
This is a repository copy of Updated ozone absorption cross section will reduce air quality 
compliance.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/92963/

Version: Published Version

Article:

Sofen, E. D. orcid.org/0000-0002-4495-2148, Evans, M. J. orcid.org/0000-0003-4775-
032X and Lewis, A. C. orcid.org/0000-0002-4075-3651 (2015) Updated ozone absorption 
cross section will reduce air quality compliance. Atmospheric Chemistry and Physics. pp. 
19537-19551. ISSN 1680-7324 

https://doi.org/10.5194/acp-15-13627-2015

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Atmos. Chem. Phys., 15, 13627–13632, 2015

www.atmos-chem-phys.net/15/13627/2015/

doi:10.5194/acp-15-13627-2015

© Author(s) 2015. CC Attribution 3.0 License.

Updated ozone absorption cross section will reduce air

quality compliance

E. D. Sofen1, M. J. Evans1,2, and A. C. Lewis1,2

1Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, YO10 5DD, UK
2National Centre for Atmospheric Science, Department of Chemistry, University of York, York, YO10 5DD, UK

Correspondence to: E. D. Sofen (esofen@gmail.com)

Received: 24 June 2015 – Published in Atmos. Chem. Phys. Discuss.: 17 July 2015

Revised: 10 November 2015 – Accepted: 30 November 2015 – Published: 10 December 2015

Abstract. Photometric ozone measurements rely upon an

accurate value of the ozone absorption cross section at

253.65 nm. This has recently been re-evaluated by Viallon

et al. (2015) as 1.8 % smaller than the accepted value (Hearn,

1961) used for the preceding 50 years. Thus, ozone measure-

ments that applied the older cross section systematically un-

derestimate the amount of ozone in air. We correct the re-

ported historical surface data from North America and Eu-

rope and find that this modest change in cross section has

a significant impact on the number of locations that are out of

compliance with air quality regulations if the air quality stan-

dards remain the same. We find 18, 23, and 20 % increases in

the number of sites that are out of compliance with current

US, Canadian, and European ozone air quality health stan-

dards for the year 2012. Should the new cross-section value

be applied, it would impact attainment of air quality stan-

dards and compliance with relevant clean air acts, unless the

air quality target values themselves were also changed pro-

portionately. We draw attention to how a small change in gas

metrology has a global impact on attainment and compliance

with legal air quality standards. We suggest that further lab-

oratory work to evaluate the new cross section is needed and

suggest three possible technical and policy responses should

the new cross section be adopted.

1 Introduction

Surface ozone is a significant global air pollutant that is

detrimental to human health, crops, and natural ecosystems

through its oxidative damage to respiratory systems and the

leaves of plants (National Research Council, 2008; McDon-

nell et al., 1993; Bell et al., 2004; Bell and Treshow, 2002;

Lefohn and Runeckles, 1987). In order to reduce human ex-

posure to ozone pollution, various legislative frameworks

have been put in place by environmental agencies around the

world. The United States, Canada, and the European Union

all maintain air quality regulations that determine compli-

ance based on exceedances of a threshold value of maximum

daily 8 h average (MDA8) ozone on an annual basis averaged

over 3 years. The standards and corresponding monitoring

networks for the United States, Canada, and the EU are de-

scribed in Table 1.

The abundance of ozone near the Earth’s surface has been

intermittently measured since the late 1800s (Volz and Kley,

1988; Marenco et al., 1994; Pavelin et al., 1999). In the

1970s, North American and European nations began to de-

velop systematic networks for the continuous monitoring of

the concentration of surface ozone in a range of environments

(roadside, urban, suburban, rural, remote) for the purposes of

air quality monitoring and regulation. Concerted regulatory

efforts to reduce ozone precursors have resulted in a decline

in peak ozone concentrations in both the United States and

the EU over the past decade (Cooper et al., 2014; Rieder

et al., 2013).

