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A reanalysis of a strong-flow gyrokinetic formalism
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We reanalyse an arbitrary-wavelength gyrokinetic formalism [A. M. Dimits, Phys. Plasmas 17,

055901 (2010)], which orders only the vorticity to be small and allows strong, time-varying flows

on medium and long wavelengths. We obtain a simpler gyrocentre Lagrangian up to second

order. In addition, the gyrokinetic Poisson equation, derived either via variation of the system

Lagrangian or explicit density calculation, is consistent with that of the weak-flow gyrokinetic

formalism [T. S. Hahm, Phys. Fluids 31, 2670 (1988)] at all wavelengths in the weak flow limit.

The reanalysed formalism has been numerically implemented as a particle-in-cell code. An itera-

tive scheme is described which allows for numerical solution of this system of equations, given

the implicit dependence of the Euler-Lagrange equations on the time derivative of the potential.
VC 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4916129]

I. INTRODUCTION

The weak-flow gyrokinetic formalism1,2 uses a gyroki-

netic ordering parameter

� � x=X � vE�B=vt � 1; (1)

with x a characteristic frequency, X the gyrofrequency, vE�B

the E� B drift speed, and vt the typical thermal speed.

The ordering (1) may be poorly satisfied in the core and

edge of tokamak plasmas because of either large overall

rotation or relatively strong flows in the pedestal. It is

also frequently broken in astrophysical plasmas. Various

approaches3,4 to include stronger flows in a gyrokinetic

framework have been proposed, but the most general so far5

is based on ordering the vorticity to be small,

� � v0E�B=X; (2)

where v0E�B is the characteristic magnitude of the spatial

derivatives of the E� B drift velocity. This is a maximal

ordering in the sense that a larger vorticity on any scale

would lead to breaking of the magnetic moment invariance,

as nonlinear frequencies are comparable to the vorticity.

Ordering the vorticity allows for general large, time-varying

flows on large length scales as well as gyroscale perturba-

tions, and includes them within a single description, unlike

schemes based on separation of scales6,7 or long-wavelength

schemes.4

However, in the weak-flow limit, the gyrokinetic

Poisson equation of Ref. 5 disagrees with that of the

weak-flow gyrokinetic formalism at wavelengths compa-

rable to the gyroradius. We rederive this theory and

explain some minor but important departures from the

derivation of the weak-flow theory. In our reanalysis, we

obtain a Poisson equation, via both a variational and

direct method, that, in the weak-flow limit, agrees with

the weak-flow gyrokinetic Poisson equation at all

wavelengths.

II. GUIDING-CENTRE LAGRANGIAN

The particle fundamental 1-form for electrostatic pertur-

bations in a slab uniform equilibrium magnetic field is

c ¼ A xð Þ þ v½ � � dx� 1

2
v2 þ / x; tð Þ

� �
dt; (3)

where we use units such that q ¼ T ¼ m ¼ vt ¼ 1, q is the

particle charge, T is the temperature, m is the particle mass,

A is the magnetic vector potential, x is the particle position,

v is the particle velocity, and t is time. We redefine v as the

velocity in a frame moving with a velocity uðx;v; tÞ such

that Eq. (3) becomes

c ¼ A xð Þ þ vþ u½ � � dx� 1

2
vþ uð Þ2 þ /

� �
dt: (4)

The guiding-centre fundamental 1-form (Appendix A) is

C ¼ A Rð Þ þ Ub̂ þ u
� �

� dR� q � duþ ldh

� 1

2
U2 þ lXþ 1

2
u2 þ h/i þ d1

~/

� �
dt; (5)

d1
~/ ¼ ~/ þ q �X� u;

where R ¼ x� q is the guiding-centre position, q ¼ v?X
�1

ðcos h1̂ � sin h2̂Þ is the gyroradius, v? is the perpendicular

speed, h is the gyroangle defined with the opposite sign to

that of Ref. 5, 1̂ ¼ 2̂ � b̂; b̂ is the magnetic field unit vector,

U ¼ b̂ � v is the parallel speed, l ¼ 1
2
v?X

�1 is the magnetic

moment, h…i ¼ ð2pÞ�1 Þ
dh…; ~/ ¼ /� h/i; X ¼ Xb̂ and

we have used

b̂ � u ¼ 0

and the gauge

S ¼ �q � 1

2
q � $þ 1

� �
A Rð Þ þ u

� �
: (6)
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III. GYROCENTRE LAGRANGIAN

