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SUMMARY

The object of this work was to characterise the interaction between

beef liver glutamate dehydrogenase (EC 1.4.1.3), the inner mitochondrial

membrane and its constituent phospholipids.

Because of the similarities in the structure and properties of detergents

with phospholipids, interaction of the enzyme with both types of amphiphiles

was investigated. Interaction with phospholipid membranes was found to be a

reversible process while detergents brought about irreversible denaturation

at high concentrations.

Association between the enzyme and the amphiphiles showed that the

nature of the head group determines the extent of complex formation. Zwitter-

ionic lysolecithin and phosphatidy1choline showed no interaction, while the

anionic sodium dodecyl sulphate, phosphatidylserine and cardiolipin showed

high affinity for binding to the enzyme. The apparent Ki values in the case of

the two phospholipids were found to be 1 - 2 ~M and 3 - 5 I-LMrespectively

in the direction of reductive aminatlon,

The possibility of different conformations of the enzyme binding speci-

fically to these charged surfaces and conformational changes brought about as

a result of complex formation was investigated.

The extent of binding decreased with increasing plI and ionic strength,

suggesting contributions from electrostatic interactions. Evidence for

hydrophobic interaction was indicated by the observation that the extent of

complex formation increases with increasing temperature,



Binding of the enzyme to mitochondrial membranes also indicated

similar types of specificities. The enzyme showed a much higher affinity for

binding to the inner surface of the inner mitochondrial membrane than to the

outer surfaces of the inner and outer membranes. The extent of binding was

also shown to depend on the presence of metabolites such as NADHand ADP.

Binding decreased with increasing pH and ionic strength as was found for pure

phospholipids.

It is suggested that, in mitochondria, . the reversible association

between the enzyme and the inner mitochondrial membrane is controlled in a

manner dependent upon the local pH, ionic strength and metabolite concen-

trations, and this may have important physiological significance in the control

of metabolic activities of the enzyme. It is also suggested that the system

exhibits the allosteric phenomenon which may be important for its regulation.
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Chapter I

INTRODUCTION
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The interaction between lipids and proteins is of fundamental importance

in Biology. The way in which lipids and proteins interact (a) in cell membrane;

(b) in various enzyme reactions, e. g. with ~. hydroxybutyrate dehydrogenase;

(c) in blood coagulation processes; (d) in various lipase reactions; and (e) in

the structure of the serum lipoproteins, are some of the many important

areas under active consideration and research at the present time.

The Daniellt-Davson bimolecular leaflet model for the structure of cell

membranes (Danielli and Davson 1934, Davson and Danielli 1943) suggest

that lipids provide a permeability barrier while the membrane proteins possess

the essential responsibility for the various enzymic, transport, regulatory and

ligand recognition properties known to reside in cell membranes.

Recent developments have begun to emphasise the potential role of lipids

particularly phospholipids, in these latter processes and have contributed to

the interpretations of the relative roles of lipids as structural and functional

determinants of cell membranes.

The mitochondrion contains some 25%by weight of lipids (Fleischer et

al, 1961). Approximately 95%of the lipid is in the form of phospholipids; the

rest may be classified as neutral lipids. Among the components of the latter

are coenzyme,Q, ex" tocopherol, cholesterol, carotenoids and neutral fats

(Brasford, 1959). In the Case of the inner mitochondrial membranes the major

lipids are phosphatidycholine, (lecithin) :::.40%, phosphatidylethanolamine

40%and cardiolipin::: 20%(Colbeau et aI, 1971).

Regarding the proportion of lipid to protein, it is found that membranes

which behave mainly as barriers like the myelin sheath and erythrocyte
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membranes contain relatively high proportions of lipid. By contrast, the inner

mitochondrial membrane which is primarily a functional rather than a

"barrier"type of membrane, contains more protein than lipid.

The phospholipids of beef heart mitochondria have the following

characteristics (Green and Fleischer, 1964):

1) A high degree of unsaturation in the fatty acyl residues,

2) A high proportion of plasmalogen,

3) Fatty acyl residues with (predominantly) ~ or Ji carbon atoms.

In general, animal phospholipids contain mostly fatty acids with carbon

chain lengths between ~ and 20: palmitic, stearic, oleic, linoleic and

arachidonic acids predominate.

Lysophospholipids are reported to comprise a significant percentage of

the total phospholipids of some subcellular organells, e. g. 5 .. 6%lysolecithin

in mitochondria and microsomes (Bergelson et al, 1970).

The phospholipids in mitochondria of animal and plant tissues generally

show a high degree of unsaturatlon (Richardson et al, 1962)whereas the

phospholipids of micro-organtsms appear to be characterised by mono"

unsaturated fatty acid residues. The degree of unsaturation of fatty acids

has a profound influence on the physical properties of phospholipids.

In some cell membranes, such as occur in bacteria, acyl groups

containing branched chains are present. The reason for this distribution of

fatty acid residues associated with a given phospholipid is not fully understood;

nor is it clear why, corresponding to occurrence of certain diseases or effects
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due to variation of temperature, these characteristic fatty acid patterns

sometimes alter.

Highly developed polymorphism is a common feature of lipid-water

system. A small variation in lipid composition, temperature, and other

external conditions may induce dramatic changes in the properties of various

forms of aggregates (phases) at equilibrium.

On increasing the temperature of lipid-water mixtures, the hydrocarbon

chains melt over a narrow temperature range (Kraft temperature) allowing

the water to enter the crystalline lattice and disperse the lipid. Various forms

of amphiphiles are shown in Figure 1.

As regards the phospholipids of biological membranes, the most

important arrangement is the liquid-crystalline phase. This phase shows the

high degree of order usually associated with crystals but a mobility like that

of a liquid. It is obtained when phospholipids are brought in contact with water

at a temperature close to or above the melting point for the acyl chains. This

transition temperature (T ) is characteristic for each phospholipid species, and
c

is defined mostly by the configuration of the acyl chain, but also by the degree

of hydration of the head groups (Chapman et al. 1967). Thus, the presence of

cis-double bonds, branching and decreasing chain length tend to reduce the T •c

This phenomenon is in accord with the diminishing Van der Walls interactions

obtained under these conditions (Salem, 1962). For example, dipalmitoyl(C16)

PChas a T of 41 while egg PC shows this thermal transition at "15/ ..7. Thec

difference being, presumably. due to the presence of double bonds in egg

phosphatidylcl.oline, Ihosphollpld membranes composed of mixed fatty acyl
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chains, or containing more than one head group, exhibit very complex, but

characteristic transitions. Differential scanning calorimetry (Chapman et

al, 1969), X-ray diffraction studies (Luzzati, 1964, Engleman, 1970) N.M.R.

and E. S. R. studies (Lee et al, 1972, Traube and Sackman, 1969) are some of

the techniques which have been used to study the changes in molecular motion

associated with the gel-to liquid crystalline phase transition. The binary

phase diagram of egg phosphatidylcholine and water as a functlon of temper-

ature is shown in Figure 2.

CONFORMATION OF HYDROCARBON CHAINS -

LECITHIN .. WATER SYSTEM

The phase behaviour of a homologous series of Iecithln-dioctanoyl to

distearoyl and a preparation from hen eggs have been studied (Tardieu et al,

1973). The hydrocarbon chains were found to adopt a variety of conformations

which were characterised from their X-ray diagrams.

(a) Cl" conformation

~ the liquid-like organisation was found to be the predominant conform-

ation, common to most lipids in the presence of water and at sufficiently high

temperatures and, the one more relevant to membranes. The X-ray diagrams

of the Cl - conformation are characterised by a broad band around (4. 6A0)-1,

very similar to a band observed with liquid paraffins (Luzzati et al, 1960).

It has been shown that all the phases with chains in the c:x" conformation

display a peculiar temperature effect: the short dimension of the structure

elements such as the thickness of the lipid in the lamellar phases, decrease

as the temperature is raised, with an unusually large linear thermal
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coefficient (of the order of 10-3/°C). This phenomenon well known in rubber,

is typical of a polymer with a highly disordered conformation.

Thus, the et - conformation can be visualised as highly disordered. like

that of a liquid paraffin, still with the average of the chain orientation perpen-

dicular to the lipid-water interface.

(b) ~ and @ 1 conformations: phases L @, L B 1, P e 1

e is observed at lower temperatures in lipids whose chains are

heterogeneous and in the presence of very small amounts of water. e 1 is

found in synthetic leathers with identical chains, in the presence of variable

amounts of water.

The ~conformation has been observed in a variety of lipids including

mitochondrial lipids (Gulik - Krzywicki et al. 1967). This conformation is

characterised by a strong and sharp band at S1 (4. Ao)-1. followed in some

cases by faint and sharp reflections at /"3 S1 and at 2S1; these reflections

correspond to a two-dimensional lattice of cylindrical rods, and have been

interpreted by the presence of fully extended chains organised with rotational

disorder (Gulik - Krzymicki et al, 1967).

This type of conformation is observed in a lamellar phase, L ~which

contains a very small amount of water (less than 10%). (See Figure 3).

The ~1 conformation is similar to the ~conformation except that the

chains are tilted with respect to the normal to the plane of the lamellae

(Chapman et al, 1967), (Figure 4).

Another difference is that the amount of water incorporated in the phases
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of type ~. In the X-ray diagrams, the S 1 conformation is characterised by

a sharp reflection at (4.2 A0)-1 followed by a more diffuse reflection.

The phase P S 1 is similar to that of L S 1, namely that P S1 contains

1slightly distorted lamellae of the S type. (See Figure 5).

(c) 6 conformation: phases L 6and P 6

This conformation is characterised by its chains coiled into helices whose

axes are perpendicular to the plane of the polar groups and are packed with

rotational disorder in a two-dimensional square lattice. It is observed in dry

lecithins and is characterised by two sharp reflections (Luzzati et al, 1968),

o -1 -1one strong at (4.8 A) and one weak at (3.4) . These reflections are

ascribed to stiff rods organised with rotational disorder in a two-dimensional

square lattice (Figure 6 ).

The lamellar phase L 6 is observed at the very anhydrous end of the

phase diagram, and over a smaller temperature range.

(d) Phase C, crystalline

This is a highly order crystalline phase, yet displaying rotational

disorder of the chains. It is observed in all the lecithins anhydrous in di

C18 - PC, slightly hydrated (2 to 4%) in the other compounds. TIle presence

in all the X-ray diagrams of a few strong reflections near (4.2 A0)-1 suggest

that the chains are fully extended as in the S and S 1 conformations (Figure 7).

In summary, the liquid-like nature of the ex- conformation must be

emphasised. This is the most widespread of all the conformations and probably

the most relevant to biological membranes.
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The other conformations are, at least partly ordered, namely the chain

axes are organised according to two or three-dimensional lattices; the chains

are fully elongated in the ~ and S 1 conformations as well as in phase C, and

coiled into helices in the 6 conformation. In the case of other lipids, similar

studies would probably uncover other phases and other conformations of the

chains.



Fig. 8 Two different conformational states of phospholipids

Fig~ a), b), c), d), e) conceivable laminar structures of
lipids in the Pin- and Pex -conformation, f) cross section of
a tubular lipid superstructure formed by four lipid molecules
in the Pin-conformation
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CONFORMATIONAL STATES OF PHOSPHOLIPIDS

Essentially two different conformational states of phospholipids are

possible (Kreutz, 1972). In one case the polar group is located outside and

in the other it is incorporated in the fatty acid domains (Figure 8). These

are referred to as the Pex-conformation (polar group external conformation)

and the Pin-conformation (polar group internal conformation).

These two conformational states permit the fornn tion of lamellar and

tubular"shaped structures as shown in (Figure 9). According to this model,

lamellar structures can be formed both by lipids in the Pex-conformation and

by lipids in the Pin-conformation, whereas the tubular structures which are

always averaged in hexagonal lattices, can only be formed by lipids in the

Pin-conformation.

According to this model, all saturated phospholipids occur at room

temperature exclusively in the Pex-conformation and form lamellar structure.

Accordingly, they reveal periods corresponding to twice the length of a

fatty acid plus the polar groups in X..ray experiments, (Kreutz, 1970).

In his model, Kreutz (1972) claims that some phospholipids may be

converted into the Pin-conformation by binding to specific ligands. Thus,

according to Kreutz, the binding of Na+ and Ca++ stabilises the Pex..

conformation in the case of phosphotidic acid while in the case of PS this

conformation is totally converted into the Pin-conformation by the addition of

alanine. The evidence for these latter findings do not seem to have been

published by the author. It is interesting in this context, to refer to the

results obtained by Guarnler et al (1971) who found only a few per cent of the
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cardiolipin in intact mitochondria from rat liver and none of the cardiolipin

in intact beef heart mitochondria is available for binding of anticardiolipin

antibody. However, some recent reports (Schiefer, 1973 a, Schiefer, 1973 b)

have shown that antisera against both cardiolipin and phosphatidylinositol

combine specifically with the polar head groups of the respective phospholipids.

The antibodies directed against the two phospholipids were detected in rabbits

intravenously immunised with rat liver mitochondria, inner mitochondrial

membranes and a membranous cytochrome oxidose preparation. From the

results it was' concluded that the hydrophilic groups of the phospholipids are,

at least partially located at the mitochondrial membrane surface.
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PHYSICAL PROPERTIES OF PHOSPHOLIPIDS WHICH ARE

IMPORTANT IN LIPID-PROTEIN INTERACTION

The electrostatic field at the interface between the phospholi pid and

the bulk aqueous phase is an important property which has to be considered.

Phospholipid molecules orientate themselves so that their ionic head groups

are directed towards the aqueous phase.

Because of the presence of fixed charges at a phospholipid surface, an

electrical double layer is set up. This layer is composed of the innermost

"stern" layer (the fixed layer) and the outer "Gouy-Chapman" layer (the

diffuse layer) (Strigter, 1967). The potential at the plane of shear between

these two layers is called , potential. The potential falls as a point is moved

through the diffuse double layer to a position in the bulk phase far away from

the surface. These are shown in Figure ill

On one side of this double layer, there will be charged groups derived

from the material of the surface or adsorbed from the medium. This charge

is balanced across the thickness of the double layer by charges of opposite

sign derived from the surrounding medium. The thickness of the double layer

is given approximately by:

I
S where S

2 2
4 ne Enz=

eKT

n is the ionic concentration of counter ions of valency z, e the electronic

charge, e the static dielectric constant, K Boltzmann's constant and T the

absolute temperature.

Thus, the valency and concentration of counter ions and the static
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dielectric constant of the surrounding medium will affect the thickness of the

double layer.

Inclusion of materials such as proteins within the lipid layer of the

surface or alteration in the lipid composition will alter the internal fields

within the surface by altering the distribution of charges. The most probable

structure will be that with the lowest free energy and electrostatic intra-

molecular interactions will playa considerable role in determining this. The

X-ray data of Levine and Wilkins (1971) with egg lecithin-cholesterol multi-

bilayers have shown the effect of cholesterol in increasing the thickness of the

bilayer from 37 A0 to 42 A0 (Figure 11and also indicated a sharp localisation

of a low electron density region in the middle of the membrane. .

The pH near the charged phospholipid interface will be different from

that in the bulk phase. Assuming a Boltzmann's distribution. the relationship is

described by:

e y
pHs = pIb + 2.3 kT

where ~ is the surface potential, e is the charge. k is Boltzrnarm+s constant

and T is the absolute temperature.

Such effects will produce shifts in the apparent pKa values of functional

groups. Thus. at a lipid-protein interface. the polar head groups of the

lipids could produce substantial modifications in the apparent pKas of protein

functional groups.

The adsorption of counter ions into the fixed part of the double layer

has an enormous influence on the ,potential and this effect increases greatly
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with an increase in valency of the ion • If sufficient divalent or polyvalent

counter ion are added to the·bulk phase, a charge reversal occurs and the

sign of the C potential changes.

Binding of calcium to phospholipid monolayers has been studied (Hauser

and Dawson, 1967, Hauser et al, 1969). When 45Ca-H- is introduced into the

subphase below monolayers of acidic phospholipids (c. g. phosphatidylserine),

the surface radioactivity (calcium bound) initially increases with increasing

concentrations of calcium added. At low concentrations, the relationship is not

linear but initially follows a Langmuir-type adsorption isotherm: surface

radioactivity = k1C/k2 + C, where C is the concentration and k1 and k2 are

constants.

The adsorption data can be analysed in terms of the apparent association

constant ka for the reaction

++Ca + Upid :;;...ii=~ Ca surface

with k being calculated from the mass equation:a

K =a

(Ca)
s

where (Ca)s is the Ca absorbed on the surface, (Ca)f the Ca in subphase, and

(L)f the concentration of free binding sites on phospholipid surface.

It has been shown that (Papahadjopoulos and Bang-ham, 1066) at certain

concentrations of calcium (eg, 1.0 M) there is a dramatic increase in the

permeability of phosphatidylserine bilayers to univalent cations, and this

implies that the calcium is causing profound physical changes in the membrane.
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Behaviour of phospholipases

Reactions of phospholipases at the phospholipid-water interface have

been studied by several workers. In such reactions, it must be remembered

that the enzyme has approached the phospholipid-water interface where it

forms the enzyme-substrate complex. Thus, interaction between the enzymes

and their lipid substrates occurs in the primary sequence of events. These

phospholipase systems clearly indicate the critical importance of the

electrostatic field at the interface between the phospholipid and the bulk aqueous

phase.

Phospholipase B catalyses the hydrolysis of lecithin to two fatty acids

and glycerylphosphoryl choline. The hydrolysis only takes place when sufficient

(long chain) anions are introduced to gi ve the lipid-water interface a certain

critical negative ,potential (Dawson and Hauser. 1967, I3angham and Dawson,

1962). Conversely, phospholipase C (catalyses the hydrolysis of lecithin into

digly ceride and phosphatidyIcholine) is or.ly active when the lecithin is given

a positive , potential by mixing it with a long chain anion or on introducing

metallic cations into the bulk phase (I3asford, 1959).
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EVIDENCE FOR THE PRESENCE OF I3ILAYER STRUCTURE

IN NATURAL AND ARTIFICIAL MEMBRANES

Various workers have shown the presence of bilayer structure in

multiple membrane structures such as myelin and retinal rods (Finean, 1969,

Worthington and Blaurock, 1969). An account has been given for the X-ray

intensities in terms of an electron density distribution within the basic repeat

unit of these two membrane systems. Wilkins and associates (1971) have

concluded that an X-ray bilayer pattern apparently exists in all of the membranes

examined.

In general, X-ray diffraction studies of phospholipid-water mesophases

have indicated that the pr edominant liquid crystalline phase is that of a

lamellar arrangement (Luzzati, 1968).

The inclusion of cholesterol and the addition of salts also tend to

stabilise lamellar bilayer structures. Only in the presence of additives that

are more hydrophilic such as deoxycholate or lysolecithin is there any evidence

for the possible existence of alternative mesophase s in natural membranes

(Husson and Luzzati, 1963. Bangham and Horne. 1964).

Additional support for the presence of bilayer structure comes from

E. S. R. studies in artificial membranes (Butler at al, 1970), in nerve fibre

and erythrocyte membranes (Hubbell and McConnell, 1969) and in Neurospora

mitochondria (Dodge et al, 1963).

Forces affecting stability of the bilayer

The phospholipid bilayer structure illustrates the combined effects of
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hydrophobic and hydrophilic interactions. The stability of lipid bilayer is

thus affected by:

a) Electrostatic repulsion between the charged interfaces on either side

of the membrane. This tends to prevent collapse of the membrane and

ultimately determines the point at which any thinning process will stop.

b) Hydrophobic interaction between fatty acid chains of phospholipids.

These are sequestered together away from contact with water, thereby

maximising hydrophobic interactions.

c) Lateral dipole-dipole interactions between ion pairs at the surface of

the bilayer. This interaction is especially significant in the case of zwitter-

ionic lipids such as lecithin.

d) If there is an excess of charges of one sign, the instability may set in

along the lines outlined above.

e) Lateral cohesion between membrane components due to London-Van

der Waals forces.

Thus, it appears that in a membrane composed solely of lipids, the con-

ditions most favouring a bilayer structure are (i) relatively small excess

charge on the interfaces of the membrane (ii) a relatively large percentage

of phosphatidylcholincs which should have hydrocarbon chains of approximately

equal lengths and full saturation. These conditions ensure that the lateral

forces of cohesion are large and that dispersion forces will thin the membrane

down to a bilayer.

The nature of these forces will be more fully discussed later in this
chapter.
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FORCES INVOLVED IN LIPID-PROTEIN INTERACTION

Some of the possible ways in which lipids and proteins can interact are

by means of the following types of binding forces.

a) Covalent binding

Generally, lipids can be readily separated from proteins by simple

solvent action so that covalent binding is not usually an impertant role in

their interaction.

However, evidence has been presented recently that some intrinsic

membrane proteirs including the Folch- Lees proteolipid of myelin (Stoffyn and

Folch-Fli, 1971) and a proteolipid from sarcoplasmic reticulum (MacLennon,

1972) have a considerable amount of fatty acid which is covalently bound to

some of the polar residues of these molecules, thereby reducing the net

charge on the protein and at the same time increasing the hydrophobic character

of the molecule.

b) Electrostatic interaction

These forces are due to the mutual columbic attraction or repulsion of

the net charges or electronic moments, carried by two interacting molecules.

Salem (1962) has discussed the interaction of the negative phosphate ion of a

phosphatidic acid molecule with a positively charged quaternary ammonium

group of a lysine side chain.

The interaction between two charges obey the familiar Coulomb I/D Law;

charge - dipole interactions vary as I/D2, dipole-dipole interactions as I/D3,

etc. The interaction energy between two ions of net charge q and q1 is given

by the relation:
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1qq
w = e D

where e is some effective value for the dielectric constant of the medium.

When the two charges are very close to each other, they are no longer

separated, and are only surrounded by an assembly of molecules belonging

to the medium. Hence the effective value c , or the "microscopic"

dielectric constant, is much smaller than the familiar macroscopic value.

Pressman and associates (1946) obtained the relation:

e = 6D - 11

for the effective dielectric constant of water in the case of two ions separated

oby a distance of less than 10 argostroms; the expression is valid for D ~ SA .

This is, of course, an approximate estimation of the effective dielectric

constant.

Every protein tested with an isoelectric point above pH~ has been found

capable of forming complexes with anionic phospholipids (Green and Fleischer,

1964). However, when cytochrome c is acetylated or succinylated and the

basic groups thus eliminated, the capacity to form complexes with phospholipids

is lost.

The interaction of cytochrome c with phospholipid involves an additional

parameter. At pH~ cytochrome c has 20 positive charges and 12 negative

charges, giving a net positive charge of R. TIle complex formed between an

acidic phospholipid and cytochrome c contains exactly ~ molecules of phos-

pholipid per molecule of protein. It must be presumed that 12 of the 20 positive
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charges are part of a zwitterionic neutralisation (plus and minus charges

juxtaposed) and only ~ positive charges are available for interaction with

acidic phospholipids.

The interaction of cytochrome c or other basic proteins with phospho-

lipid is suppressed when the ionic strength of the medium is increased to a

sufficient degree. Also a pre-formed complex is dissociated completely

when the ionic strength is raised to the same critical value at which interactions

are involved in the fomat ion of complexes between acidic phospholipids and basic

proteins. This interaction probably involves gross distortion of the flexible

lipid particles to permit the exact neutralisation of charges by the two

combining partners. Similar conclusions were made in studies on permeability

variations of phospholipid membranes or interaction with basic proteins

(Kimelberg H. K., Papahadjopoulos, D., 1971).

c) Polarisation interactions

These induction forces arise from the polarisation of one molecule

by the charges or permanent electric moments of the other. A typical example

of this type of interaction is that which could occur between the phosphate ion

or the hydroxyl group of a cholesterol molecule with the Cl12 groups of a

protein side-chain.

The polarisation energy varies as I/D4 for a charge polarisation group

interaction. The polarisation energy is given by:

where a charge q is interacting with a spherical group of isotropic
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polarisability ex. The energy involved in polarisation interactions is generally

very small.

d) London- Van der Waals dispersion forces.

These forces arise between electrically neutral non-polar molecules

and are due to the average interaction of an instantaneous electric moment on

one molecule brought about by charge density fluctuations and the moment it

induces on the other molecule. The se forces will be particularly important

in the interaction of non-polar groups. Thus, the CI-I2groups of protein side-

chains will attract the CH2 groups present in the phospholipids.

At distances which are large with respect to the size of the interaction

systems, the dispersion energy varies as 1/06• For two identical groups of

polarisabilityex placed in vacuum, London's Law gives:

W disp =
3vE

2ex

where v E is the average electronic excitation energy which is often just

equal to the ionisation potential er the interacting systems. For two CH2

groups the energy variation is approximately

W = -1340

n6
Kilocalories per mole

oIf the groups are SA apart, there results an attraction energy of O. 1

Kilocalorie per mole. Although much smaller than electrostatic energies,

such an energy may lead to large attractions if many similar interactions are

involved simultaneously.

Salem (1962) has considered the attraction forces between parallel

lipid chains and assumed that the dispersion energy is locally additive.
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On this basis he calculates the total attraction energy between two parallel

linear chains to be

where each chain is built out of units of length 1, and for DL < L. He showed

that in such cases the total energy of interaction can reach as much as 10 or 20

kilocalories per mole.

These dispersion forces are of great importance in determining the

Kraft temperature for lipids - the temperature at which a polar lipid, in the

presence of water, transforms from a crystalline to liquid crystalline

condition (Chapman et al, 1967).

e) Hydrophobic interaction

When amphiphilic molecules are in an aqueous environment, hydrophobic

interaction is a significant interaction. Nearly all proteins contain a relatively

high proportion of amino acids with non-polar side-chains. TIle tendency oi

non-polar groups to associate in aqueous solutions, thereby reducing the

extent of contact with neighbouring water molecules is referred to as

hydrophobic "bonding". The Iormatlon of hydrophobic bonds is favoured only

because of an entropy effect: the water molecules become more ordered

around exposed non-polar solutes. When the hydrophobic bond is formed the

order decreases, resulting in a favourable entropy and hence free energy of

formation. The free energy change associated with this process is estimated

to be about 3 Kal to 5 Kal per non-polar amino acid chain, or 1 Kal per

CH2 group.
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The configuration adopted in water by phospholipids is also such that

the molecules have their polar groups facing the aqueous environment and

the hydrocarbon groups clustered together. Hydrophobic interaction is

also considered to take place in this situation as well.