There are a range of techniques to measure ozone (Par-

rish and Fehsenfeld, 2000). However, the vast majority of

ozone measurements, especially for regulatory monitoring,

are made using dual-cell ultraviolet (UV) absorption spec-

trophotometers such as the Thermo Environmental Instru-

ments Inc. Model 49 or 2B Technologies, Inc. Model 202.

Fundamentally, this approach relies upon the Beer–Lambert

law with the critical parameters being the length of the cell,

the absorption cross section of ozone at 253.65 nm, and the

Published by Copernicus Publications on behalf of the European Geosciences Union.
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Table 1. Ozone air quality standards and monitoring networks.

Entity Air quality standard Monitoring network and data source

European Union Non-attainment if there are more than

25 days year−1 in which the maximum daily

8 h average (MDA8) ozone concentration

exceeds 120 µgm−3, averaged over 3 years

(EEA, 2002).

European Environment Agency AirBase;

http://www.eea.europa.eu/data-and-maps/data/

airbase-the-european-air-quality-database-8

United States Non-attainment if the annual fourth-highest

ozone MDA8 mixing ratio averaged over 3

years is above 75 ppbv (EPA, 2008).

Environmental Protection Agency Air Qual-

ity System (EPA AQS); http://www.epa.gov/

airquality/airdata/ad_data.html

Canada Non-attainment if the annual fourth-highest

MDA8 ozone mixing ratio averaged over 3

years is above 63 ppbv (CAN, 2012).

Environment Canada National Air Pollu-

tion Surveillance Program (NAPS); http://

maps-cartes.ec.gc.ca/rnspa-naps/data.aspx

ozone concentration. Historically, the ozone cross section

used for surface observations and the standard reference pho-

tometer has been 11.476 × 10−18 cm2 molecule−1 based on

the work of Hearn (1961). This has allowed for the system-

atic measurement of the ozone. New instruments, such as

those manufactured by 2B Technologies, Inc., also use the

Hearn (1961) cross section.

Despite the wide use of these absorption techniques for

the measurement of ozone, they are only as accurate as the

fundamental physical parameters used in the conversion of

absorption to concentration. Recent re-measurement of the

absorption cross sections by Viallon et al. (2015) find a cross

section of (11.27 ± 0.097) × 10−18 cm2 molecule−1 (mean

±2σ ) that is 1.8 % lower than the Hearn (1961) evaluation.

If the Viallon et al. (2015) absorption cross section is offi-

cially adopted, this will imply that the ozone observations in

ambient air are systematically 1.8 % higher than previously

reported.

Figure 1 illustrates all available ozone absorption cross

sections at 253.65 nm and their uncertainties based on a com-

pilation by Orphal (2002). The absorption cross sections

measured by Hearn (1961) (maroon) and Viallon et al. (2015)

(grey) are highlighted with thick lines. Most cross sections

are lower than that reported by Hearn (1961). The Viallon

et al. (2015) cross section is the lowest of all of the reported

values.

This 1.8 % change in the ozone absorption cross section

appears to be modest. However, the pass/fail nature of air

quality standards and the reality that many sites are just be-

low an air quality standard threshold means that a modest in-

crease in ozone has the potential to place many sites over the

limit and force them out of compliance with the appropriate

legislation.

In this work, we explore the impact of the new ozone

cross-section value and the impact of a historical underesti-

mate of ozone on compliance with air quality regulations. We

use US, Canadian, and European ozone monitoring data and

evaluate the number of sites that are out of compliance with
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Figure 1. Compilation of ozone absorption cross sections and their

uncertainty based on Orphal (2002). Absorption cross sections

marked with a (∗) are relative measurements scaled based on cal-

ibration.

the current cross section. We then repeat the evaluation of the

same metrics with the (1.8±0.9) % increase in ozone concen-

tration and evaluate the impact. Finally, we also consider the

need to reprocess the historical data sets so that trends can be

appropriately calculated.