Using the ordering (2), magnitude of the particle posi-

tion x � 1 and

u ¼ X�1b̂ � $h/i; (7)

we can order the terms in the Lagrangian in terms of their

variation over typical length scales as

C ¼ C0 þ C1; (8)

with

C1 ¼ �q � du� d1
~/dt: (9)

As in weak-flow formalisms, the lowest order Lagrangian C0

contains terms which may be large on sufficiently long

length scales. In addition to the conditions in Appendix B, u
must satisfy the condition

ð@t þ u � $Þu � �2:

We use noncanonical Hamiltonian Lie-transform perturba-

tion theory8,9 to determine a set of gyrocentre coordinates

where the Lagrangian is h-independent. This procedure sys-

tematically removes the h-dependence from the Lagrangian

order by order. The transformation between guiding-centre

and gyrocentre space is then given in terms of a Lie trans-

form of the form

T61 ¼ exp 6
X
n¼1

�nLn

� �
;

where LnC¼ga
nxabdZb; ga

n are the generators, a;b2f0;…;6g,

xab ¼ Cb;a � Ca;b (10)

are the Lagrange matrix components and Cb;a ¼ @aCb

(Einstein notation is used). The requirement that the first-

order Lagrangian be h-independent, with the choice gt
n ¼ 0,

yields (Appendix B) the non-zero first-order generators

gR
1 ¼ X�2$~U � b̂;

gl
1 ¼ X�1d1

~/;

gh
1 ¼ q � u;l � X�1d1

~U;l ¼ �X�1 ~U;l � u � q;l; (11)

where d1
~U ¼

Ð
dhd1

~/ and ~U ¼
Ð

dh~/. Given a long wave-

length flow, gl
1 and gh

1 are smaller in this strong-flow formal-

ism than in the equivalent weak-flow formalism, reflecting the

improvement in the ordering scheme for such a case. Unlike

Ref. 5, we simplify the second order Lagrangian by moving

the second order terms into the time component (Appendix B).

The gyrocentre Lagrangian up to second order is

�C ¼ A �Rð Þ þ �U b̂
� �

� d�R þ �ld�h � 1

2
�U

2 þ �lXþ h/i
�

� 1

2
hg�R

1 � �$~/i � 1

2
X�1h~/2i;�l

�
dtþ �u � d�R � �udtð Þ; (12)

where the overbar denotes a gyrocentre quantity. The last

term is the only one absent from the weak-flow gyrocentre

Lagrangian at this order; the main qualitative difference with

the weak-flow formalism is simply the presence of the elec-

tric potential in the symplectic part of the Lagrangian.

IV. EULER-LAGRANGE EQUATIONS

Using the gyrocentre Lagrangian up to first order, the

gyrocentre Euler-Lagrange equations,

�xij
_�Z j ¼ �xti; (13)

where i; j 2 f1;…; 6g, yield (Appendix C)

_�R ¼ �u þ �X
��1

k b̂ � ð@t þ �u � �$ þ �U �rkÞ�u þ �U b̂;

_�U ¼ �h/i;�z þ �X
��1

k �u;�z � b̂ � ð@t þ �u � �$Þ�u;
_�l ¼ 0;

_�h ¼ Xþ h/i;�l � �X
��1

k �u;�l � b̂ � ð@t þ �u � �$ þ �U �rkÞ�u;
�X
�
k ¼ Xþ b̂ � �$ � �u: (14)

