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Spatial transformations (ST) provide a design
framework to generate a required spatial distribution
of electrical and magnetic properties of materials to
effect manipulations of electromagnetic waves. To
obtain the electromagnetic properties required by
these designs, the most common materials approach
has involved periodic arrays of metal-containing
subwavelength elements. While aspects of ST theory
have been confirmed using these structures, they
are often disadvantaged by narrowband operation,
high losses and difficulties in implementation. An
all-dielectric approach involves weaker interactions
with applied fields, but may offer more flexibility
for practical implementation. This paper investigates
manufacturing approaches to produce composite
materials that may be conveniently arranged spatially,
according to ST-based designs. A key aim is to
highlight the limitations and possibilities of various
manufacturing approaches, to constrain designs to
those that may be achievable. The article focuses
on polymer-based nano- and microcomposites in
which interactions with microwaves are achieved
by loading the polymers with high-permittivity
and high-permeability particles, and manufacturing
approaches based on spray deposition, extrusion,
casting and additive manufacture.

2015 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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1. Introduction
Transformation optics is a theoretical tool for the design of devices that control light and may be
used to determine the spatial variation of the relative permittivity ε and permeability μ required
in a structure in order to produce a given, desired effect on the propagation of electromagnetic
radiation [1,2]. The early experimental realization [3] of a cloaking device—a one-off fabrication
and operating over a narrow band of frequencies—demonstrated the utility of the concept
and suggested new opportunities for the development of electromagnetic device technology.
However, to enable such opportunities to be realized, materials and manufacturing processes
must be further developed, in which regard there lies two key challenges. First, the required
ε and μ determined by the transformation optics procedure can give rise to values that are
unachievable in any single material, or that are required to be highly anisotropic. Therefore, a
‘palette’ of bulk materials with a wide range of controllable electromagnetic properties needs
to be established. Second, even if bulk materials with the requisite values of ε and μ are
available, the ability to pattern the required variations in these properties as a function of
position should be available to produce graded changes in properties, discrete step variations,
or anisotropy. Therefore, new material–manufacturing combinations should be developed—
preferably inexpensive and scalable—so that spatial variations in electromagnetic properties can
be readily patterned to a specified resolution. Currently, the options are limited so that, while
theory and simulation continue to advance, practical demonstrations and validation are either
somewhat inelegant, non-scalable or simply unavailable. In this paper, we focus on developments
at this materials–manufacturing interface relevant to possible future transformation optics
applications. The focus is not on classic metamaterials approaches of regular arrays of resonating
elements, but instead on manufacturing approaches to ‘all-dielectric’ and magnetic property
variations. In each case, the advantages and limitations of the materials–process combinations
are described.

2. Materials
Polymer-based composites can combine the processability of the polymer matrix with the
electromagnetic properties of discrete filler particles according to established mixing rules [4,5].
The criterion for the composites to behave as a homogeneous medium with respect to the
propagation of electromagnetic radiation is that the wavelength within the medium be much
larger than the scale of the particles or particle agglomerates. With well-dispersed particles
of typical dimension 10−6 to 10−4 m subject to microwaves of free-space wavelength greater
than 10−2 m, this criterion is easily satisfied, leading to non-resonant bulk materials suitable for
broadband applications. In all cases, the effective electromagnetic properties of the composite
may be changed by varying the fraction of particles, up to an upper limit usually dictated by the
mechanical robustness of the composite. The resulting bulk composites can generally be readily
characterized in terms of permittivity and permeability at a range of microwave frequencies using
a number of techniques, including stripline, rectangular waveguide, coaxial airline and split post
dielectric resonator [6–9] methods.

The different types of polymer-based composites may be categorized into three groups, ‘high-
ε’ (real permittivity), ‘magnetic’ and ‘superconducting’, with most attention in the literature given
to the former and least to the latter. For ‘high-ε’ composites that underpin the all-dielectric
approach to wave manipulation, the aim is to achieve a conveniently processable dielectric
material with a relatively large real part of the relative permittivity (ε′). Common bulk polymers,
such as polyethylene (PE) and polypropylene (PP), are readily processed but provide only ε′ = 2–3
at approximately 10 GHz [10,11], limiting their use in transformation optics devices. On the other
hand, while ceramics such as BaTiO3 are brittle and much less versatile with respect to processing,
they have bulk permittivities at microwave frequencies that can be orders of magnitude larger
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Figure 1. Electromagnetic properties at 15 GHz of a superconducting composite composed of YBCO particles in an epoxymatrix.
(a) Real part of the relative dielectric permittivity ε′ as a function of particle loading by area fraction A, at room temperature
and in the superconducting state at a temperature of 77 K. (b) Real part of the relative permeability μ′. (c) The quantity
n≡ √