2 Ozone observations

We use the publicly available air quality monitoring data sets

from the US Environmental Protection Agency Air Qual-

ity System (EPA AQS), Environment Canada’s National Air

Pollution Surveillance Program (NAPS), and the European

Environment Agency (EEA) AirBase. The EPA AQS rep-

resents data collected for the enforcement of the US Clean

Air Act and consists of ozone measurements from up to

Atmos. Chem. Phys., 15, 13627–13632, 2015 www.atmos-chem-phys.net/15/13627/2015/
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2326 sites. NAPS is a similar network for Canada that is

made up of 369 sites. The EU AirBase is a composite

database made up of air quality data contributed by 40 Eu-

ropean member states with a total of 3524 sites that measure

ozone. The vast majority of observations are made using UV

absorption instruments, with a very small subset using other

methods such as chemiluminescence. Out of 2326 EPA sites

that have reported ozone, only 52 have used chemilumines-

cence at some point since 1993. None are used in 2012. Eight

of the 3524 AirBase sites use chemiluminescence in 2012.

For each data set, we calculate whether or not a site is in

compliance with the relevant air quality standard for each

year (Table 1). According to the definitions of all three stan-

dards, this represents an average over the 3 years; that is, the

2012 determination averages over 2010–2012. Our calcula-

tions may differ slightly from official governmental air qual-

ity exceedance tallies due to differences in quality control,

data processing, data completeness thresholds, rounding, and

legislative changes in air quality threshold values over time.

We adopt a conservative approach of requiring data for all

years included in the 3-year rolling average. We do not at-

tempt to reproduce the detailed regulatory algorithms used

by the 42 countries considered in this analysis.

3 Results and discussion

3.1 Air quality violations with the Hearn (1961)

cross section

We apply here US, Canadian, and EU ozone air quality

exceedance calculations to their respective data sets using

the mixing ratios/concentrations as provided (e.g. using the

Hearn, 1961, cross section). Figure 2 shows the locations of

the data sets that fail to comply with these metrics in North

America and Europe in pink for 2012. Applicable air qual-

ity thresholds are exceeded at 179 EPA AQS sites, 30 Cana-

dian NAPS sites, and 215 EU AirBase sites. Based on vi-

sual inspection, the map of US exceedances agrees well with

the current EPA non-attainment areas (EPA, 2015b, a), al-

though the comparison is complicated by the county-level

determinations of non-attainment areas done by the EPA, and

probable issues related to the rounding of concentration val-

ues (EPA, 2008). The European exceedances show near per-

fect agreement with official European Environment Agency

maps (Map 2.3) (EEA, 2013), with slight differences through

Spain and the Balkans likely due to either the summertime

focus of the EEA calculation or different data completeness

thresholds.

Figure 2. Ozone monitoring sites that are out of compliance with

US, Canadian, or EU air quality standards. Pink markers indicate

sites that are out of compliance using the current Hearn (1961) ab-

sorption cross section. These sites are also out of compliance when

the data are increased by 1.8 % to account for the new Viallon et al.

(2015) cross section. Red markers indicate the additional sites that

become out of compliance if the Viallon et al. cross section is ap-

plied. Black points indicate sites that are in compliance or are miss-

ing data so that compliance cannot be calculated.

3.2 Air quality violations with Viallon et al. (2015)

cross section

We now repeat the previous assessment but increase the

ozone concentrations by 1.8 % to reflect the absorption in

new cross sections from Viallon et al. (2015). The red mark-

ers in Fig. 2 show the locations of additional sites in 2012,

which would violate the air quality standard with the Viallon

et al. (2015) cross section that did not violate the standards

under the older Hearn (1961) cross section. There are an ad-

ditional 33 US EPA sites, 7 Canadian NAPS sites, and 42

EU AirBase sites that exceed prevailing air quality standards

solely due to the adjustment in the absorption cross section.

This corresponds to a fractional increase of 18, 23, and 20 %

in US, Canadian, and European exceedances, respectively.