Note that we recover an additional term in the _�U equation

which appears to be missing in Ref. 5. Physically, it is a pon-

deromotive term that typically results from the appearance

of a �u2 term in the Lagrangian;10 the analogue of this term is

present in Ref. 3. The contributions to the Euler-Lagrange

equations from the second order part of the Lagrangian are

_�R2 ¼ ��X
��1

k b̂ � �$ �H2;

_�U 2 ¼ �H2;�z � �X
��1

k �u;�z � b̂ � �$ �H2;

_�h2 ¼ � �H2;�l ;

�H2 ¼
1

2
hg�R

1 � �$~/i þ 1

2
X�1hd1

~/
2i;�l þ b̂ � hd1

~/�qi � �u;�l ;

where �H2 is the second order part of the gyrocentre

Hamiltonian. The Euler-Lagrange equations that include the

contributions from the second order part of the Lagrangian

can be simplified by renormalising the potential.11

V. POISSON EQUATION

Gyrokinetic Poisson and Ampère equations have previ-

ously been obtained by varying the system Lagrangian with

respect to the field variables.12,13 We find it helpful to give

an elementary explanation of why this should be possible.

First, consider the many-body Lagrangian for a set of

point particles interacting with a field, with integral terms for

the field self-interaction: this is a well posed problem at least

if we restrict the fields to be sufficiently smooth, and Euler-

Lagrange equations for the particles and the usual Maxwell

equations are directly obtained by varying particle coordi-

nates and fields. We now apply our guiding and gyrocentre

transformations to write this many-body Lagrangian in terms

of the particle gyrocentre variables. The system Lagrangian,

which is the sum of the particle Lagrangians, plus the field

component integrated over space, then directly leads to gyro-

centre Euler-Lagrange equations, and Poisson and Ampère

equations for the fields. We are usually interested in the
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smooth limit of these equations (potentially with a collision

operator representing short spatial scale correlations), with

particles described by a distribution function �Fð �ZÞ, in which

case the time evolution of �F can be evaluated in terms of the

Euler-Lagrange equations of the gyroparticles (a gyrokinetic

Vlasov equation) and in field equations sums over particles

are replaced by integrals of �F.

We note the contrast between this approach, which is

similar to that of Refs. 4 and 12, and attempts to vary a sys-

tem Lagrangian written in terms of the distribution function:

the Euler-Lagrange equations appear naturally, rather than

being inserted by hand as a constraint.

At this point, it is useful to introduce some notation: we

denote a mapping from coordinate system �Z to z as T �Z!z

and the associated Jacobian as J �Z!z ¼ j�@ iT �Z!z
�Zjj.

We will consider only the electrostatic, quasineutral

limit where the field terms have been ignored and species

sums, charges, and masses have been suppressed. The

Poisson equation can be obtained from the stationary varia-

tion of the system Lagrangian in original coordinates with

respect to /, and this can also be written directly in gyro-

centre coordinates, based on the above consideration of inter-

pretation as the limit of a many body theory,

@

@/

ð
d6zf zð ÞLp zð Þ ¼

@

@/

ð
d6 �Z �F �Zð ÞLp

�Zð Þ; (15)

the invariance of the value is also what we expect due to the

covariance of the form of the integral. Note, however, that,

here, f must be defined so that it transforms as a scalar den-

sity: the “usual” gyrocentre distribution function is actually
�F
0ð �ZÞ ¼ f ðT �Z!z

�ZÞ ¼ ðJ �Z!zÞ�1 �Fð �ZÞ. This Jacobian is a

function of /, unlike for the transformations in the weak-

flow case, and varying / with fixed �F is not identical to vary-

ing / with fixed �F
0
.

Performing this variation (Appendix D) yields

0 ¼ ðdLÞ/ ¼ �
ð

d3rd/ðrÞ
ð

d6 �Zdð�R þ �q � rÞ

� ½ð1þ X�2 �$ ~U � b̂ � �$ þ X�1 ~/@�lÞ �F

þX�1b̂ � �$ � ð �F �R
:

�2 �F�uÞ�: (16)

If the distribution function �F
0
is uniform, and we neglect terms

which are of order �2, this Poisson equation reduces to the

usual weak-flow Poisson equation as shown in Appendix D.

