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Abstract

Estimating multiple geometric shapes such as tracks or surfaces creates significant mathemati-

cal challenges particularly in the presence of unknown data association. In particular, problems

of this type have two major challenges. The first is typically the object of interest is infinite di-

mensional whilst data is finite dimensional. As a result the inverse problem is ill-posed without

regularization. The second is the data association makes the likelihood function highly oscilla-

tory.

The focus of this thesis is on techniques to validate approaches to estimating problems

in geometric statistical inference. We use convergence of the large data limit as an indicator of

robustness of the methodology. One particular advantage of our approach is that we can prove

convergence under modest conditions on the data generating process. This allows one to apply

the theory where very little is known about the data. This indicates a robustness in applications

to real world problems.

The results of this thesis therefore concern the asymptotics for a selection of statistical

inference problems. We construct our estimates as the minimizer of an appropriate functional

and look at what happens in the large data limit. In each case we will show our estimates con-

verge to a minimizer of a limiting functional. In certain cases we also add rates of convergence.

The emphasis is on problems which contain a data association or classification compo-

nent. More precisely we study a generalized version of the k-means method which is suitable

for estimating multiple trajectories from unlabeled data which combines data association with

spline smoothing. Another problem considered is a graphical approach to estimating the la-

beling of data points. Our approach uses minimizers of the Ginzburg-Landau functional on a

suitably defined graph.

In order to study these problems we use variational techniques and in particular Γ-

convergence. This is the natural framework to use for studying sequences of minimization

problems. A key advantage of this approach is that it allows us to deal with infinite dimensional

and highly oscillatory functionals.

v



Chapter 1

Introduction

“In theory, there is no difference between theory and practice. But in practice,

there is.”

- Yogi Berra

1.1 Motivation

Statistical estimators are used to extract information from data sets. Sometimes there may be

some true value µ† which one hopes to recover in the large data limit, e.g. estimating the

trajectory of a moving target from space-time measurements. Such a trajectory would form

part of the data generating process. In other situation there may not be a true value of the

parameter, e.g. deciding how to advertise products to a potential customer based on any available

information, such as internet browsing history.

For the first type of problem it is natural to consider data {ξi = (ti, zi)}ni=1 of the form

zi = F (µ†, ei, ti) i = 1, 2, . . . , n

where ei is a random variable to account for noise, zi is an observation and ti is an input param-

eter. For example in the estimating trajectory problem one simple model is

zi = F (µ†, ei, ti) := µ†(ti) + ei.

In many applications the function F will have no inverse. Hence one cannot in general use the

inverse of F to reconstruct µ†. One solution is to adopt a Bayesian-like approach.1 In general

one constructs (the maximum-a-posterior) estimate µ(n) of µ† based on data {(ti, zi)}ni=1 by

solving

µ(n) = argmin
µ

n∑
i=1

|zi − F (µ, 0, ti)|2 + λnR(µ) (1.1)

1Technically without assumptions such as Gaussian noise and prior and with λn = λ constant one could not use
Bayes rule to write the maximum-a-posteriori estimate in the form (1.1). But for the purpose of this discussion we
ignore the exact condition one needs on the distributions and with an abuse of notation assume the estimator is the
maximum-a-posteriori estimate.
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where R is a regularization term and λn is some appropriate scaling. In a fully Bayesian ap-

proach one should choose λn = λ to be constant and then (under Gaussian assumptions) one

can interpret λR(µ) as the covariance of the prior. This is not always possible as the above

minimization problem may become ill-posed, a fact well known in the Bayesian inverse com-

munity [4] and in the spline fitting community [46, 117]. In such cases one may be able take

λn → ∞ and still show µ(n) → µ†. There is a very active community that work on results of

this type, see for example [4, 55, 72, 134, 139, 162], and references therein.

For the second class of problems there is no µ† so it does not make sense to look for F as

before. One can see that F allows one to compare estimates with the data and therefore in some

sense encodes the data generating model. Therefore without F one has to produce estimates

without reference to any such model. As an example let us consider the k-means method which

will also be the subject of Chapter 3 and Chapter 4. Given a data set {zi}ni=1 ⊂ Rκ it is the

objective of the k-means method to partition the data into k clusters. This is done by minimizing

the functional

fn(µ) =
n∑
i=1

min
j=1,...,k

|zi − µj | .

Minimizers µ(n) = (µ
(n)
1 , . . . , µ

(n)
k ) ∈ Rk×κ of fn are called cluster centers and the partitioning

is defined by associating each data point to the closest center. One can see that fn does not

depend on the data generating model.

The problems we consider in this thesis involve estimators which do not directly use

the data generating process (like the k-means method) and may also be ill-posed, requiring

regularization as we saw at the start of this section. For example Chapter 3 and Chapter 4 use

the k-means method where cluster centers are trajectories and data is space-time observations

{ξi = (ti, zi)}ni=1. One can write the estimator as a minimizer of fn where

fn(µ) =
1

n

n∑
i=1

min
j=1,...,k

|µj(ti)− zi|2 + λ
k∑
j=1

‖∇2µj‖2L2 .

Our results concern the asymptotic behavior of such estimators. The convergence in the large

data limit is a measure of stability. A lack of convergence indicates ill-posedness. In particular

there are two important questions one should consider:

(P1) Do our estimators converge?

(P2) Is there a limiting (large data) problem?

As we are looking at situation without truth then the second question is very impor-

tant because establishing a limiting problem can provide justification for a choice of estimator.

Furthermore, understanding the limit can help one design the finite dimensional problem so that

features of the practitioners choice become important. For a sequence of minimization problems

numbered according to the number of data points the convergence of the empirical distribution

motivates a ‘limiting problem’ that we can understand as having an infinite amount of data.

2



Crudely speaking in the k-means problem we expect

1

n

n∑
i=1

min
j=1,...,k

|µj(ti)− zi|2 ≈
∫

min
j=1,...,k

|µj(t)− z|2 P (d(t, z))

where (ti, zi)
iid∼ P . So then what is the natural notion of convergence for sequence of mini-

mization problems?

If we consider a sequence of oscillating functionals as in Figure 1.1 we see that although

the minimum and minimizers are well behaved the function is not (in the sense that there is

no strong limit). And whilst the weak limit exists it clearly does not capture the behavior of

either minimizer or minimum. Approximately speaking the Γ-limit is the limiting lower semi-

continuous envelope. We see in this case the Γ-limit completely captures the behavior of both

the minimum and minimizers. Whilst the example in the figure shows functionals acting on a 1

dimensional space the same reasoning carries through to infinite dimensional spaces.

Figure 1.1: The Weak Limit Versus the Γ-Limit

The blue and green curves show two instances of a minimization problem that becomes increas-
ingly oscillatory as the number of data points goes to infinity. The red curve gives the weak
limit (i.e. the average over the oscillations) and the black curve is the Γ-limit. Clearly there is
no strong limit.

Let us now be a little more precise regarding the application of Γ-convergence to mini-

mization problems. There are two criteria we must show to infer the convergence of minimizers.

The first is to find the Γ-limit. Often this will rely on the (almost sure) weak convergence of

the empirical measure. The second is to show that minimizers are compact. If minimizers are

not compact then we have sequences of estimators that do not converge (nor will any subse-

quence). Under these two conditions the Γ-convergence framework implies that the minimums

converge and that (up to subsequences) minimizers are also convergent. Furthermore the limit

of any subsequence of minimizers will minimize the Γ-limit. Hence if the Γ-limit has a unique

minimizer then the entire sequence will converge (without the recourse to subsequences). Let us

also emphasize that knowledge of the Γ-limit helps one to understand what features one should

expect for estimators based on large (but finite) data sets. This is important criteria one can use

in order to justify a choice of estimator. In this thesis the Γ-convergence methodology will be

3



our framework to investigate the convergence properties for several examples of estimators.

1.2 Overview of Thesis

In this thesis we investigate questions (P1-P2) stated in the previous section for three problems.

We give an overview of each type of problem below.

The k-Means Minimization Problem (Chapter 3 and Chapter 4). The first problem we

consider is a k-means type problem where we generalize the k-means framework [105] to allow

for cluster centers in different spaces to the data. This is motivated by the following smoothing-

data association problem. We are given data {(ti, zi)}ni=1 sampled from k unknown curves µj ,

and in particular the association of data point to curve is unknown. The problem is then to

recover the set of curves (µ1, . . . , µk) from {(ti, zi)}ni=1. By treating the unknown curves as

cluster centers one can use the k-means method as estimators.

Our setting is we have data ξi ∈ X and cluster centers µj ∈ Y . The cost function

d : X × Y → [0,∞) measures the similarity between a data point and a cluster center. In order

for the problem to be well posed we use a regularization term r : Y k → [0,∞) scaled by λ.

The object of interest is the optimal cluster centers, that is functions µ(n) ∈ Y k that minimize

fn(µ) =
1

n

n∑
i=1

min
j=1,...,k

d(ξi, µj) + λr(µ).

When X = Y we show in Section 3.2 regularization is unnecessary and we can let λ = 0.

We prove asymptotics concerning the general case in Chapter 3 before we investigate

the smoothing data-association further in Chapter 4 where we also prove a rate of convergence.

We define f∞ by

f∞(µ) =

∫
X

min
j=1,...,k

d(x, µj) P (dx) + λr(µ)

and where ξi
iid∼ P . Formally, in Chapter 3 we show for sequences of minimizers µ(n) and a

minimizer µ(∞) of f∞ that:

for X = Y and λ = 0 then min
µ∈Xk

fn(µ)→ min
µ∈Xk

f∞(µ) µ(n) → µ(∞)

for X 6= Y and λ > 0 then min
µ∈Y k

fn(µ)→ min
µ∈Y k

f∞(µ) µ(n) → µ(∞)

with probability one. And in Chapter 4 we show that:

k∑
j=1

∥∥∥µ(n)
j − µ

(∞)
j

∥∥∥2

L2
= O

(
1

n

)
.

The earliest results regarding the asymptotics of the k-means method considered the

application to Euclidean data sets, i.e. X = Y = Rκ and d(x, y) = |x − y|2 where | · | is the

Euclidean norm. Under the assumption that the limiting functional f∞ has a unique minimizer

µ(∞) then µ(n) → µ(∞) with probability one [80,124]. When there is no unique minimizer these

4



results do not hold [19]. With more generality the convergence of the minimum and minimizers

for X = Y a reflexive and separable Banach space has been studied in [95, 103]. And an

analogous result in [96] for metric spaces. Convergence results for X 6= Y are, as far as the

author is aware, new.