The addition of electrolytes to the aqueous medium is considered to

strengthen hydrophobic bonds, whereas they weaken electrostatic linkages.

Non-polar substances, on the other hand, weaken hydrophobic bonds, but

strengthen electrostatic linkages.

Green and Fleischer (1963) concluded that hydrophobic binding has an

important role in mitochondrial membrane structure and function. They

studied the interactions of mitochondrial "structural protein", electron

transport enzymes and phospholipids with each other and with detergents

and bile salts.

Using nuclear magnetic resonance, Stein et al (19Mi) studied lyso-

lecithin binding by serum albumin. They found that when lysolecithin was

bound, the peaks attributed to fatty acid methylene and the terminal methyl

groups were markedly broadened and reduced in height. TIley interpreted

this to indicate that binding was by hydrophobic association between the

fatty acid chains and non-polar regions of the proteins. The peak attributed

to the quaternary amino group of the choline remains relatively unaffected,

indicating that the polar portion of the lysolecithin was not detectably involved

in the binding.

Klopfenstein (1969) studied the thermodynamics of binding lysolecithin

to serum albumin. The lipid-protein binding in this case was shown to involve
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a free energy change of -6.2 Kcal/mole and an enthalpy change of -18 Kcal/

mole.

If the binding were hydrophobic as described oy Kauzmann (1959), the

reaction should not show the highly negative entropy charge observed.

Klopfenstein (1969) from his thermodynamics results thus argues that since

the binding is known to be apolar from the nuclear magnetic resonance

measurements, but seems not to be hydrophobic, perhaps London Van der

Waals forces are responsible for the association between lysolecithin and

bovine serum albumin.

The demonstration of the free energy charge of -6.2 Kcal/mole,

enthalpy change of -11. 8 Kcal/mole for binding one molecule of lysolecithin

per mole of bovine serum albumin (Klopfenstein, 1969) shows the enthalpy

change to be the driving force for the reaction.

f) Other types of binding

In addition to the processes discussed above, there are other factors

which may be involved. These include hydrogen binding, barriers to internal

rotation, thermal motion, presence of inorganic ions, etc.

It has been suggested (McClare, 1967) that the binding of lipid to protein

in the envelopes of Halobacterium Halobiurn may take place by a bridging

divalent metal ion.

Kimelberg and Papahadjopoulcs (1971) studied the interaction of a

number of positively charged proteins (including cytochrome c) with negatively

charged phosphatidylserine vesicles and correlated protein binding with its
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effects on 22t\a+ permeability. From the data obtained in such studies they

conluded that an initial electrostatic interaction takes place which is followed,

to varying degrees, by other interactions, leading to changes in permeability.

The interaction between sodium dodecyl sulphate and ferricytochrome c

has been studied by Burkhard and Stolzenberg (1972). They took their

spectroscopic results to suggest that the interaction occurs in two phases.

The first of these involves an electrostatic binding of the dodecyl sulphate

anions to the cationic sites of the protein followed by binding of the hydrophobic

portions of the dodecyl sulphate to the hydrophobic amino acid residues of the

protein.
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SOME PROPERTIES OF MEMBRANE PROTEINS

Membrane systems contain two broad categories of proteins, which

differ in their position with respect to the lipid bilayer and therefore in their

mode of interaction with the lipid.

Intrinsic or integral membrane proteins (Singer and Nicholson, 1972)

penetrate into and sometimes completely through the interior of the bilayer

and have, therefore, predominantly hydrophobic interaction with lipids.

Several examples of intrinsic proteins have been clearly defined.

Evidence has been obtained from electron microscopy, and X-ray diffractionn

studies, that rhodopsin penetrates deeply into the lipid bilayer in the rod

outer segment (Vande~kooi and Sundaralingam, 1970). Electron microscopic

evidence has been interpreted to indicate that cytochrome oxidase penetrates

completely through the bilayer (Vanderkooi et al, 1972), and the observation

that the major glycoprotein of the human red cell membrane can be

chemically labelled from both sides of the membrane supports the concept

that this protein also spans the lipid bilayer (I3retscher,1971). These, and

indeed all, intrinsic membrane proteins can only be liberated from their

respective membranes by reagents which disrupt hydrophobic interactions.

They are insoluble in aqueous solutions in the absence of detergent or other

solubilizing agents, although in some cases polymerisation occurs which

yields a water soluble aggregate. Further, all intrinsic membrane proteins

have the ability to recombine with lipid to form membranes.

Extrinsic or peripheral membrane proteins (Singer and Nicholson, 1972)

do not penetrate the lipid bilayer, but are held at the surface of the membrane
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by predominantly electrostatic interactions. Examples of extrinsic proteins

include cytochrome c of the mitochondrial inner membrane (Green and

Machennan, 1969), spectrum of the red cell membrane and the basic protein

of myelin, all of which can be removed from their respective membranes by

reagents which disrupt electrostatic interactions. These and all extrinsic

proteins are characteristically soluble in aqueous solution, once liberated

from the membrane.
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AMINO ACID COMPOSITION AND DISTRII3UTION OF

MEMBRANE PROTEINS

Intrinsic proteins have the property of being partially buried in the

hydrocarbon interior of the lipid bilayer and partially exposed to the

surrounding aqueous medium (Ftgure B), For thermodynamic reasons discussed

by Singer and his associates (Singer and Nicholson, 1972, Glazer et al, 1970)

these "bimodal" or "amphipathic" proteins must have an asymmetric

distribution of polar and non-polar groups about their surface, such that

charged groups are exposed to the aqueous phase and not to the hydrophobic

interior of the bilayer. In fact, it has been demonstrated (Hatch and Bruce,

1968) that the amino acid composition of the extrinsic and intrinsic proteins

differ significantly. The soluble proteins contain more charged and hydrophilic

amino acids than do the membrane intrinsic proteins. The high degree of

hydrophobicity of the constituent amino acids of membrane proteins are

essential for their adaptation to the apolar environment of membranes.

It has also been shown that both cytochrome bS (Spatz and Strittmatter,

1971) and cytochrome bS reductase (Strittmatter et al, 1972)which are

considerably more polar than the majcrity of intrinsic proteins, have in fact an

asymmetric distribution of polar and non-polar groups along their polypeptide

chain. Thus, a very hydrophobic region is present which can penetrate the

hydrophobic interior of the lipid bilayer. An asymmetric distribution of polar

and non-polar amino acid residues has also been identified in the polypeptide

chain of the major glycoprotein of the human red cell membrane (Segrest et al,

1972). In the case of cytochrome c, it has been shown that the lysine residues

as well as the hydrophobic amino acids tend to occur in distinct clusters along

the protein chain (Margoliash, 1962).
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CONFORMATION OF MEMBRANE PROTEINS

The proteins of a variety of intact membranes, on the average, show

appreciable amounts of et - helical conformation as shown by Wallach and

Zahler (1966) and Lenard and Singer (1966). For example, circular dichroism

measurements of aqueous suspensions of intact and mechanically fragmented

erythrocyte membranes reveal that about 40% of the protein is in the right-

handed et - helix conformation (Glaser and Singer, 1971). Most soluble globular

proteins whose circular dichroism spectra have been obtained exhibit a smaller

fraction of et - helix in their native structures. This suggests that integral

proteins in intact membranes are largely globular in shape rather than spread

out as monolayers.

Some studies indicate in some cases the near absence of f3 - structure

(Maddy and Malcolm, 1965) while others show that as much as 40% of the

proteins in the plasma membrane are stabilized by S - structure (Choules

and Bjorklaund, 1970).
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MOTIONAL FREEDOM OF MEMBRANE UPIDS

When the liquid crystalline behaviour of some substances was discovered,

it was pointed out that these phases must play an important role in ll ving organisms,

since they could exchange components while maintaining both plasticity and a

high degree of order. It is known that the cholesterol of the erythrocyte

membranes exchange With that of plasma lipoproteins (Bruckdorfer, K. R.,

Graham, J.M., 1968).

N.M. R.· and E. S. R. evidence for the association of the fluidity of the

bilayer with the distance from the interface has been discussed above.

Kornberg and McConnell (1971) have estimated that phospholipid molecules

move very rapidly within the plane of the membrane (molecular frequency of

the translational step for lateral diffusion> 103sec -1 at OOC),while the exchange

of molecules between the two sides of the bilayer (phospholipid "flip-flop")

-4 -1 0is very slow (:s:2 x 10 sec at 40 C).

In another study, Kornberg and McConnell (1971), using a spin-labelled

derivative of phosphatidylcholine incorporated into liposomes, have reported

that the labelled molecules present in the inner monolayer were more

immobilised than those in the outer monolayer.
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MOVEMENT OF MEMBRANE PROTEINS

Frye and Edidin (1970) investigated the membrane properties of some

cell fusion heterokaryons and have presented some experimental evidence

which suggests the fluidity of membrane proteins. Human and mouse cells

in culture were induced to fuse with one another. with Sendai virus as the

fusing agent. The distribution of human and mouse antigenic components of the

fused cell membranes was then determined by immunofluorescence, with the

use of rabbit antibodies directed to the whole human cell. mouse antibodies

directed against a specific antigen on the mouse cell membranes, and, as

indirect stains, goat antiserum to rabbit v-globulin and goat antiserum to

mouse V-globulin labelled with two different fluorescent dyes. Shortly after

cell fusion, the mouse and human antigenic components were largely segregated

in different halves of the fused cell membranes; but after about 40 minutes at

370C the components were essentially completely intermixed.

Frye and Edidin (1970) suggest that the intermixing of membrane

components is due to diffusion of these components within the membrane, rather

than to their removal and re ..insertion. Thus, the cell surface of neterokaryons

is not a rigid structure and is fluid enough to allow free diffusion of surface

antigens.

Additional evidence of protein movement comes from the low ..angle X-ray

scattering measurements of the arrangement of rhodopsin molecules in frog

retinal receptor disc membranes. Blasie and Worthington (1969) showed that

the nearest neighbour frequency of the rhodopsin molecules was modified by

changes in temperature as well as by the addition of anti rhodopsin antibodies.



30

From these results, these authors concluded that the rhodopsin molecules are in a

liquid environment.

The use of pyrenebutyric acid which, as developed by Knopp a-id Weber

(1967), has a very long excited-state lifetime, could allow the determination

of the tumbling rates of proteins in membranes. The motion of fluorescent

probes bound to membrane proteins in the nanosecond range has been reported

(Wahl et al, 1971).
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FLUID STATE OF PHOSPHOLIPIDS

It has been shown that, under physiological conditions, the lipids of

functional cell membranes with the exception of myelin are in ;J. fluid, rather

than a crystalline state. This evidence comes from a variety of sources, such

as spin-labelling experiments (Hubbell and McConnell, 1968), X-ray diffraction

studies (Engelman, 1970) and differential calorimetry (Melchoir et al, 1970).

If a membrane consisted of proteins dispersed in a fluid lipid matrix, the

membrane would in effect be a two-dimensional liquid-like solution of mono-

meric or aggregated integral proteins dissolved in the lipid bilayer. The

mosaic structure would be a dynamic, rather than a static one. The integral

proteins would be expected to undergo translational diffusion within the

membrane, at rates determined in part by the effective (microscopic) viscosity

of the lipid.

Recent ESR studies (Hubbell and McConnell, 1971) have shown that the

fluidity of the bilayer varies with the distance from the interface, becoming

more fluid toward the middle. Analysis of NMR spectra (Birdsall et al, 1971,

Darke et al, 1972) have confirmed that the molecular motion within a fluid

bilayer increases substantially along the length of the hydrocarbon chains and

the picture that emerges from these studies with lecithin bilayers indicates a

relatively rapid molecular motion of the choline groups, relatively hindered

motion in the region of the glycerol backbone and the first few carbons into

the interior, and an increasing mobile region extending into the middle of the

bilayer.

The biological significance of these studies can he appreciated from
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comparisons of the spectra of spin-labelled probes embedded in biological

membranes, and the bilayer membranes composed of the extracted lipids.

These studies indicate a considerable similarity in the motion and solubility

of the probes in bilayers and membranes of nerve cells (Hubbell and McConnell,

1968) and mitochondria of neurospora (Keith et al, 1970). However, studies

with erythrocyte (Hubbell and McConne lI, 1969) and inner mitochondrial

membranes (Hsia et al, 1972) have shown that the probes arc slightly but

significantly less mobile in the intact membranes compared to their motion in

isolated lipid bilayer's.



Fig. 12 A schematic representation of the cross section of the
lipid -globular protein mosaic model of membrane structure.

Fig. 13 A schematic representation of the three-dimensional
organisation of the mosaic structure with the phospholipids
forming the matrix of the membrane. The globular protein
molecules are partially embedded in the membrane, and partially
protrude from it, as in Fig. 12
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THE F LUrD MOSAIC MOOE L

According to this model, (Wallach and Zahler, 1966, Singer and Nicholson,

1972), hydrophobic portions of integral proteins are immersed to varying

degrees in the lipid matrix (Figures 12 and 13). An integral protein molecule

with the appropriate size and structure may traverse the entire membrane.

The thermodynamic considerations and experimental results so far

discussed fit in with the above model. It complies with the requirement of

lowest free energy and maximum entropy allowing for optimum hydrophobic

and electrostatic interaction.

Protetri-protetn interactions that are not explicitly conside~ed in Figures

12 & 13 may be important in determining the properties of the membrane.

Indeed, as discussed,above, some membranes such as the inner mitochondrial

membrane have a high protein/lipid ratio in which protein-protcln interaction

may be the dominating factor.

Thus, the mosaic structure with a lipid matrix, which under physio-

logical conditions is in a fluid rather than a crystalline state, would be a

dynamic rather than a static one. The integral proteins would be expected to

undergo translational diffusion. The rates of such t!iffusion would be, at

least partly, determined by the local viscosity of the lipid environment. On

the other hand, a mosaic membrane with a protein matrix should make for a

relatively rigid structure with essentially no translational diffusion of its

protein components within the membrane.
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Fig. 14 Schematic representation of two lamellar phases formed
between lysozyme and phospholipids. The thickness of the lipid
leaflets is the same in phase e and in the lipid-water phase 1, and
it decreases in phase h
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STRUCTURAL CHANGES IN PROTEINS AND LIPIDS

BROUGHT ABOUT BY THEIR INTERACTION

Hammes and Schullery (1970) made the very interesting observation

that polylysine changed from a random coil to an f:X - helix conformation upon

interaction with phosphatidylserine vesicles and that the -CH2 groups of the

phospholipid fatty acyl chains were relatively immobilised, indicating

penetration of the bilayer by the polypeptide molecules. Reduction in mobility

is probably a result of tighter packing of the polar moieties in their crystalline

array.

Gulik-Krzywicki et al (1969), using a combination of binding experiments

and X-ray studies concluded that cytochrome c bound to the polar head-groups

of aqueous dispersions of phospholipid membranes without perturbing the structure

of the phospholipid bilayers. Lysozyme, however, appeared to show both polar

and non-polar binding, with thinning of the bilayer membrane and a consequent

increase in the area per lipid molecule.

Cardiolipin-lysozyme mixtures gave two lamellar phases (Shechter et al,

1971)for:which the contributions of the components to the overall lattice

thickness were computed. In one of the lamellar phases, the lipid layer

thickness is the same as for the lamellar lipid-water phase above, whereas

in the other case, this thickness is decreased. These are shown in Figure 1!-

In essence, these studies (Gulik-Krzywickt et aI, 1969, Shechter et al,

1971) suggest that for weak electrostatic interactions no decrease in the

thickness of the lipid bilayer occurs, whereas when hydrophobic interactions

occur, the observed shrinkage in the thickness results.



35

A number of proteins have been shown to increase the cation permea-

bility of Iiposome s to values found for biological membranes. Thus, soluble

basic proteins, such as lysozyme and cytochrome c have been shown to

increase the 22Na+ permeability of phosphatidylserine vesicles by several

orders of magnitude, at neutral pH and low ionic strength (Kirr.elbcrg and

Papahadjopoulos, 1971). These effects were later correlated with the ability

of such proteins to penetrate or expand monolayers of the same phospholipid

(kimelberg and Papahadjopoulos, 1971, b).

From their studies on the interaction of ferrocytochrome c with

cardiolipin, Jori et al (1974) have come to the conclusion that the interaction

provokes a perturbation of the protein conformation, which possibly involves

the disruption of the hydrogen bonds linking the aromatic rings of tryptophan -59

and tyrosine-48 with one propionic side chain of the heme. Thus, the three-

dimensional structure of cytochrome c bound to cardiolipin dispersion is

different from that of the protein in aqueous solution.
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EXPERIMENTAL MODE LS FOR MEMBRANES

1) Monolayers

Most lipids, when placed in a water surface, disperse into a thin film.

Under suitable conditions, such films can be dispersed to the thickness of a

molecule.

In order to Investigate the binding of proteins to lipid rnonolayers, the

protein solution is injected into the subphase and the increase in film pressure.

grossly referred to as film penetration, is measured as a function of time.

From the analysis of some of the data reported (Colacicoo, 1970, Quinn and

Dawson. 1970). it appears that the following successive interactions occur as

gradual compression of the film: (a) Initially. whole molecules of protein

penetrate the lipid film and occupy the same area as that of the protein spread

at the air-water interface; (b) Above a given film pressure. a part of each

protein molecule, probably the hydrophobic side chains. penetrate the film.

The change in surface pressure per unit of bound protein is much smaller than

in (a); (c) At higher film pressures adsorption without penetration occurs.

Compared with other models. monolayers are less satisfactory as

structural models for biological membranes. A monolayer consists of only

one layer of lipid molecules which has at the interface between water and air,

or between oil and water. and it does not separate two aqueous phases. Hence,

factors that affect the stability of the lipid film in relation to the arrangement

of its constituent molecules are probably quite different in the monolayer from

. what they are in natural membranes.

2) Bilayers

A considerable amount of data has been accumulating since the finding
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of Tsofina et al (1966) that protein can be bOW1dto phospholipid bilayers (black

lipid membrane, BLM)decreasing the electrical resistance of the lipid

membrane to the biomembrane level.

The formation of BLMseparating aqueous phases is conceptually simple:

two compartments are separated by a thin partition and communicate through

an aperture in this partition. The compartments are filled with an aqueous

medium and a (thick) membrane of amphiphilic lipid is formed in the aperture

separating the squeous phases. The thick membrane spontaneously thins by

draining to form a ring or annulus of bulk phase lipid around the margin of

the aperture. A large variety of purified and crude natural lipids, and a

variety of synthetic amphiphiles have been used for the preparation of 13LM.

The composition of the membrane-forming lipid solution depends upon the

nature of the 1i.pid used.

Results obtained by Chevy et al (1971) illustrate the type of data elicited

by the use of black membranes as model systems. Conductance and optical

reflectance techniques were used to study the interaction of erythrocyte

apoprotein with erythrocyte lipid bilayers. It was found that addition of the

protein increases the conductance and reduces the stability of the bilayer.

3) Liposomes

This appears to be the most frequently used model system, presumably

because liposomes are so easily prepared. Most of the work has been done

with water-soluble non-membranous proteins, some of which, like lysozyme,

polylysine, cytochrome c and ribonuclease are highly basic polypeptides. The

conclusions drawn by Hammes and Schullery (1')70) from the interaction of

phospholipid liposomes with water-soluble polypeptides seems to be
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representative of the outcome of the various other studies of this kind (Shipley

et al, 1969, a, b, Kimelbe rg and Papahadjopoulos, 1971, Kimelberg et al, 1970,

Sweet and Zull, 1970).

Their conclusions were: (1) electrostatic attraction is important for the

initial interaction of the protein with the lipid; (2) the interaction is partially

stabilised by hydrophobic bonding; (3) the interaction favours the formation of

membrane-bound vesicles consisting of a single phospholipid bilayer coated with

the polypeptide; (4) the helix content of the polypeptide tends to increase upon

complexing with phospholipid as demonstrated by circular dichroism measure-

ments; (5) the mobility of the fatty acid gr?ups in the phospholipid bilayer is

reduced.
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Fig. 16_ Suggested structure of a cross-section of a spherical
micelle in equilibrium with the monomer
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SOt\TICATION - PREPARATION OF UNILAMELLAR VESICLES

When dried preparations of naturally occurring phospholipids arc

allowed to come in contact with water, they swell and form large multtlamcllar

particles.

In the process of sonication, lipid particles are given high kinetic

energy by the sonicator and break down on colliding with each other. The

collisions produce complete disruption of the sultilamellar particles into

short-lived bilayer fragments which then reaggregate to form single-shelled

bilayer vesicles of uniform size.

Unsonicated aqueous egg yolk lecithin dispersions contain particles of

diameter from 0.5 to 20 ~ consisting of concentrically arranged lamellae

of lipid bilayers separated by ayers of water. Such dispersions are generally

found unsuitable for biochemical and biophysical studies. Instead, sonicated

dispersions are used to increase the homogeneity and surface accessibility of the

system (Figure 15).

The effect of ultrasonic irradiation on aqueous egg yolk lecithin has

been studied intensively by several investigators (Papahadjopoulos and Miller,

1967, Hung, 1969, Johnson et al, 1971) and two basic effects have been reported.

Firstly, prolonged exposure to sound can lead to significant chemical degrad-

ation, which is enhanced in the presence of oxygen. Secondly, sonication

causes a reduction in particle size, with the formation of small vesicles. 111e

particle size of these vesicles ranges between 190 and 300 Aa (average 230 Aa).

Other important factors related to the sonication of phospholipids are:
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(a) The volume of the phospholipid dispersion.

(b) The size of the probe.

(c) Phospholi pid concentration.
~

(d) pH.

(e) Presence or absence of organic solvents.

In a study of sonication of egg yolk lecithin (Patrick et al, 1972) the

phospholipid particles were shown to consist of two fractions (as isolated by

column chromatography), fraction I consisting of relatively large multi-

lamellar structures (diameter 0.2 - 4 ~) and fraction II of smaller vesicles.

(about 230 Aa in diameter). The sonication conditions can be adjusted to give

only fraction II vesicles.

Phospholipids and lecithin in particular, may undergo two forms of

degradation in an aqueous system (Klein. 1970). Hydrolysis may occur at

the S - ester linkage with the production of lysophosphatidcs and free fatty

acids, or the unsaturated hydrocarbon chains may become oxidised. TIle

hydrolysis may be detected using thin layer chromatography on silica gel H

plates (Skidmore and Entenman, 1962).

The methods available for determining the extent to which the sample

has become oxidised could include the measurement of the peroxide value,

the increase in absorption at 233 due to increasing diene conjugation

(Klein, 1970). The change at this wavelength reflects the increase in con-

jugated diene hydroperoxides,



41

SOME LIPID - DEPENDENT ENZYME SYSTEMS

The molecular mechanisms that regulate the interaction of phospholipids

with membrane-bound proteins are not clearly understood. 111at these

interactions are important to the functional role of biological membranes have

been made by a wealth of recent data, which demonstrates that the activity and

stability of membrane enzymes may be altered by the action of phospholtpases.

There is an absolute dependence on phospholipids, both for the process

of membrane reconstitution and biochemical activity in the Inner mitochondrial

membrane (Triggle, 1970). One of the mitochondrial enzymes - S - hydroxy-

butyrate dehydrogenase has a specific and absolute requirement for lecithin

(Green and Fleischer, 1963, Gazzotti et al, 1974). The higher the degree of

unsaturation in the fatty acid residues, the more effective is the lecithin in

restoring activity (jurrshuck, 1968).

Another enzyme which has a specific requirement for a phospholipid is

a galactosyl transferase present in the outer membrane of So typhimurium.

It catalyses the addition of galactose to a lipopolysaccharide and has a specific

requirement for phosphatidylethanolarnine (Romea et aI, 1970). A specific

association between mitochondrial ATPase and cardiolipin has been indicated

(Santiago et al, 1973). It has been shown, however, in several cases, that

there is not necessarily a strict requirement for the phoshpolipids but rather

for specific properties of the environment that they provide (Fiehn and

Hasselbach, 1970, Zakim, 1970, Vessey and Zakim, 1971).

There are two criteria for lipid-dependence: these are loss of activity

following the removal of lipid, and reactivation on adding lipid to the inactive

r
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enzyme. Once enzymic activity is abolished by lipid depletion, its reconstit-

ution can be tested by the addition of various lipids. Recombination of the

lipid with the lipid-depleted membranes is usually done by the method of

Fleischer et al (1966). Some lipid-dependent enzyme systems are listed in
Tables I and II.

In lipid-protein interaction, various consequences may occur, dependent

upon the resultant free energy of the product and involving some, or all of the

possible types of binding forces. Lipids and proteins may lose or largely

retain their original conformation.

The following functions may be envisaged of lipids (Triggle, 1970):

(a) cofactor requirements

(b) provision of sites for hydrophobic interaction

(c) determination of (or contribution to) the tertiary

structure of the protein

(d) generation of a lipid-protein matrix that may provide

both substrate and cofactor binding opportunities not

available in protein alone with added catalytic potential

through interaction in the non -polar interior and the

polar exterior of the lipid-protein complex.

There is no evidence of the phospholipid required for proper enzyme

function participating as. a cofactor or a reaction partner in any enzyme process.

TIle amount needed seems too large for catalytic action and the specificity too

low. The specificity is sometimes so low that detergents may serve as an

adjacent substitute for phoshpolipids (Martonosl et al, 1968, Duttera et al, 1968).

It seems more likely that the lipids, by various interactions, keep the
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enzyme protein in an enzymatically active form by imposing a certain

conformation.