For weak flows, it has been shown13 that the variational

method for obtaining the Poisson equation is equivalent to

the direct method of setting the charge-density to zero, up to

the chosen order of approximation. Here, we have the quasi-

neutrality equation

0 ¼
ð

d6zdðx� rÞf ðzÞ; (17)

where f is the original distribution function. A change of var-

iables can be made to guiding-centre coordinates, and the

guiding-centre distribution function F0ðZÞ can be expressed

in terms of the gyrocentre distribution function �F
0ðZÞ using

the Lie transform,14 to yield

0 ¼
ð

JZ!zd
6ZdðRþ q� rÞT �F

0
: (18)

Note that the Jacobian is of the transform from original coor-

dinates to guiding-centre space, which is not equal to J �Z!z

for this strong-flow formalism; the two are equivalent in the

weak-flow analysis.15 Explicit evaluation of Eq. (18) leads to

the same result as the variational formalism; details are given

in Appendix D for completeness.

Alternatively, we can directly evaluate Eq. (17) in gyro-

centre coordinates so that the Lie transform appears in the

delta function: this again gives an equivalent expression for

the Poisson equation.

VI. NUMERICAL SOLUTION OF THE EQUATIONS

The second order Lagrangian derived here allows rela-

tively simple explicit forms of the equations of motion for

the particles, and the Poisson equation is also of a tractable

form. However, the advection of gyroscale structures with

velocities of order vt results in time variations of order of the

gyration time, and standard Eulerian schemes would be

forced to run on this time scale. This would negate the point

of using gyrokinetics, and appears suboptimal considering

that nonlinear time scales are expected to be of the order of

the inverse vorticity. This suggests the use of semi-

Lagrangian or particle-in-cell (PIC) methods which allow

Courant numbers much larger than one. We have chosen to

use a PIC method for the particle distribution and a finite-

difference method for the field equations.

The dependence of the Euler-Lagrange equations

derived from the first or second order Lagrangian on the time

derivative of the potential implies that the Euler-Lagrange

equations and the gyrokinetic Poisson equation must be

solved simultaneously in general: this complication arises

because part of the polarisation drift is now contained within

the particle trajectories, unlike in the weak-flow gyrokinetic

formalism where the polarisation drift is captured completely

in the change of variables. The Poisson equation also

involves a term containing the time derivative of the poten-

tial: however, the term is of a smaller order than the domi-

nant terms. We solve the Vlasov-Poisson system in the

quasistatic limit (the solution is the smooth continuation of

the solution in the limit �! 0).

One approach to the numerical solution of this system is

to expand the Poisson equation around an approximate solu-

tion �F
0
0. The polarisation of the background part of the

plasma �F
0
0 is balanced mostly by the gyroaveraged charge

associated with d �F
0
, and this can be used to find an initial

approximation for the potential. The Vlasov-Poisson system

may then be solved iteratively, with the first particle trajec-

tory step neglecting the polarisation term, given that only the

electrostatic potential, and not its time derivative, is known

at this point. Once an approximate solution has been com-

puted, this can be used to evaluate the time derivative and

d �F
0

polarisation terms which were neglected; this method is

then iterated until convergence is satisfied.

We have currently only partially implemented the full

set of equations: the code computes an iterative solution of a
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system composed of the first-order Euler-Lagrange equation

(14) and the linearised Poisson equation with uniform �F00.

