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Component-Based Model of Buckling Panels of Steel 

Beams at Elevated Temperatures  

Guan Quan, Shan-Shan Huang, Ian Burgess 

University of Sheffield, Department of Civil and Structural Engineering, UK  

Abstract 

Both bottom-flange buckling and beam-web shear buckling have been observed in 

many full-scale fire tests in the vicinity of beam-to-column connections. These 

phenomena can influence the load redistribution within the adjacent connections 

and the global structural behaviour, detrimentally affecting the structural overall fire 

resistance. However, existing models for bottom-flange buckling overestimate the 

structural resistance when the beam is slender. In this work, a new analytical model 

has been created to predict both of these types of buckling behaviour in steel beams 

in the vicinity of beam-to-column connections at elevated temperatures. The model 

considers the individual effects of both buckling modes, as well as their interaction. 

It is capable of predicting the force-deflection relationship of the buckling zone from 

the initial elastic loading stage to run-away failure. The new analytical model has 

been compared with the existing Dharma͛s model and a range of 3D finite element 

simulations created using the ABAQUS software. Comparisons have shown that the 

proposed method gives better predictions than Dharma͛Ɛ model. A component-

based model of the buckling zone has been created on the basis of this new analysis. 

The component-based model can provide sufficient accuracy, and will be 



 

implemented in the software Vulcan for performance-based global structural fire 

analysis. 
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Notation: 

 

b flange width 

c half flange width 

d depth of a beam web 

f width of one strut in compression zone 

F vertical shear force at the end of the buckling zone 

Fmax maximum reaction force 

Fp,T reaction force when plastic bending moment resistance is reached 

hc height of the area resisting axial force in a strut 

k1 the stiffness of the compressive spring in the flange buckling component 

k2 the stiffness of the compressive spring in the shear buckling component 

kE ƌĞĚƵĐƚŝŽŶ ĨĂĐƚŽƌ ĨŽƌ ǇŽƵŶŐ͛Ɛ ŵŽĚƵůƵƐ Ăƚ ĞůĞǀĂƚĞĚ ƚĞŵƉĞƌĂƚures 

ky reduction factor for yield stress at elevated temperatures 

M bending moment at the end of the buckling zone 

Mp bending moment resistance of one beam-web compressive strut 

Pc axial force resistance of one  beam-web compressive strut 

tf thickness of the flange 

tw thickness of the beam web 

Į the angle between tensile strips and the deformed upper flange 

Į1 the angle between a yield line and vertical direction 

∆1 out-of-plane deflection of one strut 

∆vs the vertical movement of the right edge of the shear panel  

İl,ș limiting strain for yield strength at elevated temperatures 

İp,ș strain at the proportional limit at elevated temperatures 

İu,ș ultimate strain of steel at elevated temperatures 

İy,ș yield strain of steel at elevated temperatures 

ș1 the rotation caused by bottom-flange buckling 

ș2 the rotation caused by shear buckling 

ıc compressive stress in the compressive strips 

ıcf compressive stress in the flange along beam length 

ıeq yield strength of the flange considering reduction caused by axial stresses 

and shear stresses 

ıeq1 yield strength of the flange considering reduction caused by axial stress 

parallel to yield lines 

ıp,ș stress at the proportional limit at elevated temperatures 

ır stress normal to the yield lines 

ıt tensile stress in the tensile strips 

ıtf tensile stress in the flange along beam length 

ıy yield strength of steel at ambient temperature 

ıy,ș yield strength of steel at elevated temperatures 

ıyf,ș yield strength of the flange without considering reduction at elevated 

temperatures 

ıyw,ș yield strength of steel web at elevated temperatures 

Ĳr shear force parallel to the yield lines 



 

1. Introduction 

TŚĞ ĐŽůůĂƉƐĞ ŽĨ ƚŚĞ ͚ϳ WŽƌůĚ TƌĂĚĞ͛ ďƵŝůĚŝŶŐ ŝŶ NĞǁ YŽƌŬ CŝƚǇ [1] indicates that the 

progressive collapse of the whole building was initially triggered by the failure of 

beam-to-column connections. Connection failure was also observed on many other 

occasions, including the well-known full-scale Cardington series of Fire Tests [2]. 

Beam-to-column connections have been among the key elements for the 

investigation of the robustness of steel structures in fire. It has traditionally been 

assumed that connections have sufficient fire resistance, because of their lower 

temperatures and slower rates of heating compared with the members to which 

they are connected. However, connections are actually under complicated and 

extreme force combinations transferred from the connected members; these forces 

are not usually considered in ambient-temperature design. A number of previous 

research studies [3-6] have shed light on the performance of beam-to-column 

connections in fire, and have further proved that connections are potentially the 

most vulnerable parts of a steel-framed structure in fire.  

The Cardington Fire Tests [7] indicated that combinations of beam-web shear 

buckling and flange buckling are very prevalent under fire conditions. This 

phenomenon can significantly influence the internal forces in the connections.  

Flange buckling can raise the neutral axis, which changes the force distribution in the 

ĐŽŶŶĞĐƚŝŽŶ͛Ɛ components. Although at early stages of heating the top bolt rows 

would logically experience higher tensile force without flange buckling than when it 

has occurred, this situation may be reversed in the high-temperature catenary stage 

when, without a significant connection moment, most of the catenary force may be 



 

carried by these rows. Local buckling at the beam ends will also have an effect on the 

deflection of the beam, and therefore influence the net tying force within the 

connection. The increased beam deflection during the heating phase of the fire will 

significantly increase the tension force on the connection during the cooling down 

period. However, the contribution of the combination of beam-web shear buckling 

and flange buckling in the vicinity of beam ends has not been taken into 

consideration by almost any of the existing research.  