Levey (1970; 1971) has demonstrated that treatment of cat heart adenyl

cyclase with the non-ionic detergent lubrol-PX results in loss of the enzyme's

response to norepinephrine and glucagon, and that, depending on phospholi pid

used, hormonal response can selectively be restored. Thus, addition of

phosphatidylinositol selectively and specifically restored the response to the

catecholamine and addition of phosphatidylserine restored that to glucagon.

These results may be taken as indications of interaction of the phospholipids

with specific sites on the adenyl cyclase system followed by conformational

changes in the enzyme.
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I

SOME LIPID - DEPENDENT ENZYME SYSTEMS

Enzyme and Source Lipid Specificity Reference

s -Hydroxybuty rate Lecithin Green & Fleischer, 1963

Dehydrogenase Gazzotti et aI, 1974

(mitochondria)

Electron Transport chain No absolute specificity Fleischer et al, 1962

(mitochondria) Green et al, 1967

Glucose-6-phosphatase Phosphatidylethanolamine Duttera et al, 1968

Rat liver microsomes £!. lysolecithin

+ + Phosphatidylserine 1968Na /K ATPase (rat Fenster et al,

brain)

Galactosyl transferase Phosphatidy lethanolamlne Romeo et a l, 1970

(S. Typhimurium)

Cytochrome c oxidase Cardiolipin I3rierley & Merola, 1962

(mitochondria) Amasthi et al, 1970



II

SOME LIPID - DEPEI\1)ENT ENZYME SYSTEMS (continued)

45

Enzyme and Source Lipid Specificity Reference

NADH-cytochrome c

reductase (microsomes)

Glycoprotein: glycosyl

transferase (rat kidney)

Glucosyl

synthetase (M. Laidlawii)

Lecithin & Lysolecithin

Lysolecithin

Fatty acid or detergent

Jones & Wakil, 1967

Kirschbaum & Bosrn ann ,

1973

Sm ith.. 1969
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MICELLES

Micelles are aggregates of colloidal dimensions. The monomers that

can take part in the process of micelle formation are characterised by their

arnphipathic proper tie s > they consist of one part that is sympathetic

(hydrophilic) and another part that is antipathic (hydrophobic) to water. 111ey

are hydrated structures, spherical in very dilute solutions, and changing to

asymmetrical structures at higher concentrations (Corkill and Herrmann, 1963).

Structure of a spherical micelle is shown in Figure 16.

Expulsion of the hydrophobic groups on the surfactant molecules by water

molecules, produces the required tendency for aggregation and micelle

formation. Because of the reduction of surface area between the hydrophohic

part and water, the total free energy of the molecules decreases. 111US, the

most stable micelles are formed under conditions in which the free energy of

the system is at its minimum (Skidmore and Entenman, 1962)

The principal types of compounds with these properties are (a) anionic,

e. g. sodium dodecyl (lauryl) sulphate, SDSj (b) cationic, e. g. hexadccyl (cetyl)

trimethylammonium bromide, (CETAB); (c) non ionic, e. g. polyoxyethylene

monohexadecyl ether and (d) amphylolytic, e. g. Nr-dodccyl- N : N-dimethyl

betaine.

(c)

- +CH3(CH2)11 SO4 Na

+ ..
CH3(CH2)15 N (CH3)3 Br

CH3(CH2)15 (OCH2CH2)21 OH

+C12 H25 N (CH3)2 CH2

(a)

(b)

(d)
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The concentration at which micelles begin to be formed is called the

critical micelle concentration, CMC. Fatty acid salts with less than 8 c-atoms

do not form micelles. This tendency commences with sodium capylate above

a relatively high concentration. This is not a single sharp concentration, but

a narrow range (Williams et al, 1955).

In the case of nonionic compounds, micelle formation is enhanced by

the absence of electrostatic repulsions between similarly charged head groups.

In the law of mass action approach to the theoretical description of

micelle formation, it is considered that there is an equilibrium between

monomers and micelles (Mysels and Princen, 1959).

For nonionised detergents the equilibrium can be written:

n (monomers)

K = Cmi / Cmonn

micelle

where K is the equilibrium constant.

For ionised detergents!

n (long chain monomer ions) + (n - P) counter ions

(n - P)K = Cmi / Cmon Cc

micelle

where Cc is the concentration of counterions, P of which are not

bound to the micelle, e. g. the degree of ionisation of the micelle (¥ = Pin.

In dilute solutions and when the aggregation numbers exceed 20 - 30,

the free energy of micellisation is:

8 Gm = RT / n CMC.

The CMC decreases as the hydrocarbon chain length increases (Mysels
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and Princen, 1959). For the same head groups, compounds containing bnger

hydrocarbon chains form micelles at lower concentration than those containing

short chains. The CMC is related to the number (n) of carbon atoms in a

straight hydrocarbon chain by:

log CMC = A - En

where A and 13are constants for a homologous series.

The addition of salts decreases the CMC of ionised detergents (Mysels

and Princen) presumably because the screening action of the electrolytes lowers

the repulsive forces between the polar head groups, and less electrical work is

required in micelle formation. The CMC's of mixtures of detergents of the

same type lie between those of the pure separated components. For both ionic

and nonionic detergents, at low temperatures, the CMC decreases with

temperature.

The micelles of ionic compounds do not exceed a certain size. Dcbye

(1949) explains this as being due to repulsion between the ionised terminal groups.

This concept, naturally, cannot apply to nonionic agents.
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SHAPE OF MICELLES

McBain (1944) assumed the existence of ionic micelles below the critical

micellar concentration: above this, ionic and lamellar micelles are thought to

be in equilibrium. The latter contain alternating layers of water and amphi+

pathic molecules which are twice the length, because they are orientated so

that their hydrophobic parts are directed towards each other and the hydro-

philic parts point away outwards. The equilibrium is shifted at higher concen-

tration to favour the formation of lamellar shaped micelles.

The nature of the molecular aggregates of lysolecithin and mixed

dispersions in aqueous solution has been reviewed by Saunders (1966). Three

types of micelle are apparent in these systems: spherical, helical and coiled

laminar types. The main factor influencing the shape is the stereochemistry

of the individual participating molecules.

The light-scattering molecular weight of lysolecithin which forms

spherical micelles was found to be 9.2 :t O.6 x 104, indicating 181 monomers

per micelle.
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CARDIO LIPIN

Cardiolipin is a double unit in that it has two molecules of phosphatidic

acid esterified to a central glycerol (Figure 17 ) and is more appropriately

designated as diphosphatidylglycerol. It occurs in large amounts in bacterial,

mitochondrial and chloroplast membranes.

Some earlier studies indicated that cardiolipin might be a unique

component of mitochondria (Martinetti et al, 1958). Later results support this

finding (Colbeau et al, 1971). Unlike other phospholipids, which exchange

between cell organells, cardiolipin does not change its position within the cell

and remains in the inner mitochondrial membrane (McMurray and Dawson,

1969). This indicates some specific function of cardiolipin for the inner mito ..

chondrial membrane. A specific association between the phospholipid and

mitochondrial ATPase has been demonstrated (Santiago et al, 1973). Also, a

small amount of cardiolipin was found to be tightly bound to cytochrome

oxidase (Amasthi et al, 1970).

Cardiolipin is the most highly unsaturated phospholipid and only 10%of

its fatty acids are saturated (Colbeau et al, 1971). It contains more than 80%

of C18 fatty acids: linoleic acid representing more than 60% of the total. It

is therefore responsible for the high degree of unsaturation of the inner mlto-

chondrial membrane which contains 20% of cardiolipin (Fleischer et al, 1967 b,

Colbeau et al, 1971). The outer mitochondrial membrane contains only about

4 to 5%of the phospholipid. In rats, the degree of unsaturation of the fatty

.acids of cardiolipin has been shown to vary with the diet (Tischer and Glenn,

1965 ).
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Several facts suggest that cardiolipin may be found predominantly on

the inner surface of the inner mitochondrial membrane (Writz and Zilversmit,

1968, Fleischer and Fleischer, 1967) with its hydrophilic groups at least

partially located on the membrane surface (Schiefer, 1973 a, Schiefer, 1973 b).

These points will be more fully discussed in the following chapters. It is

probably associated with phosphatidylcholine which has been shown to be

necessary for the Immunogenicity of cardiolipin (Inoue et al, 1967).

Within the membrane, the fatty acid content of cardiolipin can change

quite rapidly. It has been shown by labelling methods that whereas the

glycerophosphate backbone turns over very slowly (a few days), the fatty acid

turnover is very high (a few minutes) (McMurray and Dawson, 1969). The

structures of some phospholipids are shown in Figure 17 a).
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GLUTAMATE DEHYDROGENASE

In this work, a well-defined allosteric enzyme, glutamate dehydrogenase,

has been chosen as a system for exploring the possibility of regulatory mechan-

isms associated with lipid-enzyme interactions and of possible involvement of

the allotopic phenomenon. The latter, according to Racker' s original

definition (Racker, 1967) is a phenomenon of membrane-enzyme complexes

manifest by the alteration of properties of both enzyme and membrane.

The enzyme catalyses the interconversion of glutamic and et - Keto-

glutaric acids; it performs this function in the mitochondria of the li ver. In

common with some of the other dehydrogenase enzymes, it requires 1 mole of

hydrogen from its substrate glutamic acid via the imino derivative. The

reaction is subject to allosteric regulation.

The enzyme is present in high concentration and entirely in the mito-

chondrial matrix. Its activity is to some extent dependent upon the rodox

state of nicotinamide nucleotides. In isolated mitochondria, added glutamate

is metabolized, mainly through the transaminase pathway and relatively little

is deaminated (Borst et al, 1962, De Haan et al, 1967). It occupies a central

position in mammalian nitrogen metabolism since the reaction which it

catalyses provides the major pathway for the interconversion of et - amino

group, nitrogen and ammonia. In the deamination direction, the enzyme is

thought to provide the NH3 required for carbamoyl phosphate synthesis in the

urea cycle. In the reverse direction it may catalyse tile synthesis of glutamate

from NH3 produced by various deaminases. Other important enzymes of

1amino acid metabolism usually employ pyrtdoxal 5 -phosphate in transamination

or decarboxylation as the initial reaction step.
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The enzyme has six identical protomers (peptide subunits). Each

protomer has an active site, an ADP binding site, a GTP binding site and

binding sites for thyroxine and oestrogens, The activity of the enyzme is

subject to allosteric regulation by these molecules and a number of other

nucleotides and hormones, e.g.GfPis a strong inhibitor and ADP is an

acti vator (Frieden, 1963).

Glutamate dehydrogenases from all animal tissues are strongly and

specifically affected by purine nucleotides. Since the enzyme occupies a

key place in metabolic process, there is no question that it is under regulation in

all animal tissues. It also seems clear that an important factor for the control

of its activity are the purine nucleotides.

NADH,in contrast to NADPH, binds to a second nonacti ve site with

enzymic activity being altered as a consequence of such binding. Thus, in the

absence of purine nucleotides, high levels of NADH ( > 10..4 M) inhibit the

oxidation of NADH. This inhibition is potentiated by GTP, On the other hand,

ADP relieves the NADH inhibition. Also, there is good evidence that ADP might

compete for the second NADI-Ibinding site (Pantaloni and DcsSCIt, 1969).

The dissociation constant for GTP and ADP have been found to be 0.43

..6 -6
x 10 M and 8 x 10 M respectively (Frieden and Colman, 1967). Thus, GTP

shows a much higher affinity for the enzyme than ADP. NADH increases the

affinity of GTP binding to the enzyme (Bayley and Radda, 1965).

Yielding and Tomkins (1961) observed that isolated glutamate dehydrogenase

is activated by l-Ieucine and certain other amino acids. The effect of l-Ieucine

on the isolated enzyme was further investigated by Kun and Achmatowicz (1965).
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Recently, evidence for the formation of a complex between l-Jeucine and

glutamate dehydrogenase with perturbation of enzyme structure has been

obtained (Prough and Fisher, 1972, Prough, 1972).

The enzymatically active monomeric form of bovine liver glutamate

dehydrogenase consists of six identical subunit polypeptide chains. The

presently known sequence contains 500 residues in the subunit single peptide

chain, each with a molecular weight of about 56,000 (Moon and Smith, 1973).

Amongst these are 33 lysine residues and ~ tryptophan residues. A value of

four tryptophan residues per polypeptide chain has also been suggested

(Witzmann et al, 1974).

Of the 500 amino acid residues, four have been characterised with

respect to their function in the active site, in the regulatory site, and in the

association process: lysine .. 126 (Moon et al, 1972), tyrosine .. 406 (Smith

et al, 1970, Moon et al, 1972) and lysine .. 422 (Goldin and Frtcdcn. 1971).

Recently, (Rached et al, 1974) another lysine residue, lysine .. 27 was found

to be involved in the binding of Oi" ketoglutarate.

Regulation of enzyme activity is thought to achieve through conformational

changes, and dissociation is only a secondary consequence of these changes

(Bittensky et aI, 1965).

Two conformationally different monomeric forms of the enzyme are

suggested (Tomkins et al, 1965):

1
Polymer Monomer X===== Monomer Y

Monomer X is in equilibrium with monomer Y.



IGTPATP
NAOH + Zn"

Thyro,in
OES

POlym.r .. Monomer X ""onomer Y

ADP
L fvc,ne

\. CHSHQl.t-i

Fig. 17 The effect of different reagents 011 conformation and association
of glutamate dehydrogenase



direction of

polymerisation

Fig. 18 A proposed structure for the monomer of bovine liver glutamate
dehydrogenase composed of six subunits. Each subunit is approximated b
an ellipsoid of revolution with a = 33 A0 and b = 22. SAo. As indicated, Y
polymerisation occurs as a lengthwise process

Fig. 19 The six ellipsoid subunits of a glutamate dehydrogenase o1ig~me:r
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Monomer X is in equilibrium with monomer Y, has GDH activity and

can associate to form the polymer which also has this activity. Monomer Y

has alanine dehydrogenase activity and little or no glutamate dehydrogenase

activity, and can associate to form the polymer. Thus, all reagents which

promote association of the enzyme to a higher molecular weight also activate

the glutamate dehydrogenase reaction (Figure17). On the other hand, reagents

which promote dissuciation of the enzyme to oligomer inhibit this activity and

promote alanine (and other monocarboxylic amino acid) dehydrogenase reactions

(Tomkins, 1963). TIle as sociatcd polymeric form of the enzyme has a molecular

weight of 1. 6 to 2 x 106 and is formed as a result of a concentration-dependent

association reaction. Below concentrations of O. 1 mg/mI, the predominant

enzymatic species is the monomer comprised of six subunits. At higher levels,

the enzyme polymerises to higher molecular weight forms and at 5 mg /rnl,

for example, the predominant molecular weight species is about 2 million.

From the dependence of weight average molecular weight as a function

of protein concentration as measured by light scattering (Eisenberg and

Tomkins, 1968), viscosity (Eisenberg, 1970) and other data (Chun et al, 1969),

it has been concluded that the enzyme undergoes a stepwise association with

increasing protein concentrations shifting the predominant species from the

monomer to the dimer, trimer and so on. Thus, the polymer exists as a rod

with the individual monomeric units associating along a single axis (Sund et al,

1967). The polymerisation is along the major axis of the cl lipsold subunits

(Figure18). The six eilipsoid subunits are also shown in Figure l2!

In the presence of coenzyme, GTP and G.DPbind less tightly to the

associated polymeric form than they do to the monomeric form of the enzyme.
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Also the specific activity of the enzyme in the absence of purine nucleotides

is essentially independent of enzyme concentration (Frieden and Colman, 1967).

It is interesting to note that although the amino acid composition and the

peptide maps of rat liver glutamate dehydrogenase (King and Frieden, 1970)

are quite similar to the beef liver enzyme, this enzyme lacks the ability to

undergo a concentration-dependent reversible association reaction even in the

presence of nucleotides such as ADP which promote the association of beef

liver enzyme (Frieden and Colman, 1967). It has been suggested (Ifflaender

and Sund, 1972) that the relatively small differences in the primary structure

in the case of the rat liver enzyme have caused a loss of only some of the

structural characteristics of the rat liver enzyme which, in the case of the

beef liver enzyme, are responsible for the association reaction.;

TIle level of glutamate dehydrogenase differs widely in various mammalian
\

tissues (Frieden, 1965). Liver, kidney and brain contain considerable amounts

of the enzyme (e. g. in beef liver mitochondr-ia, the concentration is at least

2 mg/ml, not allowing for compartmentation, while heart has about 10%

of their amount).

Glutamate dehydrogenase from various animal sources utilise both NAD

and NADP and are regulated by purine nucleotides. In contrast, the enzymes

from non-animal sources are specific for either NAD or NADP and are not

influenced by purine nucleotides,

There has been relatively little information acquired on the structure of

glutamate dehydrogenase from non ..animal sources. Barratt and Strickland

(1963) found that the NADP..dependent enzyme of Neurospora crassa had a
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molecular weight of about 280,000 and did not polymerise at high concentrations.

Recently (Hooper et al, 1974), the enzyme has been purified 67..fold from

Tetrahymena pyriformis.



Chapter II

MATE RIA LS and METI lODS
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MATERIALS

Glutamate dehydrogenase (as a glycerol solution) was obtained from

+Boehringer Mannheim, G. m. b. H., Germany, as were NAD and NADII. The

enzyme is pure and homogeneous.

Phosphatidylcholine, phosphatidylethanolarrune and lysolecithin from egg

yolk, phosphatidyl ser ine from bovine spinal cord and cardiolipin from ox

heart, all grade 1 and in the form of monosodium salt, were purchased from

Lipid Products, Surrey, England.

L-glutamate, rx -ketoglutar ic acid, l+a laninc, l-Ieucine, pyruvic acid

and the adenine nuc1eotides were all purchased from the Sigma Chemica 1 Co.

Specially purified sodium dodecyl sulphate was obtained from British Drug

Houses.

Hepes and pipes buffers were purchased from Hopkin and Williams

Biochemicals Ltd. Bio-Rex 70 (200 - 400 mesh) in the form of its sodium salt

was obtained from Bio-Rad Laboratories, Richmond, Californla, U. S. A.

MN silica gel G (100 mesh) was obtained from Machcrey, Nagel and Co.,

Germany, and Florisil (mesh 60 to 100) from Hopkin and Wiiliams Biochemicals

Ltd. ANS, purchased as the sodium salt from

was purified by several recrystallisations from saturated MgCl
2

solutions.

Crystalline bovine serum albumin was obtained from Sigma Chemical Co.

Ribonuclease and cytochrome c were purchased from Boehringer. All other

chemicals were Reagent grade and solutions were routinely made up in double

glass distilled water.



59

METHODS

Kinetic Experiments

A stock solution of the enzyme for kinetic studies was made by dilution

of the glycerol solution. The enzyme solution containing 10 m~/ml of the

enzyme was diluted 200 times in 0.1 M phosphate buffer, pH 8.0 containing

EDTA(1 x 10-4 M) and 10 u l of the dilute solution was taken for glutamate

dehydrogenase activity in the direction of NADHoxidation. The final concen-

trations in the assay mixture were et -Kg, 5 mM; NB Cl, 50 mM; NADH,
4

-58 x 10 M; EDTA, 0.05 mM.

For NADreduction assay, the enzyme was diluted 20 times in the same

buffer and 10 IJ.Iof it was taken for activity measurement each time. The

+final I-glutamate and NAD concentrations in the assay mixture were 10 mM

-4and 2 x 10 M respectively. Both these assays were carried out either in

0.1 M phosphate buffer, pH 8.0 or in 0.06 M hepetri buffer (with 0.02 M hepcs,

0.02 M tris and 0.02 M pipes) pH 7. 7. A mixture of these buffers was used so

that the effect of pH on lipid-enzyme complex formation could bp studied

without changing the buffer system.

Alanine dehydrogenase activity was carried out at pH 9.0 with the above

buffer system using sodium pyruvate and ammonium chloride concentrations

of 0.04 M and 0.05 M respectively. A final NADHconcentration of 8 x 10-5 M

was chosen.

NADHsolutions were made up in 0.05 M tri s-HCl buffer, pH 9.0 and

their concentrations were determined by extinction at 340 nm (
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6.22 = 1 mM NADH). They were kept in the cold and were made fresh

every two to three days. NAD+ solutions were made in the same way. Enzyme

concentrations were determined using the extinction coefficient of 0.97 mg/ml

at 279 (Olson and Anfinsen, 1952).

Enzyme activities were measured by following the decrease (NADH

oxidation) or increase (NAD+ reduction) of extinction at 340 nm, All assays

were carried out using a Unicam SP 1800. The sample compartments were

o
thermostatically controlled at 25 C. Normally, a 0 M O. OS full -scale

absorption was used. A linear O. D. change of one minute was regarded as

s ati sfacto ry•

Sonication of Rlospholipids

For the preparation of phospholipid dispersions, the required amount of

the phospholipid dissolved in chloroform-methanol was taken into a glass test

tube (Inte rnal diameter of 1. 3 cm, 2.0 cm or 2.9 cm, length 5 cm) and the

mixture was taken to complete dryness by evaporation under nitrogen at 3SoC

for phosphatidylserine and 50
0
C for egg yolk lecithin. The required volume

-4of buffer (normally, 0.06 M hepetic, pH 7. 7 + 1 x 10 M EDTA) was then

added and sonication was carried out under nitrogen in the glass test tube

surrounded by ice water with the tip of the soniprobe immersed to about half

its height and the power supply tuned to maximum cavitation. Thus, special

care was taken to prevent oxidation of phospholipids. Thi s was checked by

taking u. v. spectra of the phospholipids before and after sonication. No increase

in absorption at 233 nm was noted in our conditions. An increase in absorption

at this wa.velength has been shown to indicate possible oxidation (Klein, 1970).
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Also, no hydrolysis products were indicated when the phospholipid sonlcates

were tested by T. L.C. An MSE sonicator was used and fresh sonicates were

prepared daily. Normally, sonication for 1 .. 2 minutes in the case of PSand

CL, and 10 .. 15 minutes in the case of PC, were required to give clear

dispersions. The time of sonication was dependent on phospholipid concentration

and was found to vary slightly from experiment to experiment.

Fluorescence Measurements

Fluorescence studies were carried out on a Perkin-Elmer fluorescence

spectrophotometer MPF-3. The enzyme in glycerol solution was dialysed in

..4
0.1 M phosphate buffer, pH 8 (+ 1 x 10 M EDTA) overnight. For intrinsic

fluorescence studies, 10ml of the dialysed enzyme was taken each time giving

final enzyme concentration of 5 .. 6 mg/ml. Excitation and emission wave ..

lengths of 290 - 292 nm and 333 .. 334 nm were chosen. In these conditions

there was very little photodecomposition of the enzyme. A filter at position ~

was used which minimised the scatter contribution from phospholipids to 2 .. 8%

(depending on phospholipid concentration) of the fluorescence due to free enzyme.

Extrinsic fluorescence studies were carried out using ANS(magnesium

salt) as the fluorescence probe.

In the case of the zwitterionic and cationic amphiphiles, LL, PC and

CETAB, the negatively charged probe was incorporated into their structures.

These amphiphiles showed good affinity for ANSbinding and gave rise to

. maximum fluorescence at low concentrations. An excitation wavelength of

370 nm was chosen and A max of emission of ANSfluorescence incorporated

into the amphiphiles was found to be 466 nm, 473 nm and 476 nm for PC, LL
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and CETABrespectively. The possibility of complex formation was followed

by looking at fluorescence changes on addition of the enzyme (0.2 .. 0.3 mg/ml).

The ANSconcentrations used in these experiments were 1 mM in the case of

PC and CETAD and 10 mM in the case of LL. The enzyme was previously

dialysed in 0.1 M phosphate buffer, pH 8. O.

To follow the interaction between the enzyme and the anionic phospho..

lipids, PSand CL, ANSwas first added to the enzyme and fluorescence changed

on addition of the phospholipids were then followed. The slits were always left

at 6 nm and the filter at position 43 for these studies. Excitation and emission

wavelengths were normally at 370 nm and 470 nm respectively. ANSand

enzyme concentrations were 20 .. 25 mM and 0.6 .. O.7 mg/m!. The phospho-

lipid concentration was varied from experiment to experiment. All these

studies were carried out in O.06 M hepetin with 6 .. 8 mM phosphate buffer

at a final pH of 7 .. 7.3. In all cases, the required quantity of the enzyme

(usually 0.2 ml) dialysed and left in O.1 M phosphate buffer (+ EDTA), was

added to an ANS solution in hepet ri buffer (0.06 M, pH 6.0) in the absence or

presence of additional metabolites. TIle phospholipids were sonicated and left

in the hepetri buffer and were added last. Control measurements were taken

and the true enhancement of ANSon binding to the enzyme and further

fluorescence Increase on addition of the anionic phosholipids were recorded.

When the effect of NADHon lipid-enzyme complex formation was explored,

excitation and emission wavelengths o~410 nrn and 550 nm were chosen. No

NADHfluorescence could be detected in these conditions and the slight

fluorescence due to bound ANSwas detected at high sensitivities. TIle final

volume of the mixtures in the 1 cm cell was normally between 1.2 .. 1.5 ml.
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Extraction of GOB-Phospholipid Complex into Isooctane

PC .. PS cosonicates were prepared at O. 1% concentration. Sonication

-4
was carried out in 0.06 M tris buffer, pH 6.0 (+ 1 x 10 M EOTA) in a manner

described above. 5 ml of the sonicates were prepared each time with the

zwitterionic and anionic lipids at different ratios (PC: PS of 3 : 2, 4: 1, 2:..3

and 1 : 4 • 1 ml of each phospholipid sonicate was added to 1 ml of the enzyme

(0.86 mg/ml) in a 50 ml volumetric flask and the mixture was shaken for a

few minutes. To this 0.6 ml of ethanol was added which made it 30% with

respect to ethanol. 5 ml of isooctane were then added and the flasks were

shaken on a flask shaker at a low speed for 30 minutes. After shaking, the

mixtures were centrifuged in a bench centrifuge for ~ minutes and the Iso-

octane layer was removed.