The convergence ratio per iteration is of order �. This has

been used to investigate the Kelvin-Helmholtz instability of

a shear layer, to demonstrate that the numerical scheme con-

verges, is well-behaved, and reduces to the weak-flow model

in the appropriate limit. We have also simulated a simplified

problem that reduces the spatial dynamics to three-wave cou-

pling, to verify that the numerical implementation is correct

in certain limits.
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APPENDIX A: GUIDING-CENTRE LAGRANGIAN

Substituting x ¼ Rþ q and v ¼ Ub̂ þ v? into Eq. (4)

yields

c ¼ A Rþ qð Þ þ Ub̂ þ v? þ u
h i

� dRþ dqð Þ

� 1

2
U2þlXþ 1

2
u2 þ h/i þ d1

~/

� �
dt: (A1)

Using AðRþ qÞ ¼ AðRÞ þ ðq � $ÞAðRÞ, the gauge (6) and

v? � dR ¼ q� ½$� AðRÞ� � dR in Eq. (A1) yields

c ¼ A Rð Þ þ Ub̂ þ u
� �

� dR� dR � f$ A Rð Þ � q
� �

� q � $ð ÞA Rð Þ � q� $� A Rð Þ½ �g � q � duþ ldh

� 1

2
U2 þ lXþ 1

2
u2 þ h/i þ d1

~/

� �
dt: (A2)

By identifying the terms in curly brackets in Eq. (A2) as

½AðRÞ � $�qþ AðRÞ � ð$� qÞ ¼ 0, we obtain Eq. (5).

APPENDIX B: GYROCENTRE LAGRANGIAN

The requirement

d1
~/ ¼ Oð�Þ

is equivalent to restrictions on the possible choices for the h-

independent potential appearing in Eq. (5) and u given by

/g � /ðRÞ 	 Oð�Þ (B1)

and

u� X�1b̂ � $/ðRÞ 	 Oð�Þ; (B2)

respectively, where /g is a general h-independent potential.

Some possible choices for /g and u that satisfy orderings

(B1) and (B2) are /g ¼ /ðRÞ,

/g ¼ h/i;

u ¼ X�1b̂ � $/ðRÞ, and Eq. (7).

Using Eq. (10), we can compute the non-zero Lagrange

matrix components of C0 as

x0Ri0Rj0 ¼ �i0j0k0X
�
k0;

x0Rl ¼ �u;l;

x0Rt ¼ �$h/i � u� ð$� uÞ � ðu � $þ @tÞu;
x0lt ¼ �h/i;l � u � u;l � X;

x0RU ¼ �b̂;

x0Ut ¼ �U;

x0lh ¼ 1; (B3)

where i0; j0; k0 2 f1; 2; 3g and

X� ¼ Xþ $� u: (B4)

The first-order part of the gyrocentre Lagrangian is

�C1 ¼ C1 � L1C0 þ dS1;

where

C1 ¼ ð�q � $uÞ � dR� q � u;ldl� ðq � u;t þ d1
~/Þdt;

�L1C0 ¼ gR
1 �X � dRþ gh

1dl� gl
1dhþ ðgR

1 � $h/i
þgl

1XÞdtþ Oð�2Þ

and

dS1 ¼ $S1 � dRþ S1;UdU þ S1;ldlþ S1;hdhþ S1;tdt:

Solving for g1 in terms of S1 such that �C1 is only composed

of a first-order time component,

�C1 ¼ ð�d1
~/ þ X�1$S1 � b̂ � $h/i þ XS1;h þ S1;tÞdt

þOð�2Þ;

yields the non-zero g1 components

gR
1 ¼ X�1½q � ðb̂ � $Þuþ $S1 � b̂�;

gl
1 ¼ S1;h;

gh
1 ¼ q � u;l � S1;l:

By using

ð@t þ u � $ÞS1 � �2;

as in Ref. 5,

�C1 ¼ ð�d1
~/ þ XS1;hÞdtþ Oð�2Þ:

By using the freedom of S1 to remove the first-order h-de-

pendent terms in �C1, we have

�C1 ¼ Oð�2Þ

for

S1 ¼ X�1d1
~U:
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C1 yields

x1Rl ¼ $u � q;l;

x1Rh ¼ q;h � $u;

x1Rt ¼ �$d1
~/;

x1lh ¼ q;h � u;l;

x1lt ¼ �u;t � q;l � d1
~/;l;

x1ht ¼ �ðq � u;t þ d1
~/Þ;h;

and the expression for �C2 is

�C2 ¼ C2 � L1C1 þ
1

2
L2

1 � L2

� �
C0 þ dS2

¼ C2 � L1C1 þ
1

2
L1 L1C0ð Þ � L2C0 þ dS2

¼ C2 � L1C1 þ
1

2
L1 C1 þ dS1 � �C1ð Þ � L2C0 þ dS2

¼ C2 �
1

2
L1C1 � L2C0 þ dS2 þ O �3ð Þ;

where L1dS1 ¼ 0,

C2 ¼ gR
1 � $� uð Þ � gl

1u;l
� �

� dR� gR
1 u;ldl

þfgR
1 � u� $� uð Þ þ gl

1 h/i;l þ u � u;l
� 	

þ @t þ u � $ð Þ S1 � q � uð Þgdtþ O �3ð Þ;

� 1

2
L1C1 ¼

1

2
fga

1q;a � $u � dRþ ðgh
1q;h � u;l

�gR
1 � $u � q;lÞdl� ga

1q;h � u;adh

þ½gR
1 � $d1

~/ þ gl
1ðu;t � q;l þ d1

~/;lÞ
þgh

1ðq;h � u;t þ d1
~/;hÞ�dtg;

�L2C0 ¼ gR
2 �X � dRþ gh

2dl� gl
2dh

þ gR
2 � $h/iþgl

2X
� 	

dtþ O �3ð Þ

and

dS2 ¼ $S2 � dRþ S2;UdU þ S2;ldlþ S2;hdhþ S2;tdt:

Choosing u to be the E� B drift velocity associated with the

h-independent potential that appears in Eq. (5) facilitates sev-

eral cancelations during the computation of the second-order

gyrocentre Lagrangian. Solving for g2 in terms of S2 such

that �C2 is only composed of a second-order time component,

�C2 ¼
h
gl

1h/i;l þ @t þ u � $ð Þ S1 � q � uð Þ

þ 1

2
ga

1 d1
~/;a�Xq;h � u;a


 �
þ XS2;h

þ @t þ u � $ð ÞS2

i
dtþ O �3ð Þ;

yields the non-zero g2 components

gR
2 ¼ X�1 gR

1 � $� uð Þ � gl
1u;l þ

1

2
ga

1q;a � $uþ$S2

� �
� b̂;

gl
2 ¼ S2;h �

1

2
ga

1q;h � u;a;

gh
2 ¼ gR

1 u;l �
1

2
gh

1q;h � u;l � gR
1 � $u � q;l


 �
� S2;l:

By using

ð@t þ u � $ÞS2 � �3;

�C2 ¼
h
gl

1h/i;l þ @t þ u � $ð Þ S1 � q � uð Þ

þ 1

2
ga

1 d1
~/;a�Xq;h � u;a


 �
þ XS2;h

i
dtþ O �3ð Þ:

By using the freedom of S2 to remove the second-order h-

dependent terms in �C2, we have

�C2 ¼
1

2

D
ga

1 d1
~/;a � Xq;h � u;a


 �E
dt

¼ 1

2

D
ga

1
~/;a þ Xu � q;ha


 �E
dt

¼ 1

2
hgR

1 � $~/i þ 1

2
X�1hd1

~/
2i;l þ b̂ � hd1

~/qi � u;l
� �

dt

¼ 1

2
hgR

1 � $~/i þ 1

2
X�1h~/2i;l � u � b̂ � h~/qi;lþ

1

2
u2

� �
dt

¼ 1

2
hgR

1 � $~/i þ 1

2
X�1h~/2i;l �

1

2
u2

� �
dt: (B5Þ

APPENDIX C: EULER-LAGRANGE EQUATIONS

Using the Lagrange matrix components computed from

the gyrocentre Lagrangian up to first-order, or equivalently

those computed from the guiding-centre Lagrangian up to

zeroth-order (B3), in the gyrocentre Euler-Lagrange equation

(13) with i ¼ f�R; �U ; �l; �hg yields

_�R � �X
� � _�U b̂ ¼ �xt�R ; (C1)