The first result known to the author regarding the rate of convergence is a central limit

theorem result proved for X = Y = Rκ and d(x, y) = |x − y|2 [126], that is there exists a

covariance matrix Σ such that

n
1
2

(
µ(n) − µ(∞)

)
→ N(0,Σ)

where the convergence is in distribution. A simple application of this shows [42] that the mini-

mum behaves as ∣∣∣f∞(µ(n))− f∞(µ(n))
∣∣∣ = Op

(
1

n

)
.

When considering convergence in expectation one has∣∣∣Ef∞(µ(n))− f∞(µ(∞))
∣∣∣ = O

(
1√
n

)
, (1.2)

see for example [10,102,104]. When k = 1 standard results imply
∣∣Ef∞(µ(n))− f∞(µ(∞))

∣∣ =

O
(

1
n

)
however when k ≥ 3 it is known [18, 102] that there exists a constant C > 0 such that

∣∣∣Ef∞(µ(n))− f∞(µ(∞))
∣∣∣ ≥ C√

n

which in particular shows (1.2) is sharp. More generally (1.2) has been shown for X = Y a

Hilbert space when d(x, y) = ‖x− y‖2 and ‖ · ‖ is the norm on X and for X = Y a separable

and reflexive Banach space with d(x, y) = ‖x− y‖, see [21, 95] respectively.

General Spline Smoothing (Chapter 5). The second problem, in Chapter 5, looks at the

general spline problem. This is similar to the above except we remove the data association

problem (i.e. k = 1) and assume there is a true data generating curve. In this case we can scale

the regularization λn → 0 and recover the ‘truth’ in the data rich limit.

LetH be a Hilbert space with norm ‖·‖ and inner product (·, ·). We consider the problem

of recovering µ† ∈ H from observations {(Li, yi)}ni=1 ⊂ H∗ × R and the model:

yi = Liµ
† + εi

where εi is noise. We refer to this as the general spline problem.

A particular case of much interest is when H = Hm (the Sobolev space of degree m)

and observation operators are of the form Liµ = µ(ti). We call this the special spline problem.

We assume that there exists exists a decompositionH = H0⊕H1 whereHi are Hilbert

spaces with norms ‖ · ‖i. The estimator µ(n) of µ† is defined to be the minimizer of fn : H →
[0,∞) defined by

fn(µ) =
1

n

n∑
i=1

|yi − Liµ|2 + λn‖χ1µ‖1

5



where χ1 : H → H1 is the orthogonal projection. Under suitable conditions one can interpret

µ(n) as a maximum a-posteriori estimator [89]. We assume thatH0 is finite dimensional andH1

is infinite dimensional. It is typically not possible to show ‖µ(n) − µ‖ → 0 which leaves one

with two natural options. The first is to look for convergence in a weaker norm, e.g. instead of

Hm we look at L2, and the second option is to look for weak convergence.

Assume that ‖ · ‖1 = ‖C−1 · ‖L2 where C is the covariance operator and the existence of

a compact, positive semi-definite and self-adjoint operator U which satisfies

1

n

n∑
i=1

L∗iLi → U

for some suitable notion of convergence. From the assumptions one has the existence of a

eigenbasis {ψi} ofH satisfying

(ψi, Uψj) = δij and (ψi, C−1ψj) = γiδij .

One then constructs the Hilbert scale by defining the norm

‖µ‖ρ =

( ∞∑
i=1

(1 + γi)
ρ(µ,Uψi)

2

) 1
2

and setsH0
ρ {µ ∈ H : ‖µ‖ρ <∞}. One takesHρ to be the completion ofH0

ρ under ‖ · ‖ρ. The

main results of [46, 117] imply that

E
∥∥∥µ(n) − µ

∥∥∥2

ρ
. min{1, λβ−ρn }‖µ†‖2β +

1

n
(C(λn, ρ) +m)

for any constant β with ρ < β < ρ+ 2, where dim(H0) = m and

C(λ, ρ) =
∑
j>m

γρj (1 + λγj)
−2.

For special splines it has been shown [131, 158] that for uniformly spaced observations

the estimate µ(n) of µ† satisfies the following bound:

E
∥∥∥∥ dj

dtj
(µ† − µ(n))

∥∥∥∥2

L2

≤ A1λ

∥∥∥∥ dj

dtj
µ†
∥∥∥∥2

L2

+
A2

nλ
2j+1
2m

where A1, A2 are constants and 0 ≤ j < m. In particular the optimal rate of convergence is for

λn � n−
2m

2m+1 in which case

E
∥∥∥∥ dj

dtj
(µ† − µ(n))

∥∥∥∥2

L2

= O

(
n−

2(m−j)
2m+1

)
.

The results also generalize to non-uniform observations under assumptions on the ratio of the

largest to smallest gap in observation times [131].

The result of Chapter 5 is to use weak convergence rather than strong convergence in

Hilbert scales. However we are able to reuse a lot of the ideas used to prove strong convergence.

6



In particular the result of Chapter 5 is for any F ∈ H∗ and any ε > 0 we have

P
(∣∣∣F (µ(n))− F (µ†)

∣∣∣ ≥ ε)→ 0

as n → ∞ when λn = O
(

1√
n

)
, i.e. µ(n) converges weakly and in probability to µ†. As in

the strong convergence case we make use of the approximation U ≈ 1
n

∑n
i=1 L

∗
iLi in order to

prove boundedness.

An advantage of our result is that it negates the need for Hilbert scales which can be

quite abstruse; by which we mean the spaces Hρ can be difficult to identify. Even for Sobolev

spaces understanding Hρ is in general very difficult although for some values of ρ one can

make informative statements such as identifyingHρ with another Sobolev space with boundary

conditions, see [46, Section 3]. The cost of our approach is that if one wants strong convergence

then we are dependent on embedding theorems. Such embedding theorems exist for Hilbert

scales but one gets a better rate of convergence (i.e. can scale λn → 0 faster) if one proves the

result directly for Hilbert scales rather than proving weak convergence first.

Our results show that for weak convergence one cannot scale λn → 0 faster that 1√
n

.

This is natural when one considers weak convergence as a finite dimensional projection and as-

sumes a central limit theorem holds. Hence the results of Chapter 5 are optimal and in particular

one cannot hope to recover the rates of convergence one has for strong convergence.

A Graphical Approach to Estimating the Data Association (Chapter 6 and Chapter 7).
Chapters 6 and 7 look at the third problem where we use a graphical representation of the data in

order to define an estimate to the data association problem, i.e. an estimate of µ : {0, . . . , n} →
{0, 1}where for simplicity we assume there are two classes (note the slight change of notation, µ

is now estimating the data association only). We allow for a soft classification so that µ(j) ∈ R.

We use minimizers of the Ginzburg-Landau functional which has two terms: the first penalizes

soft assignments in order that µ(j) ≈ {0, 1} and the second penalizes jumps between adjacent

data points so µ(j) ≈ µ(j + 1). We use the structure of the graph to determine what data points

are adjacent.

To be more precise we look for a function µ ∈ L1(Ψn) where Ψn = {ξi}ni=1 ⊂ Rd is

the data and for convenience we write L1(Ψn) as the set of functions from Ψn to R. The graph

is constructed by weighting edges between points ξi and ξj by

Wij = ηε(ξi − ξj)

where

ηε(x) =
1

εdn
η
(x
ε

)
is the interaction potential that we scale by ε = εn so that the graph remains sparse. We discuss

the advantages of this in Chapter 6 . For a function V : R → [0,∞) we define the Ginzburg-
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Landau functional En : L1(Ψn)→ [0,∞] by

En(µ) =
1

εn

n∑
i=1

V (µ(ξi)) +
1

εn

1

n2

∑
i,j

Wij |µ(ξi)− µ(ξj)| .

We assume that V (t) = 0 ⇔ t ∈ {0, 1}, e.g. V (t) = t2(1− t)2 so that the first term penalizes

states not taking the values zero or one. The second term is defined as the graph total variation,

i.e.

GTVn(µ) =
1

εn

1

n2

∑
i,j

Wij |µ(ξi)− µ(ξj)| .

Estimates of the data partition are given by minimizers of En.

The asymptotics of the classical Ginzburg-Landau functional (in a continuous setting),

Fε(µ) =
1

ε

∫
X
V (µ(x)) dx+

1

ε

∫
X2

ηε(x− y) |µ(x)− µ(y)|2 dx dy,

are well known, e.g. [5, 114]. These results show there exists some F0 such that

F0 = Γ- lim
ε→0

Fε

and for any sequence µ(n) ∈ L1(X) and εn → 0 such that supn∈N Fεn(µ(n)) < ∞ then

{µ(n)}n∈N is precompact in L1. These results allow one to infer the convergence of the con-

strained minimization problem where the constraints respect the Γ-convergence, see Section 2.2.

More recently these results have been extended to discrete settings where {ξi}ni=1 form a

regular graph [163]. These results apply when the data is deterministic. The appropriate notion

of convergence of µ(n) → µ where µ(n) ∈ L1(Ψn) and µ ∈ L1(Rd) is to define a piecewise

constant approximation of µ(n) on L1(Rd), the details are left to Section 2.5.

For random data points it has been shown in [69] that the Γ-limit of GTVn is a total

variation distance (when η is isotropic). A consequence of our results shows this is also true

when η is anisotropic. The compactness property for GTVn requires the sequence µ(n) be

bounded in L1 and GTVn in order for compactness in L1 which is easily seen as GTVn is

invariant under µ 7→ µ+ c.

Our results in Chapter 6 extend [5,163] to show the existence of a surface integral (where

we leave the definition until Chapter 6) E∞ such that E∞ = Γ- limn→∞ En and the compactness

property holds when ξi
iid∼ P for a probability measure P . To do so we use the methodology

of [69].

The minimization problem, minµ En(µ), admits trivial minimizer µ ≡ 0 or µ ≡ 1. In

order to obtain ‘more interesting’ minimizers one should impose constraints such as the mass

constraint, adding a data fidelity term, or boundary conditions. In Chapter 7 we use the results

of Chapter 6 to prove convergence results for each of the constrained minimization problems

described. To do so one must show that the constraint respects the Γ-convergence. There is

also a discussion on the results for more than 2 classes. In Chapters 6 and 7 the data is in Rd,

however we take some time in Chapter 8 to discuss the infinite dimensional case.
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Chapter 2

Preliminary Material

2.1 Notation

The set of probability measures on X is denoted P(X) and the Borel σ-algebra by B(X). The

problems which we address involve random observations usually denoted ξi : Ω → X where

we assume throughout the existence of a probability space (Ω,F ,P), rich enough to support a

countably infinite sequence of such observations, {ξ(ω)
i }∞i=1. All random elements are defined

upon this common probability space and all stochastic quantifiers are to be understood as acting

with respect to P unless otherwise stated. Where appropriate, to emphasize the randomness

of the functionals fn, we will write f (ω)
n to indicate the functional associated with the partic-

ular observation sequence ξ(ω)
1 , . . . , ξ

(ω)
n and we allow P

(ω)
n to denote the associated empirical

measure.