Stopped -flow Experiments

A stopped-flow apparatus made in the Department (Benton, 1972) was

used. The enzyme was previously dialysed in O. 1 M phosphate buffer. pll

8.0 (+ EDTA). Phospholipid sonicates were prepared in 0.02 M hepctri buffer,

pH 7.7. Transmission changes were then followed at 310 nm and 15°C with a

2 cm cell path.

Preparation of Reef Liver Mitochondria

The procedure described by Brosnan et al, 1973, was followed. All

manipulatior.s were carried out at 4°C. Beef liver was freed of connective

tissue capsule and cut into small pieces. These pieces were then ground in

a cooled meat grinder and suspended in a homogenisation medium (Medium A),
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consisting of mannitol (220 mM), sucrose (70 mM), hepcs (2 mM), bovine
..4

serum albumin (1 mg/ml) and EDTA (2 x 10 M) at pH 7.4. For each 100g

of liver, 300 ml of the medium were used. The suspension was homogenised with

three passes of a motor-driven homogeniser in a Pottcr-Elvehjem homogeniser

of large clearance. A preliminary centrifugation at 800 g for 10 minutes

removed unbroken cells, nuclei, cell debris, etc. and mitochondria were

isolated from the supernatant fraction by centrifugation at 8000 g for 10 minutes.

The mitochondria were subsequently washed twice by resuspension in the

homogenisation medium and recentrifugation at 8000 g for 10 minutes. All these

operations were done at 4oC, using a Sorvall RC2 .. 13super speed centrifuge.

Protein concentrations were determined by the Biuret method using bovine serum

albumin as standard.

PlO ratios of the mitochondrial suspensions were measured using a

reaction mixture containing 20 mM tri s-HCl buffer, 210 mM mannitol, 70 mM

sucrose, 2 mM MgC12, 10 mM KCl and 5 mM NaHPO .. KHPO , pH 7.4. Finalz 4. 4

succinate and ADPconcentrations were 8 mM and O. 32 mM respccti vely. 4 - 5 mg

of mitochondrial protein was used and the process was carried out at 2SoC on an

oxygen electrode. The PlO ratios of two different mitochondrial preparations

were found to be 1.75 and 1.9 respectively.

Chromatography of Mitochondrial HI0Spholipids

Mitochondria were prepared from fresh beef liver as described above.

20 ml of the mitochondrial suspension containing 480 mg of protein were added

dropwise into 260 ml of swirling methanol (13 ml per ml of mitochondrial

suspension). 520 ml of chloroform (26 mg/rnl of mitochondrial suspension) were
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then added and the mixture was homogenised in a Potter-Elvehjem homogeniser.

The homogenate was then filtered through a sintered glass filter of coarse

porosity under vacuum. To this, I3HTwas added to the final concentration of

o.oss,

The extract was then transferred to a separating funnel to which 800 ml

of O.034%MgCl2was added. The mixture was then shaken thoroughly and was

left overnight for separation of the layers. The lower phase was then removed

and the upper phase discarded.

To the lower phase, 600 ml of a mixture prepared by mixing in a separ ..

atory funnel chloroform, methanol and 0.034% MgCl2 in the ratio of 8 : 4 : 3

(vol/vol/vol). This partition was repeated three times. After each partition

the upper layer was removed and discarded. The filtrate was then transferred

to a round-bottomed flask and dried in vacuo by attaching the flask to an

aspirator and then leaving it under vacuum overnight.

Florosil Column Chromatography

Florosil (60 - 100 mesh) was first acid ..treated. 100 g of florosil was

mixed with 350 ml of cone, HCI in a 1 litre flask and heated on a steam bath

for 2. hours. The supernatant was decanted carefully. The residue was washed

with 50 ml of cone, HCI and heated overnight with another 350 ml of cone. HCI.

The supernatant was decanted and the residue was washed with water on a

Buchner funnel until washings were neutral. The residue was then dried and

transferred to a glass dish and then heated overnight at 120oC. The acid

treatment was repeated and the residue was washed with 1S0ml each of methanol,

methanoloochloroform (1 : 1, v/v), chloroform and tina lly, ether. The resldue
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was then transferred to a glass dish, allowed to dry and finally activated by

heating overnight at 1200c..

A column with an internal diameter of 2 cm and a height of 35 ern was

packed with 30 g of acid -treated florosil slurried in chloroform. The total

lipid extract (about 400 mg net weight) was dissolved in 5 ml of chloroform and

then applied onto the column. Elution of the column with chloroform and

chloroform-methanol was then carried out in the cold at the rate of about

3 ml/min. Freshly distilled solvents were used. The following fractions were

obtained.

Fraction 1, chloroform, which elutes neutral lipids, such as hydrocarbons,

sterols and fatty acids.

Fractions 2 & 3, chloroform-methanol (95 : 5, vIv) and chloroform-methanol

(90 : 10, vIv), which elute phosphatidic acid and cardiolipin.

Fraction 4, chloroform -rnethanol (3 : 1, v/v). which elute phosphatidy lethanol-

amine and phosphatidylglycerol.

Fractions 5 & 6, chloroform-methanol (1 : 1) and pure methanol which elute

lecithin and lysolecithin.

Progess in fractionation was followed by TLC on small slides. The

following solvent systems were used:

For neutral lipids:

Petroleum ether-ethyl ether, acetic acid (90 : 10 : 1)j
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For phospholipids:

I) Chloroform-methanol-H20 (65 : 35 : 5);

II) Chloroform-methanol-NH3 (65 : 25 : 5).

For phospholipids, solvent system II was found to be more appropriate as the

spots were nearly of a compact shape.

Volumes of solvents for fractions 1 - 6 were: 200 ml for fraction 1,

100 ml for fraction II, 200 ml fraction III, 340 ml for fraction IV, 100 ml

for fraction V and 300 ml for fraction VI.

Fractions II and III (containing cardiolipin) were pooled together, so

were fractions V and VI (containing lecithin).

Total phosphorus estimation was then carried out. An aliquot of each

lipid solution was put in a large test tube (Pyrex) and the solvent was evaporated

o
to complete dryness in a stream of air at 35 C. 2.0 ml of perchloric acid

(72%)were then added and the strength W.1S digested be leaving the tube in hot

sand, heated electrically. This was continued until digest was clear and

colourless. The cooled digest was then diluted to 6 ml with water and was

mixed on Vortlex mixer. ~ ml of Amidol solution (19701 freshly prepared) and

1. 0 ml of molybdate solution were added arl absorbance of the sclution was read

at 1180 nm, A solution of KH2PO4 was used as standard phosphate solution.

The total lipid obtained in the five fraction was found to contain 3909 mg

of phosphorus corresponding to 94 mg of phospholipids. This gave a value of

8. 1 mg phosphorus/mg of mitochondrial protein.

The presence of cardiolipin, phosphatidylethanolamine and lecithin were
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demonstrated by TLC on a large plate. These samples were applied to a plate

with CL, PE and PC standards. The plate was then run in a solvent system of

chloroform-methanol-ammonia 65 : 25 : 5 (vol/vol/vol), let to dry and charred

with cone. H2S04 with slight heating. The positions of the samples are shown

in Fig. ~) and their R. f. values indicated in the brackets.

It can be seen that the fraction containing cardiolipin showed two addtt-

ional spots, one corresponding to PE (R.f. 0.41) and one of a lower r. f. value

(0.33) which was probably a decomposition product of cardiolipin or phosphat-

idylethanolamine (Fleischer et al, 1967). This spot may also correspond to

phosphatidylinositol or lysolecithin (Amasthi et al, 1971).

Final purification of the samples was then carried out by TLC. The

plates were prepared as described in the previous chapter. A layer thickness

of O.75 mm was chosen. An automatic streaker was used for application of

the samples to the plates. About 20 mg of the lipid was applied to a plate each

time. Thts streak occupied about ~ rd of the plate. A sample of the appropriate

standard was also applied onto the plate. The plates were then immediately put

in a tank saturated with solvent system chloroform-methanol-NII
3

(65 : 25 : 5)

~ 0
in the cold ( - 4 C).

The solvent was allowed to ascend to within 2 - 3 em of the top of the

plates. The plates were then allowed to evaporate for a short period. They

were then partly covered with a clean glass plate so that the spot corresponding

to the standard and a small section of the streak corresponding to the sample

were exposed. The phospholipids were then detected by the use of Zinzade's

reagent (sodium molybdate, hydrazime sulphate, and cone, 11
2
SO4)' TI1C part

of the plate corresponding to the blue spots were then scraped off and dissolved
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in chloroform-methanol (2: 1) with 0.05% BHT and left in the deep freeze.

The purity of these lipids was then checked by TLC on a large plate.

Each phospholipid showed only one spot corresponding to the standard.

Assays of Mitochondrial Enzymes

Glutamate dehydrogenase activity was carried out in 0.06 M hepet ri

buffer, pH 7.7 (+ 1 x 10-4 M EDTA) in the presence of 0.1% Triton X-100 and

0.4 mM sodium cyanide.

Rotenone-insensitive NADH-cytochrome c reductase was assayed by

following the reduction of cytochrome c at 550 nm. The assay mixture contained

0.1 mM NADH; 0.1 mM cytochrome c; 0.3 mM KeN; 1.5 mM rotenone and

50 mM phosphate buffer, pH 7. 5.

For succinate-cytochrome c reductase, the assay mixture contained 3 mM

succinate, 0.1 mM cytochrome c, O. 3 mM KeN in 50 mM phosphate buffer,

pH 7.5.

Phospholi pase e Effect

Beef liver mitochondria were prepared as described above. TIley were

resuspended in a medium containing 0.25 M sucrose and 50 mM tris (+ 1 x 10·
4
M

EDTA), the pH of which was adjusted to 7.4 with acetic acid. MgSO4 wa s then

added to give a final concentration of 1 mM, and incubation with various amounts

of phospholipase c was carried out with stirrhg for 15 minutes at room

temperature. The magnesium salt was necessary for the requirement of a

positive zeta potential for phospholipase c action. After incubation, the
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mitochondrial suspension was centrifuged at 44, 000 g for 10 minutes using a

Bechman model L-2 analytical ultracentrifuge. The pellet from this centri-

fugation was resuspended in the sucrose-trf s-acetate medium.

The effect of different concentrations of phospholipase c was examined

by the use of the marker enzymes.

Digitonin Effect

To study the effect of digitonin on beef liver mitochondria, a 1% stock

solution was prepared by adding 0.25 M sucrose in SOmM trt s-acctate buffer,

pH 7.4 (medium B). mixing briefly and sonicating for 2 min in ice. All

digitonin solutions were prepared immediately before use. Aliquot of mito-

chondrial suspensions in medium A were placed in an ice bath and different

amounts of cold digitonin solutions were added with continuous stirring. After

20 minutes, the mitochondrial suspensions were centrifuged at 44, 000 g for

10 min, using the Bechman model L..2 analytical ultracentrifuge. The pel iets

from this centrifugation were resuspended in the suc rosc-t rt s-ncetate medium

and protein estimation of the fractions was carried out. The fractions were

then assayed for the matrix, inner and outer membrane enzymes.

Binding of Purified GDH to Mitochondrial Membranes

Binding affinity of glutamate dehydrogenase to different sides of

mitochondrial membranes was explored by incubating the purified enzyme

.(the enzyme in glycerol solution was dialysed in O.1 M phosphate buffer,

pH 8.0 + EDTA) with different mitochondrial suspensions.



71

For binding of the enzyme to the outer surfaces of the outer and the Inner

membranes. whole mitochondria and mitoplasts were used. These were

previously washed and pelleted in medium B (0.25 M sucrose in 50 mM tris-

acetate buffer, pH 7. 4).

For binding of the enzyme to the inner surface of the inner membrane.

the mitoplasts were either sonicated in medium B or transferred to a hypotonic

environment (0.06 M hepetri buffer. pH 7.4). These were then washed and

recentrifuged at 44,000 g for 20 minutes, GDII at the final concentration of

0.018 mg/rnl was used and the mitochondrial suspensions had protein concentra-

tions in the range of O. 15 to 0.4 mg/ml. Control experiments were carried out

with the enzyme alone and mitochondrial suspensions alone. The suspensions

were then made to 5.0 ml with medium B and were then centrifuged at 44,000 g

for 20 minutes. All these procedures were carried out in ice or at 40C and

the supernatants were assayed for glutamate dehydrogenase activity.

Binding of Endogeneous GDH to the Inner Mitochondrial Membrane

For these experiments. mitoplasts prepared by digitonin treatment were

used. Sonication (for 30 seconds) or transfer to a hypotonic environment

(0.06 M, hepetri) were used for preparation of mixtures of right-side and

inside-out vesicles. NH4Cl and pH effects were studied by using solutions made

at different NH4Cl concentrations in medium B or at different plls in 0.06 M

hepetri buffer. Normally, 0.5 ml of the mitoplast suspension was made up to

5 ml with final protein concentration of 1.2 - 1.4 mg/rnl, GDH activity oI the

supernatant fractions was determined with 10.- 20 ml of each sample.

The effect of metabolites on binding of GDB to the inner mitochondrial
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membrane was explored by incubating the mitoplasts with the metabolites

in medium B or 0.06 M hepetri buffer. Normally, the final protein concen-

tration was in the range of 0.3 - 0.5 mg/ml. In some cases, it was higher.

Sonication of the mitoplast suspensions in medium Bwas carried out for 30

seconds and the samples were centrifuged at 44, 000 g for 20 minutes.

The supernatant fractions were then assayed for their glutamate

dehydrogenase acti vities using 10 or 20 ml of each fraction.

Electron Microsco~

Mitochondria or mitoplasts were prefixed in 4% glutaraldehyde which was

made up in 0.08 M sodium acetate buffer, pH 7.4 for a period of 24 hours. They

were then washed with the same buffer. 1% Os04 was used as a post-fixative.

The preparations were left in this solution for a period of ± hours. They were

then washed and left overnight in the acetate buffer.

Dehydration was then carried out with the following concentrations of

ethanol:

30% 1 hour

50% 3 hours

70% overnight

90% 1 hour

absolute ethanol 15 minutes

absolute ethanol 10 minutes

The preparations were then embedded first in a mixture of 30% araldite

and 70% ethanol for six hours and then 50% ara1riite and 50% ethanol overnight.

The second step was repeated with a mixture of 70% araldite and 30% ethanol.
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These were then transferred into capsules which contained pure a raldite and

were left in an oven at 600C for three days. They were then sectioned.

Staining was done with 2% Uranyl acetate for 30 min and 1% lead citrate

for 10 min.



Chapter III

KINETIC EXPERIMENTS:

RESULTS and DISCUSSION
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Initial experiments were carried out to study the influence of the

charge type 'of simple amphiphiles on their interactions with the enzyme.

It has previously been shown that the charge type of the phospholipid

head group determines the extent of complex formation with the enzyme (Dodd,

1972, Dodd, 1973, Ncmar-Co.rgani and Dodd, 1974). The same rule applied to

. the binding of single amphiphiles such as the ionic detergents, despite the

differences in the phase behaviour of the two types of amphl philes,

The utility of the detergents lies in the fact that their phase behaviour

is simpler than the phospholipids under the conditions chosen for this study.

Micelles are in equilibrium with high concentrations of the monomer, which

means that the monomer ..detergent interaction can playa significant role in

the binding of the amphiphile to the protein. In contrast with the detergents,

the phospholipids used in this investigation were in the form of single-shelled

bilayer vesicles for which no signlftcant concentration of monomer is found

(Robinson. 1966).

Figure20shows the effect of these compounds on the glutamate dehydro-

genase activity of the enzyme. Different amounts of the detergents were

added to the assay mixture each time and the activity was measured. TIle

anionic detergent SOS inhibits the enzyme, but the zwitterionic amphiphile

lysolecithin does not affect the activity up to a concentration of 1 x 10"3M.

A short-chain amphiphile, n-hexane sulpl-onate, which did not form a micelle

at the range of concentrations used in our studies (up to 5 x 10"3M) did not

cause any inhibition of the enzyme.

The most significant difference between the effect of the simple single
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Fig. 23/4 The effect of the preliminary incubation of glutamate dehydrogena e
with SOS and MLP at different detergent concentrations
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Fig. 25/6 The effect of the preliminary incubation of glutamate dehydroge _
with MLP at different detergent concentrations
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Fig. 27 The dependency of the initial rate of loss of activity of glutamate
dehydrogenase on detergent concentration
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Fig. 28 The dependency of the time taken for 50% denaturation of glutamate
dehydrogenase on detergent concentration
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chain amphiphiles and the anionic phospholipids is that the former class of

compounds 'can bring about an irreversible inhibition of the enzyme. In the

case of SOS and MLP, it was found that the effect of the preliminary incubation

of the detergent with the enzyme was concentration dependent. TI1e same was

found for the cationic detergent OBOA.

TIle enzyme ..detergent complex formed at SOS concentrations up to

0.1 mM was dissociated on dilution and the enzyme activity was not altered.

Higher concentrations of the detergent brought about time ..dependent inhibition

(Figures 21 - 26) and dialysis (in 0.1 M phosphate buffer, pH 8.0 -tEOTA in

the cold) showed that this was an irreversible process. The reversihility of

the detergent inhibition under these conditions has been previously studied

(Rogers and Stanley, 1969). Double reciprocal plots of enzyme velocity versus

glutamate concentrations for glutamate dehydrogenase treated with low

..4
concentrations of SOS « 10 M) were made. The results indicated an

uncompetitive inhibition mechanism.

MLP was found to be less effective (about one order of magnitude less)

than SOS in bringing about this effect (Fig.21-6). CETAI3 and DI3DAshowed

similar behaviour.

The initial rate of loss of activity of the enzyme increased sharply with

increasing detergent concentration and was found to be a linear function of

the detergent concentration over a limited range. This was 1 - 2.25 x 10-3 M

..4
in the case of MLP and 2.5 .. 4 x 10 M in the case of SOS (Pigure~. The

times taken for 50% denaturation vary with detergent concentration as shown

in Figure 28.
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+Fig. 30 The effect of I-g lu and NAD on the rate of denaturation of
glutamate dehydrogenase
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Dialysis experiments (in O.1 M phosphate buffer, pH 8.0) with detergent

concentrations of 0.2 mM and O.5 mM showed that the effect was an irreversible

process. At the higher detergent concentration the enzyme lost all its activity

after incubating the mixture for ~ minutes and failed to regain any activity

after dialysis. At detergent concentration of 0.2 mM, 37% inhibition was

obtained after incubation for a period of 30 minutes. When the mixture was

rapidly dialysed at this point, no further loss of activity was found,

The cationic detergents also induced a time-dependent irreversible

loss of activity of the enzyme when the two were incubated together and the

kinetic curves resembled those obtained for the anionic detergents. Generally,

in this type of study, SDS is chosen as a model system since its properties in

aqueous solutions are well understood and the variation of monomer and aggrc-

gate concentration with such external parameters as ionic strength (Myscls

and Princen, 1959) and temperature (Goddard and Benson, 1957) is known

precisely.

The substrate Q' -Kg slowed down the rate of denaturation, but did not

abolish it (Figure29). The time taken for the enzyme to reach 50% denaturation

was found to increase from 30 minutes to 370 in the presence of 10 mM rx -Kg

,-4 +
at SDS concentration of 1.5 x 10M. NADH, l+glucamate and NAD increased

the rate slightly (Figure 30).

It has previously been shown that Q' -Kg protects glutamate dehydrogenase

against inactivation by 4-10doacetamidosalicylic acid (Malcolm and Radda,

1968) and 2, 4, 6-Trinitrobenzenesulphonic acid (Freedman and Radda, 1968).

In this case, the authors concluded that modification was probably occurring

at the active site. In our case, however, it is difficult to make such conclusions
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as the effect of these m: tobolites could well occur through conformational

changes in the enzyme, which arc denatured at different rates by SDS. Thus,

the type of conformation may determine the rate (extent) of denaturation. It

is also interesting to note that high NAO+ concentrations have been shown to

stabilize the enzyme against urea inactivation, whereas low NAD+ concentrations

increase the rate of urea inactivation (Oi Franco, 1971). Aleo Friden (1963)

found that low concentrations of NADII and NADPI-lcaused an increase in the

rate of denaturation in trl s-ucetatc buffer, while higher concentrations of

these coenzymes stabilized the enzyme.

Frequently, it has been observed in the literature that the heat stability

of particular enzymes is influenced by the presence of the substrate for the

enzymic reaction. In most cases, the substrate causes increased stability

of the enzyme, but cases of substrate-induced instability have also been

observed (Caravaca and Grisolia, 1959). For beef liver glutamate dehydrogen-

ase, it was first shown by Inagaki (1959) that the enzyme was inactivated more

rapidly in the presence of NADH than in its absence.

At certain detergent concentrations, the process of denaturation showed

first order kinetics with a number of clearly defined steps (Figures 31 and 32).- -
In other cases, attempts to fit the data to equations for a first or second order

process proved unsuccessful. TIle process was hence more complex.

The first portions of these curves indicate rapid denaturation caused

by interaction between detergents and the enzyme followed hy slower charges.

These charges were proportional to the detergent concentration. Similar

findings have been reported on the interaction between SDS and carboxypcptlduses

A and B (Nak~gama and Jirgensons, 1973).



Fig. 33 The effect of NH4Clan the extent of inhibition of glutamate
dehydrogenase activity by SOS
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Inhibition of glutamate dehydrogenase activity diminished with increasing

ionic strength, suggesting a strong electrostatic component in the association

(Figure 33).

The alanine dehydrogenase activity of the enzyme was affected by CL in

the same way (Figure34). Also, both SDS and MLP inhibited this activity of the

enzyme. SDS at concentration of 5 x 10-5 M cau~ed 41% inhibition while MLP

brought about 49% inhibition at 2 x 10-4 M. Neither ri-hexane sulphonate nor

-3lysolecithin affected enzymic activity at concentrations up to 10M.

In aqueous solutions, SDS can exist as monomer and as micellar

aggregates. the concentration of each depending upon the total SOS conccn-

tration, the ionic strength. and the temperature. An important property of

the system is that increasing the total concentration at a given ionic strength

will not result in a measurable increase in monomer concentration above a

specific critical value, the critical micelle concentration. Above this

concentration, each new SDS molecule added to the system is Inco rpo rater

into a micelle. The critical micelle concentration decreases with increasing

ionic strength at constant temperature. Thus, it is possible to vary the

monomer and micellar composition by simply altering the ionic strength. Thus,

the interaction of both SDS species with a protein can be studied.

Reynolds and Tanford (1970) studied the binding of SOS to a variety of

proteins .at high binding ratios. The ionic strength was varied from O.OSto

0.52 and the total concentration of SDS was in the range of 0.5 to 4.6 mM.

The equilibrium monomer concentration (cf., is below the critical micelle

concentration) based on the ionic strength dependence of the critical micelle

concentration of SDS was in the range between 0.5 and 3.58 mM.
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It was found that increasing the total concentration or the micellar

concentration did not result in an increase in the binding ratio (of bovine

serum albumin, chymotrypsinogen, ovalbumin and lysozyme);' However, an

increase in the equilibrium monomer concentration led to a larger value of

g SOS/g protein.

The plot of the binding ratio as a function of the equilibrium monomer

concentration was found to have two plateau regions resulted from a sudden

drop in the binding ratio with the equilibrium monomer concentration.

Figures 35 & 36 show plots of activity of SDS and 11LP treated enzyme

against different detergent concentrations at different times of detergent

treatment. They resemble those obtained by Reynolds and Tanford in that

the curves have all two plateau regions. Figure.32 shows that at least

over a limited range, the initial loss of activity is a linear function of the

detergent concentration. Hence, it is reasonable to compare the two systems

(equilibrium binding and kinetic) and suggest that the concentration at which

this sudden drop in activity is occurring (Figures 35 - 36) is in fact a value

related to the equilibrium monomer concentration.

Comparison of Figures 35 &36 indicates that the concentration at which

the sharp drop in activity occurs is about one order of magnitude lower in the

case of SOS than it is in the case of MLP. The reason for this is that the

charge density on the sulphate group would be expected to be lower than that

on the phosphate group. The electrostatic repulsive forces in the latter case

would be higher and this would cause a higher. value for the critical micelle

concentration. TIle charge density in both cases, of course, depends on the



80

pHand the ionic strength of the medium.

Reynolds and Tanford made the following conclusions from their studies

on binding of SOSwith various proteins:

a) The binding of large amounts of SDSto protein is primarily hydrophobic

in nature.

b) TIle effect of ionic strength is entirely on the concentration of free SOS

monomer.

c) Micelles do not bind to the proteins investigated.

As mentioned above, n-hexane sulphonate does not form micelles. The

reason for this is that micelle formation requires the existence of two opposing

forces, the hydrophobic force favouring aggregation, and a repulsive force

that prevents growth of the aggregates to larger size. In hexane sulphonate.

because of its short hydrocarbon chain, the hydrophobic force is not sufficient

to cause micelle formation.

In general, association between proteins and ligands can only occur if

the free energy gained hy association with the protein exceeds the free energy

gained by other processes to the ligand molecule (Tanford, 1972). In thi s casc,

therefore, micelle formation and association with the protein represent

competiti ve phenomenon.

The standard free energy charge of mi.cellization is given by:

o 0
IJ. mic. - ~ w = RT 1n(1) CMC

o . 0
where ~ mIC. and IJ. ware standard free energy of the
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amphiphilic molecule in a micellar structure and free in aqueous solution,

respecti vely.

The standard free energy change for the binding of the arnphip'u lic molecule

to the protein is given by ~ 0p - ~Owwhere ~0p is the free energy of the

molecule when bound to the protein.

Thus, the binding of m arnphiphi lic molecule to a protein takes place if

o 0 11 1 o. 0 Th fib f dIJ. P - ~ w is sma er than ~ mIC - ~ w. e ormer va ues have een oun

to be more negative than the latter ones.