ε′μ′. (d) Typical cross-sectional electron micrograph of the superconducting composites (scale
bar, 500µm).

than those of polymers [12,13]. Consequently, by dispersing micro-scale particles of BaTiO3 in a
polymer matrix, processable materials with ε′ up to 20 in the frequency range 12–18 GHz can be
obtained [14–18].

For magnetic composites, again, the goal is to develop readily processable materials but
with a relatively large real part of their relative permeability μ′. Common polymers, being
non-ferromagnetic, have real permeability μ′ ∼ 1. Through the addition of ferromagnetic metals
such as Fe, and ferrites such as Ni0.4Zn0.6Fe2O4, as the filler material, composites with μ′ up
to approximately 10 at microwave frequencies can be obtained. For both high permittivity
and magnetic composites, the large density difference between fillers and matrix can lead
to difficulties in maintaining an adequate dispersion across large volumes of composite
materials during processing. Sub-micrometre filler particles generally suffer from a tendency to
agglomerate, and these small sizes can also have reduced dielectric or magnetic response when
compared with bulk behaviour, although the magnitude of these reductions can often be difficult
to quantify [19].

Less-studied superconducting composites offer the potential for strongly temperature-
dependent electromagnetic properties (as the material is cooled into, or heated out of, the
superconducting state) with 0 < μ′ < 1 in the superconducting state. For example, the variation
of ε′ and μ′ for a series of cast epoxy-based composites containing different fractions of
superconducting yttrium barium copper oxide (YBCO) particles at room temperature and 77 K
(in liquid nitrogen) are shown in figure 1. The data at 77 K was obtained by submerging the
waveguide measurement jig in liquid nitrogen. In accordance with previous studies [20,21], the
quantity n ≡ √

ε′μ′ could be controlled by both the YBCO fraction and temperature, as shown in
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Figure 2. Magnetically aligned anisotropic composites composed of Fe flakes in epoxy. (a,b) Electron micrographs show
preferential alignment of the flakes due to the applied magnetic field. The insets indicate the direction of the magnetic field
(black arrows) with respect to the sample geometry and the orientation of the exposed section (pale blue) (scale bars, 50µm).
(c) Photograph of the samples and the stripline measurement apparatus used to retrieve the effective permeability of the
composite. (d) The real part of the relative permeability as a function of frequency for three types of sample, showing the
induced anisotropy of the magnetically aligned samples.

figure 1c, where n is related to the refractive index, but ignoring the imaginary components ε′′ and
μ′′, which tend to be relatively lossy in these composites; for example, the acrylonitrile butadiene
styrene (ABS)—YBCO composite had a loss tangent at 15 GHz of 0.025 at 0.2 vol% YBCO. The
increase in n with YBCO filler fraction derived from the increase of ε′ with filler fraction shown
in figure 1a, in accordance with the effective medium theory of Bruggeman [5], which provided
a good fit to the effective permittivity data for YBCO volume fractions up to 50% using ε′ = 55
for the filler particles (note, considerably smaller than the bulk permittivity of BaTiO3 of at least
several hundreds). As expected, the effective permittivity did not change significantly on cooling
to 77 K. However, figure 1b shows there was a reduction in μ′ with temperature, in turn causing
changes in n. The relative permeability at room temperature was 1 at all filler fractions, but the
YBCO became diamagnetic below a transition temperature of 93 K owing to the Meissner effect,
giving μ′ < 0.5 for the most heavily loaded composites, and the ability to tune n between 5 and
3.5 using temperature.