For clarity we often write integrals using operator notation. Specifically, for a measure

P (which is usually a probability distribution) we write

Ph =

∫
h(x) P (dx).

A sequence of probability distributions Pn on a Polish space is said to converge weakly

to a probability measure P , and we write Pn ⇒ P , if

Pnh→ Ph for all h ∈ Cb

where Cb is the space of continuous and bounded functions. A fact we will make use of is

the almost sure weak convergence of the empirical measure, e.g. [56, Theorem 11.4.1]. For a

sequence ξ(ω)
i of random variables and each bounded and continuous function, h, it’s possible

to define the sequence of random variables P (ω)
n (h) which converges almost surely to Ph by the

strong law of large numbers. However this does not immediately imply the almost sure weak

convergence of the empirical measure since taking the intersection over the uncountable set Cb
does not necessarily have probability one, i.e. we must be careful when concluding the set

Ω′ =
⋂
h∈Cb

{
ω ∈ Ω : P (ω)

n h→ Ph
}

9



has probability one. However, when the space X is a separable metric space then one can find a

countable dense subset ofCb on which to apply the strong law of large numbers. By a continuity

argument this extends to the whole of Cb.

With a slight abuse of notation we will sometimes write P (U) := P IU for a measurable

set U . We denote the support of a probability measure P by supp(P ), i.e.

supp(P ) = inf

{
X ′ : X ′ ⊂ X,X ′ is closed, and

∫
X\X′

P (dx) = 0

}
.

Throughout this thesis we say that a sequence of parameter estimators is consistent if,

for any value of the “parameters”, they converge with respect to the underlying topology in

probability (with respect to the data-generating mechanism) to the true value.

The space of functions from Z onto Y that are Lp-integrable are denoted by Lp(Z;Y )

(for 1 ≤ p ≤ ∞). Usually either Y = {0, 1} or Y = R. If Y = R then we write Lp(Z)

instead of Lp(Z;R). When we use the Lp norm with respect to a measure P the Y dependence

is suppressed and we write Lp(X;P ). It will be obvious from the context what is meant.

We define the Sobolev spaces W s,p(I) on I ⊆ R by

W s,p = W s,p(I) =
{
f : I → R s.t. ∇if ∈ Lp(I) for i = 0, . . . , s

}
where we use∇ for the weak derivative, i.e. g = ∇f if for all φ ∈ C∞c (I) (the space of smooth

functions with compact support)∫
I
f(x)

dφ

dx
(x) dx = −

∫
I
g(x)φ(x) dx.

In particular, we will use the special case when p = 2 and we write Hs = W s,2. This is a

Hilbert space with norm:

‖f‖2Hs =
s∑
i=0

‖∇if‖2L2 .

For a Banach space A one can define the dual space A∗ to be the space of all bounded

and linear maps over A into R equipped with the norm ‖F‖A∗ = supx∈A |F (x)|. Similarly

one can define the second dual A∗∗ as the space of all bounded and linear maps over A∗ into

R. Reflexive spaces are defined to be spaces A such that A is isometrically isomorphic to A∗∗.

These have the useful property that closed and bounded sets are weakly compact. For example

any Lp space (with 1 < p <∞) is reflexive, as is any Hilbert space (by application of the Riesz

Representation Theorem).

A sequence xn ∈ A is said to weakly convergence to x ∈ A if F (xn) → F (x) for

all F ∈ A∗. We write xn ⇀ x. We say a functional G : A → R is weakly continuous

if G(xn) → G(x) whenever xn ⇀ x and strongly continuous if G(xn) → G(x) whenever

‖xn − x‖A → 0. Note that weak continuity implies strong continuity. Similarly a functional G

is weakly lower semi-continuous if lim infn→∞G(xn) ≥ G(x) whenever xn ⇀ x.

For a space A and a set K ⊂ A we write Kc for the complement of K in A, i.e.

Kc = A \K.
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For an operator U : H → H we will use Ran(U) to denote the range of U , i.e.

Ran(U) = {µ ∈ H : ∃ν ∈ H s.t. Uν = µ} .

When U is linear and (H, ‖ · ‖) is a Banach space the operator norm is defined by

‖U‖L(H,H) := sup
‖µ‖≤1

‖Uµ‖.

The Euclidean norm is given by | · | and with a small abuse of notation the dimension is

inferred from the argument. The ball centered at x and with radius r in Rd is given as

B(x, r) =
{
y ∈ Rd : |x− y| < r

}
.

When the ball is centered at the origin we write B(0, r).

For two real-valued and positive sequences an and rn we write an . rn if anrn is bounded.

If an . rn and rn . an then we write an � rn. Alternatively we may sometimes write

an = O(rn) if an
rn

is bounded where an and rn are two real valued deterministic sequences and

rn is positive. If an
rn
→ 0 as n → ∞ we write an = o(rn). For random sequences an and rn,

where rn are positive and real valued, we write an = Op(rn) if an
rn

is bounded in probability:

for all ε > 0 there exist deterministic constants Mε, Nε such that

P
(∣∣∣∣anrn

∣∣∣∣ ≥Mε

)
≤ ε ∀n ≥ Nε.

If anrn → 0 in probability: for all ε > 0

P
(∣∣∣∣anrn

∣∣∣∣ ≥ ε)→ 0 as n→∞

we write an = op(rn).

2.2 Γ-Convergence

Γ-convergence was introduced in the 1970’s by De Giorgi as a tool for studying oscillatory

objects. We are particularly motivated by using the Γ-limit to design our minimization problems

so that our classifiers have certain properties. A key contribution of this thesis is to identify

the limiting minimization problem associated with a variety of statistical inference problems.

Knowledge of the limit aids the practitioner in designing the finite data problem, i.e. allows one

to pick out important features of the data. In this sense Γ-convergence is used as a data analysis

tool. See, for example [28, 50], for an introduction to Γ-convergence.

We have the following definition of Γ-convergence, see also Figure 1.1 in Chapter 1 for

an illustration of Γ-convergence.

Definition 2.2.1 (Γ-convergence). Let (X, τ) be a topological space. A sequence fn : X →
R∪{±∞} is said to Γ-converge on the domain X to f∞ : X → R∪{±∞} with respect to the

topology τ on X , and we write f∞ = Γ- limn fn, if for all ζ ∈ X we have

11



(i) (lim inf inequality) for every sequence (ζ(n)) converging to ζ

f∞(ζ) ≤ lim inf
n→∞

fn(ζ(n));

(ii) (recovery sequence) there exists a sequence (ζ(n)) converging to ζ such that

f∞(ζ) ≥ lim sup
n→∞

fn(ζ(n)).

We give the above definition of Γ-convergence in terms of a general topological space.

In this thesis the topology will either be the topology of weak convergence or strong conver-

gence.

When it exists the Γ-limit is always lower semi-continuous [27, Proposition 1.31], and

hence there exists minimizers over compact intervals. The following result justifies the use of

Γ-convergence as a variational type of convergence.

Theorem 2.2.1 (Convergence of Minimizers). Let (X, τ) be a topological space and fn : X →
[0,∞] be a sequence of functionals. Let µ(n) be a sequence of almost minimizers of fn. If µ(n)

are precompact and f∞ = Γ- limn fn where f∞ : X → [0,∞] is not identically +∞ then

min
X

f∞ = lim
n→∞

inf
X
fn.

Furthermore any cluster point of µ(n) minimizes f∞.

A simple consequence of the above is if one can show that the Γ-limit has a unique

minimizer then any sequence of almost minimizers converges (without the recourse to subse-

quences).

Corollary 2.2.2. If in addition to the assumptions of Theorem 2.2.1 the minimizer of the Γ-limit

is unique then any sequence of almost minimizers µ(n) of fn converges weakly to the minimizer

of f∞.

For the Γ-convergence results to carry through to functions on domains fn : Θn →
[0,∞] we require that Θn are compatible in the following sense.

Definition 2.2.2. Assume that fn Γ-converges to f∞ on a topological space (X, τ). Let Θn,Θ

be subsets ofX . Then we say that (Θn,Θ, fn, f∞) are compatible with respect to Γ-convergence

if

1. Θ is closed,

2. there exists ζ ∈ Θ such that f∞(ζ) <∞,

3. if ζ(n) ∈ Θn and ζ(n) → ζ then ζ ∈ Θ and

4. for all µ ∈ Θ there exists a sequence µ(n) ∈ Θn such that µ(n) → µ and

lim sup
n→∞

fn(µ(n)) ≤ f∞(µ).
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We immediately see that if Θn,Θ are compatible with respect to Γ-convergence then

fn Γ-converges to f∞ on Θ. Theorem 2.2.1 holds when restricting fn and f∞ to compatible

subsets.

Corollary 2.2.3. Let (X, τ) be a topological space and fn : X → [0,∞] be a sequence of

functionals Γ-converging to f∞ : X → [0,∞]. Assume Θn,Θ are compatible with respect to

Γ-convergence. If any sequence µ(n) of almost minimizers is precompact then

min
Θ
f∞ = lim

n→∞
inf
Θn

fn.

Furthermore any cluster point of µ(n) minimizes f∞ in Θ.

Another property of Γ-convergence we will exploit is it stability under continuous per-

turbations. We say gn converges continuously to g∞ if gn(ζ(n))→ g∞(ζ) whenever ζ(n) → ζ.

We have the following proposition.

Proposition 2.2.4. If fn Γ-converges to f∞ on a topological space (X, τ) and gn continuously

converges to g∞ then

f∞ + g∞ = Γ- lim
n→∞

fn + gn.

If gn ≥ 0 then any compactness of fn will also carry through to fn + gn. Hence

convergence of minimizers/convergence of minima results for fn carry through to fn + gn.

2.3 The Gâteaux Derivative

We very quickly recap Gâteaux derivatives (also known as directional derivatives) and remind

the reader that Taylor’s theorem holds in the multi-dimensional case.

Definition 2.3.1. We say that f : H → R is Gâteaux differentiable at µ ∈ H in direction ν ∈ H
if the limit

∂f(µ; ν) = lim
r→0

f(µ+ rν)− f(µ)

r

exists. We may define second order derivatives by

∂2f(µ; ν, ν ′) = lim
r→0

∂f(µ+ rν ′; ν)− ∂f(µ; ν)

r

for µ, ν, ν ′ ∈ H. Similarly for higher order derivatives. To simplify notation, when it is clear,

we write

∂sf(µ; ν) := ∂sf(µ; ν, . . . , ν).

Theorem 2.3.1 (Taylor’s Theorem). If f : H → R is m times continuously Gâteaux differen-

tiable on a convex subset K ⊂ H then, for µ, ν ∈ K:

f(ν) = f(µ) + ∂f(µ; ν − µ) +
1

2!
∂2f(µ; ν − µ, ν − µ) + . . .