The behaviour of structural elements in real frames observed in the full-scale 

Cardington Fire Tests [2, 8-10] was very different from that observed in furnace tests 

on isolated elements.  This indicates the importance of performance-based design, 

which sufficiently considers the interactions between various members of the 

structure. However, full-scale structural testing is expensive. To carry out finite-

element modelling of an entire structure, including detailed representation of the 

connections, is computationally demanding, and is therefore not feasible for 

practical design. A practical alternative approach, component-based modelling of 

connections, has been proposed [11, 12].  

The component-based method considers different parts of each connection as an 

assembly of individual nonlinear springs with predefined force-deformation 

characteristics. This method has been used to establish a connection element, which 

has been integrated into the software Vulcan [13], which was developed by the 

Structural Fire Engineering Research Group at the University of Sheffield. Vulcan is a 

three-dimensional program, allowing engineers to conduct three-dimensional 

structural robustness assessments. A variety of elements (beam-column, 



 

connections, shear connector and slab) has already been implemented. Recently, 

Sun et al. [14, 15] developed a static-dynamic solution procedure for Vulcan. This 

procedure is able to capture re-stabilization after initial instability caused by local 

failure. For instance, this can be used to track the sequential failure of different 

connection components during progressive collapse of a whole structure. Sufficient 

validation [8, 9, 16-18] has been carried out to demonstrate that Vulcan is an 

accurate and computationally-efficient software to be used in performance-based 

fire engineering design. 

Elghazouli et al. [19] implemented a local-buckling model within a frame analysis 

program to investigate the influence of local buckling at the beam ends on the fire 

response of frame members and sub-assemblies. This study indicated that, although 

local buckling at the beam ends may not directly trigger overall structural collapse, it 

can have detrimental effects on the deflections of, and load re-distributions between, 

structural elements. This will influence the fire resistance of the structure. However, 

ƚŚĞ ůŽĐĂů ďƵĐŬůŝŶŐ ŵŽĚĞů ƉƌĞƐĞŶƚĞĚ ŝŶ EůŐŚĂǌŽƵůŝ͛Ɛ ǁŽƌŬ ŝƐ ďĂƐĞĚ ŽŶ ĞůĂƐƚŝĐ ƉůĂƚĞ 

buckling theory, which is not appropriate for representing the buckling behaviour of 

Class 1 and 2 sections. No sufficient validation of the local-buckling model presented 

in his paper has been provided. A body of research [20-24] has been carried out to 

investigate the local in-plane flange buckling phenomenon, including both the pre- 

and post-buckling stages. Recent research has a common solution for the pre-

buckling stage, while different collapse models [21-24] of the post-buckling stage 

have been proposed since 1965 [20].  The local buckling collapse mechanisms in all 

these models are composed of yield lines and plastic zones. The choices of possible 



 

yield line patterns are based on experimental observations. All models assume that 

the yield lines, formed within the elastic buckling wavelength, will not change their 

positions in the post-buckling stage.  However, these studies nearly all focus on the 

effects of local buckling on the rotational capacity and ductility of beam-ends, rather 

than on its influence on the global structural behaviour. Dharma extended the most 

up-to-date ambient temperature model, proposed by Gioncu and Petcu [24], to 

elevated-temperature applications for both steel beams [25] and composite beams 

[26] by introducing reduction factors to the flange buckling wavelengths to account 

for temperature-dependent ŵĂƚĞƌŝĂů ƉƌŽƉĞƌƚŝĞƐ͘ IŶ DŚĂƌŵĂ͛Ɛ ƌĞƐĞĂƌĐŚ͕ ƚŚĞ ďƵĐŬůŝŶŐ 

wavelength is based on elastic plate buckling theory [27], in which the beam web 

acts as a rotational spring providing rotational restraint to the flange. However, this 

assumption tends to over-estimate the flange wavelength when the beam web is 

relatively thin (but may still be classified as Class 1 or 2 according to Eurocode 3 Part 

1.1 [28]). Therefore, ƚŚĞ ƌĞƐƵůƚƐ ĚĞƌŝǀĞĚ ĨƌŽŵ DŚĂƌŵĂ͛Ɛ ƌĞƐĞĂƌĐŚ ŚĂve been shown to 

be extremely conservative for thin-web beams at elevated temperatures [29]. 

MŽƌĞŽǀĞƌ͕ DŚĂƌŵĂ͛Ɛ ŵŽĚĞů ĐŽŶƐŝĚĞƌƐ ďĞĂŵ-web buckling as a passive movement, 

which is caused by the rotation of the web-flange intersection when flange buckling 

occurs; the beam-web buckling wave is actually aligned vertically rather than 

diagonally, as would be the wave caused by shear force. However, a more obvious 

beam-web shear-buckle shape can be observed in the majority of images from the 

Cardington Tests, as shown in Fig. 1. This indicates that beam-web shear buckling is 

likely to be independent of flange buckling, and is triggered at least in part by shear 

force. The occurrence of shear buckling depends on various factors, such as the 

relative slenderness of the beam web and flanges and the relationship between 



 

shear force and bending moment at the beam ends. The model also considers the 

consistency between the beam-web deflections caused by the two buckling modes.  

 

Fig. 1. Flange buckling and beam-web shear buckling in combination [7]. 

This study proposes a new analytical model, which (1) considers the combination 

and interaction of flange buckling and web shear buckling; and (2) adopts a revised 

calculation approach for flange buckling wavelength to represent slender beams. 