The new air quality exceedances tend to be located around

the periphery of regions that are already out of compliance

with the air quality standards. However, in North America,

a number of new air quality exceedances appear in northern

New England, Illinois, and South Carolina unconnected to

existing regions of exceedance.

As shown in Fig. 3, depending on the year, there are up

to an additional 25 % of sites that exceed their air quality

standard simply due to the adjusted concentrations using the

new Viallon et al. (2015) cross section. We calculate the un-

certainty in the fractional increase based on the propagation

of the 2σ uncertainty in the Viallon et al. (2015) absorption

cross section. A greater fraction of additional sites fall out of

compliance under the Viallon et al. (2015) cross section in re-

cent years (e.g. 2008–2012) than in earlier years (e.g. 1990–

www.atmos-chem-phys.net/15/13627/2015/ Atmos. Chem. Phys., 15, 13627–13632, 2015
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Figure 3. The percent increase in the number of sites that are out

of compliance with air quality regulations due to the adjusted ozone

abundances suggested by the new Viallon et al. (2015) cross sec-

tion for the EU, the United States, and Canada between 1990 and

2012. Shaded regions indicate the uncertainty in the number of non-

compliant sites associated with the 2 standard deviation uncertainty

in the Viallon et al. cross section.

2000), because there are a greater number of sites in more re-

cent years that have become compliant with the current reg-

ulatory standards under the Hearn (1961) cross section but

that are still very near the threshold. This is in part due to the

tightening of ozone regulatory standards over this time pe-

riod, meaning that in the earlier time period, more sites were

out of compliance with current regulatory standards, whereas

in recent years they sit just below the regulatory threshold,

making them susceptible to exceedance with the 1.8 % in-

crease in ozone. Though the regulatory standards in the EU

and North America are calculated differently, the changes in

both regions are very similar.

While the re-evaluation of the absorption cross section of

ozone by Viallon et al. (2015) does mean that ozone concen-

trations were higher than previously thought, we note that

ozone exposure and human health impact studies also relied

on measurements made using the Hearn (1961) cross sec-

tion. Therefore, there is no inherent inconsistency between

the regulatory standards set for health purposes, or ecosys-

tem metrics such as AOT40 (accumulated amount of ozone

over 40 ppb during daytime in the growing season), and

the concentration/mixing-ratio values from ozone monitor-

ing using the Hearn (1961) cross section. However, given the

tendency of legislative and regulatory bodies to adjust stan-

dards in roughly 5 ppbv/10 µgm−3 increments, it is worth

noting that much smaller changes in the reported concentra-

tion of ozone can have significant implications for air quality

regulation.

The 2σ uncertainty in the absorption cross section of

±0.9 % contributes to an uncertainty of approximately

±15 % in the increase in sites in non-compliance due to the

change in the absorption cross section, as shown in Fig. 3.

Further metrological work to reduce the uncertainty in, and

indeed to confirm, the Viallon et al. (2015) absorption cross

section may be needed. If the fractional uncertainty in the

absorption cross section is reduced to ±0.1 %, this reduces

the uncertainty in compliance to less than ±3 %. Reducing

the uncertainty in the absorption cross section will repre-

sent a major analytical challenge, with the largest sources

of uncertainty coming from the absorption cell path length,

ozone mole fraction uncertainties, and pressure measure-

ments (Viallon et al., 2015). Equivalently, there would be

at most four AirBase sites, whose compliance status would

be uncertain if the fractional uncertainty on the absorption

cross section were reduced to ±0.1 %. There are numer-

ous other sources of uncertainty in ozone measurements

(Klausen et al., 2003; Wilson and Birks, 2006) but they gen-

erally represent random errors, whereas updates to the ab-

sorption cross section represent correction of a systematic

bias.

The widespread use of ozone photometric measurements

in atmospheric chemistry is likely to require also some ad-

justments to laboratory kinetic data for ozone reactions. Ob-

servations of species such as hydroxyl radicals, that rely on

known ozone amounts for calibration, will also require ad-

justment. In many cases the adjustment is however likely to

be within existing measurement uncertainties.