+
1

(m− 1)!
∂m−1f(µ; ν − µ, . . . , ν − µ) +Rm
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where

Rm(µ, ν − µ) =
1

(m− 1)!

∫ 1

0
(1− t)m−1∂mf((1− t)µ+ tν; ν − µ) dt.

2.4 Total Variation Distance

For the convenience of the reader we define the weighted total variation distance and recall some

well known results. We start by defining the total variation distance.

Definition 2.4.1. For a domain X ⊂ Rd the weighted total variation TV (·; ρ, η) of a function

µ ∈ L1(X) with respect to a density ρ and potential η is defined by

TV (µ; ρ, η) = sup

{∫
X
µ(x) div (φ(x)) dx : φ ∈ C∞c (X;Rd),

sup
x∈X

σ∗
(
−ρ−2(x)φ(x)

)
<∞

}
,

(2.1)

σ∗(φ) = sup
{
ν · φ− σ(ν) : ν ∈ Rd

}
∈ {0,∞}, (2.2)

σ(ν) =

∫
Rd
η(x)|x · ν| dx. (2.3)

The space of functions with finite weighted total variation is denoted by BV (X; ρ, η). The

standard total variation distance on X is defined by

T̂ V (µ) = sup

{∫
X
µ(x) div(φ) dx : φ ∈ C∞c (X), ‖φ‖L∞(X) ≤ 1

}
.

The standard bounded variation space B̂V (X) is the set of functions such that T̂ V (µ) <∞.

When µ ∈ L1(X; {0, 1}) then one can write the total variation distance as a surface

integral. In particular one can write:

TV (µ; ρ, η) =

∫
∂{µ=1}

σ(n(x))ρ2(x) dHd−1(x)

where n(x) is the outward unit normal for the set ∂{µ = 1}, Hd−1 is the d − 1 dimensional

Hausdorff measure. The equivalence when µ ∈ L1(X; {0, 1}) can be seen from the simplifica-

tion of TV (·; ρ, η) when µ ∈ C1:

TV (µ; ρ, η) =

∫
X
σ(∇µ(x))ρ2(x) dx =

∫
X

∫
Rd
η(y)|y · ∇µ(x)|ρ2(x) dy dx.

One may also write

TV (µ; ρ, η) =

∫
Rd
η(z)TVz(µ; ρ) dz
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where TVz(·; ρ) is defined by

TVz(µ; ρ) = sup

{∫
X
µ(x) div(φ(x)) dx : φ ∈ C∞c (X;Rd),

− ν · φ(x) ≤ |z · ν|ρ2(x)∀ν, x ∈ Rd
} (2.4)

The following proposition is a slight generalization of a well known result regarding the

convergence of difference quotients to the total variation semi-norm. The proof is omitted but it

is a trivial adaptation of, for example, [97, Theorem 13.48].

Proposition 2.4.1. Assume µ(n) → µ in L1. For a sequence εn → 0 and a function ρ : X →
[0,∞) define fn : X → [0,∞) by

fn(z) =
1

εn

∫
X

∣∣∣µ(n)(x+ εnz)− µ(n)(x)
∣∣∣ ρ2(x) dx.

Then

lim inf
n→∞

fn(z) ≥ TVz(µ; ρ).

For each µ ∈ BV (X; ρ, η) the following theorem gives the existence of a measure that

one can understand as the weak derivative of µ. See for example [15, 60] for more details.

Theorem 2.4.2. For every µ ∈ BV (X; ρ, η) there exists a Radon measure λρ,η on X and a

λρ,η-measurable function α : X → R such that α(x) = 1 for λρ,η-almost every x ∈ X and∫
X
µ(x)divφ(x) dx = −

∫
X

φ(x) · x
ρ2(x)σ(x)

α(x) λρ,η(dx)

for all φ ∈ C1
c (X;Rd). In particular,

λρ,η(X) = TV (µ; ρ, η).

For the standard total variation distance we write λ̂ and have the following relationship:

λρ,η(dx) = ρ2(x)σ(x) λ̂(dx).

In particular

TV (µ; ρ, η) =

∫
X
ρ2(x)σ(x) λ̂(dx).

A useful approximation result we will make use of is for all µ ∈ BV (X; ρ, η) there

exists a sequence µ(n) ∈ BV (X; ρ, η) ∩ C∞(Rd) such that

µ(n) → µ in L1(X) and TV (µ(n); ρ, η)→ TV (µ; ρ, η)

or equivalently λ(n)
ρ,η (X) → λρ,η(X) (where λ(n)

ρ,η is the measure given by Theorem 2.4.2 and

induced by µ(n)), see e.g. [60, Theorem 2, Section 5.2.2].

15



The Rellich-Kondrachov theorem implies that any bounded set in BV is relatively com-

pact in L1. In particular if a sequence µ(n) can be bounded in BV then one can infer the

existence of a subsequence converging in L1.

2.5 Transportation Theory

In Chapters 6 and 7 we will look for convergence of the data association function µ : Ψn →
{1, . . . , k} (where Ψn = {ξi}ni=1). This requires a notion of convergence suitable for comparing

functions on different domains. We wish to define a map Tn : X → Ψn that will allow us to

extend functions µ(n) on Ψn to functions µ̃(n) on X , i.e. µ̃(n) = µ(n) ◦ Tn. The challenge is to

define Tn optimally in the sense that as little mass as possible is moved. We start by defining

the p-OT distance.

Definition 2.5.1. If 1 ≤ p <∞ then the p-OT distance between P,Q ∈ P(X) is defined by

dp(P,Q) = min

{(∫
X2

|x− y|p π(dx,dy)

) 1
p

: π ∈ Γ(P,Q)

}
(2.5)

where Γ(P,Q) is the set of couplings between P and Q, i.e. the set of probability measures on

X ×X such that the first marginal is P and the second marginal is Q.

If p =∞ then the∞-OT distance between P,Q ∈ P(X) is defined by

d∞(P,Q) = min

{
ess sup

π
{|x− y| : (x, y) ∈ X ×X} : π ∈ Γ(P,Q)

}
. (2.6)

The minimization problem in (2.5) and (2.6) is known as Kantorovich’s optimal trans-

portation problem. The minimization is convex and and therefore the minimum is achieved

[40, 168]. One can also show that dp defines a metric. Elements π ∈ Γ(P,Q) are called

transference plans. The distance d2 is also known as the Wasserstein metric and d∞ the ∞-

transportation distance. For bounded X ⊂ Rd convergence in dp (for 1 ≤ p < ∞) is equiva-

lent to the weak convergence of probability measures [168] and therefore with probability one,

dp(Pn, P )→ 0 where Pn is the empirical measure.

When P has density with respect to the Lebesgue measure then the Kantorovich mini-

mization problem is equivalent to the Monge optimal transportation problem [67]:

Minimize
∫
X
|x− T (x)|p P (dx) over all measurable maps T such that T#P = Q

where the push forward measure is defined by

T#P (A) = P (T−1(A))

for any A ∈ B(X). If Q = T#P then we call T a transportation map between P and Q.

Let Pn be the empirical measure and 1 ≤ p < ∞ then from dp(Pn, P ) → 0 (almost
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surely) one can immediately infer the existence of a sequence of transport plans such that

‖Id− Tn‖pLp(X;P ) =

∫
X
|x− Tn(x)|p P (dx)→ 0 (2.7)

as n→∞. We call any sequence of transportation maps {Tn} that satisfy (2.7) stagnating.

In the next definition we use stagnating transport maps to define piecewise constant

approximations of functions on Ψn in order to define a suitable notion of convergence.

Definition 2.5.2. Let µ(n) ∈ Lp(Ψn) = Lp(X;Pn) and µ ∈ Lp(X;P ) We say µ(n) → µ in

TLp(X) if

‖µ(n) ◦ Tn − µ‖pLp =

∫
X
|µ(n)(Tn(x))− µ(x)|p P (dx)→ 0 (2.8)

for any sequence of stagnating transportation maps Tn : X → Ψn. Similarly µ(n) is bounded

in TLp if ‖µ(n) ◦ Tn‖Lp is bounded and µ(n) is precompact in TLp if µ(n) ◦ Tn is precompact

in Lp.

One can show that if (2.8) holds for one sequence of stagnating transport maps then it

holds for any sequence of stagnating transport maps [69, Lemma 3.5].

In Chapters 6 and 7 we will assume that P has density ρ which is bounded above and

below by positive constants then (2.7) is equivalent to ‖Id − Tn‖Lp(X) → 0 and Lp(X;P ) =

Lp(X). We will mostly consider the case p = 1 however generalizations to 1 < p < ∞ are

straightforward.

Now consider an arbitrary T : X → X and a measurable ϕ : X → [0,∞). Recall that∫
X
ϕ(x) T#P (dx) := sup

{∫
X
s(x)T#P (dx) : 0 ≤ s ≤ ϕ and s is simple

}
.

If s(x) =
∑N

i=1 aiδUi(x) where ai = s(x) for any x ∈ Ui then

∫
X
s(x)T#P (dx) =

N∑
i=1

aiT#P (Ui) =
N∑
i=1

aiP (Vi)

for Vi = T−1(Ui). Note that ai = s(x) for any x ∈ T (Ui). From this it is not hard to see the

following change of variables formula:∫
X
ϕ(x) T#P (dx) =

∫
X
ϕ(T (x)) P (dx). (2.9)

A particularly useful version of this will be when T#P (dx) = Pn(dx) where Pn is the empirical

measure. In which case (2.9) implies

1

n

n∑
i=1

ϕ(ξi) =

∫
X
ϕ(T (x)) P (dx).

As an aside one can generalize the TLp norm to functions µ ∈ Lp(X;P ) and ζ ∈

17



Lp(Y ;Q) where P,Q are arbitrary measures on X and Y respectively. Let us define

dTLp((P, µ), (Q, ζ))

= inf
π∈Γ(P,Q)

{(∫
X×Y

|x− y|p π(dx,dy)

) 1
p

+

(∫
X×Y

|µ(x)− ζ(y)|p π(dx,dy)

) 1
p

}
.

Let P have density with respect to the Lebesgue measure and take a sequence of measures Pn
defined on a common spaceX (where we do not assume that Pn is the empirical measure). Then

(Pn, fn)→ (P, f) in TLp is equivalent to weak convergence of measures (due to the first term)

and ‖µ(n) ◦ Tn − µ‖Lp(X;P ) → 0 (due to the second term), see [69, Proposition 3.6]. Since we

we will always work with the empirical measure then with probability one Pn converges weakly

to P . Hence the first term plays no role in this thesis and so is not included.

We recall the following theorem which will be useful later.