This model has been compareĚ ǁŝƚŚ DŚĂƌŵĂ͛Ɛ ŵŽĚĞů ĂŶĚ ĨŝŶŝƚĞ ĞůĞŵĞŶƚ ;FEͿ ŵŽĚĞůƐ 

using the ABAQUS software over a range of beam configurations and loading 

conditions. The FE models are initially short cantilevers in order to simulate the end 

buckling zone of a beam, intending to minimise the influence of deflection due to 

bending. The analytical model has been validated against these short-cantilever FE 

models. After validation, the analytical model has been implemented in calculating 

the deflection of a full-length beam, and this has been compared with an equivalent 

ABAQUS model. The analytical model will eventually be integrated into the software 

Vulcan, to be placed in structural models between the existing connection element, 

which is assumed to exist at the column-face, and the beam element, using a 

component-based approach. Performance-based analysis will then be carried out to 

investigate the overall structural behaviour under fire conditions. 



 

2. Development of analytical model 

The proposed analytical model uses a short cantilever to represent the beam-end 

buckling zone; the length of the cantilever, which is about to be equal to the beam 

depth d, is as shown in Fig. 2. By applying different combinations of moment and 

shear force at its free end, this model can represent the bucking panel at the end of 

a beam of any length, and with arbitrary loading and boundary conditions. Thus, it is 

possible to further implement this model as a buckling element into global frame 

analysis using Vulcan, as shown in Fig. 2. The corresponding shear force F and 

bending moment M at the end of the buckling element can be transferred from the 

adjacent part of the beam. This model aims to deal with the post-buckling phase 

when the full yield line mechanism has developed under certain loading conditions 

and temperatures. If these loading conditions cannot be fulfilled (for example when, 

for a simple beam, the bending moment is not large enough to trigger bottom-flange 

buckling), the proposed buckling element will remain a rigid body. The complete 

force-deflection relationship of the buckling element includes three stages: non-

linear pre-buckling, plateau and post-buckling. If the material properties (Fig. 3) for 

steel at temperatures higher than 400°C are used, the vertical force-deflection 

relationship of the buckling element can be illustrated schematically as in Fig. 4. 



 

Fig. 2. Frame analysis including connections element and buckling element. 

 

 

Fig. 3. Stress-strain relationship of structural 

steel.  

Fig. 4. Schematic forceʹdeflection curve of a 

beam-end buckling model. 

2.1 Pre-buckling stage 

The characteristics of the buckling element in the pre-buckling stage are identical to 

those of the beam-column element [30] of Vulcan. The beam-column element is a 

three-noded line element with two Gaussian integration points along its length. Each 

of the three nodes has six degrees of freedom. The general segmented cross-section, 

which is capable of modelling different types of beam section, is shown in Fig. 5. The 

cross-section of the element is divided into a matrix of segments, each of which 
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allows consideration of its own material properties, temperature, stress and strain. 

The general continuum mechanics equations for large-displacement non-linear 

analysis are used to calculate the non-linear beam element matrix.  

 

Fig. 5. Three dimensional segmented 3-noded beam-column element [30]. 

2.2 Plateau  

The maximum flexural capacity Fmax, as shown in Fig. 4, of an I-beam is generally less 

than 10% above the vertical force Fp,T, when the fully plastic moment resistance is 

reached at the middle of the flange buckling zone. This will be illustrated by the 

range of validation studies presented in Section 3.2, as well as some conducted by 

other researchers [25, 31]. This 10% discrepancy (the difference between Fmax and 

Fp,T, as illustrated in (Fig. 4), can be regarded as a reserve of capacity. Therefore, it is 

reasonable to draw a plateau line at force level Fp,T  connecting Points A & B in Fig. 4 

with the pre- and post-buckling curves; this has been defined as the plateau stage. 

This simplification will result in a reasonably conservative prediction.  
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2.3 Post-buckling stage 

2.3.1 Development of plastic buckling mechanism  

The plastic buckling mechanism (Fig. 6) forms at Point B in Fig. 4. The buckling 

mechanism is composed of yield lines and plastic yield zones. The yield line pattern 

adopted in this study is based on DŚĂƌŵĂ͛Ɛ model [29]. 

 

Fig. 6. Plastic Buckling Mechanism. 

The deflection of the buckling zone is composed of the total deflection due to both 

bottom-flange buckling and beam-web shear buckling. In this study, the individual 

effects of these two buckling phenomena are considered. As the buckling zone is 

considerably shorter than the entire beam (as explained in detail in Beam-web shear 

buckling section), it is assumed that the influence of bottom-flange buckling is to 

cause a rotation of the whole beam-end about the intersection of the web yield lines, 

which is approximated as the top flange of the beam (due to stretching of the top 

flange and buckling of the bottom flange), as shown in Fig. 7(a). Beam-web shear 

buckling can cause transverse drift of the shear panel, as shown in Fig. 7(b). 



 

Therefore, the combined effects of flange buckling and beam-web shear buckling on 

the overall beam vertical deflection is as expressed in Fig. 7(c).  

 

Fig. 7. The effects of flange buckling and beam-web shear buckling on beam vertical 

deflection (a) bottom-flange buckling; (b) shear buckling; (c) total deflection.  

Bottom-Flange buckling 

When bottom-flange buckling occurs, the buckled shape is composed of a squashed 

quadrilateral plastic zone (4-5-7-6) and several yield lines, as shown in Fig. 8(a). The 

centre of the plastic zone is at the centre of the buckled flange. It is assumed that 

the plate facets surrounded by the yield lines rotate rigidly about the yield lines. The 

plastic zone (shaded area in Fig. 8(a)) will be squashed along 5-6 due to compression; 

it can also rotate about Line 5-6. It is assumed that there is no relative rotation 

between the beam web and the bottom flange at their intersection (web and flange 

will always be perpendicular to each other). Therefore, the rotation of the plastic 
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zone in the bottom flange will lead to the rotation of the beam web, as shown in Fig. 