�l ¼ 0;

_�h ¼ Xþ h/i;�l � �u;�l � _�R ;

b̂ � _�R ¼ �U ; (C2)

respectively. Taking the cross product of b̂ and (C1),

expanding the resultant triple product and using (C2)

yields

_�R ¼ �X
��1

k fX�uþ b̂ � ½�u� ð�$� �uÞ þ ð�u � �$þ @tÞ�u� þ �U �X
�g:

By expanding the triple product and using

�X
� ¼ �X

�
kb̂ þ b̂ � �u;�z ; (C3)

_�R ¼ �u þ �X
��1

k b̂ � ð@t þ �u � �$ þ �U �rkÞ�u þ �U b̂:

Projecting (C1) onto �X
�

yields
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_�U ¼ ��X
��1

k
�X
� � ½�$h/i þ �u � ð�$ � �uÞ þ ð�u � �$ þ @tÞ�u�:

By using (B4) and (C3) appropriately and expanding the

cross product,

_�U ¼ �h/i;�z þ �X
��1

k �u;�z � b̂ � ð@t þ �u � �$Þ�u:

APPENDIX D: POISSON EQUATION

The variation with respect to / of the gyrocentre system

Lagrangian up to second order is

dLð Þ/ ¼ �
ð

d6 �Z �F

�
d

�
h/i � 1

2
X�2 �$ ~U � b̂ � �$~/

� 1

2
X�1h~/2i;�l þ X�1 �$?h/i � ðX�1 �$?h/i

� _�R � b̂Þ
�

/

¼ �
ð

d6 �Z �F

n
h/þ d/i

� 1

2
X�2 �$ ~U þ d~Uð Þ � b̂ � �$ ~/ þ d~/

� 	

� 1

2
X�1hð~/ þ d~/Þ2i;�l

þX�1 �$?h/þ d/i � ½X�1 �$?h/þ d/i � _�R � b̂�
o

�
h
h/i � 1

2
X�2 �$ ~U � b̂ � �$~/

� 1

2
X�1h~/2i;�l þ X�1 �$?h/i � ðX�1 �$?h/i

� _�R � b̂Þ
i�

¼ �
ð

d6 �Z �F½hd/i � X�2h�$ ~U � b̂ � �$d/i

�X�1h~/d/i;�l þ X�1 �$?hd/i � ðX�1 �$?h/i

� _�R � b̂Þ þ X�2 �$?h/i � �$?hd/i�;

from which we obtain Eq. (16).

Using an alternative form for �C2 (B5) and J �Z!z ¼ �X
�
k,

the Euler-Lagrange equation for / up to first order is

0¼X
ð

d6 �Zdð�Rþ �q� rÞ½ð1þX�2 �$ ~U� b̂ � �$þX�1 ~/@�lÞ �F0

þ X�2 �r2

?h/i �F
0 �X�1�q � ð �F0 �$h/iÞ;�l �: (D1Þ

Using the guiding-centre Jacobian up to first order JZ!z ¼
X�k þ q �X� u;l and the action of the Lie transform on sca-

lars up to first order T �F
0 ¼ ð1þ gi

1@iÞ �F0, an evaluation of

Eq. (18) up to first order yields Eq. (D1). In other words, we

obtain equivalent Poisson equations up to first order using ei-

ther a variational or direct method.

We will now consider uniform �F
0
. Using �$h/i

¼ �
Ð

d3khEiðk; �lÞeik��R , the last two terms in Eq. (D1) are

2pi

ð
d �Ud�ld3kf½�qJ1ðk?�qÞ�;�l�k?X

�1J0ðk?�qÞghEieik�r �F
0 ¼0:

In other words, in the weak-flow limit and for uniform �F
0
,

the weak- and strong-flow Poisson equations up to first order

are identical,

0 ¼ X
ð

d6 �Zdð�R þ �q � rÞð1þ X�1 ~/@�lÞ �F0;

where for uniform �F
0
, the second weak-flow polarisation

density term does not appear.
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