The polymer matrix can be either a thermoset (such as an epoxy resin) or a thermoplastic
(PP, ABS, polystyrene (PS)), the final choice of which relates to the required processing route
and final device specifications. Homogeneous dispersions of particles can be obtained by a
number of methods, depending on the polymer matrix and the processing route: a good
dispersion of microparticles in an epoxy is typically obtained via sonication, or mechanical mixing
monomers and particles before subsequent polymerization during processing. Particle dispersion
in thermoplastics may be readily obtained by mechanical mixing at an elevated temperature
in the polymer melt—for example, via screw extrusion. Alternatively, if a thermoplastic can be
readily dissolved, the microparticles may be dispersed in solution, with the solvent subsequently
evaporated to re-precipitate the polymer around the particles.
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Bulk composites are typically isotropic in terms of ε′ and μ′ but these properties in a
composite can be contrived to be anisotropic with suitable processing: for example, the alignment
of magnetic particles in an external magnetic field applied to an epoxy-based Fe-containing
composite during curing, as shown in figure 2. Anisotropic superstructures may also be contrived
using arrangements of bulk isotropic materials: for example, if an isotropic composite is formed
into a regular array of uniformly oriented rods, it behaves as a homogeneous, but anisotropic,
material for wavelengths much larger than the distance between the rods [22].

3. Processing techniques

(a) Spray deposition
Spray deposition offers the potential of a low-cost, scalable manufacturing for the production
of polymer-composite films and multilayers containing dielectric, magnetic or combinations
of nano- or microparticles. A schematic of the apparatus used to produce composite films is
shown in figure 3a. In this process, a critical step is the development of a stable suspension of
polymer and particles so that constant fractions are deposited over the length of the deposition
and uniform properties result. Suspension stability is usually achieved by ultra-sonication (for
times of up to several hours), possible small additions of surfactant, and restricting the particle
diameter (typically less than 5 µm). To produce a suspension of low enough viscosity for
spraying, a fugitive carrier is used that either dissolves the polymer or suspends small polymer
particles stably, while also suspending the filler particles. The suspensions are then syringe (up
to 10 ml min−1) or peristaltic (5–50 ml min−1) pumped at a controlled rate into a compressed air
atomiser to form a stable spray of 10–200 µm diameter droplets, each of which likely contains filler
particles. On deposition, the fugitive liquid phase (often and preferably water, but sometimes
organic solvents) evaporates almost immediately as the rotating drum substrate is maintained
at elevated temperature using infrared heaters. Depending on the polymer, an ultraviolet (UV)
light source can be used to polymerize in situ monomer (e.g. acrylate) as it is precipitated from
the evaporating solvent, and the suspended particles are engulfed directly into the polymer film
[23]. In an alternative approach, 80 nm particles of thermoplastic perfluoroalkoxy (PFA) have been
suspended alongside one-dimensional carbon materials, and the resulting film then heated in a
belt furnace to cure thermally, rather than using UV light, to form a robust high-permittivity
composite film [24]. The same approach can be used for magnetic suspensions and figure 3b
shows a sprayed PFA-based composite film containing magnetic Fe3O4 nanoparticles, in this case
13 × 13 cm in size and approximately 60 µm thick.

A range of expressions—or ‘mixing laws’—are available to predict composite effective
permittivity and permeability of films and bulk materials from the individual component
properties and their fractions, as described in [23], with the logarithmic Lichtenecker mixing law
the most widely applied for composite permittivity ε′

c:

ε′
c = Vmε′

m + Vfε
′
f,

where Vm and Vf are the matrix and filler volume fraction, and ε′
m and ε′

f are the real
permittivity of matrix and filler. Comparison with experimental data shows mixing laws such as
Lichtenecker or Bruggeman [5] generally approximate well to composite properties for minority
filler additions, but significant deviations can occur where there is significant agglomeration [25]
or where the filler has a high aspect ratio [24].

To obtain measurements of ε and especially μ for films such as those shown in figure 3b over
a range of microwave frequencies can be difficult. However, an approach has been developed in
which films can be tightly wound on a central spool to form a ring shape, which is then inserted
snugly into a coaxial line measurement arrangement [26]. Winding is usually done by hand but
results in entrapped air gaps between layers of dielectric that subsequent density measurements,
for example by a water displacement method, suggest may occupy up to 20 vol%. Although
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Figure 3. (a) Schematic diagram of the spray deposition equipment used to produce dielectric and magnetic particle-
containing polymer-based films. (b) A 13 × 13 cm PFA–Fe3O4 composite sheet made by spray deposition followed by curing.

this coaxial arrangement is simple and allows ready measurement of reflection and transmission
behaviour of the film across a broad band of frequencies, it is necessary to apply analysis or a
model that accounts for these inevitable air gaps. Figure 4 shows data in the frequency range
30 MHz to 10 GHz from an elastomeric film containing magnetic Fe flakes similar to the film
in figure 3b but with a stronger magnetic response, and where the measured permeability has
been adjusted using an analytical layered capacitor model that considers the arrangement as
alternating concentric rings of dielectric composite and air, and accounts for the presence of
12 vol% air gaps [26].
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Figure 4. Permeability characterization of a strip of magnetic composite film that has been wound into a ring on a central
spool, comprising an elastomeric matrix with embedded Fe flakes, measured by a simple coaxial technique and corrected for
residual air gaps.