9. This results in an isosceles-right-triangle plastic zone being formed in the beam 

web (5-6-11 in Fig. 10). This zone will be compressed along line 5-6 as well as rotate 

about this line. Several yield lines form in the beam web as a result of this rotation; 

the centre of rotation is located where the neutral axis of bending meets the beam 

end (Point 12 in Fig. 10). The angle of rotation due to bottom-flange buckling is ș1, as 

shown in Fig. 7(c). The top flange remains in-plane, experiencing only plastic tensile 

deformation at the beam end, as shown in Fig. 8(b). 

 

Fig. 8. Flange yield line mechanism (a) bottom flange; (b) top flange. 

 

 

Fig. 9. Deformation compatibility between bottom flange and beam web (a) real-

beam deformation; (b) deformation in the model. 
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Fig. 10. Beam-web yield line pattern. 

 

Beam-web shear buckling 

When beam-web shear buckling occurs, the two opposite edges (Lines 1-16 and 3-20 

in Fig. 7(b)) of the buckling panel move in parallel due to shear force, producing two 

plastic hinges on each of the top and bottom flanges. The angle of rotation due to 

this transverse drift is ș2, as shown in Fig. 7(b). The four edges of the buckling zone 

are considered to be rigid. The beam web is assumed to be composed of tensile and 

compressive strips, which are aligned at 45ࣙ to the horizontal and perpendicular to 

each other, as shown in Fig. 11(a). When the buckling panel deforms due to shear 

force, the tensile strips are elongated due to the tensile force component of the 

vertical shear force, while the compressive stresses are shortened due to its 

orthogonal compressive force component. The out-of-plane deformation is assumed 

to occur only within the yield lines 12-6-19 (Fig. 10).  

The out-of-plane deflection of the beam web due to bottom-flange buckling and that 

due to shear buckling need to be identical to ensure geometric compatibility. This 
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implies a relationship between the beam end rotations ș1 and ș2, due to bottom-

flange buckling and shear buckling. 

Length of the buckling panel 

The flange-buckling wavelength given by Dharma [29] tends to considerably over-

estimate the capacity of a slender beam. In most fire tests, only one shear-buckling 

wave has been observed, and the shear-buckling wave is usually aligned at around 

45ࣙ to the horizontal. Therefore, the shear-buckling panel is usually no longer than 

the beam depth d, and the flange buckling wave lies in between the two plastic 

hinges in the bottom flange. Hence, the flange-buckling wavelength Lp can be 

calculated according to Eq. (1), considering the effects of steel grade and 

temperatures. 

275 / ( / 0.7 )p y E yL d k k   (1) 

 



 

 

Fig. 11 Beam-web behaviour under shear force (a) Overall behaviour; (b) Tensile strips; (c) Compressive strips. 
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2.3.2 Calculation principle 

The calculation principle is based on equality of the internal plastic work and the loss 

of potential energy due to the external load:  

int extW W  (2) 

Internal work 

The internal plastic work Wint includes the work done in the flanges ( due to 

the rotation about the yield lines and  due to axial deformation of the 

plastic zones) and the work WW  done in the beam web due to its transverse drift 

during shear buckling. The deformations of the plastic zones are uniform across each 

of them, and the rotations about yield lines are uniform along every yield line.  

Summaries of the lengths and rotations of the yield lines, as well as the volumes and 

strains of the plastic zones, are given in Table 1 and 2. The total internal plastic work 

is then given by Eq.(3).  The factor Ȗ, which determines the dimension of the bottom-

flange plastic zone, and the distance įd between the neutral axis of bending and the 

bottom flange, are determined through optimization on the basis of minimizing the 

total internal plastic work. 

2
int , ,( ) / 4 ( )p y i p y j W

i j

W l t A t W         
(3) 
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Table 1. Components of internal plastic work for plastic squash zones 

Plastic Zones 

Zone(j) Volume (Apt) Strain (İ) Stress (ıy,ș) 

4-5-7-6   
 
 

5-6-11    

12-13-14    

15-16-18-17    

 

Table 2. Components of internal plastic work for yield lines 

Yeild Lines 

Line (i) Length (lp) Rotation (θ) Stress (ıy,ș) 

2-4; 7-9  1/2 1/2
12( / )     

1-10; 3-8    

1-4; 3-4; 

7-8; 7-10; 
 

2
1/2 1/2

12 2 1/2

1 3 1
[ / (1 ) ]( / )

[ (1 )] (1 )

      
    

  
 

   
 

 

1-5; 3-6; 

5-8; 6-10; 
 

2 1/2
1/2 1/2

1

[1 ( ) ]
( / )

(1 )

    
  
 

 
  

4-5; 4-6; 

5-7; 6-7; 
 1/2 1/2 1/2

1

1
2 ( / )
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  

   
  

3-11    

6-11    

5-12    

6-12    

11-12    

15-13-17    

16-18; 19-20    

 

In Table 2, ( ) / ( )c d   . The flexural capacity of each yield line on the flanges can be 

represented as Eq. (4). 