In our studies, the process of enzyme inhibition may be considered as

taking place in two stages:

1) Complex formation between the enzyme and the detergent molecules.

2) Conformational changes occurring in the enzyme with los s of acti vity,

For the first step, it has been found that both anionic and cationic

amphiphiles are effective but the zwitterionic amphiphiles such as lysolecithin

are most effective. In this case, the process of complex formation may be

firstly due to the interaction of the hydrophilic residues in the enzyme (such

as the e -amino groups of lysine residues) with the polar head groups of the

amphiphiles. This may be followed then by hydrophobic or Van de r Waals

interaction between the hydrophobic residues in the enzyme and the hydro-

carbon chains in the detergent molecules. The process may thus be considered

to take place in two stages, and the high negative free energy charge for ~0p _

~ Ow may have contributions from the two ty~s of binding.
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The specific attraction for the hydrophilic head groups may thus be

considered to be the primary and major factor with the hydrophobic binding being

the secondary factor. Indeed, it is quite possible that the interaction of the

head groups of the amphiphi le s with the polar residues in the enzyme exposed

to the aqueous medium cause some conformational changes in the enzyme with

the hydrophobic residues being exposed as the result. In this type of situation,

the hydrophobic binding could be an important secondary process and could

make extensive contributions to the free energy change. It is quite possible that

an amphiphile such as ri-hexane sulphonate does bind to the enzyme, but because

of its short hydrocarbon chain, the free energy change due to the hydrophi lic

interactions is not high enough.

The interaction of phospholipids with the enzyme was found to resemble

that of the simpler amphiphiles in that the charge type of the head group deter-

mines the extent of complex formation. Since the phospholipids of the cellular

membranes have either zwittcr'ionic or anionic head groups, members of these

groups were studied. Beef heart cardiolipin and beef brain phosphatidylserine

inhibited the enzyme strongly (Figures 37 - 38) with apparent Kl in the range

of 1-2 ~m and 3-5 ~m respectively in the direction of reductive amination.

Sonication of phospholipid dispersions were carried out as described in

the previous chapter. 0.1 M phosphate buffer, pH 8.0 was used as the

sonication medium. The effect of ionic strength and pH on sonication of

phosphatidylserine was studied. It was found that the extent of inhibition of the

enzyme varies with preparations of phosphatidylserine in phosphate buffers of

different molarities but not of different pH values in the range of 6.5 - 9. O.

Very small differences in the sonication conditions such as size of the probe,



(Reproduced from the M. Sc. Thesis, M. Ncmat-Gorgani, 1972)

Fig. 39 The time dependency effect of phosphatidylserine sonicated in
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volume of the dispersion, lipid concentration presence of organic solvent, time

of sonication and temperature were found to have profound effects on the

nature of the sonicated product.

Phospholipids may undergo two forms of degradation in an aqueous system.

Hydrolysis may occur at the S-ester linkage with the production of lysophosphatide

and free fatty acids, or the unsaturated hydrocarbon chains may be oxidised. We

checked for the possibility of degradatton using thin layer chromatography, as

suggested by Skidmore and Entenrnan (1962). No lipid decomposition products

were formed under our sonication conditions.

To determine the extent to which the sample had been oxidised, the

increase in absorption at 233 nm due to increasing diene conjugation was

measured (Klein, 1970). Sen et al (1956) investigated the autoxidation of phos -

phatidylethanolamine and phosphatidylcholine and has shown that changes occur

ill the ultraviolet spectrum at 235 nm and at 270 - 280 nm on exposure to oxygen.

The former charge reflecting the Increase in conjugated diene hydropcroxidcs,

we checked carefully for the production of hydroperoxides during the sonication

process. The degradation of lipid hydroperoxides leads to the production of

lipid dicarbonyl compounds, which are potent cross-linking agents and lead to

irreversible enzyme inhibition. Our observed inhibition was not due to lipid

decC'mposition products.

The inhibitory effect of pbosphatidylserlne sonicates (in O. 1 M phosphate

buffer, pH 8.0) were studied at different time intervals and it was found that

this effect greatly diminished with time (Ftgure D), Sonication after diminution-
of inhibitory power failed to bring hack the original property of the lipid.

Subsequently, other buffers were tried as sonicating media and it was found
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that tris and hepe s (N-2Mhydroxyethylpipcrazine N'M2 ..ethane sulphonic acid)

buffers were much better media for sonication of the lipid. As indicated in

Figure40, the time dependency observed is much less when the sonicates arc

made in these buffers. A mixture of three buffers - hepes, pipes (piperazine-

N, N'-bis(2 ..ethane sulphonic acid) ) and tris, each at 0.02 M concentration,

pH 7.7 (+ 1 x 10-4 M EDTA) was found to be a good sonication medium. A

mixture of these three buffers which cover a pKa range of 6.8 (pipes) to 8.3

(tris) was chosen so that the effect of plI on enzyme-lipid complex formation

would be studied without changing the buffer system. TIle time dependency

effect was found to be very low in this system (Plgure atj), which was used for

all the subsequent sonications. Stability of the enzyme in hepctic buffer of

different molarities at OoC and 25°C was Inve stigated and the results are shown

in Figures 41 to 44.

Thi s time ..dependency effect may be because of the special property of

hepes, tris and pipes in not binding any metal ions. The metal-buffer binding

. . -++ -++ +I- +t-
constants obtained for these buffers for Mg ,Ca ,1v111 and Cu were found

to be negligible in all cases (Good et al, 1966). However, binding of the metal

ions and other cations in solution may take place by phosphate radicals in

solution and this causes a different ionic environment for the phospholipid bilayer.

As discussed in the previous chapter, the ionic environment of phospholipids Is

of fundamental importance to their physico ..chemical properties.

According to Ohki and Aono (1970), the effect of change on the bilayer in

extending the surface area of a lipid structure can be calculated from the

relative free energy charge Grel over the extension, from the equation:

(see next page) .....



Fig. 40 The time dependency effect of phosphatidylserine

(Reproduced from the M. Se. Thesis, M. Nemat-Corgani. 1972)
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Grel = 8 (A - Ao) +
2 2

2 TT e c-

eO K A

where Ao is the molecular area per molecule before extension

(in A02), and A is the area per molecule after extension (in A
02
), eO the

static dielectric constant of the surrounding water, 8 the degree of ionisation

of the polar groups, K the Dcbcye-Huckel constant, e the electronic charge

(len e. s. u, ) and 8 the surface tension (in dyne/cm) after expansion. As 5

increases, in other words, as the net charge per molecule rises, the relative

free energy of,the bilayer rapidly increases. For the bilayer to be a stable

structure, it is essential that the charge per molecule is below 1.25 e (Ohki and

Aono, 1970). Thus, it may be argued that in phosphate buffer, this condition is

not met.

The fact that sonication of the phospholipid vesicles did not restore the

original inhibitory power of the lipid probably indicates that aggregation did

not occur. Fusion would be one of the candidates for the process of aggregation.

However, the possibility of a conformational change in the state of the lipid

bilayer from a Pex to a Pin conformation (refer to the previous chapter) cannot

be ruled out. The availability of the negatively charged head groups of the

lipid Is essential for complex formation.

When the anionic phospholipids (phosphatidylsertne or cardio1ipin) were

incubated with the enzyme at 25°C (Figure~) and aliquots were assayed for

enzyme activity at different periods of time, it was found that the extent of

inhibition was not affected by the time of incubation. Thus, the equilibrium

in the reverrtble formation of the complex at this temperature was formed

rapidly.



Fig. 46 Lineweaver-Burk plots of glutamate dehydrogenase inhibition by
cardiolipin at different NAO+ concentrations
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Fig. 47 Lineweaver-[3urk plots of glutamate dehydrogenase inhibition by
cardiolipin at different ex - Kg concentrations
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Fig. 48 Lineweaver-Burk plots of glutamate dehydrogenase inhibition by
cardioli pin at di fferent l+glu concentrations
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Fig. 49 The dependency of the extent of inhibition of GDH activity on PC/CL
ratio
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Reduction of ex -ketog lutarate and oxidation of l+glutamate by the enzyme

were studied to characterise the type of reversible inhibition caused by the

anionic phospholipids. In most cases, mixed types of inhibition were indicated

(Figures 46 - 48 and Nernat-Corgani, 1972).

Detergents were also incorporated into the phosphatidylcholine vesicles

at low concentrations so that the bilayer structure of the phospholipid was kept

intact. Such preparations up to phosphatidylchol ine : SDS ratios of 2 : 1 did not

cause any inhibition. These detergents in the absence of the phospholipid caused

strong inhibition (Figures 20 - 26).

Co-sonicate phosphatidylcholine/phosphatidylserine and phosphatidyl-

choline/cardiolipin were examined and the extent of inhibition was found to

decrease with increasing phosphatidylcholine proportion (Figure 49 ). Very

little interaction takes place at phosphatidylcholine to cardiolipin ratios greater

than 4. The lower extent of interaction is due to "dilution" of the negatively-

charged heads of the anionic phospholipids on the surface of the bi layer s bi

phosphatidylcholine. The dependency of Kiapp on PC/CL ratio is shown in Pig. 50.

In some ways, mixtures of the anionic phospholipids, cardiolipin or

phosphatidylcholine with the zwitterionic phospholipi.d, lecithin, may be better

models for the interaction. On the other hand, it is possible that cardiolipin

molecules in the inner mitochondrial membranes are grouped into specific

patches and the enzyme molecules are to various degrees organised by binding

to cardiolipin of the membrane. In this context, it is interesting to refer to

the asymmetrical nature of the lipid bilayer in erythrocyte membranes

(Bretscher, 1972). In this system, the zwitterionic phosphatidy1choline was



87

found to be located chiefly in the outer half of the lipid bilayer and phosphatidyl-

serine on the inner (cytoplasmic) half of the bilayer. Though the erythrocyte

membranes are different from the mitochondrial membranes in terms of both

lipid and protein composition, it is tempting to speculate that such arrangement

may also exist in the inner mitochondrial membrane with cardiolipin mainly in

the inner half of the membrane and phosphatidylcholine in the outer half. Some

experimental observations support our speculation. Phospholipase A removes

phosphatidylethanolaminc and phosphatidylcholine from rat liver mitochondria

quite rapidly and cardiolipin only very slowly (Fleischer, Fleischer, 1967).

The former phospholipids exchange with 32Pi or 14C glycerol quite readily.

whereas cardiolipin does not (Writz and Zilversmit, 1968).

Thus, bilayers of pure phosphatidylserine or phosphatidylcholine may

indeed be reasonable model systems. The physiological relevance of these

findings is limited, however, by the fact that it is not known how well the

structure of the phospholipid membranes correspond to that of the mitochondrial

membranes. Mitochondrial membranes have been shown to consist of lluid

bilayer regions (jost et al, 1973). The phosphatidylcholine and phosphatldyl ..

serine used in these studies were non-mitochondrial, but contain unsaturated

residues, are above their transition temperatures and form a lamellar phase

in our conditions. 'TIley are therefore suitable for this type of study.

Phosphatidylcholine and cardiolipin prepared from beef liver mito-

chondria showed the same behaviour. fllOsphatidylcholine had no effect on the

activity while cardiolipin brought about extensive inhibition.

Inhibition by the anionic phospholipids was found to decrease with increa-

sing ionic strength, suggesting a significant electrostatic component in the



Fig. S1 The effect of NaCl on the extent of inhibition of GOB by CL
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Fig. 52 The effect of NH4Cl on the extent of inhibition of GDH activity by Cl
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association (Figures 51 & 52). In this type of study, it should be realised

that the conformation of the enzyme and the behaviour of the phospholipid

bilayers may be affected by the salt concentration. Therefore, the situation

may be quite different from the behaviour of two simple charged entities and

the dependence of their electrostatic interaction on ionic strength.

The enzyme has a complex structure and a change in ionic strength may

have profound influence on the type of conformation it adopts. Evidence for

such behaviour comes from the results obtained by Richter and Rotzsch (1970)

who studied the effect of inorganic ions on kinetic properties of the enzyme.

They found that increased concentrations of inorganic ions decrease the

responsiveness of glutamate dehydrogenase to ADP and GTP.

NaCI showed a complex behaviour, (Figure 51) while NH4CI, which is a

natural substrate for the enzyme (Km = 3.2 mM) was found to be a more

favourable choice of salt for this purpose. In all subsequent studies, NIl4Cl

was used for this type of investigation.

The effect of Ca-++ on binding of GOB to anionic phospholtpi.t membranes

was also studied. To do this, it was necessary to assay the enzyme in the

absence of EDTA.

A column of Bio-Rex 70 (200 .. 4.00mesh) was used to free the routinely

used doubly distilled water from cation contaminants. GDlI assay mixture was

then· prepared in hepetic buffer containing different Ca+t concentrations. The

results indicate that Ca+t decreases the ability of cardiolipin to bring about

enzyme inhibition. The effect of Ca-t+ may be taken to be through neutralisation

of the negative charges on the anionic phospholipid. However, as discussed in
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the previous chapter, Ca-t+ may bring about profound changes in the physical

properties of the phospholipid. At high Ca+t concentrations (> 1 mM),

conversion of the lamellar phase into a hexagonal phase is possib1e (Rand and

Sengupta, 1972). The effect of Ca+t- is shown in Figure 53.

The effect of pH on the extent of inhibition of the enzyme by cardiolipin

is shown in Figure54. It can be seen that the extent of inhibition decreases

with increasing pH up to pH 8.0, above which it decreases. All our subsequent

studies (other methods) on binding of the enzyme to phospholipids and

mitochondrial membranes, showed a steady decrease in the extent of complex

formation with increasing pH.

The pH dependence of the rates of hydrolysis of various substrates of

papain and alkaline phosphatase emhedded in collodion membranes has been

found to deviate considerably from that observed with the corresponding native

enzyme (Goldman et al, 1965, 1971). The rate of hydrolysis of benzoyl- L-

arginine ethyl ester (BAEE) by a papain membrane, when assayed in the abcence

of buffer, showed a monotonic increase with pH in contrast to the hell-shaped

pH activity profile of the native enzyme. The theoretical aspects of such an

effect have recently been reviewed by Goldman (1973).

Although the enzyme was found to be inhibited by the phospholipid at all

pH values tested, in view of the above facts, it is difficult, and indeed, Improper

to make any conclusive suggestions on the dependence of the extent of complex

formation on pH from such a study only.

A preformed complex. between pliosphatidylserine and the enzyme was

partially dissociated by increasing the ionic strength of the soluti on. 79%
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inhibition of the enzyme in the presence of 1.9 x 10~5 M phosphatidylserine

was decreased to 59%when°t\TfI4Clconcentration was increased from 0.06 M

to 0.17 M. The increase in NII4Cl concentration increased the activity of the

enzyme in the absence of phosphatidylserine by 4%.

TIle fact that the complex was not totally dissociated by such a high

NB Cl concmtration suggests that a part of the enzyme, probably a ' hydrophobic
4

tail' can penetrate into the hydrophobic region of the bilayer. Such a situation

would make the occurra.nce of hydrophobic interaction possible in the formation

of the complex between the enzyme and phospholipid. Our fluorescence studies

(discussed in ChapterIV) do confirm the possibility of such an interaction. This

will be more fully discussed later.

The presence of cytochrome c was shown to diminish the extent of

interaction between the enzyme and cardioli pin. In the presence of 2 x 10-5 M

cytochrome c, cardiolipin showed no binding to the enzyme up to a cardiolipin

concentration of 1. 7 x 10~5 M. The activity of the enzyme was not affected

by cytochrome c at this concentration. On the other hand, the enzyme inhibited

by cardiolipin (7% acti vity at CL concentration of 1.9 x 10-5 M) regained more

activity when cytochrome c was added (16% and 30% activity on addition of

-6 0-6
1 x 10 M and 2 x 10 M cytochrome c respectively). The interaction of

this basic protein (pl = 10.6) with negatively charged phospholipids has

already been discussed in the previous chapter.

The fact that a preformed complex between the enzyme and the anionic

phospholipids can be pa.rtially di.ssociated with the addition of NIl Cl or
4

cytochrome c confirms our previous conslusion that the process of complex

formation is a reversible one.



Fig. 55 The effect of PS on thermal stability of CDl-!at 37°C
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Reference to the results on the effect of cytochrome c or f\TH4Clbefore

and after complex formation indicates that:

1) If sufficient concentration of the salt or protein is added to the phos-

pholipid suspension before the addition of the enzyme, no complex formation

can take place.

2) After formation of the complex, only partial dissociation takes place.

Thus, a basic protein, such as cytochrome c, shows a better affinity

for complexing with an acidic phospholipid. Also, in the presence of a fairly

high concentration of !'...114Cl (> 0.1 M) no complex formation may take place.

The addition of a preformed complex between the enzyme and an anionic

phospholipid is only partially dissociated because of the possible involvement

of hydrophobic interaction between the hydrophobic amino acid residues in the

enzyme and the hydrophobic region of the phospholipid bilayer.

The thermo stability of bovine liver glutamate dehydrogenase was sho-vn

to be considerably higher in the cell system than in the isolat ed state

(Yakovleva and Gubnitski, 1973). Thermal inactivation was found to accorn-

panied by retention of allosteric activation by ADP.

The possibility of thermal stabilisation of the enzyme by the anionic

phosphatidylserine was investigated. Though the diluted enzyme is stable

o
over periods of a few days at 25 C in our conditions, it was found to lose

o .
activity at 37 C. 111is rate of loss of activity was found to increase in the

presence of increasing amounts of phosphatidylserine (Figure 55). However,-
the rate of loss of activity at elevated temperatures was slightly less in the
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Fig. 56 The effect of a cosoni cate of PC-PE-CL (40%. 40%, and 20%) on
thermal stability of glutamate dehydrogenase at 40oC.
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presence of cosonicates of phospholipids of the same composition as the

inner mitochondrial membrane (i. e. 40% PC, 40% PE and 20% CL) (Figure se)).
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Chapter IV

INTRINSIC AND EXTRINSIC

FLUORESCENCE STUDIES:

RESULTS and DISCUSSION



Fig. 57 The effect of lysolecithin and SDS on the intrin si c fluorescence
of GDH
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Fig. 58 The effect of CETAB and hexane sulphonate on the intrinsic
fluorescence of GDH
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Fig. 59 The effect of phospholipids on the intrinsic fluorescence of GDH

% FLUORESCENCE INTENSITY

80

60

40 phosphatidylserine

20
cardiolipin lIT

0·5 1·0 1-5
PHOSPHOLIPID CONCENTRATIO

x 10-3 M



~ig. 60 The effect of phosphatidylserine on the intrinsic fluorescence of GDB
at different enzyme concentrations
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Fig. 61 The dependency of the quenching of fluorescence intensity of GDH
by CL on enzyme concentration
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Studies on the intrinsic fluorescence of the enzyme showed that those

amphiphiles which caused inhibition of enzyme activity also quenched the

enzyme fluorescence. Thus, SDS and CETAB caused strong quenching while

lysolecithin and hexane sulphonate showed no effect (Fig.57 ~8). The anionic

phospholipids cardiolipin and phosphatidylsertne also quenched the intrinsic

fluorescence of the enzyme (Figure59). Fhosphatidylcholine, which does not

affect the catalytic activitie s of the enzyme showed only a very small effect

(Figure59).

Dependence of enzyme fluorescence quenching on relative amounts of

the lipid and enzyme was measured either by looking at the effect of increasing

the lipid concentration (Figures 59, 60) on that of the enzyme (Figure.t_!) on

this process.

Two main types of quenching of enzyme fluorescence can occur: static

and dynamic quenching. Only the latter type of quenching is dependent on the

viscosity of the solution.

Static quenching of fluorescence is described by the relation:

I = e..k[ Q]
Io

where I and la are the fluorescence intensities In the presence

and absence of the quencher respectively, k1 is the quenching constant and

[Q] , the quencher concentration. In contrast, dynamic quenching is described

by the Stern ..Volmer relation:

I = _....;.1__
10 1 + k[ Q]
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Quenching of enzyme fluorescence can take place either by an energy

transfer mechanism (in which case the enzyme -Iipid complex fluoresces to

a smaller extent than the free enzyme) or through conformational changes in

the enzyme structure accompanied by the accessibility of fluorescent residues

to the surrounding aqueous medium.

A glutamate dehydrogenase oligomer consists of £ identical polypeptide

chains. There arc 500 amino acid residues in each polypeptide chain with ~

tyrosine, 23 phenylalanine and l tryptophan residlles (Piskiemicz et al, 1973,

Moon and Smith, 1973). Values between 3 and 5.5 tryptophan residues have

been reported in some earlier studies (London et al, 1971, Sund and Arkeson,

1964, Cross and Fisher, 1966, and Appella and Tomkins, 1966).

The maximum fluorescence emission is in the region of 335nmwhich is due

to tryptophan residues. Studies on the spatial location of the residues (Cross and

Fisher, 1966) have shown that 4 tyrosine residues (23% of the total), ~

phenylalanine residues (9% of the total) and 1 tryptophan residue (23% of the

total) are located on the surface of the enzyme. Direct interaction between

these residues and lipids is therefore a possibility.

To explore this possibility, the effect of these amphiphiles on fluorescence

behaviour of Acetyltryptophanamide was studied. This compound is used as a model

for tryptophan residues incorporated in a polypeptide chain (Radda and Dodd,

1968). Generally, additives which decrease the dielectric constant of water

result in enhancement of fluorescence, while increase in dielectric constant has

the opposite effect.

Fluorescence studies on Neacctyltryptophanamtdo showed that norcof the
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detergents affected its fluorescence (In the presence of CETA13, 2 - 4% increase

was resulted with the detergent at 1 mM and Nvacetyltryptophanamlde at 0.4 mM

concentrations respectively). On the other hand, the anionic phosphatidylserine

and cardiolipin quenched N-uceryltryptophanamtde (0.4 mM) fluorescence by

12%and 8% at 0.5 mM and 0.25 mM respectively. Lecithin, at a concentration

of 0.5 mM caused only 2 - 3% quenching. TIle extent of quenching by the anionic

phospholipids was independent of pH.

In the case of quenching of the enzyme fluorescence by detergents, the

process takes place at high concentrations of the detergent (at and above 1 x 10-4M

in the case of SOS) at which irreversible denaturation takes place. l11Us, direct

interaction of the tryptophan residues exposed on the surface of the enzyme

does not bring about any quenching of fluorescence. At high concentrations of

the detergent (higher than 0.1 mM in the case of SOS) at which extensive

unfolding in the structure of the polypeptides can take place, the tryptophan

residues present in the interior of the enzyme structure may be displaced and

positioned in a new environment. This new environment may have a higher

dielectric constant in which the residues fluoresce to a smaller extent,

In the case of enzyme-phospholipid interactions which is a reversible

process, the resulted fluorescence quenching can be partly due to direct

interaction with the tryptophan residues possibly exposed at the surface of the

enzyme and partly due to changes in the accessibility of the tryptophan residues

buried in the anhydrous interior to the surrounding aqueous medium. Thus,

conditions of low pH and ionic strength which are favourable for complex

formation increase the accessibility oi the tryptophan residues to the aqueous

envir~nment with the result that the fluorescence quenching of the enzyme is



Fig. 62 The effect of NI-I4Cl on fluorescence quenching of GDH by CL
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Fig. 63 The effect of pH on quenching of intrinsic fluorescence of CDH
by CL

[ En] = 40 ~ g/ml

% FLUORESCENCE INTENSITY

100

90

80

-4
enzyme + 2 x 10M CL

5-5 6·5 7-5 8-5
pH



Fig. 64 The effect of ribonuclease on GDH fluorescence quenching by PS
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TABLE 1

EFFECT OF Cl -Kg AND I-gIll ON GOB FLUORESCENCE QUENCIIING BY PS.

ENZYME AND PIIOSPBOUPID AT FINAL CONCENTRATIONS 01" 40 u gimi

AND 0.5 mM RESPECTIVELY.

fluorescence intensity %fluorescence
condition intensity

GDII alone GDH + PS (GDII + PS)

o. 06 M hepctri 64 23 36
+ 0.8 mM phos-
phate, pH 6. 2

+0.14mM a-Kg 60 22 37
+0.3 mM ex -Kg 59 21.5 37
+ o. 7 mM et - Kg 57 21 37
+ 3 mM et -Kg 46.5 20 43

1.4 mM I-glu 63 23 36.5
4.3 mM l+glu 58.5 22 38
10 mM l+glu 56 23.5 . 56

TABLE 2

EFFECT OF l-glu AND NAD+ ON GDH FLUORESCENCE QUENCIIING BY PS.

ENZYME AND PHOSPHOLIPID AT FINAL COKCENTRATIONS OF 40 ~g/ml

AND o. 6 m~ RESPECTIVELY.

fluorescence intensity % fluorescence
condition intensity

GDH alone GDH + PS (CDlI + PS)

o. 06 M hepetri 47.5 13 27.5
+ O. 8 mM phos-
phate, pH 6.2

+ 10 mM I-glu 45.0 15 33.0

+ 40.50.3 mM NAD 10 24

10 mM l-glu 4: 21.5 11 51. 1
0.3 mM NAD
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increased.

The extent of fluorescence quenching of the enzyme by the anionic

phospholipids dimlnishcd with increasing ionic strength (Figureoz) and

increasing pH (Figureo3), thus supporting the kinetic results.

The extent of fluorescence quenching was also affected by the presence

of basic proteins such as cytochrome c and ribonuclease, These proteins have

been shown to interact with phosphatidylserine vesicles and to neutralise or

even reverse the zeta potential of these vesicles (Kimelberg and Papahadjopoulos,

-5
1971). Ribonuclease at concentrations up to 2.5 x 10 M did not show any effect

on the intrinsic fluorescence of the enzyme but greatly diminished the quenching

of enzyme fluorescence by phosphatidylserine (Figure64 ).Cytochrome chad- .

a similar effect. Ribonuclease was especially useful in this respect because

of absence of any tryptopha.n residues in its structure.

