Prρref ū is the same for two different

ρref (fixed Pr) then ū will be larger for the smaller ρref . To see this, we plot each of the terms of
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equations (19) and (20) in figure 9; in addition, we plot ū and v̄ (without the Prρref factors). For

χ = 1, the Coriolis term is equivalent to the mean flow since Pr = 1, therefore no additional line

is visible in this case. However, for χ ̸= 1, there is a difference between the Coriolis term and

the mean flow itself. In both (a) and (b), the strong dominance of the RS terms is clear. It is also

evident that the viscous term is more important in determining ū than it is v̄, this is because the

viscous term affecting each mean flow component depends on the gradient of the other mean flow

component and we find that the gradient of v̄ tends to be larger than that of ū. It is clear that the

RS terms are larger in the χ = 1 case and this results in the Coriolis terms being larger for χ = 1.

However, because for χ = 10, ρref ≤ 1 across the layer, ⟨ū⟩ and ⟨v̄⟩ are actually larger for χ = 10.

This effect is most prominent at the top of the layer, where the fluid mass is at its lowest.

In the Boussinesq case, the RS terms are symmetric about the mid-layer depth. As a result of

this symmetry, and because the RS terms are the dominant terms in equations (19) and (20), the

mean flows are also symmetric about the mid-layer depth. Moreover, if χ is increased, then the RS

terms become asymmetric, leading to asymmetric mean flows. We comment that the symmetry of

the RS terms can change both as a result of the small-scale turbulent interactions but also through

the mean flow acting back on the turbulence.

V. CONCLUSION

The results in this paper can be categorised into two distinct sections. The first section was

concerned with linear anelastic convection. There we demonstrated and proved the existence of

a previously unknown, hidden symmetry in the equations present when EW rolls are considered.

We explained this by showing that the symmetry breaking term present in the vorticity evolution

equation (introduced by the inclusion of a stratification) vanishes under certain circumstances.

The second part of the paper was concerned with the effect of stratification on nonlinear anelas-

tic convection. We showed that efficient large-scale convection cells that have been shown to exist

in 2d, Boussinesq Rayleigh-Bénard convection can also be found when stratification is introduced;

although, unlike their Boussinesq counterparts, the anelastic solutions may not be time indepen-

dent.

We went on to examine the effect of stratification on the generation of zonal and meridional

mean flows. The use of an idealised 2d tilted plane layer model has allowed us to show the im-

portance of correlations between velocity components resulting in Reynolds stresses that generate
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FIG. 9. Terms of the mean flow equations (19) (top panels) and (20) (bottom panels) as a function of z for

Pr = 1, Ra = 2 × 105 and in (a), χ = 1, whilst in (b), χ = 10. The blue lines (i) represent the Coriolis

terms, the red (ii) the RS terms, the green (iii) the viscous terms and black (iv) the mean flows ⟨ū⟩ and ⟨v̄⟩.

In case (a), the Coriolis terms are equivalent to the mean flows themselves.

systematic flows. These flows have a strong time dependence but have a definite preferred direc-

tion on time averaging. The most striking difference between the flows driven in a stratified layer

and their Boussinesq counterparts is seen in a vertical asymmetry. Although flow velocities tended

to decrease with χ, a statistical analysis showed that the mean flows become more systematic at

lower layer depths the stronger the stratification. The asymmetry introduced by stratification is

seen in the Reynolds stresses and we highlighted the role these stresses play in determining the

size and vertical structure of the mean flows. In particular, even though the RS terms can be larger

in the Boussinesq case, the flows are faster in the anelastic case because of the reduced fluid den-

sity in the layer. Whilst the Reynolds stresses dominated the flow size and structure, the viscous

forces played a role in modifying the mean flows by opposing the Reynolds stresses (an effect

that is to be expected at Pr = 1). However, we would expect the viscous forces to be much less

important in a realistic setting as the diffusivities are much smaller. In fact, Currie 24 found small

Pr to play an important part in the dynamics of mean flow generation in Boussinesq convection.