3.3 Future adoption of the Viallon et al. (2015)

cross section

Given a potential change in the accepted cross section (some-

thing that would ultimately require a recommendation from

the International Union of Physical and Applied Chemistry,

IUPAC), regulatory agencies, global monitoring entities, and

instrument manufacturers will need to make decisions about

how future observations are made and how historic data are

reprocessed. In practical terms, formally updating the ab-

sorption cross section in existing instruments is not straight-

forward, typically requiring an update to firmware within the

instrument. However, a potential workaround for users would

be a one-off modification of the calibration slope “span” pa-

rameters to reflect a 1.8 % change through the instrument cal-

ibration software interface. The inclusion of updated param-

eters would also occur when new instruments are installed

(assuming manufacturers opt to use the Viallon et al., 2015,

cross section). A typical lifespan for an ozone instrument in

use for operational air quality monitoring is around 10 years,

which would result in a slow increment in updated values en-

tering the global data set. In both cases it would be essential

that such changes, whether to existing instruments or to new

ones, are robustly recorded within metadata submissions that

accompany observational data. In both cases it would be dif-

ficult to detect the change independently using step-change

Atmos. Chem. Phys., 15, 13627–13632, 2015 www.atmos-chem-phys.net/15/13627/2015/
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statistical methods, but it would lead to a small spurious pos-

itive trend.

4 Conclusions: policy options

If proven correct, the application of an updated value for the

ozone cross section at 253.65 nm leads to a significant (10–

25 %) increase in the number of sites in North America and

Europe that become non-compliant with local air quality reg-

ulations. Such an increase is very significant in the context

of pollution control and the legal attainment of national air

quality targets, and it is highly likely that substantial policy

and technical responses will be required globally. We con-

sider that there are three broad possible scenarios that may

be adopted to reflect an updated ozone cross-section value.

– Continue to use the Hearn (1961) value for surface

ozone monitoring and air quality limit values. Only

adopt the Viallon et al. (2015) value when the report-

ing of the absolute amount of ozone is essential, such

as when ozone is included in radiative forcing calcula-

tions. This would move the observation of surface ozone

away from traceability from an SI (International System

of Units – Système International d’Unités) amount of

substance to a measurement scale.

– Adopt the updated cross-section values within national

and global ozone measurement networks, while main-

taining current air quality standards. Such a policy

would effectively amount to a 1.8 % tightening in na-

tional air quality standards and an increase in regulatory

non-compliance. There are potentially costly legal ram-

ifications for regulatory agencies when additional sites

are pushed into non-compliance because of this “mov-

ing of the goalposts.”

– Adopt the updated cross-section values within measure-

ment networks and change the air quality standards by

the same proportion. This will maintain the same level

of air quality attainment. Such an approach would al-

most certainly require legislative changes in many coun-

tries, something that might potentially be subsumed

within a larger-limit value change, for example at the

5 ppbv or µgm−3 unit increment.

A concerted effort to re-measure the cross section and pro-

vide confirming evidence is needed. However, if the new

Viallon et al. (2015) absorption cross section is ultimately

adopted for new instruments, there would be a significant is-

sue for air quality compliance. A decision on the best path

forward for the sake of air quality and human health, ozone

research, and policy must be addressed by a combination of

air quality scientists, data managers, and policy makers.

We also identify the importance of adopting a globally

consistent approach in the analysis of trends in surface ozone.

Unless a common re-evaluation is made of the historical data

set, such as in global background data collected as part of

WMO Global Atmosphere watch, a discontinuity will be in-

troduced into the record, which will appear as a spurious pos-

itive trend.

The substantial impact on air quality policy of this mod-

est change to the ozone absorption cross section reinforces

the importance of fundamental metrology research and sug-

gests a need to re-evaluate the values of many decades-old

physicochemical constants.
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