(a) (b)

(c) (d )

Figure 5. (a) A reel of ‘high-ε’ filament composed of BaTiO3 microparticles in ABS polymer, produced in-house by premixing
followed by extrusion. (b–d) Cross-section scanning electron micrographs of filaments with 0, 30 and 75 wt% BaTiO3
microparticles, respectively (scale bars, 10µm).

(b) Extrusion
Extrusion of polymer composites can produce filament that is then used as the feedstock for
additive manufacture [27–30]. Figure 5a shows a reel of ‘high-ε’ filament of BaTiO3 microparticles
dispersed in ABS matrix, made in-house for use with a fused deposition modelling (FDM)
three-dimensional printer. Figure 5b–d shows the microstructure of these filaments with particle
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Figure 6. Approximately 7 cm wide extruded sheets of BaTiO3 microparticles in PP. (a) Coiled extruded composite sheets with
various particle loadings. (b) Theweight percentage BaTiO3 in the composite sheets determined by thermogravimetric analysis,
showing how the polymer is removed at high temperature as a gas and the residual BaTiO3 weight can be estimated. (c) Real
part of the relative permittivity as a function of particle fraction. (d) Dielectric loss tangent as a function of particle loading.
Measurements in (c,d) were taken at≈15 GHz using a split post dielectric resonator.

loadings of 0, 30 and 75 wt% BaTiO3. Extrusion can also be used to produce much larger composite
sheet or planar geometries of constant thickness, similar in some ways to spray deposition, but at a
higher material flow rate. While it would be most convenient if the required fractions of polymer
and filler could be loaded directly into a screw or similar extruder to produce composite sheet
directly, a premixing stage, for example by mechanical granulation or dissolving the polymer in
a solvent and mixing with the powder followed by drying, is generally preferred if excessive
agglomeration is to be avoided and/or a consistent filler fraction across significant volumes of
material, e.g. tens of metres of sheet or filament, is to be achieved.

Figure 6a shows extruded and coiled sheets of PP with various loading fractions of BaTiO3, and
where the nominal fractions of BaTiO3 were then confirmed using thermogravimetric analysis in
figure 6b. Figure 6c,d shows there was a modest and systematic increase in effective permittivity
at ≈15 GHz, measured using a split post dielectric resonator, together with an increase in loss as
the fraction increased. The composite sheets may be subsequently hot-pressed together to form a
bulk composite material, or laminates of graded electromagnetic properties in one direction.

(c) Casting
Casting is a straightforward, inexpensive and widespread manufacturing technique, whereby an
object is formed by introducing a liquid material into a suitably shaped mould before subsequent
solidification or polymerization. Because of its convenience, casting has been used routinely in the
preparation of bulk composites for electromagnetic applications. Microparticle fillers are typically
dispersed in epoxide monomers and the resulting mixture poured into a silicone mould before
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Figure 7. Epoxy-based NiZn ferrite-containing magnetic composite examples showing the flexibility of casting, including:
hemispherical shells for potential application in electrically small folded spherical helix antenna, tiles comprising polymer only
(transluscent) and heavily filled (black) regions of varying relative thickness for anisotropic magneto-dielectric substrates in
low-profile antenna, and blocks and rings suitable for stripline and coaxial line measurements, respectively.

polymerization and resulting solidification at an elevated temperature (approx. 60◦C) overnight.
If needed, even at up to high loading fractions of 60 vol%, the cast samples can be conventionally
machined (with care) to a high tolerance for a wide range of designed applications, as shown in
figure 7. Casting has been used to produce impedance-matched materials with relatively high and
equal permittivity and permeability that are promising for applications in telecommunications
[31]; more than one type of filler material may also be introduced in this approach to produce
hybrid composites for superior electromagnetic performance, e.g. extending the frequency at
which a useful magnetic response (permeability more than 1) can be achieved [32].