Both l-glutamate and et -ketoglutarate diminished the quenching of enzyme

fluorescence by phosphatidylserine. These are summa.rised in table 1

+ + .The effect of NAD and NAD + l-gluta."11ate are shown 111 table 2. lIowever,

NAD+ alone caused a considerable quenching of the fluorescence of the enzyme

and this makes it difficult to make conclusions of its effect on binding of the

enzyme to the phospholipid membrane. These results support the findings of

Godinot and Lardy (1973) who obtained 34. 3% solubilisation of the enzyme

activity from microsomal membranes in the presence of 20 mM I-gilltam~te

. + .
and 2 mM NAD • Fhosphatidylserine has been shown to be present In mlcrosomal

membranes (Colbeau et al, 1971).

I

GTP, ADP and NADH quenched the intrinsic fluorescence of the enzyme



Fig. 65 The dependency of GDI-I fluorescence quenching by phospholipids
on temperature
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strongly and hence, it was not possible to study their effects on the binding of

the enzyme to phospholipid membranes,

Quenching of fluorescence by the anionic phospholipids also increased

with increasing temperature, thus indicating the possible involvement of

hydrophobic interaction (Figure 65). The small decrease of fluorescence

intensity in tile presence of high concentrations of PC <> 0.2 mM) was not affected

by temperature. From this, two conclusions may be drawn:

i) that the decrease in fluorescence of the enzyme by the zwitterionic

phospholipid at high concentrations is not due to Jipid-protein complex formation;

ii) that the enzyme does not interact with the li pid over a wide, range of

temperatures.

In general, at low temperatures, hydrophobic interaction becomes

stronger as the temperature increases. The maximum strength is reached at a

certain temperature which has been estimated (Nemethy and Sheraga, 196:') to

o 0
be near 58 C for aliphatic side chains and near 42 C for aromatic side chains.

The increase in the fluorescence quenching with in creasing temperature

can be taken as an indication of hydrophobic interaction, assuming that both

the enzyme and the phospholipid are essentially unchanged by temperature

changes.

Changes in temperature may bring about slight changes in the conform-

anon of the enzyme due to variations in the hydrophobic and other interactions,

which are temperature-dependent and which are of importance for the stability

.
of enzyme structure. All the phospholipids used in this study are natural
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Fig. 66/7 The effect of PS on NADH fluorescence when pa rt ia l ly or fully bound
to GDI1
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Fig. 68 The effect of SDS on NADl-Ifluorescence in the presence of GDH
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phospholipids which, due to the presence of double bonds in their structures,

. . 0
have transition temperatures well below 0 C (Papahadjopoulos and Kimelhcrg,

1974). Thus, in the range of temperatures covered in these experiments, they

. are in their liquid crystalline state, with the hydrocarbon chains in an a -

conformation and a lamellar phase (Tardieu et al, 1973).

It is a property of the enzyme to undergo allosteric ccnformational

changes in the presence of NADH and GTP (Bayley and Radda, 1965). Thus,

GTP further increases the NADH fluorescence enhancement in the presence

of the enzyme (Fio-ure66).b _

Phosphatidyl se rine (0.53 mM) did not affect NADlI (2 mM) Iluorcsccncc
. .

when partially or fully bound to the enzyme, both in the absence and presence

of GTP (0.2 mM) ( Figure 67 ). Thus, in the presence of the phospholi rid

membranes, the enzyme can bind NAOH and can undergo the hcte rotroplc

allosteric conformational changes induced by GTP.

The anionic detergent, SOS, did not affect NAOH fluorescence at

concentrations up to 0.1 mM. Above this concentration at which tr rcvc rstblc

complex formation occurs, NAOH fluorescence (10 1.1. M) is increased with

increasing SOS concentration with, A max of fluorescence erni s sion being

slightly blue ..shifted (Figure6 a. Above a concentration of 0.3 mM, the system

showed a time-dependency effect with NADH fluorescence rapidly decreasing

with time,

This effect of SOS clearly indicates strong dependency of structural

changes brought about in the enzyme molecules on concentration of the

.
detergent. At concentrations below O. 1 mM at which reversible complex
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formation takes place, NADH binding to the enzyme is not at all affected. At

concentrations above O.1 mM, the detergent brings about unfolding of the

enzyme structure, presumably creating new binding sites for the coenzyme.

Above a concentration of 0.3 mM, total disruption of the polypeptide regions

with respect to NADH binding sites takes place and the time "dependency effect

is observed.

Thus, neither the intrinsic fluorescence of the enzyme (figure57) nor

the NADHbinding to the enzyme (Figure68) is affected by SDS at concentrations

lower than O.1 mM.



Fig. 69/70 Further enhancement of ANS fluorescence (in the presence of
GDll) by PS and CL
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Extrinsic fluorescence studies were carried out using ANS as a

fluorescent probe. ANS is probably the most widely used fluorescent probe.

It is a type of molecule for which the dipole moments of its different electronic

states are in the order S1 >, T1 > So where S1 is the excited singlet state,

T is the excited triplet state and S is the ground state. Thur, the excited
1 0

state is more polar than tlle ground state and this difference has been shown to

be in the region of 10 _ 12 D (Weber, 1961). Thus, polar solvents interact

more strongly with the probe in the excited state than in the ground state.

Therefore, there is an inverse relationship between its fluorescence quantum

yield and solvent polarity and this makes it very sensitive for hydrophobic sites.

The probe showed a weak affinity for the enzyme and strong binding to

the zwitterionic lipids, lysolecithin and phosphatidylcholine and the cationic

amphiphile CETAI3. ANS at a concentration of 1 ~M showed maximum

enhancement with the phospholipid and the cationic detergent at concentrations

. -4 -5
of 5.3 x 10M and 5 x 10M respectively. It showed no fluorescence

enhancement with the anionic amphiphiles. The probe is essentially composed

of two parts, the hydrophobic anilino ..naphthalene ring and the polar sulphonate

part. In binding to a micellar structure or a bilayer, the non ..polar fluorescent

moiety of the probe penetrates to a short distance between the fatty acid chains

of the hydrocarbon core (Lesslauer et al, 1972).

ANS fluorescence when the probe was bound to lysolecithin (0. 54 mM

lysolecithin, 10 I-L M ANS) or phosphatidylcholine (0.53 mM rc, 1 ~ MANS)

was not affected by the enzyme confirming that no interaction between these

lipids and the enzyme was occurring.

It has been shown by X-ray diffraction (l.ess]auer et al, 1971) and
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nuclear magnetic resonance (Colley and Metcalf, 1972) as well as from

considerations of the quantum yield of the bound form (Haynes, 1972, Truuble,

1971) that the probe is located in the polar head group region of the membrane,

probably in a manner described above (Lesslauer et al, 1972). The fact that

ANS binding to these membranes increases with increasing lipid concentration,

saturating at high concentrations suggest that ANS reacts with "binding sites"

in these membranes.

ANS fluorescence in the presence of the enzyme was, however, affected

by phosphatidyl se rine and cardiolipin. These phospholipids were shown to

increase Ar\S fluorescence considerably (Figures 69 and 70).J __

This further enhancement of ANS fluorescence can occur in three ways:

1) Anionic phospholipids can bring about conformational changes in the

enzyme with new or more accessible hydrophobic binding sites in the enzyme

structure for ANS binding.

2) In the process of complex formation, neutralisation of some of the

negatively charged head groups in the phospholipid bilayer structure may

take place. In this situation, penetration of the negatively charged ANS molecules

into the hydrohpobic region of the bilayer is possible.

3) At positions in the bilayer where slight insertion of some of the

hydrophobic residues of the enzyme into the phospholipid bilayer occurs, ANS

penetration into the hydrophobic bilayer region may take place.

To investigate this further, binding of ~NS to the enzyme was studied

.
by looking at the quenching of intrinsic fluorescence of the enzyme brought
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Fig. 73 GDH fluorescence quenching by ANS
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about by ANS.

-4
An average di saoci ation constant of 1.2 x 10M was obtained from a

reciprocal plot of the data obtained from a study of the interaction between

ANS and the enzyme from the quenching data (Figure71). A straight line

from such a treatment in the absence of any phospholipid was converted to

a curve thus showing the appearance of new binding sites for ANS in the lipid-

enzyme complex. (See Figure 72).

As shown in Figure 73when ANS is added to the enzyme, the enzyme

fluor~scence is quenched with increasing concentration of the probe and a

band is progressively developed in the region of 465 - 475nmindicating energy

transfer from excited aromatic amino acid residues to ANS. Fluorescence

emission spectra of the enzyme were recorded by exciting the system at

296nm and high scan speed so that photoinactivation of the enzyme which

occurs at lower wavelengths did not take place.

Thus, whatever, the mechanism of ANS fluorescence enhancement by

phospholipids is, the process takes place because of complex formation between

the enzyme and the lipids.

The effect of some of the metabolites involved in the activity and its

regulation were subsequently studied. As discussed previously. some of these

metabolites such as ADP, GTP and NADHwere shown to quench the intrinsic

fluore~cence of the enzyme extensively and it was not found possible to look

at their effects on the lipid-enzyme complex formation by intrinsic

fluorescence studies. On the other hand, ext!insic fluorescence studies made

this Possible.



TABLE 3

EFFECT OF ADP ON FURTHER ENHANCEMENT OF ANS FLUORESCENCE

PARTIALLY BOUND TO GOB BY PHOSPHATIDYLSERINE. ANS, GOlI AND

PS AT FINAL CONCENTRATIONS OF 25 I.l. M, 0.67 mg/ml AND O. £3 mM.

condition ANS + GDB ANS + GOB ratio of
+PS enhancement

O. 02 M hepet ri +
1.6 mM phos- 23.5 53.5 2.27
phate, pI! 7.3

1 x 10-5 M ADP 15 47.5 3. 16

2 x 10-5 M ADP 14 46 3.28

1 x 10-4 M ADP 13.5 43.5 3.22

O.3mMADP 13 41 3.15

1 mM ADP 13 42 3.23

2 mM ADP 13 41.5 3. 19



TABLE 4

EFFECT OF GTP AND NADII ON FURTIIER ENHANCEMENT OF ANS

FLUORESCENCE PARTIALLY BOUND TO GDH. ANS, GDH AND PS AT

FINAL CONCENTRATIONS OF 25 IJ. M, 0.67 mg/ml AND 0.7 m M,

condition ANS +GDH ANS +GDH ratio of
+PS enhancement

O.02 M hepet ri +
1.6 mM phos- 8 15 1. 88
phate, pIl 7.3

0.1 mM GTP 8 15 1. 88
1.0 mM GTP 8.5 15 1.81

0.1 mM NADH 10 16.5 1.65
0.2 mM NADH 11.5 18.0 1. 57
0.5 mM NADH 14 21.5 1. 53
1 mM NADH 15.5 23 1.48
2 mM NADH 22.5 31 1.38

0.1 mM GTP + 20.5 26 1. 270.1 mM NADH

0.5 mM GTP + 24.5 31.5 1.280.5 mM NADH

1 mM GTP+ 26.5 33 1.241 mM NADH



TAI3LE 5

EFFECT OP NAO+ ( ± '" -Kg) ON FURTHER ENHANCEMENT OF ANS

FLUORESCENCE PARTIALLY BOUNDTO GDIl. ANS, GDII AND PS AT

FINAL CONCENTRATIONS OF 25 I.L M, 0.5 mg/ml AND 0.65 mM.

condition ANS +GDH ANS +GDH ratio of
+PS enhancement

O. 02 M hepctri +
1.6 mM phos- 12.5 23.3 1. 86phate, pH 7.3

+
7.5 19.02 mM NAD 2.541 mM NAO+ + 7.5 19.3 2.580.5 mM NAD 8.5 19.5 2.300.1 mM NAO+ 10.7 22.5 2.100.5 x 10-4 M

NAO+ 11.6 22.5 1.94

0.5 mM NAO+ +
7.5 22 2.931 mM a-Kg

+0.5 mM NAD +
9.3 27 2.905 mM 01 -Kg

5 mM 01 -Kg 13.0 24.0 1.85
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ADP further increased ANS fluorescence enhancement by phosphatidyf -

serine. NAD+ also caused an increase. NADB, especially in the presence of

GTP, caused a lowering of ANS fluorescence enhancement by phosphatldylscrtnc,

GTP showed no appreciable effect. These results are summarised in Tables 3-5.

The influence of the nuc1eotides and substrates on the degree of binding of

the enzyme to phospholipid membranes may be explained by their effect on

enzyme conformation.

The complexes formed between the enzyme and its substrates ( ex -Kg and

I-glutamate) and its coenzymes (NAOH and NAD+) have been characterised

(Cross, 1972,Pantaloni and Lecuyer, 1973). Also a number of monoca rboxyl ic acids

were shown to complex with the enzyme and to cause structural changes (Prough

et al, 1972, Prough and Fisher, 1972). The activity of the enzyme is subject to

allosteric regulation by ADP :1nd GTP. GTP is a strong inhibitor and ADP is an

activator (Frieden, 1963). Both these effectors cause conformational changes in

the enzyme (Dodd and Radda, 1968, 1969).

There is therefore a high degree of specificity involved in the Interaction

between glutamate dehydrogenase and phospholipid membranes. The same type

of specificity has been shown in the association of glyceraldehyde-3-phosphate

dehydrogenase with erythrocyte membranes (Kant and Steck, 1973, Lctko and

l3ohnensack, 1974). There is a loose association between this enzyme and

erythrocyte membranes (Mitchell et al, 1965). Interaction was profoundly influ ..

enced by low concentration of certain metabolites including glyccraldchyde ..3-
. +

phosphate and NAD • These have been shown to cause structural changes upon

binding to the enzyme (Bolotina et al, 1967). The enzyme bound reversibly to



104

the inner (but not outer) erythrocyte membrane surface. In contrast, the

basic protein cytochrome c lacked specificity in its association with erythro-

cyte membranes. Binding occurred at both membrane surfaces and was not

affected by any metabolites tested. Thus, in the case of the association between

the enzymes glutamate dehydrogenase and glyceraldenyde-Bvpnosphatc dchydr o-

genase with membranes, the process represents specific binding rather than

non-specific adsorption.

It has been shown that rat liver mitochondria respond to variations of

the extramitochondrial environment by releasing proteins and enzymes from

the inner membranal compartment towards the intermembranal space.

Rebinding of released proteins was observed when the "releasing" effectors

were withdrawn from the extramitochondrial medium (Waksrnan and Rendon,

1971 a, 1971 b). In particular, the extent of binding of mitochondrial aspartate

aminotransferase and malate dehydrogenase was found to depend on succinate

concentration. Further studies (Rendon and Waksrnan, 1973) showed that the

process also occurs with isolated inner mitochondrial membrane and is not

directly dependent upon the variation of ionic strength of the system.

In all these cases, it is possible that binding of the metabolites to the

enzymes is followed by conformational changes in the protein molecules, and

that different conformations of the enzyme show different affinities for binding

to the membranes. As discussed above, ADP increased GOH binding to

phospholipid membranes while NADH especially in the presence of GTP caused

a decrease.

TIle effect of these metabolites on ANS fluorescence enhancement in the.



105

presence of GDH and phospholipids resemble the findings of Azzi et al, (1969)

on the dependence of ANS fluorescence enhancement on conformation of

cytochrome c in cytochrome c-phospholipid complex. While no changes of

ANS fluorescence were observed in the transition of ferri-cytochrome c in the

absence of lipids, changes in fluorescence characteristics of bound ANS in the

presence of the phospholipids were observed. These were a 2.5% increase in

fluorescence at 470 nm and approximately a 5 nm blue shift of the peak, these

changes being due to changes in the structure of the protein during the transition

from an oxidised to a reduced state. These changes are much smaller than

those observed in the case of glutamate dehydrogenase~phospholipid interaction.

The enzyme is a much more flexible structure and can undergo large

conformational changes.

Recently, (jor i et al, 1974), conformational changes in cytochrome c by

its interaction with cardiolipin were indicated by an increase of its tryptophan

fluorescence emission and appreciable perturbation of its circular dichroism

spectrum. The results were taken to suggest that the interaction between

cardiolipin and cytochrome c provokes a perturbation of the protein conform ..

ation which possibly involves the disruption of the hydrogen bonds linking the

aromatic rings of tryptophan .. 59 and tyrosine .. 48 with one propionic side

chain of the heme.

McGivan et al (1973) have reported the effect of I+leucine and some other

monocarboxylic acids to stimulate glutamate dehydrogenase activity in intact

mitochondria. Previous to these findings, it has been shown that these amino

acids stimulate he isolated enzyme (Yielding and Tomkins, 1961, Kun and
.

Achmatowicz, 1965) and bring about conformational changes in the enzyme
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structure (Prough and Fisher, 1972).

In view of our findings, it is possible that these amino acids, by complexing

with the enzyme, bring about conformational changes in its structure and this

affects its binding to the mitochondrial membrane.

The fact that this stimulation only occurred in the direction of I-glutamate

synthesis may be explained in terms of the conformation specificity of

association of the enzyme to the mitochondrial membrane when in its quaternary

The affinity of the enzyme for binding to phospholipid membranes in the

presence of its substrates, coenzymes and allosteric effectors has been

explored as discussed above. However, it was not po~sible to explore such

+
possibilities when the enzyme is in its final quaternary (E .. [\JADIl .. et Kg .. r-.;114 )

or tertiary (E - NAD+ .. I-glu) complex because of formation of the products.

Some attempts in the latter case have been made at a low pil as discussed above.

The other problem associated with such studies is that N1l4+ decreases

the binding of the enzyme to phospholipid membranes because of the involve-

ment of 'anelectrostatic interaction. Thus, the binding of the enzyme, solely

due to the type of conformation that the enzyme will adopt in the presence of NIl +. . 4
( in the absence or presence of et .. Kg and NADH), is complicated.

The above results also indicate that NADH especially in the presence of

GTP reduced the binding. NAD+ caused a slight increase. Thus, the state of

oxidation/reduction of pyridine nucleotide s in mitochondria may affect binding

of the enzyme to the imler mitochondrial membrane, ll1e mean [ NAD +] [NADI 1]
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ratio within the rat Iivcr mitochondria was found to be 8 to 1 in well fcd rats

and ~ to .!. in starved rats (Williamson et al, 1967). Thus, with all other

conditions being equal, oxidised state of these nuclcotide s would be expected

to cause a higher extent of binding. Also in vivo, metabolic activity can cause

local changes in the state of reduction of the pyridine nuclcotides and concen-

tration of other metabolites and thus affect binding of the enzyme to the

mitochondrial membrane.
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EXTRACTION OF GLUTAMATE DEHYDROGENASE-

PHOSPHOLIPID COMPLEX INTO ISOOCTANE

The formation of isooctane-soluble complexes between the basic protein

cytochrome c and phospholipids has been described (Das and Crane, 1964,

Das et al, 1965). Optical rotatory dispersion (Ulmer, 1965) and ESR spin-

labelling technique (Barratt et al, 1968) and small-angle X..ray scattering studies

(Shipley et al, 1969) have been used to further characterise these lipoproteins.

During these studies (Das and Crane, 1964), it has been shown that the

complexes approach certain stoichiometric properties depending upon the

conditions of formation. 111emajor complex formed from mixed phos phol ipids

(PS - PC) was found to contain 22 phosphorus per mole of cytochrome c when

the original cytochrome c was in excess of the phcspholi pid. When more of

the phospholipid was added, the ratio was found to he 32 : 1. Monovalent,

divalent and trivalent cations inhibited complex formation in increasing order.

In the studies on the complex formation with highly purified lecithin and

cytochrome c (Oas et al, 1965) it was found that lecithin alone cannot forrn

complex .with cytochrome c but when it is included with the acidic phosphatldyl-

serine, it increases the stabi lity of the lipid-protein complex in the hydrocarbon

solvent. In one such experiment, it was found that when the ratio of lecithin

to phosphatidylserine in the aqueous phase reached the value of 1.43, there was

maximu:n extraction of cytochrome c into the isooctane phase. 11lC ratio of

the extracted lecithin to acidic lipid in the complex was also found to he 1.43.

The corresponding molar phosphorus to cytochrome c ratio in the complex

was about 23.



TABLE 6

EXTRACTION OP COlI INTO ISOOCTANE

fraction PC/PS O. D. at % extractionnumber ratio 280 nrn

I 3 ; 2 o. 155 90

II 4 : 1 0.030 17

III 2:3 0.103 60

IV 1 : 4 0.108 63
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Lamellar structures were indicated from X-ray diffraction studies

(Shipley et al, 1969). TIle structures were of two basi c types with dimensions

of 87 Aa and 116 Aa depending on the lipid: cytochrome c ratio. These

dimensions were consistent with the incorporation of either one or two layers

of cytochrome c molecules, respectively, between the phospholipid bilayer.

Occasionally a hexagonal phase with a cylinder to cylinder axia of 85 Aa was

obtained.

In an attempt to extract a GOII-phosphoUpid complex, four different O. 1%

cosonicare s of PS and PC were prepared in 5 ml s in the following ratios:

1)

2)

3)

4)

PC

PC

PC

PS

PS

PS

3

4

2

1

2

1

3

4PC:PS

The phospholipids were sonicated in 0.06 M tris buffer + EDTA, pl I 6.5.

1.0 ml of the phospholipid sonicate was added to 1 ml of the enzyme (0.86

mg/ml) in 0.06 M tris buffer in a 25 ml volumetric flask, and the mixture was

shaken for a few minutes. The aqueous phase was then made 30% with respect

to ethanol (0. 6 ml of ethanol) and the flasks were shaken by a flask shaker for

30 minutes. The mixtures were then centrifuged on a bench ce ntrifuge for 5

minutes.

The presence of the protein in the isooctane phase was shown by taking

u, v, and fluorescence spectra of the fractions. The O. D. at 280 of the l sooctane

layer and the percentage of extraction of the protein corresponding to different

PC : 'ps ratios are shown in table 6.
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The intrinsic fluorescence properties of the extracted enzyme were found

to be different from that in an aqueous environment. These were a shift of

about 15 nm of ,,-max of fluorescence emission and the ability of the enzyme to

resist photodecomposition. These are shown in Figure 20 b) & c). When excited at

280 nm, there is a sharp initial decrease in the fluorescence intenstty of the

enzyme in an aqueous phase. This indicates that the conformational states of

the enzyme in the two phases are probably different.

However, the optical rotatory dispersion of cytochrome c phospholipid

complex in isooctane were found to be unaltered in going from an aqueous

phase to an organic phase (Ulmer et al, 1965, Ulmer, 1965). 111is is in

contrast to the results obtained by Jori et al (1974) who found that the protein

undergoes conformational changes on complexing with phospholipids in an

aqueous phase.

In these cases, charge neutralisation must take place and the following

arrangement of phospholipid and protein in the complex extracted in l sooci nnc

have been suggested (Shipley et al , 1969).

1) A close-packed core containing all the protein molecules surrounded by

a lipid shell. 111is seems an unlikely structure unless the sites of interaction

are very asymmetrically arranged.

2) A structure composed of an inner lipid core, a protein shell, and an

outer lipid envelope. In this structure, all the lipid polar groups would be

able to interact with charged sites anywhere on the protein surface.

II'}both these structures, the hydrophobic shell required for soluhility in the

iGOoctane would be present.
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The fact that the A. max of emission in the case of glutaruute dehydrogenase

extracted in isooctanc is lowered by about 15 nm is probably due to:

1) confo rmati or.al changes in the enzyme molecule, positioning its

chromophore residues in a more hydrophobic environment.

2) The presence of isooctane in the system may decrease the overall

dielectric constant of the protein environment (with a decrease in microscopic

dielectric constant) and this may result in a more favourable condition for the

intrinsic fluorescence of the enzyme.

TIle fact that photodecomposition of the enzyme docs not take place when

extracted in the hydrocarbon phase, can also be due to either of these effects.

It is, however, interesting to note that some of the tyrosine. phenylalanine

and tryptophan residues in the enzyme are believed to be located on the surface

of the enzyme (Cross and Fisher. 1966). Although no explanation seems to

have been gi ven for photodecomposition of the enzyme when in an aqueous

phase, it is possible that in this condition, the chromophores when excited to

the singlet state acquire a higher dipole moment and can strongly interact with

the surrounding water molecules of a high dielectric constant ( D = 7S. 5).

On the other hand, such interactions would not occur in Isooctanc which has a

dipole moment of zero. This type of mechanism would not demand a

conformational change in the enzyme.

Several subsequent attempts failed to repeat the extraction of the enzyme-

phospholipid complex into isooctane, Different PC/PS and lipid-protein ratios

were tried. Variations in temperature, volume of ethanol added and suhsttuu Ion
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of ethanol by Dioxan and dimethyl sulphoxide were tried. Also it was not

possible to re-extract the enzyme back to the aqueous phase.

However, extraction of cytochrome c-phospholi pid complex into iso-

octane was fOWId to be an easy and reproducible process.



EFFECT OF PIIOSPHOLIPIDS ON THE STATE OF POLYMERISATION OF 113

GLUTAMATEDEHYDROGENASE

Glutamate dehydrogenase exhibits an association-dissociation equilibrium

between its oligomers (each consisting of six identical polypeptide chains) and

polymers which arc all enzymatically active (Reisler et al, 1970). 111eprocess

.of polymerisation occurs at high enzyme levels ( > 0.2 mg per ml),

The enzyme has been shown to undergo a stepwise association with

increasing protein concentration (Eisenberg and Tomkins, 1968) shifting the

predominant species from the monomer to dimer, trimer and so on. The

process of pol~merisation occurs along the axis of its ellipsoid subunits as

shown in Figure 18. Thus, the enzyme possess two association sites for the

formation of the elongated particles. The specific activity of the enzyme in

the absence of purine nucIeotides is essentially independent of enzyme concen-

tration (Frieden and Colman, 1967).

It has been shown (Dessen and Pantaloni, 1969) that the enzymes from

the pig and bovine liver are essentially identical with respect to polymerisation.