2 22 fc t 1 / (2 )d c   ,yf 
2 2

wc t 1 / (2 )d c   ,yw 
2 2(1 ) / 2wd t 1 ,yw 

2(1 ) fct d 1 ,yf 

(1 )c eq

2c 2 eq

2 2 1/2[ (1 )] c   eq
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2 / 4eq f f eqM b t   (4) 

The normal stresses ır, which are perpendicular to the yield lines, and the shear 

stresses Ĳr which are parallel to the yield lines (Fig. 12) can both influence the 

reduced yield stresses ıeq across the yield lines, and therefore cause a reduction of 

the flexural capacity Meq. The stresses ır and Ĳr are components of the axial stresses 

ıtf and ıcf, parallel to the beam length, which are caused by overall beam bending. 

AĐĐŽƌĚŝŶŐ ƚŽ ƚŚĞ MŽŚƌ͛Ɛ CŝƌĐůĞ ŝŶ Fig. 12, ır and Ĳr can respectively be calculated 

using Eq. (5) and (6). 
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Fig. 12. MŽŚƌ͛Ɛ ĐŝƌĐůĞ for one yield line (7-8). 

in which Į1 is the acute angle between the yield line and the vertical axis. The yield 

stress ıeq1  of the yield lines, considering only the effect of ır, is given as Eq.(7). 
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The relationship between the shear stress Ĳr and the reduced equivalent yield stress 

ıeq  can be expressed as Eq. (8). 

2 2
1 1( / ) ( / ) 1eq eq r eq      (8) 

where 1 1 / 3eq eq  .  

Substituting Eq. (7) into Eq. (8) gives 
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It has previously been ascertained [32] that the internal work of the deformed beam 

web due to shear buckling is given by: 

2 2
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 
 

       (10) 

where Į is the angle between the tensile strips and the upper edge of the shear-

buckling panel, as shown in Fig. 12 (b). vs  is the vertical displacement of the shear-

panel edge, which is equal to 2βcș2. According to the Huber-von Mises plasticity 

criterion [33], the relationship between the tensile and compressive stresses for a 

two-dimensional panel is given by 



 

2 2 2 2
,( ) 2c t t c yw         (11) 

The compressive strips in the beam web can be regarded as struts, each of which has 

three plastic hinges, as shown in Fig. 13. It is assumed that the central plastic hinge 

always forms at the mid-length of each strut, although this assumption may result in 

a shear buckle shape which is slightly different from reality. For each strut, the 

rectangular cross section can be divided into two parts (Fig. 14). The axial 

compressive stress of the strut is resisted by Region A while its bending moment is 

resisted by Region B.  Therefore,  

c c cP h f  (12) 

2 2( ) / 4p w c cM f t h  
 

 (13) 

The force equilibrium between the compressive resistance Pc and the plastic 

moment resistance Mp of the plastic hinge is  

1 2c pP M   (14) 

Substituting Equations (12) and (13) into Eq. (14), the height hc of Zone A, resisting 

compression, can be calculated. Assuming that the compressive stress within Zone A 

remains at yield, the overall resistance of the strut is proportional to hc. Therefore, 

the average compressive stress ıc of the strut is also proportional to hc, which gives 

, /c c yw wh t 
 

 (15) 



 

Substituting Eq. (15) into Eq. (11) gives the tensile stress ıt and the compressive 

stress ıc in each strip. Therefore, according to Eq. (10), the internal plastic work WW 

caused by shear buckling of the beam web can be calculated.  

 

Fig. 13. Strut representing an arbitrary compressive strip.

 

Fig. 14. Cross section of one strut [32]. 

 

 

P
c
 

P
c
 

M
p
 

M
p
 

M
p
 

M
p
 

βȕc 

∆
1
 

ș
2
 

d 

tw 



 

External work  

The total external work can be expressed by Eq. (16), where ∆i includes the 

deflections caused by both bottom-flange buckling and beam-web shear buckling. 

Elastic deflection can be neglected due to the relatively short length of the buckling 

element.  

1 2 1 2(4 ) (2 ) ((4 ) (2 ) ) / (4 )ext i iW P F c F c M c c c               (16) 

Deflection compatibility  

The deflection compatibility is based on the assumption that the out-of-plane 

deflection of Point 11 (Fig. 16) caused by bottom-flange buckling is identical to that 

caused by shear buckling. 

For the out-plane deflection caused by bottom-flange buckling, the side lengths of 

the Triangle 1-4-5, shown in Fig. 15, are illustrated in Eq. (17) - (19): 

2 1/2
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1/2
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 The angle of rotation of Line 1-5 is  
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According to the geometry, the out-of-plane deflection of Point 4 (Fig. 15) is 

2 2 2
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Fig. 15. Deformed shape caused by bottom-flange buckling. 

The out-of-plane deflection of Point 11 (Fig. 6(a)) on the beam web, caused by 

bottom-flange buckling, is equal to h1.  

For the out-of-plane deflection caused by shear buckling, the initial length (as shown 

in Fig. 16 (a)) of the compressive strut, which contains Point 11, is 

4 2
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l d
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 The deformed length of the same compressive strut is 

h
1
 l

2
 

l
1
 

l
3
 

5 

1 

4 

5 

1 

4 ș 
100 



 

5 22 sin( / 4 / 2)
2

l d
   



      (23) 

The side lengths of the triangle, as shown in Fig. 16 (b), are  

2 2x c   (24) 

3 4 5 2/ 2x l l x  
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According to the geometry, h2 can be calculated as  
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Fig. 16. Deformed shape caused by shear buckling of the beam web. 
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3. Validation against finite element modelling 

3.1 Validation of FE model against experimental results 

The finite element software ABAQUS has been used to develop the finite element 

modelling. In this section, the FE models are validated against the experimental 

results published by Dharma [31].  