Theorem 2.5.1. [70] Let X ⊂ Rd with d ≥ 2 be open, connected and bounded with Lipschitz

boundary. Let P be a probability measure onX with density (with respect to Lebesgue) ρ which

is bounded above and below by positive constants. Let ξ1, ξ2, . . . be a sequence of independent

random variables with distribution P and let Pn be the empirical measure. Then there exists a

constant C > 0 such that almost surely there exists a sequence of transportation maps {Tn}∞n=1

from P to Pn such that

if d = 2 then lim sup
n→∞

√
n‖Id− Tn‖L∞(X)

(log n)
3
4

≤ C

and if d ≥ 3 then lim sup
n→∞

n
1
d ‖Id− Tn‖L∞(X)

(log n)
1
d

≤ C.
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Chapter 3

Convergence of the k-Means
Minimization Problem in a General
Setting

Abstract

The k-means method is an iterative clustering algorithm which associates each ob-

servation with one of k clusters. It traditionally employs cluster centers in the same

space as the observed data. By relaxing this requirement, it is possible to apply

the k-means method to infinite dimensional problems, for example multiple target

tracking and smoothing problems in the presence of unknown data association. Via

a Γ-convergence argument, the associated optimization problem is shown to con-

verge in the sense that both the k-means minimum and minimizers converge in the

large data limit to quantities which depend upon the observed data only through

its distribution. The theory is supplemented with two examples to demonstrate the

range of problems now accessible by the k-means method. The first example com-

bines a non-parametric smoothing problem with unknown data association. The

second addresses tracking using sparse data from a network of passive sensors.

3.1 Introduction

The k-means algorithm [105] is a technique for assigning each of a collection of observed data to

exactly one of k clusters, each of which has a unique center, in such a way that each observation

is assigned to the cluster whose center is closest to that observation in an appropriate sense.

The k-means method has traditionally been used with limited scope. Its usual applica-

tion has been in Euclidean spaces which restricts its application to finite dimensional problems.

There are relatively few theoretical results using the k-means methodology in infinite dimen-

sions of which [21, 34, 49, 95, 96, 103, 148] are the only papers known to the author. In the right

framework, post-hoc track estimation in multiple target scenarios with unknown data associ-

ation can be viewed as a clustering problem and therefore accessible to the k-means method.
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In such problems one typically has finite-dimensional data, but would wish to estimate infi-

nite dimensional tracks with the added complication of unresolved data association. It is our

aim to propose and characterize a framework for the k-means method which can deal with this

problem.

A natural question to ask of any clustering technique is whether the estimated clustering

stabilizes as more data becomes available. More precisely, we ask whether certain estimates

converge, in an appropriate sense, in the large data limit. In order to answer this question in our

particular context we first establish a related optimization problem and make precise the notion

of convergence.

Consistency of estimators for ill-posed inverse problems has been well studied, for ex-

ample [52, 118], but without the data association problem. In contrast to standard statistical

consistency results, we do not assume that there exists a structural relationship between the

optimization problem and the data-generating process in order to establish convergence to true

parameter values in the large data limit; rather, we demonstrate convergence to the solution of a

related limiting problem.

This chapter shows the convergence of the minimization problem associated with the

k-means method in a framework that is general enough to include examples where the cluster

centers are not necessarily in the same space as the data points. In particular we are moti-

vated by the application to infinite dimensional problems, e.g. the smoothing-data association

problem. The smoothing-data association problem is the problem of associating data points

{(ti, zi)}ni=1 ⊂ [0, 1] × Rκ to unknown trajectories µj : [0, 1] → Rκ for j = 1, 2, . . . , k. By

treating the trajectories µj as the cluster centers one may approach this problem using the k-

means methodology. The comparison of data points to cluster centers is a pointwise distance:

d((ti, zi), µj) = |µj(ti)−zi|2 (where |·| is the Euclidean norm onRκ). To ensure the problem is

well-posed some regularization is also necessary. For k = 1 the problem reduces to smoothing

and coincides with the limiting problem studied in [79]. We will discuss the smoothing-data

association problem more in Section 3.3.3.

Let us now introduce the notation for our variational approach. The k-means method is

a strategy for partitioning a data set Ψn = {ξi}ni=1 ⊂ X into k clusters where each cluster has

center µj for j = 1, 2, . . . , k. First let us consider the special case when µj ∈ X . The data

partition is defined by associating each data point with the cluster center closest to it which is

measured by a cost function d : X ×X → [0,∞). Traditionally the k-means method considers

Euclidean spaces X = Rκ, where typically we choose d(x, y) = |x − y|2 =
∑κ

i=1(xi − yi)2.

We define the energy for a choice of cluster centers given data by

fn : Xk → R fn(µ|Ψn) =
1

n

n∑
i=1

k∧
j=1

d(ξi, µj),

where for any k variables, a1, a2, . . . , ak,
∧k
j=1 aj := min{a1, . . . , ak}. The optimal choice of

µ is that which minimizes fn(·|Ψn). We define

θ̂n = min
µ∈Xk

fn(µ|Ψn) ∈ R.
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An associated “limiting problem” can be defined

θ = min
µ∈Xk

f∞(µ)

where we assume that ξi
iid∼ P for some suitable probability distribution, P , and define

f∞(µ) =

∫ k∧
j=1

d(x, µj)P (dx).

In Section 3.2 we validate the formulation by first showing that, under regularity conditions and

with probability one, the minimum energy converges: θ̂n → θ. And secondly by showing that

(up to a subsequence) the minimizers converge: µ(n) → µ(∞) where µ(n) minimizes fn and

µ(∞) minimizes f∞ (again with probability one).

In a more sophisticated version of the k-means method the requirement that µj ∈ X

can be relaxed. We instead allow µ = (µ1, µ2, . . . , µk) ∈ Y k for some other Banach space,

Y , and define d appropriately. This leads to interesting statistical questions. When Y is infinite

dimensional even establishing whether or not a minimizer exists is non-trivial.

When the cluster center is in a different space to the data, bounding the set of minimizers

becomes less natural. For example, consider the smoothing problem in which one wishes to fit

a continuous function to a set of data points. The natural choice of cost function is a pointwise

distance of the data to the curve. The optimal solution is for the cluster center to interpolate

the data points: in the limit the cluster center may no longer be well defined. In particular we

cannot hope to have converging sequences of minimizers.

In the smoothing literature this problem is prevented by using a regularization term

r : Y k → R. For a cost function d : X × Y → [0,∞) the energies fn(·|Ψn), f∞(·) : Y k → R
are redefined

fn(µ|Ψn) =
1

n

n∑
i=1

k∧
j=1

d(ξi, µj) + λnr(µ)

f∞(µ) =

∫ k∧
j=1

d(x, µj)P (dx) + λr(µ).

Adding regularization changes the nature of the problem so we commit time in Section 3.3 to

justifying our approach. Particularly we motivate treating λn = λ as a constant independent of

n. We are able to repeat the analysis from Section 3.2; that is to establish that the minimum and

a subsequence of minimizers still converge.

Early results assumed Y = X were Euclidean spaces and showed the convergence of

minimizers to the appropriate limit [80,124]. The motivation for the early work in this area was

to show consistency of the methodology. In particular this requires there to be an underlying

‘truth’. This requires the assumption that there exists a unique minimizer to the limiting energy.

These results do not hold when the limiting energy has more than one minimizer [19]. In this

chapter we discuss only the convergence of the method and as such require no assumption

as to the existence or uniqueness of a minimizer to the limiting problem. Consistency has been
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strengthened to a central limit theorem in [126] also assuming a unique minimizer to the limiting

energy. Other rates of convergence have been shown in [10,18,42,104]. In Hilbert spaces there

exist convergence results and rates of convergence for the minimum. In [21] the authors show

that |fn(µ(n))− f∞(µ(∞))| is of order 1√
n

, however, there are no results for the convergence of

minimizers. Results exist for k →∞, see for example [34] (which are also valid for Y 6= X).

Assuming that Y = X , the convergence of the minimization problem in a reflexive

and separable Banach space has been proved in [103] and a similar result in metric spaces

in [96]. In [95], the existence of a weakly converging subsequence was inferred using the results

of [103].

The chapter is structured as follows. In Section 3.2 we consider convergence in the

special case when the cluster centers are in the same space as the data points, i.e. Y = X . In

this case we don’t have an issue with well-posedness as the data has the same dimension as the

cluster centers. For this reason we use energies defined without regularization. Theorem 3.2.5

shows that the minimum converges, i.e. θ̂n → θ as n → ∞, for almost every sequence of

observations and furthermore we have a subsequence µ(nm) of minimizers of fnm which weakly

converge to some µ(∞) which minimizes f∞.

This result is generalized in Section 3.3 to an arbitrary X and Y . The analogous result

to Theorem 3.2.5 is Theorem 3.3.6. We first motivate the problem and in particular our choice

of scaling in the regularization in Section 3.3.1 before proceeding to the results in Section 3.3.2.

Verifying the conditions on the cost function d and regularization term r is non-trivial and so

we show an application to the smoothing-data association problem in Section 3.3.3.

To demonstrate the generality of the results in this chapter, two applications are con-

sidered in Section 3.4. The first is the data association and smoothing problem. We show the

minimum converging as the data size increases. We also numerically investigate the use of the

k-means energy to determine whether two targets have crossed tracks. The second example

uses measured times of arrival and amplitudes of signals from moving sources that are received

across a network of three sensors. The cluster centers are the source trajectories in R2.

3.2 Convergence when Y = X

We assume we are given data points ξi ∈ X for i = 1, 2, . . . where X is a reflexive and

separable Banach space with norm ‖ · ‖X and Borel σ-algebra X . These data points realize a

sequence of X -measurable random elements on (Ω,F ,P) which will also be denoted, with a

slight abuse of notation, ξi.

We define

f (ω)
n : Xk → R, f (ω)

n (µ) = P (ω)
n gµ =

1

n

n∑
i=1

k∧
j=1

d(ξ
(ω)
i , µj) (3.1)

f∞ : Xk → R, f∞(µ) = Pgµ =

∫
X

k∧
j=1

d(x, µj)P (dx) (3.2)

22



where

gµ(x) =
k∧
j=1

d(x, µj),

P is a probability measure on (X,X ) and the empirical measure P (ω)
n associated with {ξ(ω)

i }ni=1

is defined by

P (ω)
n h =

1

n

n∑
i=1

h(ξ
(ω)
i )

for any X -measurable function h : X → R. We assume ξi are iid according to P with P =

P ◦ ξ−1
i .

We wish to show

θ̂(ω)
n → θ for almost every ω as n→∞ (3.3)

where

θ̂(ω)
n = inf

µ∈Xk
f (ω)
n (µ)

θ = inf
µ∈Xk

f∞(µ).