Whereas spray deposition and extrusion produce only planar geometries, casting in principle
can produce complex three-dimensional shapes with homogeneous properties. Sequential casting
operations have also been developed to produce step-graded all-dielectric structures based on
transformation optics designs, as shown in figure 8. In this case, a continuous decrease in
permittivity of a flat ring was desired to act as a surface wave beam-splitter, from a permittivity
of 17 (achieved using a BaTiO3 fraction of 40 vol% in epoxy) in the centre of the circular device
reducing to 2.5 (epoxy only) at a radius of 80 mm. For manufacturability, the continuous radial
variation from design simulations was approximated to a discrete step variation as shown in
figure 8a, which was then achieved by sequentially casting concentric rings of epoxy-based
composites loaded with progressively lower BaTiO3 fractions towards the outermost ring, starting
with the central core (figure 8b,c) and then into concentric moulds of increasing radius.

(d) Additive manufacture
Additive manufacturing (AM) has long been used as a rapid prototyping technique but is
increasingly being explored for the direct manufacture of low-rate, high-value components. The
technique has been used for the fabrication of electromagnetic devices that operate at microwave
frequencies [33–37]. Typical of the structures studied by AM are three-dimensional inter-
penetrating designs of the deposited polymer and air (designed-in voids), in order to achieve
effective grading or anisotropy in properties. Most of these studies have used common (usually
polymeric) materials, not specifically chosen for their inherent permittivity or permeability
properties but because of their compatibility with the AM process, but may suffer from high loss
tangents. For example, polymers that are used for FDM—one of the most popular and affordable
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Figure 8. Fabrication of graded dielectric structures via casting of epoxy-based composites with controlled fractions of high-
permittivity BaTiO3 particles. (a) A continuous but un-manufacturable radial profile of relative permittivity as a function of
position from transformation optics is approximated to a manufacturable discretized profile. (b) A series of moulds are used
to produce cast concentric rings with different filler fractions chosen to provide the desired radial profile of permittivity.
(c) A graded device is fabricated, from all-epoxy at the outer ring through to BaTiO3/epoxy composite inner rings with ε′ up
to 17.

processes—such as ABS are limited to relative permittivities of approximately 3 at 10 GHz [38], a
dielectric loss tangent of up to 0.01 and relative permeabilities of essentially 1.

Further progress in the AM of more capable electromagnetic devices based on transformation
optics can be expected to be facilitated by the development of AM-compatible materials but with
more contrived or designed electromagnetic properties. For example, the concentric ring design
made by sequential casting in figure 8 might be achieved much faster by AM and in a single
operation—if printable materials of sufficient dielectric contrast of 2.5 to approximately 17, and
offering sufficiently low loss, were available and reliable. For example, figure 6d suggested that
loss tangents can be restricted to approximately 5 × 10−3 at 40 wt% BaTiO3 if a PP matrix were to
be adopted for AM. Moreover, AM becomes particularly enabling where such gradient properties
are achieved in three dimensions.

So far, AM structures and devices have been based very largely only on spatial variations in
permittivity, and otherwise the permeability is near unity. However, where permeability might
also be varied spatially and simultaneously, more design freedom is enabled so that, for example,
reflection losses can be minimized by providing impedance Z = Z0(μ/ε)1/2, where Z0 is the
permittivity of free space, alongside spatial variations in permittivity.

Using bespoke composite filaments produced in-house, as shown previously in figure 5, the
FDM approach has been used to produce ‘high-ε’, ‘magnetic’ and ‘superconducting’ composites
directly. In the FDM process, composite filament is delivered by a motorized drive system at a
calibrated flow rate into a heated nozzle where it is first melted and then extruded through a
small orifice and thus directly onto the top surface of the forming component. The component
sits on a build platform and the relative motion between component and print head is controlled
by a pre-programmed pattern. At the end of each finished layer of deposition, the build platform
is lowered and the next layer then printed. Re-optimization of the FDM parameters, e.g. nozzle
temperature, feed rate and traverse speed of the head, is required for reliable printing when using
composite filament.