Experimental programme 

Dharma [31] tested nine steel I-beams up to failure. In this paper four out of the nine 

I-beams have been chosen to validate the numerical models. All four I-beams failed 

by local bottom-flange buckling. To validate the FE model at the post-buckling stage, 

the specimens which demonstrated clear descending force-displacement 

relationships after the occurrence of local buckling have been selected. The test 

numbers for the four beam sections are S3-2, S3-3, S4-1 and S4-2. The test setup is 

shown in Fig. 17. There is one stiffener at each end of the beam, as well as one at 

mid-span. No axial restraint was applied during the testing, so that no axial force was 

caused by thermal expansion. The specimens were heated to constant temperature 

before the hydraulic jack applied a static point load at the mid-span.  

 



 

 

Fig. 17. Test set-up [26]. 

The results of the tensile coupon tests on these specimens at ambient temperature 

are given in Table 3. 

Table 3. Results of tensile coupon tests at ambient temperature (MPa) 

Beam No. Yield Stress Elastic Modulus Ultimate Strength 

S3-2 
flange 224.1 201697 392.1 

web 277.1 206063 452.0 

S3-3 
flange 224.1 201697 392.1 

web 277.1 206063 452.0 

S4-1 
flange 393.5 205283 545.1 

web 449.4 205700 590.3 

S4-2 
flange 393.5 205283 545.1 

web 449.4 205700 590.3 

These tests were used to validate the ABAQUS models, although the test setup was 

not identical to the exact conditions (restraint to thermal expansion, boundary 

conditions and the ratio of shear to moment in the buckling panel), which a real 

beam would experience in a real fire. The validated FE models, subject to more 

realistic conditions, were then used to verify the analytical model. 
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Numerical modelling 

In this study, the four-noded shell element (S4R) of ABAQUS, which is capable of 

simulating buckling behaviour with reasonable accuracy, was adopted. A mesh 

sensitivity analysis was conducted, which indicated that elements of size 15mm x 

15mm provided an optimum between accuracy and computing efficiency. Arc-length 

analysis [34] was carried out to track the descending load path of the buckling zone 

at the post-buckling stage. The shape of the initial imperfection was based on the 

first buckling mode. A small amplitude (d+tf)/100 was adopted in order to trigger the 

asymmetric bottom-flange buckling mode without unduly influencing the load 

capacity of the buckling zone.  Regarding the material properties used in the 

numerical modelling, the ambient-temperature coupon test results, as shown in 

Table. 3, were reduced by applying the reduction factors for proportional limit stress, 

yield stress and Young͛s modulus, as given in BS EN 1993-1-2. The finite element 

model is illustrated in Fig. 18. As the end supports were directly below the stiffeners, 

only the length of the beam between the two end stiffeners was modelled. The 

length of the model was 3450mm. Multi-Point Constraints (MPC) [34] which allow 

constraint of the motion of slave nodes of a region to the motion of a point, were 

applied in ABAQUS between Points 1 and the left-end stiffener, as well as between 

Point 2 and the right-end stiffener. Boundary conditions were then applied to Points 

1 and 2. For Point 1, all six degrees of freedom (DoF) were restrained except for 

rotation about the x-axis, whereas Point 2 was free to rotate about x and to move in 

translation parallel to z with the other DoFs constrained. In other words, the two 

beam ends could both rotate about x, and there was no restraint to thermal 



 

expansion of the beam. MPC make it convenient to model pin-ended beams. A point 

load was applied to the mid-span of the beam. Table 4 presents the details of cross-

section dimensions and test temperatures. All dimensions are the average values of 

measurements by Dharma [26] from different locations.  

 

Fig. 18. Finite element model. (a) Image of finite element model; (b) cross section 

dimensions (in mm). 

Table 4. Measured cross-section dimensions (in mm) and test temperature (in °C) 

Test No. btop  bbottom ttop tbottom d tw T  

S3-2 162.89 163.51 10.00 9.95 275.5 8.14 415 

S3-3 162.72 164.00 10.30 10.19 275.93 7.95 615 

S4-1 176.70 178.26 10.08 10.46 380.76 7.83 415 

S4-2 177.83 176.71 10.29 10.52 380.78 7.76 615 

A comparison between the FE modelling and experimental results is shown in Fig. 19. 

The lines represent the FE results while the data points represent test results. Good 

agreement between the test and the FE modelling results was obtained, except for 

S4-1, in which the FE model predicts lower capacity than that measured during 

testing. Since all the other three groups indicate good reliability of the FE models, 

the failure load given by Test S4-2 (same specimen as in Test S4-1, but tested at 

615°C) was used to predict the failure load of Test S4-1 (at 415 °C), using the 
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strength reduction factors given in EC3 [35]. This calculated failure load agrees with 

the modelling result. It is possible that the loading rate applied in Test S4-1 may have 

been too fast, resulting in an increase of the failure load, as has been experienced in 

other studies [36]. The discrepancy between Test S3-2 and FEA S3-2 in the deflection 

range of 10 mm to 80 mm is possibly caused by the discrepancy between the real 

high-temperature mechanical properties of the tested steel and the properties used 

in the modelling (ambient-temperature coupon test results with the EC3 reduction 

factors applied). The FE models can also predict well the buckling shape compared 

with the test results; one example is shown in Fig. 20. Therefore, the numerical 

model is considered reliable and is used in the following study.  

  

Fig. 19. Load-deflection comparison between FEA and test results. 
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Fig. 20. Comparison of failure modes of Test 3-2 [26] and FEA. 

3.2 Comparison between the analytical model, Dharmaǯs model and FEA 

After validation, 48 FE models (Table 5), of various beam configurations and loading 

conditions were analysed at different temperatures. An illustration of an FE model, 

and its loading and boundary conditions, is shown in Fig. 21. A short cantilever with 

the length/depth ratio equals to 2 was modelled. This length/depth ratio is chosen to 

ensure that (1) the model will include at least one full buckling wavelength, and (2) 

the effects of the boundary conditions can be minimised. The flexural curvature of 

this short beam-end buckling zone can be neglected.  Different combinations of 

shear force and bending moment were applied, as shown in Table 4. 