However, the rat enzyme does not polymerise at high protein conccnrrattons

(Sedgwick and Frieden, 1969).

It has been shown that in aqueo.us solutions saturated with toluene,

association of GDHis considerably enhanced (Ei senbe rg and Reister, 1970).

Thus, in the presence of toluene, high molecular weight aggregates arc formed

at considerably lower enzyme concentrations than in the absence of toluene.

Substitution of one or two amino groups with acetic anhydride (Colman and

Frieden, 1966) or with pyridoxal phosphate (Anderson et al, 1966) affect s

the dlssociation-associatlon eqillibrium and influences the enzymaUc properties,

Recently (Hucho et al, 1973) a histidine residue has been shown to Le essential

for'the association of glutamate dehydrogenase. It was found that after
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photooxidation of one histidine residue per polypeptide chain with pyridoxal

5'-phosphate, the enzyme sediments with sedimentation coefficients slgnlfr-

cantly lower than the 25 s of the native enzyme. The effect of a number of

metabolites on the state of polymerisation of the enzyme has been discussed

. in the previous chapter (pages 55 - 56 ). Solvent perturbation difference

spectroscopy (Cross and Fisher, 1966) indicated the same degree of perturbation

of the chromophoric groups independent of protein concentration. Thus, no

appreciable changes occur in environment of the chromophoric groups of the

enzyme upon association of the monomeric enzyme to higher molecular weight

forms.

Huang and Frieden (1969) followed the rate of depolymerisation of the

enzyme induced by its reduced coenzymes and the purine nucleotides GOP and

GTP. This was done by looking at absorbency (turbidity) changes at 310 nm by

stop-flow. The rate of depolymerisation was Iound to be dependent on the

relative concentrations of these metabolites.

Some preliminary experiments were carried out to investigate the possible

effect of phospholipids on the state of polymerisation of the enzyme. TIle

procedure of Huang and Frieden (1969) described above was followed.

A final enzyme concentration above 1 mg/rnl was used at which the enzyme

is known to be mainly in a polymeric form. It was fOWIdthat on mixing the

enzyme (in 0.1 M phosphate buffer) with phosphatidylserine (in Ilepotrt buffer).

there was a very rapid ( < 1 sec) increase in turbidity followed by a s'low

decrease. The time taken for the second phase of the reaction was found to be

about 250 m sec with final concentrations of tile enzyme and phospholipid at..
1.1 mg/rnl and 0.75 mM respectively. TIlC time taken for completion of the
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second phase was found to increase to 45' seconds with the same enzyme

concentration but at PSconcentration of 0.25 mM (Figure 74 & 75).

The fact that the enzyme was in a polymeric form was indicated by the

'decrease in turbidity of the enzyme at 310 nm in the presence of GTP (500 mM)

and NADH(30 mM). The time taken for this process was found to be about

100m sec (Figure 76). Also when the enzyme was incubated with these effectors

'at the above concentrations and its interaction with PSwas repeated, no decrease

in turbidity was resulted after the initial phase (Figure 77). Thus, the decrease

in turbidity indicated in the second part of the diagram only occurred with a

polymeric form of the enzyme and not with a depolymerised form. Also

phosphatidylcholine which does not interact with the enzyme. does not cause

'any turbidity decrease (Figure 78).

,The initial rise in turbidity was found to be, at least partly, due to

interaction of the phospholipids with phosphate buffer. Though the phospholipid
, , ,

sonicates were prepared in hepetri b~ffer, the enzyme was left in 0.1 M

phosphate buffer to make sure that no denaturation would take place. As

discussed In the previous chapter. PS, when sonclated and left In phosphate
.

buffer. lost its capacity to complex with GDH. The process. however, was

'found to be very slow (Figure 39).

The above results may be taken as an indication tha t the state of

polymerisation of the enzyme is affected by its interaction with the anlontc

phospholipids such as PS. As discussed in the previous chapter, interaction
•

of the enzyme with anionic phospholipids is followed by conformational changes;

polYll,1erisationhas been shown to ~e the result of end-to-end association (Sund,

1968) and an indefinite type with a single equilibrium constant (Krause et al, 1970).
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Thus, the process of polymerisation only involves two association sites

and this would mean that ± of the ~ polypeptides of each enzyme oligomer arc

not involved in this process. As polymerization does not induce appreciable

conformational changes in the enzyme (Cross and Fisher, 1966), most of the

residues in the enzyme oligomer which may be involved in binding to a

negati vely charged phospholipid surface, are not expected to change thel r

spatial position. The availability of these residues for binding to a phospholipid

membrane is not, in view of the above argument, altered on association of

enzyme oligomer's.

It is, however, possible that after interaction of the polymeric form

of the enzyme with a negatively charged phospholipid membrane ,_the two

association sites discussed above are no longer exposed at the surface of the

enzyme because of conformational Changes. Even slight distortion of the

spatial positioning of the residues close to or at the association sites may affect

their availability for binding. Thus, the equilibrium in the process of

association may be shifted in favour of enzyme oligomers.

All the above experiments were carried out at 1SoCand did not cause any

loss of enzymatic activity. A more detailed study in buffers which arc free

from phosphate is suggested.
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REMOVAL OF THE OUTER MITOCHONDRIAL MEMBRANE

Several methods are available for removal of the outer membranes of

liver mitochondria. These are the swelling-shrinking procedure (Parsons

et al, 1966, Parsons and Williams, 1967), digitonin fractionation (Schnaitman

et al, 1967, Hoppel and Cooper, 1969) and a combination of swelling-shrinking

and sonication (Sottocasa et aI, 1967, Werner and Neupert, 1972). Phospho-

lipase C has also been used for this purpose (Brosnan et al, 1973).

i) Phospholipase C effect

The effect of different concentrations of phospholipase C was examined

by the use of marker enzymes. These were glutamate dehydrogenase, succinate-

cytochrome c reductase and rotenone-insen~itive NADH-cytochrome c

reductase for, respectively, the matrix, the inner membrane and the outer

membrane of mitochondria.

Thus, mitochondria divested of their outer membranes as compared to

whole mitochondria would be expected to have higher specific activities for

their matrix ,and inner membrane enzymes and a lower specific activity for

the outer. membrane enzyme. This will be discussed more fully later in this

chapter.

In two separate experiments, concentrations of up to 100 mg and 212 rug

of phospholipase C per 10 mg of mitochondrial proteins were tried. The

results (Table 7 ) indicated that no appreciable changes in the specific activities

of the marker enzymes were produced.

Phospholtpase C (from clostridium perfrtngens) at concentration of

15mg/10 mg of mitochondrial protein Was found to be sufficient for the



TABLE
7 EFFECT OF PHOSPHOLIPASE CON MITOCHONDRIAL MEMBRANES -

SPECIFIC ACTIVITIES OF MITOCHONDRIAL ENZYMES

mg phospholipase specific activities - ~ moles/min/mg protein

C per 10 mg rotenone-
mitochondrial glutamate succinate

insensitivecytochrome c
protein

dehydrogenase
reductase cytochrome c
- reductase

0 1.36 . O.159 0.91

8.5 1.27 O.185 0.86

17 1.39 0.21 0.82

34 1.40 0.211 0.80

59 1.43 0.22 0.89

110 1.39 0.23 0.83

212 1.34 0.25 0.81

TABLE
8 EFFECT OF DIGITOr-..1N ON MITOCHONDRIAL MEMBRANES -

SPECIFIC ACTIVITIES OF MITOCHONDRIAL ENZYMES

mg digitonin specific activities - 1..1. moles/min/mg protein

per 10 mg rotenone-
mitochondrial glutamate succinate tnscnsiti ve

dehydrogenase cytochrome c
cytochrome cprotein reductase
reductase

0 1. 12 0.157 0.764
1.23 .1.526 0.198 0.805
3.7 1.100 0.208 0.~19
5.6 0.792 0.212 0.810
6.1 0.604 0.221 0.826
7.4 0.410 0.220 0.807
8.0 0.314 0.230 0.818
8.6 0.242 0.241 0.809.
9.3 0.238 0.249 0.791
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preparation of the mitoplasts (inner membrane plus matrix) of beef liver

mitochondria (Brosnan et al; 1973). At high phospholipase/mitochondrial

protein ratios (e.g. 60 mg/10 mg of mitochondrial protein) severe damage

to the inner membrane was caused. The specific activity of phospholipase C

used in this study is not given by the authors. Similar observations were made

by Racker (1970). This type of effect would be clearly indicated by loss of

glutamate dehydrog'=!naseactivity and therefore a small recovery of this

enzyme (see digitonin effect, discussed later).

The results obtained with phospholipase C used in these experiments

showed that (Table 7) even at very high phospholipase C concentrations, the

specific activity of glutamate dehydrogenase was essentially unaltered. Thus,

phospholipase C from cl. welchii did not show the capacity of removing the

outer mitochondrial membrane under the conditions described.

ii) Digitonin effect

Digitonin has been extensively used for the preparation of inner membrane

plus matrix particles (Schnaitman et al, 1967, Schnaitman and Greenawatt,

1968, Colbeau et al, 1971) from rat liver mitochondria. No such use has been

as yet reported in the case of beef liver mitochondria. Despite the extensive

use of digitonin for the solubilisation of lipoproteins, little is known about how

it acts. It has been suggested that it may combine with free cholesterol to form

a digitonide and that this in turn leads to solubilisation of disruption (Schnaitman

et aI, 1967).

Thus, the method is dependent on the fact that digitonin preferentially

disruI;ts the oiter mitochondrial membrane and that the degree of fragmentation

is markedly dependent upon the digitonin-protein ratio.



TABLE
9 EFFECT OF DIGITONIN ON MITOCHONDRIAL MEMBRANES -

SPECIFIC ACTIVITES OF MITOCHONDRIAL ENZYMES

mg digitonin specific activities - ~ moles/min/mg protein

per 10 mg rotenone-
mitochondrial glutamate succinate insensitive

cytochrome cdehydrogenase cytochrome c
protein reductase reductase,

0 1.205 . 0.145 0.665

0.49 1.260 0.150 0.702

0.68 1.293 0.168 0.630.
O. 78 1.300 0.171 0.678

"

0.88 1.336 0.175 0.690

0.99 1.336 0.175 0.690

TABLE
10 EFFECT OF DIGITONIN ON MITOCHONDRIAL MEMI3RANES -

SPECIFIC ACTIVITIES OF MITOCHONDRIAL ENZYMES

mg digitonin specific activities - ~ molea/mln/rng protein

per 10 mg rotenone-
mitochondrial glutamate succinate insensitive

dehydrogenase cytochrome c cytochrome cprotein reductase reductase

0 1.57 o. 11 0.69

0.58 1.83 0.141 0.70

0.86 1.73 O. 152 0.74

1.15 1.64 0.165 0.86
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To study the effect of digitonin on beef liver mitochondria, aliquots of

mitochondrial suspensions in medium Awere placed in an ice bath and

different amounts of cold digitonin solution were added with continuous stirring.

In one such experiment, the digitonin concentration in the final mixture was

varied to give digitonin-protein ratios of 0 - 9.3 mg digitonin/10 mg of

mitochondrial protein.

It can be seen from the results summarised in Table 8 that initially,

increasing the digitonin concentration resulted in higher specific activities

of glutamate dehydrogenase and succinate-cytochrome c reductase as would

be expected from disruption and removal of the outer membranes. However,

at high digitonin/protein ratios, the specific activity of glutamate dehydrogenase

progressively decreases with increasing digitonin concentrations. The

~ramatic decrease in the specific activity of the enzyme is taken to reflect

disruption of the inner mitochondrial membrane by direct interaction or

extensive swelling of mitochondria. Swelling of mitoplasts and disruption of

the inner membranes have been shown to take place in the case of rat liver

mitochondria at digitonin/proteir. ratio (expressed as mg of digitonin/10 mg

of mitochondrial protein) of 1.94 (Schnaitman, 1967).

Subsequent experiments showed that in the range of O.6 - 1. 0 mg digitonin

/10 mg of mitochondrial protein, the final preparations of digitonin-treated

mitochondria had the highest glutamate dehydrogenase activities. Above and

below this range, lower specific activities were resulted for glutamate

dehydrogenase. Digitonin treatment also caused a higher specific activity for

succinate-cytochrome c reductase. (See Tables 9 and 10).



Fig. 79 Electron micrograph of intact bovine liver mitochondrial

preparation. Original magnification x 25,000 .

•

Fig. 80 Electron micrograph of intact bovine liver mitochondrial

preparation. Origi nal magni.fication x 16, 000.



Fig. 81 Electron micrograph of bovine Itver mitochondria stripped

of outer membranes after treatment with digitonin (0.86 mg digitonin

per 10 mg mitochondrial protein). Original magnification x 8,600.

Fig. 82 Electron micrograph of bovine liver mitochondria stripped

of outer membranes after treatment with digitonin (0.86 mg dtgttonin

per 10 mg mitochondrial protein). Origina.l magnlficnrion x 7,500.
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Thus, digitonin, at high concentrations, does disrupt the inner membrane

as well as the outer. This has also been observed in the case of rat liver

mitochondria (Hoppeland Cooper, 1968, Morton et al, 1968). Disruption of the

inner mitochondrial membrane was explained by the authors to be the result

of a specific effect of digitonin on the inner membrane rather than the hypo-

osmotic conditions prevailing during the digitonin treatment.

Thus. although the inner mitochondrial membrane is devoid of cholesterol.

(Colbeau et al, 1971)all the cholesterol is present in the outer membrane,

specific interaction between digitonin and the lipoproteins of the inner membrane

may take.place. It appears, therefore, that complex formation between digitonin

and cholesterol is not the only mechanism of membrane disruption.

The intactness of mitochondria and the effect of digitonin were further

investigated by electron microscopy. These are shown in Figures 79 to 82).



TABLE
11 BINDING OF GDH (FINAL CONCENTRATION or,' 0.018 mg/rnl) TO

MITOCHONDRIAL MEMBRANES - PRIMARY DATA

GDH +mitochondrial suspension
total activities

in the supernatant
(n moles/min)

20.3

GDH inmedium B

whole mitochondria (0.4 mg/ml protein)
GDH + whole mitochondria

mitoplasts (0.35 mgZml protein)
GDH +mitoplasts

mitoplasts (0.37 mg'/ml protein)
GDH +mitoplasts

sonicated mitoplasts (0. 15mg/ml protein)
GOB+.sonicated mitoplasts

.mitoplasts previously transferred into buffer
(0.15 rng/ml)

GDH +mitoplasts previously transferred into buffer

38.7

10.8
42.5

15.7
50.5

16.2
49.3

2.6 (2.6)
20. 1 (20. 1)

2.4

. TABLE
12 BINDING OF GDH (FINAL CONCENTRATION OF 0.018 rng/rnl) TO

MITOCHONDRIAL MEMBRANES - SECONDARY DATA

% activities loss of activity
type of mitochondrial

recovered in due to binding
suspension

the supernatant /0.15 mg rnito-
chondrial protein

whole mitochondria
(0.40 mg/ml protein) 86 5.2

mitoplasts (0.35 mg/ml protein) 93 3
mitoplasts (0. 37 mg/ml protein) 90 4

, mitoplasts sonicated for 30 sec. 50 50
mitoplasts transferred into 0.06 50 50

M hcpetri buffer
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BINDING OF GDH TO MITOCHONDRIAL MEMBRANES

Possible specificity in binding of GDHto mitochondrial membranes

was investigated. This was done by incubating the purified enzyme with

different mitochondrial suspensions.

To explore the possibility of binding of the enzyme to the outer surfaces

of the outer and inner membranes, whole mitochondria and mitoplasts were

used. In the case of the inner surface of the inner membrane, the mitoplasts

were either sonicated for a period of 30 seconds or transferred into a hypotonic

environment (0.06 MHepetri). They were then centrifuged at 44,000 g for a

period of 20 minutes, resuspended in medium 13or bu~fer and centrifuged again.

Sonication or transfer to the hypotonic environment were used for the prepara-

tion of particles with mixtures of right-side out and inside-out vesicles. The

results obtained (secondary data) from such an experiment are summarised

in Table 12. Here the activities recovered in the supernatant fraction are

shown. The primary data are shown in Table 11. It can be seen from the

results that the activity recovered in the supernatant in the case of the enzyme

incubated with the mitoplasts which have been transferred to a hypotonic

environment or were treated by sonication is about one fifth of the recovery

with the untreated mitochondria or mitoplasts, Considering the difference in

protein concentrations in the fractions, the difference is much higher (Table 12

The % error for assaying GDHin all these experiments was in the region

of ± 3700At least two control experiments were carried out each time.

Different fractions were assayed for their glutamate dehydrogenase actl vities

at lea~t twice and more if there were large discrepancies. Average values

are reported in the tables.
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Thus, it appears that there is some specificity in the association of the

enzyme with mitochondrial 'membranes. The most significant difference Is

that between the outer surface of the inner membrane (enzyme incubated with

mitoplasts) and the inner surface of the inner membrane (enzyme incubated with

sonicated or swelled mitoplasts). If this is a genuine, effect, then the binding

capacity of different s~rfaces of the mitochondrial membranes for the enzyme

must be very different and this may explain the final localisation of the enzyme

in the mitochondrion.

The results of Bretscher (1972) on erythrocyte membranes do indicate

that the anionic phosphatidylse rine is located chiefly in the inner surface of the

membrane and the zwitterionic lecithin in the outer surface. Some experimental

evidence on the ~symmetrical distribution of different phospholipids on the

mitochondrial membranes have been observed by Fleischer and Fleischer

(1972) and Writz and Zilversmit and this has been more fully discussed in the

previous chapter (page 87). Recently (Astle and Cooper, 1974), the sidcdness

of the mitochondrial inner membrane was characterised by specific labelling

125 'of the exposed surface of the membrane with I by lactoperoxidase.

The sidedness of the mitochondrial membrane is, presumably, the

result of asymmetric distribution of both membrane phospholipids and membrane

proteins.

Inmitochondria, all of the cytochrome c is released by gentle swelling

in the presence of KCIwhich does not rupture the i~ner membrane (Jacobs and

Sanadi, 1960). Ferricyanide which is impermeant to the inner membrane is

also able to orIdlse all the cytochrome c of mitochondria (Chance et al, 1970).

On the other hand, F1 (ATPase) is located on the side of the membrane opposite
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to cytochrome c interval in mitochondria and external in submitochondrial

particles. This location of 'F1 is evidenced by the appearance of 90 A0 spheres

internal in mitochondria and external in submitochondrial particles (Fernandez-

Moran, 1962, Racker, 1972). In addition, antibody to F 1 inhibits the ATPase

activity of submitochondrial particles but not of mitochondria as would be

predicted, since the ~tibody is unable to penetrate the inner membrane

(Fessenden and Racker, 1966).

The specificity in the binding of enzymes to biological membranes have

been explored in a few cases. One of these is the binding of glyceraldehyde 3-

.P dehydrogenase to erythrocyte membranes. The enzyme was found to bind to

the inner and not the outer erythrocyte membrane surface (Kant and Steck,

1973, l...etkoand Bohnensack, 1974). A loose association between this enzyme

and erythrocyte membranes was indicated previous to these findings (Mitchell

et al, 1965). Another enzyme which shows this type of speclflcity is monoamine

oxidase (Racker and Proctor, 1970). The enzyme was detached from the outer

mitochondrial membranes of kidney and heart mitochondria by sonication at

pH 9.6. The purified enzyme recombined specifically with the resolved outer

membranes. On the other hand, ATPase showed specific binding to the Inner

membrane. However, a small fraction of monoamine oxidase was found to

bind to the inner mitochondrial membrane and a small fraction of ATPase to

the outer membrane. These comparatively small amounts may represent

nonspecific binding or may be due to cross-contamination of the two membrane

types. The binding of these enzymes to membranes is probably controlled by

the availability of specific binding sites on the membranes and some additional

factors, sucl: as pH and ionic strength.



Fig. 83/4_ The effect of ammonium chloride on binding of GDH to the inner
mi tochond r ial membrane
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EFFECT OF NB CION l3INDINGOF ENDOGENOUS GOB TO THE INNER MITO.4 .
MEMBRANE. MITOPLASTS WITH FINAL PROTEIN CONCENTRA nON OF

. .
0.31 mg/rnl IN 0.06 M IIEPETRI BUFFER (+ o. 025 M SUCROSE) pH 7.4

TABLE 13

total GDII activity in
supernatant fractions [ NH4Cl] final
n moles oxid/min

8.29
9.14
10.0
10.7
10.8

o
0~04
0.08
0.16
0.3

EFFECT OF NII4CI ON I3INDINGOF ENDOGENOUS GDB TO THE INNER

MITOCHONDRIAL MEMBRANE. MITOPLASTS WITH FINAL PROTEIN CON-

CENTRATION OF 3.2 mg/ml (IN 0.25 M SUCROSE, pH 7.4) SONICATED FOR

30 secs.

TABLE 14

total GDH activity in
supernatant fractions [~1I4CI] final

(n moles of NADH oxid/min)

0.046
0.049
0.054
0.054
0.055
0.055
0.055
0.056
0.057

o
0.01
0.02
0.03
0.04
0.06
0.08
0.1
0.15

EFFECT OF NH4CI ON BINDINGOF ENDOGENOUS GDH TO THE INNER

MITOCHONDRIAL MEMBRANE. MITOPLASTS WITH FINAL PROTEIN

CONCENTRATION OF 0.31 mg'/ml (IN 0.25 M SUCROSE, pH 7.4) SONICATED

FOR 30 sees.

TABLE 15

total GDB activity in
supernatant fractions [NH

4
CI] final

n moles oxid/min

4.53
4.82
5.19
5.14
5.63
5.75

o
0.04
0.08
0.16
0.3
0.4



TABLE 16

EFFECT OF pH ON BINDINGOF ENDOGENOUS GOB TO THE INNER

MITOCHONDRIAL MEMBRANE. MITOPLASTS WITH FINAL PROTEIN

CONCENTRATION OF O. 35 mg'/ml, SUSPENDED IN HEPETIU BUFFER

(0.025 M SUCROSE) OF DIFFERENT pH VALUES. TOTAL ACTIVITIES

. EXPRESSED (in n moles of NADH oxid/min),

I activity activity total activity
pH in the in the (supernatant

supernatant pellet + pellet)

5.65 6.29 6.86 13.15

6.2 7.38 6.04 13.42
6.6 7.64

7.05 7.81 3.6 11.41
7.5 9.07 3.12 12.19
8.4 10.0 2.5 12.5

9.2 10.3 2.7 13.0
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In contrast to these proteins, there are other proteins which do not

show such specificity. For example, the basic protein cytochrome c was found

to lack specificity in its association with erythrocyte membranes (Kant and

Steck, 1973). Bindingoccurred at both membrane surfaces and was not affected

by any metabolites tested. This might explain the dual Iocalrsation of some

proteins. For example, cytochrome c l' a and a3, according to some

experimental observations (Chance et al, 1970) are included on both sides of

the inner mitochondrial membrane.

The effect of NH4Cion binding of the enzyme to the inner mitochondrial

membrane was investigated. This was carried out by suspending the mitoplasts

in medium B (0.25 M sucrose in trts -acctate, pH 7.4) containing. different

concentrations of NH4Cl. They were then sonicated for a period of 30 seconds

and centrifuged at 44,000 g for 20 minutes. The supernatant fractions were then

assayed for their glutamate dehydrogenase activites, The results of two

separate experiments using NH4CIconcentrations in the range of 0 - 0.15 M

and 0 -0.4 M are given in Tables 14 & 15 and shown in Figure83. Transfer of

the mitoplasts to hepetri buffer (0.06 M) containing different cor...ccntratlons of

NIl Cl was also tried and the results are shown in Figure 84and Table 13.
4 - -

Thus, the binding of the enzyme to the inner mitochondrial membrane

decreases with increasing NH..'!Clcor.centrations. Effect of NlI Cion binding
:l 4

of the enzyme to phospholipid membranes has been discussed in the previous

chapters (pages 88 and 96).

Figure 85and Table ~ show the effect of pH 011 binding of the enzyme to

the Inner mitochondrial membrane. The enzyme shows significantly higher

binding capacity to the membrane at lower pl l values.
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Increase in binding of the enzyme (pI 4 - 5) to phospholipid and mito-

chondrial membranes with decreasing pH of the medium demands a closer

analysis. At neutral pH, most membrane proteins have a net negative charge

because of an excess of acidic residues (Rosenberg and Guidotti, 1968). and

are repelled by acidic phospholipids. Several reconstitution experiments

(Razin, 1972) indicate that divalent cations such as Mg-H- are needed to over-

come the electrostatic repulsion due to excess negative charges or membrane

proteins and lipids at physiological values and enable the proteins and lipids

to move up close enough for hydrophobic bond formation. The results of Zwaal

and Van Deenen (1970) indicate that recombination of butanol-solubilised

erythrocyte membrane proteins with membrane lipids only took place at a very

low, unphysiological pH value. The process was spontaneous when the protein

solution was mixed with the sonicated lipid suspension at pH 3.5 - 4.5. In this

low range of pH, the erythrocyte proteins are positively charged and the

phospholipids are negatively charged.

Glutamate dehydrogenase is strongly inhibited by divalent cations

+I- ++ .
(Figure 53), such as Ca and Mg and all our experiments were carried out

-4 .
in the presence of EDTA (1 - 2 x 10 M). Each of the 6 polypeptide chains of

a glutamate dehydrogenase oligomer consists of 500 amino acid residues. 33

of these are lysine residues (Piszkiewicz et al, 1973), some ofwhich may be

suitable for binding to negatively charged phospholipid surface.

Thus, the binding of the enzyme to these membranes probably involves

specific positively charged residues (such as e-amtno groups of lysine residues).