In particular, for the same size Reynolds stresses a larger mean flow is driven at smaller Pr. We
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would expect a similar effect to occur here as, from equations (19) and (20), the RS terms drive

Prρref⟨ū⟩ and Prρref⟨v̄⟩ and so for smaller Pr, ρref⟨ū⟩ and ρref⟨v̄⟩ are indeed larger at any fixed

height. The role of small Pr in anelastic convection is currently under investigation.

There are some obvious shortcomings resulting from the simplicity of our model. For example,

the periodic boundary conditions unrealistically enhance the meridional flow when in actuality,

zonal flows are usually much larger than the meridional ones, in e.g., the Sun or on Jupiter. De-

spite this, our simple analysis has shown the importance of the Reynolds stresses in mean flow

generation and shed some light on the role of stratification.

Owing to the existence of magnetic fields in physical systems such as stars and planets and

their interaction with convection and rotation, an obvious question to ask is how such magnetic

fields modify the mean flows generated. This is a question we address in a subsequent paper. We

conclude by acknowledging the limitations of our simple model. Clearly in two dimensions corre-

lations may be over-exaggerated leading to the formation of strong mean flows. We are therefore

currently investigating how extending the model to three dimensions weakens correlations and

affects the turbulent driving of mean flows.
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Appendix: Proof

The following is a proof of the symmetry of the spectrum of eigenvalues that exists when k = 0

(see section III B). The proof not only holds for the stress free boundary conditions considered

above but is a more general result and holds for all natural boundary conditions. The proof is simi-

lar in nature to that of Proctor et al. 51 who prove a similar result. However, they consider a system

with symmetric equations but break the symmetry through asymmetric boundary conditions. This

is in contrast to this work, where we have asymmetric equations to begin with, and typically our

boundary conditions are symmetric.
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To begin the proof, we make a change of variables. Let

Z̃ = (1 + θz)
m
2 Z, (A.1)

W̃ = (1 + θz)
m
2 W, (A.2)

S̃ = (1 + θz)
1

2S, (A.3)

then multiply (13) and (14) by (1 + θz)
m
2 , (15) by (1 + θz)m+ 1

2RaPra2 and substitute in (A.1) -

(A.3), to give

σZ̃ =Ta
1

2Pr

[

sin φ

(

DW̃ +
mθ

2(1 + θz)
W̃

)

+ cos φilW̃

]

+

Pr(D2 − a2)Z̃ −
Prmθ2(m

2
− 1)

2(1 + θz)2
Z̃, (A.4)

− σ[(D2 − a2)W̃ −
mθ2(1 + m

2
)

2(1 + θz)2
W̃ ] = RaPra2(1 + θz)

m−1

2 S̃

+ Ta
1

2Pr sinφ[DZ̃ −
mθ

2(1 + θz)
Z̃] + Ta

1

2Pr cosφilZ̃

− PrD4W̃ + 2Pra2D2W̃ − Pra4W̃ +
Prmθ2(m

2
+ 1)

(1 + θz)2
D2W̃

−
Prθ3m(m+ 2)

(1 + θz)3
DW̃ + FW̃ + Ta

1

2Pr cos φ
mθ

1 + θz
ikW̃ , (A.5)

where

F =
Prmθ4(3 + 5m

4
− m2

4
− m3

16
)

(1 + θz)4
+

Prma2θ2(1 + m
6
)

(1 + θz)2
, (A.6)

and

σRaPra2(1 + θz)mS̃ = RaPra2(1 + θz)
m−1

2 W̃ +RaPra2(D2 − a2)S̃ +
RaPra2θ2

4(1 + θz)2
S̃. (A.7)

When k = 0, a = l and we can write this system as

σAX̃ = BX̃ (A.8)

where X̃ =

⎡

⎢

⎢

⎢

⎣

Z̃

W̃

S̃

⎤

⎥

⎥

⎥

⎦

, A =

⎡

⎢

⎢

⎢

⎣

1 0 0

0 −(D2 − l2) +
mθ2(m

2
+1)