Figure 9 shows (a) low-cost three-dimensional printers adapted for the printing of composite
filaments, (b) two diamond-like lattice structures printed from ABS (right) and ABS + 60 wt%
BaTiO3 (left) and (c) ‘chequerboard’ and layered slabs and cubes comprising well-controlled
volumes of ABS-only and ABS–BaTiO3 composite. These structures are similar to those assembled
by hand from epoxy and machined ceramic rods to produce resonance effects at microwave
frequencies [39] but where AM approaches could be used to adjust much more readily the spacing
of layers and the volume fraction of filler in the layers. In figure 9c, a loaded and a non-loaded
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Figure 9. Additive manufacture of ‘high-ε’ composites composed of BaTiO3 microparticles in ABS. (a) The three-dimensional
printers used for manufacture. (b) A diamond-like lattice composed of polymer only with low permittivity (right) and
a polymer + BaTiO3 composite with high permittivity (left). (c) Samples composed of alternating areas of polymer and
polymer + BaTiO3 printed using dual extrusion nozzles. (d) X-ray computed tomography images of the ‘chequerboard’ cube
in (c), revealing the internal layered structure.

polymer filament was used alternately and layer thicknesses were approximately 0.2 to 1 mm. By
inter-layering of unfilled and filled filaments at the finest resolution of approximately 100 µm, the
relative number of each layer can be used to contrive the effective local volume fraction so that
a range of effective permittivities at the meso-scale might be realized, lying in the range between
that of the filled and the unfilled filament.

In order to assess the presence of air gaps between printed layers—a typical problem for
AM that undermines target permittivity and permeability—X-ray tomography was applied to
the cube in figure 9c and the results in a series of orientations are shown in figure 9d. Contrast
between the array of sub-cubes is produced by the more strongly X-ray-absorbing BaTiO3-loaded
regions. The presence of the BaTiO3 allows the discrete layers of the build process to be resolved
and suggests there may be limited fine-scale fusing, i.e. critical wetting, interfacial mixing and
adherence between subsequent vertical layers, under these particular conditions.

Figure 10 shows the same diamond-like lattice structure as in figure 9b but now realized
by additive manufacture in an ABS + 10 vol% NiZn ferrite composite, which provided a real
permeability of approximately 2 up to 100 MHz for 25 vol% ferrite, and of approximately 1.3 up
to 1 GHz for 10 vol% ferrite when printed in bulk.

The limitations of printed composites relate to the maximum fraction of filler that can be used
before the filament becomes too brittle and fragile to handle. For ‘high-ε’ composites based on
BaTiO3, this upper limit is typically 75 wt% BaTiO3, which can provide a real permittivity of
approximately 10 in the frequency range 12–18 GHz. Comparison with the upper limit achievable
by casting of approximately 17, also with approximately 75 wt% BaTiO3 but dispersed in epoxy
in the central core of figure 8c, suggested the presence of any inter-layer voids in AM will
undermine achievable composite properties. However, limited use (to avoid inducing further
loss) of surfactants and plasticizers [30,40,41] may be able to increase printable volume fractions
in AM, and the development of higher-intrinsic-permittivity but low-loss polymers (such as
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Figure 10. Lattice structure produced by FDM additive manufacture using ABS polymer with 10 vol% NiZn ferrite filament.

PP shown in figure 6d for extrusion) suitable for AM, along with process parameters that
ensure optimized inter-layer fusing, will all have a significant effect on enhancing the achievable
effective properties.

4. Summary and future outlook
Transformation optics provides designs for novel and useful manipulations of microwaves but
can also demand unrealistic absolute values of permittivity and permeability, and their spatial
variation. Where the most extreme properties have been developed using resonant phenomena,
narrowband and high-loss performance is usually problematic. In the microwave domain, spatial
variations in EM properties are typically in the millimetre to the many centimetre range, making
a range of both traditional and new fabrication processes relevant. Polymers offer excellent
processability to produce filaments, thin films, sheets, bulk materials and three-dimensional
shapes, but to be useful for transformation optics, various types of fillers must be added, and
the range of resulting materials is rapidly expanding. Additive manufacture offers significant
potential for the all-dielectric approach to transformation optics devices, but both bespoke
materials developments and robust manufacturing technology are at an early stage. Where multi-
materials can be combined at fine scale but over large-scale component dimensions by AM, new
functionalities to enable transformation optics designs are very likely. However, AM capabilities
must be improved to eliminate air gaps, to manage distortions and surface finish to provide
geometric conformance, and to automatically detect and correct print defects.
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