This primary electrostatic interaction may then bring the enzyme and the

membranes close enough for hydrophobic bond formation. Indeed, conformational



TABLE 17

EFFECT OF METABOLITES ON BINDING OF ENDOGENOUS GDlI TO THE

INNER MITOCHONDRIAL MEMBRANE. MITOPLASTS WITH FINAL PROTEIN

CONCENTRATION OF 3.2 mg /ml, SONICATED FOR 30 sec. TOTAL

ACTIVITIES EXPRESSED (in n moles of NADH oxid Zmin),

activity in the supernatant metabolite concentration

50.3 0
50.7 ~ 0

54.6' 1.5 x 10-3 M NADH
56.0 3 x 10-3 M NADH
53.7 1.5 x 10-4 M NADH
51.3 7.5 x 10-5 M NADH
50.1 3 x 10-5 M NADH

47.5 3 x 10-4 M ADP
47.8 1.5x10-4MADP
47.3 7.5 x 10-5 M ADP
48.9 3 x 10-5 M ADP

TABLE 18

"EFFECT OF ADP AND GTP ON BINDING OF ENDOGENOUS GDII TO TIlE

INNER MITOCHONDRIAL MEMBRANE. SPECIFIC ACTIVITIES OF

SUPERNATANT FRACTIONS AFTER DIALYSIS.

specific activity
metabolite concentrationn molea/rnin/rng protein

. 0.201 0

0.215 3 x 10-4 M GTP

O. 197 7.5 x 10-5 M GTP

O. 168 3 x 10-4 M ADP

0.175 1.5 x 10-4 M ADP
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changes in the enzyme structure may be followed soon after such electrostatic

interactions and some of the hydrophobic amino acid residues may become

more exposed to the surface of the protein structure and available for hydro-

phobic interaction with the hydrocarbon residues of the phospholipids. Evidence

for the involvement of hydrophobic interaction in the complex formation between

the enzyme and pure phospholipid membranes had already been discussed

(page 97).

If the generally held assumption about the pH of Z for mitochondria

(Williamson et al, 1967) is a correct one, then according to these results,

.the binding affinity of the enzyme for the inner mitochondrial membrane is

significant.

As described in the previous chapter, several metabolites, such as

NADH and ADP, affected the binding of the enzyme to phospholipid membranes.

To explore the effect of these metabolites on binding of the enzyme to the

inner mitochondrial membranes, both sonication of the mitoplasts and their

transfer to a hypotonic medium (0.06 M Hepetri) were tried.

Table 17 shows the effect of NADH, and ADPon binding of the

enzyme to the mitochondrial membranes. In this experiment, the mitoplasts

were incubated in ice in the presence of the effectors at different concentrations

and then sonicated for 30 seconds. After 10 minutes, they were sedimented

. at 44, 000 g for 20 minutes and the supernatant fractions were assayed for

glutamate dehydrogenase activity. A higher activity in the supernatant in the

. case of NADH and a lower activity in the case of ADP indicated the effect of

these metabolites in decreasing or increasing the binding affinity of the enzyme.
for the inner mitochondrial membrane.



TABLE 19

EFFECT OF METADOUTES ON BINDING OF ENDOGENOUS GOlI TO THE

INNER MITOCHONDRIAL MEMBRANE. MITOPLASTS WITH FINAL PROTEIN

CONCENTRATION OF 0.49 mg Zml (TRANSFERRED INTO 0.06 M HEPETRI

BUFFER + O.025 M SUCROSE, pH 7.4).

activity in the supernatant metabolite concentration

7.25 o·
7.20 0..
8.07 5 x 10-4 M NADH
8.07 2.5 x 10-4 M NADII
8.46 1 x 10-4 M

7.78 1 x 10-2 M I-giu

7.67 1 x 10-2 M I-giu +
5 x 10-4 M NADI-I

7.61 1 x 10-2 M I-giu +
2.5 x 10-4 M NADH

7.78 5 x 10-4 M NAD+
7.78 2.5 x 10-4 M NAO+
·8.07 1 x 10-4 M

TABLE 20

EFFECT OF METABOLITES ON BINDING OF ENDOGENOUS GDII TO THE

iNNER MITOCHONDRIAL MEMBRANE. MITOPLASTS WITH FINAL PROTEIN

CONCENTRATION OF 0.63 mg/ml (TRANSFERRED INTO 0.06 M HEPETRI

BUFFER). TOTAL ACTIVITIES EXPRESSED (in n moles of NADII oxid/min).

actl vity in the supernatant

o
5 mM l+Ieu

10 mM l+leu

1 x 10-4 M NADII

1 mM r:x -Kg

1mM r:x -Kg + 5 mM t-teu

1 mM et -Kg + 5 mM l-Ieu
+ 1 x 10-4 M NADII

metaboli te concentration

9.51

9.96

10.09

9.98

10.06

10.77

10.71
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In the case of ADPeffect, it must be realised that the metabolite is an

allosteric effector of the enzyme and increases its activity. Therefore, any

ADPpresent in the final assay medium would only increase the activity of the

.enzyme.

BothADPand GTP show high affinities for binding to GDH. The assoc-

iation constant for GTP (in the presence of NADH)and ADPhave been found to

-6' -6
be 0.43 x 10 M and 8 x 10 respectively (Frieden and Colman, 1967). Thus,

GTP shows a much higher affinity for the enzyme than ADP. NADHincreases

the affinity of GTP binding to the enzyme (Bayley and Radda, 1965).

Table 18shows the effect of these effectors on binding of the enzyme to

the inner mitochondrial membrane. After incubating the mitoplasts with these

effectors (in ice for 10 minutes), sonication of the suspension was carried out

for 30 seconds. They were sedimented at 44,000 g for twenty minutes and the

supernatant fractions were then dialysed in 0.05 M phosphate buffer pH 8.0

(+ 1 x 10-4 M EDTA) at about 4
o
C. Extensive dialysis was Dund to be necessary

especially in the case of GTP. Dialysis of some of the fractions was carried

out over a period of 48 hours by two changes of buffer. The absence of the

nucleotides was checked spectroscopically (280, 260 and 253 nm readings).

The specific activities of the dialysates for glutamate dehydrogenase were then

determined. The results are presented in Table 18. It can be seen that, except

for the case of ADP, the effects are not appreciable.

Table .!2.shows the effect of NADHalone and in the pre sence of 1-

glutamate on binding of the enzyme to the inner mitochondrial membrane. In

this e~periment, the mitoplasts were transferred to a hypotonic medium (0.06

Hepetri) and the metabolites were then added. Centrifugation at 44,000 g was
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then carried out for a period of 20 minutes and the supernatant fractions were

assayed for'glutamate dehydrogenase activity.

The effect of l-Jeu, et - Kg and ~ADH are shown in Table 19. The

experiment was carried out as described above.

The results indicate that both et-Kg and I-glutamate decrease the binding

of the enzyme to the membrane. Results presented in Table.!2. indicate that

NAD+ also slightly decreases the binding of the enzyme to the inner mito-

chondrial membranes.

An interesting effect found on the binding of the enzyme to the inner

mitochondrial membrane is that of l-Jeucine. Table 20shows the effect of

l-Jcuclne alone and in the presence of et-Kg and NADHon GDBbinding to the

membrane. The results indicate that l+leuctne decreases the binding of the

enzyme to the mitochondrial membrane.

Stimulation by l-Jeucinc of glutamate dehydrogenase in intact mitochondria

has been reported recently (McGivan et al, 1973). L-Ieucine and some other

monocarboxylic amino acids have been shown to stimulate the Isolated enzyme

(Yielding and Tomkins, 1961, Kun and Achmatowicz, 1965) and form a complex

with the enzyme with perturbation in its structure (Prough et al, 1972, Prough

and Fischer, 1972).

Stu?ies on the effect of l+leucine in intact mitochondria (McClvan et al,

1973) showed that stimulation by l-Jeuc.ne only occurred in the direction of

I-glutamate synthesis and not in the dcamination direction. They explained their

results by suggesting that I-glutamate deaminatlon may be controlled by the. ,

rate of glutamate transport (Bradford and McGivan, 1973).
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It may be suggested, in view of our experimental evidence on the

specificity of binding of the enzyme to phospholipid and mitochondrial

membranes that the effect of I-leucine and other monocarboxylic amino acids

may be, at least partly, due to the same type of effect. TIle fact that I-leucine

only affected glutamate synthesis would in view of the above arguments be

expected, as the conformation of the enzyme in the presence of l-Ieucinc,

l-glutamate and NAD+ would be different from that in the presence of I-leucine,

+
Q( - Kg, NADI-I and r-..T}l4.'

It is also interesting that stimulation of l-Ieuclne was only observed

in disrupted and not in intact mitochondria, In this case, the enzyme is

released from the mitochondrial membrane and no barriers between the

enzyme and the effectors exist. Regulation of binding of the enzyme to the

mitochondrial membrane would be expected to be a stronger possibility in the

case of a released enzyme than in the case of a bound one,



Chapter VII

GENERAL DISCUSSION



GENERAL DISCUSSION

Previous studies on the interaction of glutamate dehydrogenase with

detergents and phospholipid membranes showed that the head groups of the

..amphiphiles determine the extent of complex formation (Dodd, 1972 - 1973,

Nemat-Gorgani and Dodd, 1974). Reports in a similar study were different

in that no such specificity was observed and all phospholipids tested showed

strong inhibition (julliard and Gautheron, 1972). A more recent report from

the same laboratory (Godinot, 1973) confirmed our conclusions. In these two

separate studies, the enzyme from pig heart and rat Iiver mitochondria were

looked at respectively.

There may be several reasons for the lack of specificity reported in the

association of different phospholipids with the enzyme Qulliard and Gautheron,

1972). Poor characterisation of the phospholipids and the presence of oxidation

products are two obvious possibilities. As discussed in the previous chapter,

all our phosphollptds were well characterised and were stored in the presence

of the antioxidant, BliT. No oxidation or degradation products were detected

in our experimental conditions.

The aim of this work was to explore possible specific interaction between

glutamate dehydrogenase and the inner mitochondrial membrane. For

characterisation of such interactions, amphiphiles of different head group

types (anionic, cationic and zwitterionic) and different alkyl chains were chosen •.

Interaction of the enzyme with phospholipid membranes and detergents

was characterised mainly by kinetic and fluorescence studies. The possibility

of different conformations of the enzyme binding specifically to these charged
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surfaces and conformational changes brought about as a result of complex

formation was investigated. Both types of amphiphiles indicated the head

group specificity in their association with the enzyme. Thus, the cationic

.amphiphiles (e. g. CETAB)and the anionic amphiphiles (e. g. sodium dodecyl

sulphate and cardiolipin) interacted with the enzyme while the zwitterionic

amphiphiles (lysolecithin and phosphatidylcholine) did not interact.

Complex formation between the enzyme and the anionic phospholipids

was found to be a reversible process. On the other hand, the anionic

detergent, sodium dodecyl sulphate, showed the capacity of bringing about

-4irreversible denaturation at high concentrations (> 1 x 10M).

Detergents form micelles which are in equilibrium with high concen-

trations of monomers which can bring about irreversible inhibition of the

enzyme by binding to specific sites. In contrast, the phospholipids form

single-shelled bilayer vesicles for which no significant concentration of

monomer is found (Robinson, 1960).

The six polypeptide chains of each enzyme oligomer appear to be arranged

in two layers, each composed of three elongated ellipsoidal subunits (Horne et

aI, 1963, Sund et al, 1969). The oligomer has dimensions of about 140 A0 by

86 A0 by 90 A0 (Sund et aI, 1969). The phospholipid vesicles are spherical in

shape and have an average diameter of 230 A0 (Hauser, 1967). Thus, in the

case of t,he interaction between glutamate dehydrogenase and phospholipids, the

process takes place between two aggregates of similar sizes.

Ligand-Induced conformational changes in enzymes is an important

concept of molecular enzymology. The importance of such processes in the
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regulation of enzymic activity has been discussed in detail by Monad et al

(1963). The term "allosteric" effect defines a phenomenon in which a conform-

ational change is induced in the enzyme by a molecule called "effector" bound

at a site other than the active centre. This may then lead to either activation

or inhibition. Glutamate dehydrogenase is an enzyme in this class. Some of

the models of the regulatory mechanisms emphasize the role of co-operative

protein-protein interactions (Koshland et al, 1966). The intracellular micro-

environment of the allosteric enzymes might play an important role in modulating

the co-operative responses.

The term allotopic phenomenon according to Racker's original definition

(Racker, 1967) is a "phenomenon of membrane-enzyme complexes manifest

by alterations in the properties of both enzyme and membrane". This definition

was made with reference to the properties of the Mg-t+ dependent ATPase (F 1 )

which can be purified from the inner mitochondrial membrane. This soluble

ATPase is cold labile and oligomycin insensitive (Pullman et al, 1960). Alter-

natively, the ATPase can be purified as a water insoluble lipid-protein complex

which is both stable to cold and oligomycin sensitive (Kagawa and Rackcr, 1966).

These changes in the properties of the protein brought about by the presence of

lipid is coupled with changes in the properties of the membrane, as indicated

by its increased resistance to trypsin.

Our results indicate that glutamate dehydrogenase bound to phospholipid

membranes has different properties as compared with the free enzyme. These

were indicated by loss of activity on binding to a phospholipi.dmembrane

together with diminution of intrinsic fluorescence and an increase in its

capacity to bind ANS.
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Formation of a complex between the enzyme and an anionic phospholi pid

membrane may also bring about changes in the properties of the lipid bilayer

structure (such as charge neutralisation of the head groups) as discussed in

previous chapters.

As discussed above, ANSdoes not give rise to fluorescence enhancement

in the presence of anionic phospholipids. This is probably due to the fact that

the negatively charged probe cannot penetrate into the hydrophobic regions of

the bilayer. However, after formation of a lipid-enzyme complex, charge

neutralisation of the phospholipid head groups (by interaction with the positively-

charged groups in the enzyme structure) may take place and the Iipid may

acquire the capacity to "accommodate" ANSin its hydrophobic regions. A

number of soluble basic proteins, such as cytochrome c and lysozyme, have

been shown to increase permeability of phosphatidylserine vesicles to inorganic

ions (Kimelberg and Papahadjopoulos, 1971) and showed the ability to penetrate

or expand monolayer s of the same phospholipid (Kimelberg and Papahadjopoulos,

1971, b).

At pH values which the kinetic and fluorescence experiments were

carried outtpll 6 - 9) the anionic phospholipids and the enzyme (pI 4 - 5) have

the same charge type. Formation of enzyme-lipid complexes increased with

decreasing ionic strength and pll, thus showing the posslbfllty of electrostatic

interaction. However, the interaction must be different from that between

basic protein such as cytochrome c and cardiOlipin (Green and Fleischer, 1963)

and betv een phosphatldylscrinc and ribonuclease (Kimelberg and Papahadjopoulos,

1971). The net charges of these basic proteins (pI's> 10) are opposite to the

anionic phospholipid bilayer surface. In the case of cytochrome c, it has been
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shown that the lysine residues as well as the hydrophobic amino acid residues

tend to occur in distinct clusters along the protein chain (Margoli ash, 1962).

In the case of glutamate dehydrogenase, 33 out of the 500 amino acid

residues of each polypeptide chain are lysine residues (Piszkicwicz et al, 1973),

some of which may be suitable for binding to an anionic surface.

Involvement of hydrophobic interaction was indicated by increase in the

extent of complex formation with temperature. It is possible that there is an

asymmetrical distribution of the 500 amino acid residues in each polypeptide chain

of the enzyme. Such asymmetric distributions have been shown in the case of

cytochrome bS (Spatz and Strittmatter, 1971), cytochrome bS reductase

(Strittmatter, 1972)and a glycoprotein of the human red cell membrane

(Segrest et al, 1972).

Recently, (Gitel et al, 1973) the presence o,fa specific region in bovine

prothrombin for binding to phospholipids has been demonstrated. A similar

report was made by Lux.et al (1972) who found a cyanogen bromide fragment

from apo high density lipoprotein (Apo LP-Gln-II), to complex with phosphat-

idylcholine and to inhibit the reactivation of delipidated mitochondrial e-
hydroxybutyrate dehydrogenase. The presence of a highly hydrophobic region

in cytochrome bS (Spatz and Strittmatter,' 1971) and cytochrome bS reductase

(Strittmatter et al, 1972)has also been demonstrated.

Electrostatic Interactlon between a negati vely charged membrane and

positively charged residues in the enzyml! may be followed by conformational

changes in the enzyme and structural changes in phospholipid membranes.

Hydrophobic interaction may then take place between the hydrophobic amino
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acids of the enzyme exposed to the surface as a result of the primary electro-

static interaction, and the hydrophobic regions in the phospholipid bilayer.

This is possible in view of the fluid state of phospholipids. Thus, after complex.

formation, some hydrophobic residues of the enzyme may penetrate into the

. bilayer structure of the phospholipid membranes as shown in Figure ~ Only

a slight penetration would be expected in view of the low proportion of hydro-

phobic amino acid residues in the enzyme, its high solubility and the fact that

an enzyme-phospholipid complex may be partially dissociated by increasing

the Ionic strength (page 89). Thus extensive penetration as shown in Figure 86h)
and c)

is not possible.

The kinetic and intrinsic fluorescence studies were carried out at very

low protein concentration ( <SO IJ,g/ml) at which the enzymic species is the

monomer comprised of six subunits. The subunits are ellipsoid in shape and

their possible arrangement is shown in Figure 18. Polymerisation takes place

along the major axis of the ellipsoid units (Sund et al, 1969) as -shown in the

figure.

Residues which are involved in formation of a complex between the

enzyme and phospholipid membranes may be either present along the longttudlnal

axis of its structure or at the same sides at which polymerisation takes place.

These two possibilities are indicated in Figure 87 (1 and II).-
Arrangement I would leave the sites involved in the process of polymer-

isation intact and any effect on such process would be due to secondary

conformational changes in the en~yme. Arrangement II, however, would

Interfere with polymerisation directly and would predict competition between.
the two processes of polymerisation and lipid-protcin complex formation.



Fig. 86 The extent of GDB penetration into a phospholipid bilayer

I II III

Fig. 87 Two different types of arrangement of a GDH oligomer on a
phospholipid membrane

IT
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The stop-flow experiments indicate that the polymeric form of the

. enzyme also interacts with anionic phospholipids and enzyme oligomersare

formed as a result. The enzyme polymer exists as a rod. Thus, it may be

. concluded that the enzyme oligomers are arranged with parts of their long-

itudinal surfaces in contact with anionic phospholipids. All six polypeptide

chains in the enzyme are identical and may be involved in binding to anionic

phospholipid membranes at the same time. After such complex formation,

there may be extensive conformational changes with the result that the residues

involved in oligomer-oligomer interaction are no longer available for such

a process.

Each enzyme oligomer has dimensions of about 140 A
0
by 90 A

0
(Sund

et al, 1969). The phospholipid vesicles are spherical in shape and have an

average diameter of 230 AO (Hauser, 1967). Thus, in the case of the inter-

action between glutamate dehydrogenase and phospholipids, the process takes

place between two aggregates of similar sizes.

In the case of dipalmitoyllecithin, the area of each phospholipid head

group is about 48 A0 2 with a constant width for each head group layer of

approximately 10 A0 (Engelman, 1970).

From the above data, it may be calculated that the maximum orca

involvi.ng!polypeptide chains in arrangement I (Figure 87) is roughly equal to

12,000 A0 2 which is equivalent to the surface area on a phospholipid vesicle

occupied by 120 phospholipid molecules. In arrangement II, the total surface

area is 7, 700 A0 2 corresponding to 77 phospholipid molecules.

if the enzyme just touches the surface of the membrane, the total area

of contact would be very small and would, as a rough estimation, be
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equivalent to the area occupied by 6 or 4 phospholipid head groups for

arrangements I and II respectively. With slight penetration of the polypeptide

chain into the hydrophobic interior of phospholipid bilayers, these values

increase to 36 and 11phospholipid molecules.

Intrinsic and extrinsic fluorescence studies indicate that there is a high

degree of specificity in the association of the enzyme with phospholipid

membranes. Presence of different metabolites which are of importance to the

metabolic activities of the enzyme and which bring about different conform-

ational changes in its structure, affected the binding in opposite ways.

Similar type of specificity has been shown in the association ofglycer-

aldehyde 3-phosphate dehydrogenase with erythrocyte membranes (Kant and

Steck, 1973, Letko and Bohnensack, 1974). On the other hand, the basic protein

cytochrome c lacked specificity in its association with erythrocyte membranes.

Thus, in the case of the interaction between cytochrome c (pI = 10. 6) and

anionic membranes, the process is due to non-specific adsorption. Also, a

preformed complex is dissociated completely when the ionic strength is raised

sufficiently (Green and Flei scher, 1964). Thus, the process only involves

electrostatic interaction.

Although glutamate dehydrogenase is not a structural component of the

inner mitochondrial membrane, it may be nevertheless loosely bound to the

membrane. This speculation was reached in view of the high affinity of binding

of the enzyme to the anionic phospholipid membranes and the fact that the inner

mitochondrial membrane consists of 20%card.iolipin (Colbeau, 1971).

The possibility of an asymmetrical distribution of the phospholipid with.
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its preferential localisation in the inner surface of the inner membrane

supported the above speculation. Evidence for such asymmetrical nature of

the mitochondrial membrane has been fully discussed in the previous chapter

(pages 86 and 87).

Binding of the enzyme to mitochondrial membranes showed the two types

.of specificities (dependency on membrane composition and enzYI_TIcconform-

ation) discussed above•. The enzyme showed a much higher affinity for binding

to the inner surface of the inner membrane than to the outer surfaces of the

. inner and outer membranes. Also, affinity of the enzyme for the inner mito-

chondrial membrane was found to be dependent upon the type of conformation

it may adopt. Thus, different metabolites bound to the enzyme showed opposite

effects- NADHdecreased the binding while ADPcaused an increase.

However, these effects were small and a full interpretation of such

results in a mitochondrial system is difficult. These metabolites are added to

a system which has already high concentrations of endogenous metabolites and

active enzyme systems. Thus, any additional metabolite may affect the extent

of binding of the enzyme to the inner mitochondrial membrane in the following

ways:

i) Binding to glutamate dehydrogenase and causing conformational changes in the

enzyme structure.

ii) Binding to proteins other than glutamate dehydrogenase, affccting their

.binding to the mitochondrial membrane and changing the availability

of the hinding sites 011 the mitochondrial membrane for glutamate

dehydrogenase.
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iii) Provision of the required metabolite(s) for the activity of other mito-

chondrial enzymes. This can result in the formation of new metabolites

which can bring about changes through I and II.

iv) Binding to some of the mitochondrial proteins, changing their conform-

ation and hence, the extent of protein-protein interactions.

-In the case of glutamate dehydrogenase, the equiltbrium constant for the

enzyme may be defined as:

K =
+[I-glutamate] [NAD ]

It has been shown that (Williamson et al, 1967) an equilibrium exists

between the components of the glutamate and e -hydroxybutyrate dehydrogenase

systems. An approximately three-fold increase of the ~TH4+ concentration in

the rat liver brought about by intramuscular injection was found to bring about

changes in the concentration of all the metabolites involved in these systems.

The glutamate concentration was increased while Oi - Kg concentration

di , , h d Al h ' [I-glutamate] and [ e -hydroxybutyrate]was mums e. so t e ratios
+

[ Q' - Kg] [ NB4 ]changed in parallel.
[ acetoacetate 1

In the case of glutamate dehydrogenase, an increase in I-glutamate or

NAD+ concentration may bring about increases in concentration of Oi - Kg

NADHand NH4+. A reverse process can occur by increasing the concentration

of any o:~the other metabolites (Q' -Kg, NADBand NH4+). Any such changes

are controlled by the availability of the other required metabolites and by the

fact that the equilibrium for the activity of the enzyme favours the formation

of glutamate.
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Concentrations of substrates of glutamate dehydrogenase system in

+ + +well fed rats have been found to be 2.41 - 0.29, 0.145 - 0.013 and 0.47-

0.15 n moles/g fresh weight for I-g'lutamate, Q' -ketoglutarate and ammonia

respectively (Williamson et al, 1967). In starved rats, lower levels for

I-glutamate and NH4+ and a higher level for 0' -ketoglutarate were observed.

Binding of the enzyme to the inner surface of the inner membrane

increased \\lith decreasing NlI4CI concentration and pH.

The reversible association of the enzyme with the inner mitochondrial

membrane and the effect of pH, ionic strength and metabolite concentrations

on such interaction may explain some important properties of the enzyme.

Glutamate dehydrogenase is present in the mitochondrial matrix of

beef liver cells at concentrations as high as 2 mg'/rnl or even higher (Frieden

and Colman, 1967). The isolated enzyme has a high specific activity, but

under normal circumstances, its activity is strongly inhibited. The major

pathway of glutamate metabolism is via transamination, rather than oxidative

deamination by the enzyme (Greville, 1969). However, under abnormal

conditions of high NH4+ concentrations, the excess ammonia is rapidly

metabolised by the enzyme. This might be due to the release of the enzyme

bound to the inner mitochondrial membrane to the matrix compartment,

Another interesting observation is stimulation by l-Ieuclne of glutamate

dehydrogenase in Intact rat liver mitochondria (McGlvan et 31,1973) and the

fact that l-Ieucine decreases affinity of binding of the enzyme to the inner

mitochondrial membrane. These findings have been fully discussed in previous

chapters (pages 105 and 106).
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In conclusion, data reported in this thesis are in support of the hypothesis

that glutamate dehydrogenase may be specifically associated with the inner

mitochondrial membrane and may partition between the membrane and the

mitochondrial matrix in a manner responsive to local variations in pH, ionic

strength and metabolite concentrations. The effect of metabolites includes

the allosteric properties of the enzyme. Regulation of enzymatic activities may

also take place through an allotopic mechanism on interaction with membranes.

"\.

It is suggested that the observations and conclusions discussed above

have important physiological significance and may explain a number of findings

reported previously on the properties of the enzyme in mitochondria. Also

the system may throw some light towards characterisation of mechanisms of

interaction (and organisation) of some mitochondrial enzymes which are not

fully incorporated into the bilayer structure.
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