We define ‖ · ‖k : Xk → [0,∞) by

‖µ‖k := max
j
‖µj‖X for µ = (µ1, µ2, . . . , µk) ∈ Xk. (3.4)

The reflexivity of (X, ‖ · ‖X) carries through to (Xk, ‖ · ‖k).

Our strategy is similar to that of [124] but we embed the methodology into the Γ-

convergence framework. We show that (3.2) is the Γ-limit in Theorem 3.2.2 and that mini-

mizers are bounded in Proposition 3.2.3. We may then apply Theorem 2.2.1 to infer (3.3) and

the existence of a weakly converging subsequence of minimizers.

The key assumptions on d and P are given in Assumptions 1.1-1.4. The first assump-

tion can be understood as a ‘closeness’ condition for the space X with respect to d. If we let

d(x, y) = 1 for x 6= y and d(x, x) = 0 then our cost function d does not carry any information

on how far apart two points are. Assume there exists a probability density for P which has

unbounded support. Then f (ω)
n (µ) ≥ n−k

n (for almost every ω), with equality when we choose

µj ∈ {ξ(ω)
i }ni=1. I.e. any set of k unique data points will minimize f (ω)

n . Since our data points

are unbounded we may find a sequence ‖ξ(ω)
in
‖X →∞. Now we choose µ(n)

1 = ξ
(ω)
in

and clearly

our cluster center is unbounded. We see that this choice of d violates the first assumption. We

also add a moment condition to the upper bound to ensure integrability. Note that this also im-

plies that Pd(·, 0) ≤
∫
XM(‖x‖) P (dx) <∞ so f∞(0) <∞ and, in particular, that f∞ is not

identically infinity.

The second assumption is slightly stronger condition on d than a weak lower semi-

continuity condition in the first variable and strong continuity in the second variable. The con-

dition allows the application of Fatou’s lemma for weakly converging probabilities, see [64].

The third assumption allows us to view d(ξi, y) as a collection of random variables. The
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fourth implies that we have at least k open balls (where k is known) with positive probability

and therefore we are not overfitting clusters to data.

Assumptions 1. We have the following assumptions on d : X ×X → [0,∞) and P .

1.1 There exist continuous, strictly increasing functions m,M : [0,∞)→ [0,∞) such that

m(‖x− y‖X) ≤ d(x, y) ≤M(‖x− y‖X) for all x, y ∈ X

with limr→∞m(r) = ∞, M(0) = 0, there exists γ < ∞ such that M(‖x + y‖X) ≤
γM(‖x‖X)+γM(‖y‖X) and finally

∫
XM(‖x‖X) P (dx) <∞ (andM is measurable).

1.2. For each x, y ∈ X we have that if xm → x and yn ⇀ y as n,m→∞ then

lim inf
n,m→∞

d(xm, yn) ≥ d(x, y) and lim
m→∞

d(xm, y) = d(x, y).

1.3. For each y ∈ X we have that d(·, y) is X -measurable.

1.4. There exist k different centers µ†j ∈ X , j = 1, 2, . . . , k such that for all δ > 0

P (B(µ†j , δ)) > 0 ∀ j = 1, 2, . . . , k

where B(µ, δ) := {x ∈ X : ‖µ− x‖X < δ}.

We now show that for a particular common choice of cost function, d, Assumptions 1.1

to 1.3 hold.

Remark 3.2.1. For any p > 0 let d(x, y) = ‖x− y‖pX then d satisfies Assumptions 1.1 to 1.3.

Proof. Taking m(r) = M(r) = rp we can bound m(‖x − y‖X) ≤ d(x, y) ≤ M(‖x − y‖X)

and m,M clearly satisfy m(r) → ∞, M(0) = 0, are strictly increasing and continuous. One

can also show that

M(‖x+ y‖X) ≤ 2p−1
(
‖x‖pX + ‖y‖pX

)
hence Assumption 1.1 is satisfied.

Let xm → x and yn ⇀ y. Then

lim inf
n,m→∞

d(xm, yn)
1
p = lim inf

n,m→∞
‖xm − ym‖X

≥ lim inf
n,m→∞

(‖yn − x‖X − ‖xm − x‖X)

= lim inf
n→∞

‖yn − x‖X since xm → x

≥ ‖y − x‖X

where the last inequality follows as a consequence of the Hahn-Banach Theorem and the fact

that yn − x ⇀ y − x which implies lim infn→∞ ‖yn − x‖X ≥ ‖y − x‖X . Clearly d(xm, y)→
d(x, y) and so Assumption 1.2 holds.

The third assumption holds by the Borel measurability of metrics on complete separable

metric spaces.
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We now state the first result of the chapter which formalizes the understanding that f∞
is the limit of f (ω)

n .

Theorem 3.2.2. Let (X, ‖·‖X) be a reflexive and separable Banach space with Borel σ-algebra,

X ; let {ξi}i∈N be a sequence of independent X-valued random elements with common law P .

Assume d : X × X → [0,∞) and that P satisfies the conditions in Assumptions 1. Define

f
(ω)
n : Xk → R and f∞ : Xk → R by (3.1) and (3.2) respectively. Then

f∞ = Γ- lim
n

f (ω)
n

for P-almost every ω.

Proof. Define Ω′ as the intersection of three events:

Ω′ =

{
ω ∈ Ω : P (ω)

n ⇒ P

}
∩

{
ω ∈ Ω : P (ω)

n (B(0, q)c)→ P (B(0, q)c) ∀q ∈ N

}

∩

{
ω ∈ Ω :

∫
X
IB(0,q)c(x)M(‖x‖X) P (ω)

n (dx)

→
∫
X
IB(0,q)c(x)M(‖x‖X) P (dx) ∀q ∈ N

}
.

By the almost sure weak convergence of the empirical measure [56] the first of these events

has probability one, the second and third are characterized by the convergence of a countable

collection of empirical averages to their population average and, by the strong law of large

numbers, each has probability one. Hence P(Ω′) = 1.

Fix ω ∈ Ω′: we will show that the lim inf inequality holds and a recovery sequence

exists for this ω and hence for every ω ∈ Ω′. We start by showing the lim inf inequality,

allowing {µ(n)}∞n=1 ∈ Xk to denote any sequence which converges weakly to µ ∈ Xk. We are

required to show:

lim inf
n→∞

f (ω)
n (µ(n)) ≥ f∞(µ).

By Theorem 1.1 in [64] we have∫
X

lim inf
n→∞,x′→x

gµ(n)(x
′) P (dx) ≤ lim inf

n→∞

∫
X
gµ(n)(x) P (ω)

n (dx) = lim inf
n→∞

P (ω)
n gµ(n) .

For each x ∈ X , we have by Assumption 1.2 that

lim inf
x′→x,n→∞

d(x′, µ
(n)
j ) ≥ d(x, µj).

By taking the minimum over j we have

lim inf
x′→x,n→∞

gµ(n)(x
′) =

k∧
j=1

lim inf
x′→x,n→∞

d(x′, µ
(n)
j ) ≥

k∧
j=1

d(x, µj) = gµ(x).

Hence

lim inf
n→∞

f (ω)
n (µ(n)) = lim inf

n→∞
P (ω)
n gµ(n) ≥

∫
X
gµ(x) P (dx) = f∞(µ)
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as required.

We now establish the existence of a recovery sequence for every ω ∈ Ω′ and every µ ∈
Xk. Let µ(n) = µ ∈ Xk. Let ζq be a C∞(X) sequence of functions such that 0 ≤ ζq(x) ≤ 1

for all x ∈ X , ζq(x) = 1 for x ∈ B(0, q− 1) and ζq(x) = 0 for x 6∈ B(0, q). Then the function

ζq(x)gµ(x) is continuous in x (and with respect to convergence in ‖ ·‖X ) for all q. We also have

ζq(x)gµ(x) ≤ ζq(x)d(x, µ1)

≤ ζq(x)M(‖x− µ1‖X)

≤ ζq(x)M(‖x‖X + ‖µ1‖X)

≤M(q + ‖µ1‖X)

so ζqgµ is a continuous and bounded function, hence by the weak convergence of P (ω)
n to P we

have

P (ω)
n ζqgµ → Pζqgµ

as n→∞ for all q ∈ N. For all q ∈ N we have

lim sup
n→∞

|P (ω)
n gµ − Pgµ| ≤ lim sup

n→∞
|P (ω)
n gµ − P (ω)

n ζqgµ|+ lim sup
n→∞

|P (ω)
n ζqgµ − Pζqgµ|

+ lim sup
n→∞

|Pζqgµ − Pgµ|

= lim sup
n→∞

|P (ω)
n gµ − P (ω)

n ζqgµ|+ |Pζqgµ − Pgµ|.

Therefore,

lim sup
n→∞

|P (ω)
n gµ − Pgµ| ≤ lim sup

q→∞
lim sup
n→∞

|P (ω)
n gµ − P (ω)

n ζqgµ|

by the dominated convergence theorem. We now show that the right hand side of the above

expression is equal to zero. We have

|P (ω)
n gµ − P (ω)

n ζqgµ| ≤ P (ω)
n I(B(0,q−1))cgµ

≤ P (ω)
n I(B(0,q−1))cd(·, µ1)

≤ P (ω)
n I(B(0,q−1))cM(‖ · −µ1‖X)

≤ γ
(
P (ω)
n I(B(0,q−1))cM(‖ · ‖X) +M(‖µ1‖X)P (ω)

n I(B(0,q−1))c

)
→ γ

(
P I(B(0,q−1))cM(‖ · ‖X) +M(‖µ1‖X)P I(B(0,q−1))c

)
as n→∞

→ 0 as q →∞

where the last limit follows by the monotone convergence theorem. We have shown

lim
n→∞

|P (ω)
n gµ − Pgµ| = 0.

Hence

f (ω)
n (µ)→ f∞(µ)
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as required.

Now we have established almost sure Γ-convergence we establish the boundedness con-

dition in Proposition 3.2.3 so we can apply Theorem 2.2.1.

Proposition 3.2.3. Assuming the conditions of Theorem 3.2.2 and define ‖ · ‖k by (3.4), there

exists R > 0 such that

inf
µ∈Xk

f (ω)
n (µ) = inf

‖µ‖k≤R
f (ω)
n (µ) ∀n sufficiently large

for P-almost every ω. In particular R is independent of n.

Proof. The structure of the proof is similar to [96, Lemma 2.1]. We argue by contradiction.

In particular we argue that if a cluster center is unbounded then in the limit the minimum is

achieved over the remaining k − 1 cluster centers. We then use Assumption 1.4 to imply that

adding an extra cluster center will strictly decrease the minimum, and hence we have a contra-

diction.

We define Ω′′ to be

Ω′′ = ∩δ∈Q∩(0,∞),l=1,2,...,k

{
ω ∈ Ω′ : P (ω)

n (B(µ†l , δ))→ P (B(µ†l , δ))
}
.