2(1+θz)2
0

0 0 RaPrl2(1 + θz)m

⎤

⎥

⎥

⎥

⎦

and B =
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⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Pr(D2 − l2)−
Prmθ

2(m

2
−1)

2(1+θz)2

Ta
1

2Pr[sin φ(D + mθ

2(1+θz))
0

+ cosφil]

Ta
1

2Pr[sin φ(D − mθ

2(1+θz) ) −Pr(D2 − l2)2 +
Prmθ

2(m

2
+1)

2(1+θz)2 D2

RaPrl2(1 + θz)
m−1

2

+cosφil] −Prθ
3
m(m+2)

(1+θz)3 D + F

0 RaPrl2(1 + θz)
m−1

2 RaPrl2[(D2 − l2) + θ
2

4(1+θz)2 ]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Next, we define the inner product

⟨X̃1, X̃2⟩ =

∫ 1

0

X̃
∗
T

1
X̃2 dz =

∫ 1

0

(X̃∗
T

2
X̃1)

∗ dz = ⟨X̃2, X̃1⟩
∗ (A.9)

where

X̃1 =

⎡

⎢

⎢

⎢

⎣

Z̃1

W̃1

S̃1

⎤

⎥

⎥

⎥

⎦

, X̃2 =

⎡

⎢

⎢

⎢

⎣

Z̃2

W̃2

S̃2

⎤

⎥

⎥

⎥

⎦

, (A.10)

and X̃1 satisfies the same boundary conditions as X̃2. Then, since A is real and symmetric,

⟨X̃1, (σAX̃2 −BX̃2)⟩ =

∫ 1

0

X̃
∗
T

1
(σAX̃2 −BX̃2) dz

=

∫ 1

0

X̃
T
2
(σ∗

AX̃1 −B
†
X̃1)

∗ dz = ⟨(σ∗

AX̃1 −B
†
X̃1), X̃2⟩. (A.11)

Note, equation (A.11) only holds if the boundary conditions on X̃i and X̃
∗

i
(i = 1, 2) are the same.

So B
† is the formal adjoint of B, i.e., ⟨u,Bv⟩ = ⟨B†

u,v⟩ for vectors u and v and it is given by

B
† =
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Pr(D2 − l2)−
Prmθ

2(m

2
−1)

2(1+θz)2

−Ta
1

2Pr[sinφ(D + mθ

2(1+θz))
0

+ cosφil]

−Ta
1

2Pr[sinφ(D − mθ

2(1+θz) ) −Pr(D2 − l2)2 +
Prmθ

2(m

2
+1)

2(1+θz)2 D2

RaPrl2(1 + θz)
m−1

2

+cosφil] −Prθ
3
m(m+2)

(1+θz)3 D + F

0 RaPrl2(1 + θz)
m−1

2 RaPrl2[(D2 − l2) + θ
2

4(1+θz)2 ]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.
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Since B
† is the formal adjoint of B, its spectrum is the complex conjugate of the spectrum of

B. Now, if we let

Ỹ1 =

⎡

⎢

⎢

⎢

⎣

−Z̃1

W̃1

S̃1

⎤

⎥

⎥

⎥

⎦

, (A.12)

then the adjoint equation

σ∗

AX̃1 = B
†
X̃1 can be written as (A.13)

σ∗

AỸ1 = BỸ1 when k = 0. (A.14)

So, if (σ, X̃1) is an eigenvalue, eigenfunction pair for the system then so is (σ∗, Ỹ1).

Hence, we have shown that as long as the boundary conditions on X̃ and X̃
∗ are the same, when

k = 0, the eigenvalue spectrum is symmetric. This is in agreement with the numerical results we

found in section III A.

If k ̸= 0, then the final term on the right-hand-side of equation (A.5) is non-zero and must be

added to the central entry of the matrices B and B
†; this results in a breakdown of the proof, as the

last step (from equation (A.13) to equation (A.14)) can not be carried out. Therefore, when k ̸= 0,

the eigenvalue spectrum is not symmetric, again in agreement with the numerical results obtained

in section III A.
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