TEST  

FEA 



 

Fig. 21. The finite element model 

These cases have been divided into two groups, FEA1 and FEA2. The models in FEA1 

are of the same dimensions as the specimen of Test S3-2 (Table 4), with web 

thicknesses varying between different models. Similarly, FEA2 uses the Test S4-2 

specimen dimensions, again with different web thicknesses. Since this research 

focuses on Class 1 and 2 beams, the variation of web thicknesses is limited within 

this range. Temperatures of 415°C and 615°C have been applied. The material 

properties of the flanges of the test specimens S3-2 and S4-2 have been used for 

FEA1 and FEA2 models, respectively. 

 

 

 

 

 

 

 

2d 

d F M 



 

Table 5. Detailed group information 

 

 Web thickness 

Moment-shear 

force ratio M/F 

(in mm) 

Temperatures (°C) 

FEA1 

5mm 

500 

415 615 1000 

1500 

6mm 

500 

415 615 1000 

1500 

7mm 

500 

415 615 1000 

1500 

8mm 

500 

415 615 1000 

1500 

FEA2 

5mm 

500 

415 615 1000 

1500 

6mm 

500 

415 615 1000 

1500 

7mm 

500 

415 615 1000 

1500 

8mm 

500 

415 615 1000 

1500 



 

  

 
 

 

Fig. 22͘ CŽŵƉĂƌŝƐŽŶ ďĞƚǁĞĞŶ ƚŚĞ ĂŶĂůǇƚŝĐĂů ŵŽĚĞů͕ DŚĂƌŵĂ͛Ɛ ŵŽĚĞů ĂŶĚ FE ĂŶĂůǇƐŝƐ 



 

The force-displacement relationships given by the proposed analytical model, 

Dharma͛s model and the ABAQUS analyses have been compared. Fig. 22 shows the 

comparisons for the two models with the largest and smallest web thicknesses (5mm 

and 8mm) subject to bending and shear force at M/F = 1000mm. Each part of Fig. 22 

includes eight curves, representing the comparison between the analytical model, 

Dharma͛s model, FE analysis and the elastic-plastic curve (with peak loads assessed 

by assuming plastic moment resistance is reached at the middle of the flange 

buckling zone) at two different temperatures. The proposed analytical model gives 

upper-bound results compared to the FE models for all cases; it also gives more 

ĂĐĐƵƌĂƚĞ ƌĞƐƵůƚƐ ƚŚĂŶ ƚŚĂƚ ŽĨ ƚŚĞ DŚĂƌŵĂ͛s model in all cases. The results from Fig. 22 

show that the maximum flexural capacity Fmax of an I-beam is generally less than 10% 

above the vertical force Fp,T. The analytical model captures results for beams at 

615ࣙC better than at 415ࣙC. This may be because the accuracy of the assumption of 

flange buckling length from Eq. (1) may differ at different temperatures; this would 

have a significant effect on the beam post-buckling behaviour. Fig. 23 shows a 

comparison of the force-web-thickness relationships between the new model and 

Dharma͛s model. The variable FFEA represents the peak load given by the FE 

modelling. FN and FD respectively represent the load level of the new analytical 

model and that of Dharma͛s model, at the deflection at which the FEA model 

reaches its peak load. The vertical axis of Fig. 23 represents FN and FD normalized 

with respect to the corresponding FFEA. As shown in this figure, Dharma͛s model 

tends to overestimate the beam loading capacity when the web is thinner (of 5mm 

or 6mm thickness), whereas it gives a good prediction at larger web thicknesses 

(7mm and 8mm). The new analytical model is able to give a better upper bound of 



 

the beam load capacity for both slender and stocky beams within the analysed range.  

The proposed analytical model has been designed for Class 1 and 2 beams, whereas 

the two models of web thicknesses 5mm and 6mm in FEA2 fall into the Class 3 range. 

This explains the reason for the larger discrepancy between the proposed model and 

the FEA for these two cases. It is, therefore, indicated that the new model gives a 

reasonable prediction of the load capacity of the beam end buckling zones of Class 1 

and 2 beams at the post-buckling stage.  

  

 

Fig. 23. Comparison of predictions ŽĨ ƚŚĞ ŶĞǁ ŵŽĚĞů ĂŶĚ DŚĂƌŵĂ͛s model: (a) FEA1; 

(b) FEA2. 



 

3.3. Integration into a full beam model 

In this section, the validated beam-end model, as described in Section 3.2, has been 

integrated into a whole beam. A calculation example is given below. 