As Ω′′ is the countable intersection of sets of probability one, we have P(Ω′′) = 1. Fix ω ∈ Ω′′

and assume that the cluster centers µ(n) ∈ Xk are almost minimizers, i.e.

f (ω)
n (µ(n)) ≤ inf

µ∈Xk
f (ω)
n (µ) + εn

for some sequence εn > 0 such that

lim
n→∞

εn = 0. (3.5)

Assume that lim
n→∞

‖µ(n)‖k = ∞. There exists ln ∈ {1, . . . , k} with lim
n→∞

‖µ(n)
ln
‖X =

∞. Fix x ∈ X then

d(x, µ
(n)
ln

) ≥ m(‖µ(n)
ln
− x‖X)→∞.

Therefore, for each x ∈ X ,

lim
n→∞

 k∧
j=1

d(x, µ
(n)
j )−

∧
j 6=ln

d(x, µ
(n)
j )

 = 0.

Let δ > 0 then there exists N such that for n ≥ N

k∧
j=1

d(x, µ
(n)
j )−

∧
j 6=ln

d(x, µ
(n)
j ) ≥ −δ.
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Hence

lim inf
n→∞

∫  k∧
j=1

d(x, µ
(n)
j )−

∧
j 6=ln

d(x, µ
(n)
j )

 P (ω)
n (dx) ≥ −δ.

Letting δ → 0 we have

lim inf
n→∞

∫  k∧
j=1

d(x, µ
(n)
j )−

∧
j 6=ln

d(x, µ
(n)
j )

 P (ω)
n (dx) ≥ 0

and moreover

lim inf
n→∞

(
f (ω)
n

(
µ(n)

)
− f (ω)

n

(
(µ

(n)
j )j 6=ln

))
≥ 0, (3.6)

where we interpret f (ω)
n accordingly. It suffices to demonstrate that

lim inf
n→∞

(
inf
µ∈Xk

f (ω)
n (µ)− inf

µ∈Xk−1
f (ω)
n (µ)

)
< 0. (3.7)

Indeed, if (3.7) holds, then

lim inf
n→∞

(
f (ω)
n

(
µ(n)

)
− f (ω)

n

(
(µ

(n)
j )j 6=ln

))
= lim
n→∞

(
f (ω)
n

(
µ(n)

)
− inf
µ∈Xk

f (ω)
n (µ)︸ ︷︷ ︸

≤εn

)
+ lim inf

n→∞

(
inf
µ∈Xk

f (ω)
n (µ)− f (ω)

n

(
(µ

(n)
j )j 6=ln

))

<0 by (3.5) and (3.7),

but this contradicts (3.6).

We now establish (3.7). By Assumption 1.4 there exists k centers µ†j ∈ X and δ1 > 0

such that minj 6=l ‖µ†j − µ
†
l ‖X ≥ δ1. Hence for any µ ∈ Xk−1 there exists l ∈ {1, 2, . . . , k}

such that we have

‖µ†l − µj‖X ≥
δ1

2
for j = 1, 2, . . . , k − 1.

Proceeding with this choice of l, for x ∈ B(µ†l , δ2) (for any δ2 ∈ (0, δ1/2)) we have

‖µj − x‖X ≥
δ1

2
− δ2

and therefore d(µj , x) ≥ m( δ12 − δ2) for all j = 1, 2, . . . , k − 1. Also

Dl(µ) := min
j=1,2,...,k−1

d(x, µj)− d(x, µ†l ) ≥ m(
δ1

2
− δ2)−M(δ2). (3.8)

So for δ2 sufficiently small there exists ε > 0 such that

Dl(µ) ≥ ε.
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Since the right hand side is independent of µ ∈ Xk−1,

inf
µ∈Xk−1

max
l
Dl(µ) ≥ ε.

Define the characteristic function

χµ(ξ) =

1 if ‖ξ − µ†l(µ)‖X < δ2

0 otherwise,

where l(µ) is the maximizer in (3.8). For each ω ∈ Ω′′ one obtains

inf
µ∈Xk−1

f (ω)
n (µ) = inf

µ∈Xk−1

1

n

n∑
i=1

k−1∧
j=1

d(ξi, µj)

≥ inf
µ∈Xk−1

1

n

n∑
i=1

k−1∧
j=1

d(ξi, µj) (1− χµ(ξi)) +
(
d(ξi, µ

†
l(µ)) + ε

)
χµ(ξi)


≥ inf

µ∈Xk
f (ω)
n (µ) + ε min

l=1,2,...,k
P (ω)
n (B(µ†l , δ2)).

Then since P (ω)
n (B(µ†l , δ2))→ P (B(µ†l , δ2)) > 0 by Assumption 1.4 (for δ2 ∈ Q∩ (0,∞)) we

can conclude (3.7) holds.

Remark 3.2.4. One can easily show that Assumption 1.2 implies that d is weakly lower semi-

continuous in its second argument which carries through to f (ω)
n . It follows that on any bounded

(or equivalently as X is reflexive: weakly compact) set the infimum of f (ω)
n is achieved. Hence

the infimum in Proposition 3.2.3 is actually a minimum.

We now easily prove convergence by application of Theorem 2.2.1.

Theorem 3.2.5. Assuming the conditions of Theorem 3.2.2 and Proposition 3.2.3 the minimiza-

tion problem associated with the k-means method converges. I.e. for P-almost every ω:

min
µ∈Xk

f∞(µ) = lim
n→∞

min
µ∈Xk

f (ω)
n (µ).

Furthermore any sequence of minimizers µ(n) of f (ω)
n is almost surely weakly precompact and

any weak limit point minimizes f∞.

Remark 3.2.6. If in addition to the conditions in the above theorem the Γ-limit f∞ has a unique

minimizer then it follows (see Corollary 2.2.2) that the entire sequence µ(n) of minimizers of

fn converge weakly to a minimizer of f∞ without the recourse to subsequences. The same

reasoning applies to Theorem 3.3.6 in the X 6= Y case.

3.3 The Case of General Y

In the previous section the data, ξi, and cluster centers, µj , took their values in a common space,

X . We now remove this restriction and let ξi : Ω → X and µj ∈ Y . We may want to use this
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framework to deal with finite dimensional data and infinite dimensional cluster centers, which

can lead to the variational problem having uninformative minimizers.

In the previous section the cost function d was assumed to scale with the underlying

norm. This is no longer appropriate when d : X × Y → [0,∞). In particular if we consider the

smoothing-data association problem then the natural choice of d is a pointwise distance which

will lead to the optimal cluster centers interpolating data points. Hence, in any Hs norm with

s ≥ 1, the optimal cluster centers “blow up”.

One possible solution would be to weaken the space to L2 and allow this type of behav-

ior. This is undesirable from both modeling and mathematical perspectives: If we first consider

the modeling point of view then we do not expect our estimate to perfectly fit the data which

is observed in the presence of noise. It is natural that the cluster centers are smoother than the

data alone would suggest. It is desirable that the optimal clusters should reflect reality. From

the mathematical point of view, restricting ourselves to only very weak spaces gives no hope of

obtaining a strongly convergent subsequence.

An alternative approach is, as is common in the smoothing literature, to use a regular-

ization term. This approach is also standard when dealing with ill-posed inverse problems. This

changes the nature of the problem and so requires some justification. In particular the scaling of

the regularization with the data is of fundamental importance. In the following section we argue

that scaling motivated by a simple Bayesian interpretation of the problem is not strong enough

(unsurprisingly, countable collections of finite dimensional observations do not carry enough

information to provide consistency when dealing with infinite dimensional parameters). In the

form of a simple example we show that the optimal cluster center is unbounded in the large data

limit when the regularization goes to zero sufficiently quickly. The natural scaling in this exam-

ple is for the regularization to vary with the number of observations as np for p ∈ [−4
5 , 0]. We

consider the case p = 0 in Section 3.3.2. This type of regularization is understood as penalized

likelihood estimation [75].

Although it may seem undesirable for the limiting problem to depend upon the regu-

larization it is unavoidable in ill-posed problems such as this one: there is not sufficient infor-

mation, in even countably infinite collections of observations to recover the unknown cluster

centers and exploiting known (or expected) regularity in these solutions provides one way to

combine observations with qualitative prior beliefs about the cluster centers in a principled man-

ner. There are many precedents for this approach, including [79] in which the consistency of

penalized splines is studied using, what in this thesis we call, the Γ-limit. In that paper a fixed

regularization was used to define the limiting problem in order to derive an estimator. Naturally,

regularization strong enough to alter the limiting problem influences the solution and we cannot

hope to obtain consistent estimation in this setting, even in settings in which the cost function

can be interpreted as the log likelihood of the data generating process. In the setting of [79], the

regularization is finally scaled to zero whereupon under assumptions the estimator converges to

the truth but such a step is not feasible in the more complicated settings considered here.

When more structure is available it may be desirable to further investigate the regular-

ization. For example with k = 1 the non-parametric regression model is equivalent to the white

noise model [32] for which optimal scaling of the regularization is known [4, 185]. It is the
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subject of further work to extend these results to k > 1.

With our redefined k-means type problem we can replicate the results of the previous

section, and do so in Theorem 3.3.6. That is, we prove that the k-means method converges

where Y is a general separable and reflexive Banach space and in particular need not be equal

to X .

This section is split into three subsections. In the first we motivate the regularization

term. The second contains the convergence theory in a general setting. Establishing that the

assumptions of this subsection hold is non-trivial and so, in the third subsection, we show an

application to the smoothing-data association problem.

3.3.1 Regularization

In this section we use a toy, k = 1, smoothing problem to motivate an approach to regularization

which is adopted in what follows. We assume that the cluster centers are periodic with equally

spaced observations so we may use a Fourier argument. In particular we work on the space of

1-periodic functions in H2,

Y =
{
µ : [0, 1]→ R s.t. µ(0) = µ(1) and µ ∈ H2

}
. (3.9)

For arbitrary sequences (an), (bn) and data Ψn = {(tj , zj)}nj=1 ⊂ [0, 1]×Rd we define

the functional

f (ω)
n (µ) = an

n−1∑
j=0

|µ(tj)− zj |2 + bn‖∇2µ‖2L2 . (3.10)

Data are points in space-time: [0, 1] × R. The regularization is chosen so that it penalizes

the L2 norm of the second derivative. For simplicity, we employ deterministic measurement

times tj in the following proposition although this lies outside the formal framework which

we consider subsequently. Another simplification we make is to use convergence in expectation

rather than almost sure convergence. This simplifies our arguments. We stress that this section is

the motivation for the problem studied in Section 3.3.2. We will give conditions on the scaling

of an and bn that determine whether Emin f
(ω)
n and Eµ(n) stay bounded where µ(n) is the

minimizer of f (ω)
n .