In this example, the beam-end model of 8mm web thickness in Group FEA1 is 

selected and integrated into the full beam model. The length of the beam model is 

5m, given that a beam depth to length ratio of 1/20 is commonly used in design 

practice. A vertical point load is applied at the mid-span of the beam. The beam is 

fully fixed against rotation at both ends, with one end being free to move axially to 

allow thermal expansion. The beam is heated to to 615°C, the same as for the 

corresponding beam-end model. One half of the beam is modelled in ABAQUS, using 

symmetry boundary conditions. The contours of out-of-plane deflection are shown 

in Fig. 24(a). The deformed shape is shown in Fig. 24(b). For this loading condition, 

the hogging moment at the beam end is identical to the sagging moment at the mid-

span. Therefore, top-flange buckling at the mid-span occurs simultaneously with 

bottom-flange buckling at the beam end. Beam-web buckling occurs at both the 

beam end and mid-span. The mid-span deflection (∆d) consists of twice the sum of 

(1) the deflection ∆d1 due to the beam-end rotation caused by bottom-flange 

buckling, (2) the transverse drift ∆d2 due to shear buckling and (3) the deflection ∆d3 

due to normal bending curvature of one quarter of the beam. The force-deflection 

relationships given by the FEA and the analytical models are shown in Fig. 25. The 

curve with triangular markers plots the results given by the analytical model which 

was developed to simulate the post-buckling behaviour, and the dashed line 

represents the FE results. The comparison shows that the proposed analytical model 



 

provides reasonably accurate and upper-bound results for a whole beam. The pre-

buckling elastic and plastic stages can be reproduced accurately by Vulcan, using its 

existing beam element as introduced in Section 2.1. The horizontal plateau is 

achieved as described in Section 2.2. Therefore, the thick line indicates the whole 

force-deflection relationship of the example beam with buckling zones, covering all 

three stages. 

  

Fig. 24. Deformed shape: (a) ABAQUS contour; (b) Simplified theoretical deformed 

shape. 
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Fig. 25. Force-deflection relationship of the example beam. 

4. Component-based model 

One of the major objectives of this research is to develop a component-based beam-

end buckling element, consisting of two components representing web shear 

buckling and bottom-flange buckling, respectively. This element will then be 

embedded into Vulcan to carry out global performance-based structural fire 

engineering analysis. 

The component-based method divides the beam-to-column connections and the 

adjacent buckling panels into components. The characteristics of each component 

can be described as those of a nonlinear spring. The overall behaviour of the 

connection can be achieved by assembling these springs. When carrying out the 

analysis, the column-side boundary of the buckling element is fully fixed in order to 

isolate it from the connection element. The buckling and connection elements can 

individually deal with their own displacements and rotations. The deflections of the 



 

two can be superposed in the global analysis. The buckling element can be 

connected to any kind of connection element, including pinned, semi-rigid and rigid 

elements. Whether the buckling element will experience buckling depends on the 

loading and heating conditions, and the configuration of the analysed structure. 

A body of research [6, 11, 12] on different types of connection components has 

already been carried out. The new flange-buckling component has been connected 

directly to the existing connection element; the new beam web-shear buckling 

element is then connected between this and the beam element, as shown in Fig. 26. 

In this figure, the region named ͞Connection element͟ represents Region C in Fig. 2, 

which is the existing beam-to-column connection element. The region named 

͞Buckling element͟ represents Region B in Fig. 2, which is the beam-end buckling 

element. The bottom-flange buckling component, representing the beam-end 

buckling element is a compressive spring to simulate the rotation of the beam end 

due to bottom-flange buckling. It is assumed that its centre of rotation is at the top 

of the cross section, on the basis of the analytical model. The stiffness of the 

compressive spring is infinite before buckling occurs, and is given by Eq. (28) for the 

post-buckling stage: 

1 2k L d M  , 2
1 1/ ( )k M d 

 

 (28) 

The length of the shear buckling component is non-zero, since the transverse drift of 

the beam end due to shear buckling is affected by the length of the shear panel. The 

length (L3) of the beam-web shear buckling component has been defined to be 

identical to beam depth (d) to be consistent with the analytical model and also to 



 

simplify the model setup process in Vulcan. The stiffness of the compressive spring 

before bottom-flange buckling is infinite, while that in the post-buckling stage is 

given by Eq. (29): 

2 2

1

2
k d F  , 2

2 22 / ( )k F d   (29) 

 

Fig. 26. Component-based connections and beam-end buckling elements. 

5. Conclusions 

The buckling behaviour of the beam-end bucking zone of a steel beam exposed to 

elevated temperatures involves three stages: non-linear pre-buckling, plateau and 

post-buckling. The behaviour of the non-linear pre-buckling stage can be modelled 

by the existing beam element of Vulcan. In the plateau stage, the ultimate load 

capacity of the beam-end buckling zone is assumed to be identical to its plastic 

bending moment resistance. This paper presents a new analytical model to predict 



 

the post-buckling behaviour so that a complete force-deflection relationship of the 

beam-end bucking zone can be achieved.  

The proposed analytical model considers both the beam-web shear buckling and 

bottom-flange buckling. The interaction between these two buckling modes is 

accounted for by ensuring compatibility between the out-of-plane deflections of the 

beam web caused by these two modes. A range of finite element models has been 

created using ABAQUS. These models were firstly validated against test data, and 

subsequently used to validate the analytical model. The analytical model has also 

ďĞĞŶ ĐŽŵƉĂƌĞĚ ǁŝƚŚ DŚĂƌŵĂ͛Ɛ ĂŶĂůǇƚical model. The comparisons have shown that 

the proposed model provides a reasonably accurate and conservative prediction of 

the force-ĚĞĨůĞĐƚŝŽŶ ƌĞůĂƚŝŽŶƐŚŝƉ ĨŽƌ CůĂƐƐ ϭ ĂŶĚ Ϯ ďĞĂŵƐ͕ ǁŚĞƌĞĂƐ DŚĂƌŵĂ͛Ɛ ŵŽĚĞů 

tends to overestimate the post-buckling capacity for beams with slender webs. 

This analytical model has then been used to develop a component-based beam-end 

buckling element, which consists of a web shear buckling component and a bottom-

flange buckling component. Each component contains one non-linear spring. The 

characteristics of each spring have been derived on the basis of the proposed 

analytical model. This new element is currently being implemented in the software 

Vulcan to allow performance-based analysis of full-scale structures in fire. 
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