Proposition 3.3.1. Let data be given by Ψn = {(tj , zj)}nj=1 with tj = j
n under the assumption

zj = µ†(tj) + εj for εj iid noise with finite variance and µ† ∈ L2 and define Y by (3.9). Then

infµ∈Y f
(ω)
n (µ) defined by (3.10) stays bounded (in expectation) if an = O( 1

n) for any positive

sequence bn.

Proof. Assume n is odd. Both µ and z are 1-periodic so we can write

µ(t) =
1

n

n−1
2∑

l=−n−1
2

µ̂le
2πilt and zj =

1

n

n−1
2∑

l=−n−1
2

ẑle
2πilj
n

with

µ̂l =

n−1∑
j=0

µ(tj)e
− 2πilj

n and ẑl =

n−1∑
j=0

zje
− 2πilj

n .
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We will continue to use the notation that µ̂l is the Fourier transform of µ. We write

µ̂ :=
(
µ̂−n−1

2
, µ̂−n−1

2
+1, . . . , µ̂n−1

2

)
.

Similarly for z.

Substituting the Fourier expansion of µ and z into f (ω)
n implies

f (ω)
n (µ) =

an
n

(
〈µ̂, µ̂〉 − 2〈µ̂, ẑ〉+ 〈ẑ, ẑ〉+

γn
n
〈l4µ̂, µ̂〉

)
where γn = 16π4bn

an
and 〈x̂, ẑ〉 =

∑
l x̂lẑl. The Gateaux derivative ∂f (ω)

n (µ; ν) of f (ω)
n at µ in

the direction ν is

∂f (ω)
n (µ; ν) =

2an
n

〈
µ̂− ẑ +

γnl
4

n
µ̂, ν̂

〉
.

Which implies the minimizer µ(n) of f (ω)
n is (in terms of its Fourier expansion)

µ̂
(n)
l =

(
1 +

γnl
4

n

)−1

ẑ :=

((
1 +

γnl
4

n

)−1

ẑl

)n−1
2

l=−n−1
2

.

It follows that the minimum is

E
(
f (ω)
n (µ(n))

)
=
an
n
E

(〈(
1 +

n

γnl4

)−1

ẑ, ẑ

〉)

≤ an
n−1∑
j=0

Ez2
j

. 2ann
(
‖µ†‖2L2 + Var(ε)

)
.

Similar expressions can be obtained for the case of even n.

Clearly the natural choice for an is

an =
1

n

which we use from here. We let bn = λnp and therefore γn = 16π4λnp+1. From Proposi-

tion 3.3.1 we immediately have Emin f
(ω)
n is bounded for any choice of p. In our next proposi-

tion we show that for p ∈ [−4
5 , 0] our minimizer is bounded in H2 whilst outside this window

the norm either blows up or the second derivative converges to zero. For simplicity in the calcu-

lations we impose the further condition that µ†(t) = 0.

Proposition 3.3.2. In addition to the assumptions of Proposition 3.3.1 let an = 1
n , bn = λnp,

εj
iid∼ N(0, σ2) and assume that µ(n) is the minimizer of f (ω)

n .

1. For n sufficiently large there exists M1 > 0 such that for all p and n the L2 norm is

bounded:

E‖µ(n)‖2L2 ≤M1.
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2. If p > 0 then

E‖∇2µ(n)‖2L2 → 0 as n→∞.

If we further assume that µ†(t) = 0, then the following statements are true.

3. For all p ∈ [−4
5 , 0] there exists M2 > 0 such that

E‖∇2µ(n)‖2L2 ≤M2.

4. If p < −4
5 then

E‖∇2µ(n)‖2L2 →∞ as n→∞.

Proof. The first two statements follow from

E‖µ(n)‖2L2 . 2
(
‖µ†‖2L2 + Var(ε)

)
E‖∇2µ(n)‖2L2 .

8π4n

γn

(
‖µ†‖2L2 + Var(ε)

)
which are easily shown. Statement 3 is shown after statement 4.

Following the calculation in the proof of Proposition 3.3.1, and assuming that µ†(t) = 0,

it is easily shown that

E‖∇2µ(n)‖2L2 =
16π4σ2

n

n−1
2∑

l=−n−1
2

l4

(1 + 16π4λnpl4)2
=: S(n) (3.11)

since E|ẑl|2 = σ2n. To show S(n) → ∞ we will manipulate the Riemann sum approximation

of ∫ 1
2

− 1
2

x4

(1 + 16π4λx4)2
dx = C

where 0 < C <∞. We have

∫ 1
2

− 1
2

x4

(1 + 16π4λx4)2
dx = n1+ p

4

∫ 1
2
n−1− p4

− 1
2
n−1− p4

n4+pw4

(1 + 16π4λn4+pw4)2
dw where x = n1+ p

4w

≈ n
5p
4

⌊
1
2
n−

p
4

⌋∑
l=−

⌊
1
2
n−

p
4

⌋
l4

(1 + 16π4λnpl4)2
=: R(n).

Therefore assuming p > −4 we have

S(n) ≥ 16π4σ2

n1+ 5p
4

R(n).

So for 1 + 5p
4 < 0 we have S(n) → ∞. Since S(n) is monotonic in p then S(n) → ∞ for all

p < −4
5 . This shows that statement 4 is true.
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Finally we establish the third statement. If p = −4
5 then

S(n) = 16π4σ2

R(n) +
1

n

b
n
1
5
2
c−1∑

l=−n−1
2

l4

(1 + 16π4λnpl4)2
+

n−1
2∑

l=bn
1
5
2
c+1

l4

(1 + 16π4λnpl4)2




≤ 16π4σ2R(n) +
2π4σ2

n
1
5 (1 + π4λ)2

.

The remaining cases p ∈ [−4
5 , 0] are a consequence of (3.11) which implies that p 7→ E(∇2µ)

is non-increasing.

By the Poincaré inequality it follows that if p ≥ −4
5 then the H2 norm of our minimizer

stays bounded as n→∞. Our final calculation in this section is to show that the regularization

for p ∈ [−4
5 , 0] is not too strong. We have already shown that ‖∇2µ(n)‖L2 is bounded (in

expectation) in this case but we wish to make sure that we don’t have the stronger result that

‖∇2µ(n)‖L2 → 0.

Proposition 3.3.3. With the assumptions of Proposition 3.3.1 and an = 1
n , bn = λnp with

p ∈ [−4
5 , 0] there exists a choice of µ† and a constant M > 0 such that if µ(n) is the minimizer

of f (ω)
n then

E‖∇2µ(n)‖2L2 ≥M. (3.12)

Proof. We only need to prove the proposition for p = 0 (the strongest regularization) and find

one µ† such that (3.12) is true. Let µ†(t) = 2 cos(2πt) = e2πit + e−2πit. Then the Fourier

transform of µ† satisfies µ̂†l = 0 for l 6= ±1 and µ̂†l = n for l = ±1. So,

E‖∇2µ(n)‖2L2 =
16π4

n2

n−1
2∑

l=−n−1
2

l4

(1 + 16π4λl4)2
E|ẑl|2

&
16π4

n2

n−1
2∑

l=−n−1
2

l4

(1 + 16π4λl4)2
|µ̂†l |

2

=
32π4

(1 + 16π4λ)2
> 0

which completes the proof.

We have shown that the minimizer is bounded for any p ≥ −4
5 and ‖∇2µ(n)‖L2 → 0

for p > 0. The case p > 0 is clearly undesirable as we would be restricting ourselves to straight

lines. The natural scaling for this problem is in the range p ∈ [−4
5 , 0]. In the remainder of this

chapter we consider the case p = 0. This has the advantage that, not only E‖∇2µ(n)‖L2 , but also

Ef (ω)
n (µ(n)) is O(1) as n→∞. In fact we will show that with this choice of regularization we

do not need to choose k dependent on the data generating model. The regularization makes the

methodology sufficiently robust to have convergence even for poor choices of k. For example,

if there exists a data generating process which is formed of a k†-mixture model then for our

method to be robust does not require us to choose k = k†. Of course with the ‘wrong’ choice
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of k the results may be physically meaningless and we should take care in how to interpret the

results. The point to stress is that the methodology does not rely on a data generating model.

The disadvantage of this is to potentially increase the bias in the method. Since the k-

means is already biased we believe the advantages of our approach outweigh the disadvantages.

In particular we have in mind applications where only a coarse estimate is needed. For example

the k-means method may be used to initialize some other algorithm. Another application could

be part of a decision making process: in Section 3.4.1 we show the k-means methodology can

be used to determine whether two tracks have crossed.

3.3.2 Convergence For General Y

Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be reflexive, separable Banach spaces We will also assume that the

data points, Ψn = {ξi}ni=1 ⊂ X for i = 1, 2, . . . , n are iid random elements with common law

P . As before µ = (µ1, µ2, . . . , µk) but now the cluster centers µj ∈ Y for each j. The cost

function is d : X × Y → [0,∞).

The energy functions associated with the k-means algorithm in this setting are slightly

different to those used previously:

gµ : X → R, gµ(x) =

k∧
j=1

d(x, µj),

f (ω)
n : Y k → R, f (ω)

n (µ) = P (ω)
n gµ + λr(µ), (3.13)

f∞ : Y k → R, f∞(µ) = Pgµ + λr(µ). (3.14)

The aim of this section is to show the convergence result:

θ̂(ω)
n = inf

µ∈Y k
f (ω)
n (µ)→ inf

µ∈Y k
f∞(µ) = θ and as n→∞ for P-almost every ω

and that minimizers converge (almost surely).

The key assumptions are given in Assumption 2; they imply that f (ω)
n is weakly lower

semi-continuous and coercive. In particular, Assumption 2.2 allows us to prove the lim inf in-

equality as we did for Theorem 3.2.2. Assumption 2.1 is likely to mean that our convergence

results are limited to the case of bounded noise. In fact, when applying the problem to the

smoothing-data association problem, it is necessary to bound the noise in order for Assump-

tion 2.5 to hold. Assumption 2.5 implies that f (ω)
n is (uniformly) coercive and hence allows us

to easily bound the set of minimizers. In the next chapter we will remove the bounded noise

assumption for the smoothing-data association problem. Assumption 2.3 is a measurability con-

dition we require in order to integrate and the weak lower semi-continuity of r is needed for the

to obtain the lim inf inequality in the Γ-convergence proof.

We note that, since Pd(·, µ1) ≤ supx∈supp(P ) d(x, µ1) < ∞, we have f∞(µ) < ∞ for

every µ ∈ Y k (and since r(µ) <∞ for each µ ∈ Y k).

Assumptions 2. We have the following assumptions on d : X × Y → [0,∞), r : Y k → [0,∞)

and P .
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2.1. For all y ∈ Y we have supx∈supp(P ) d(x, y) <∞ where supp(P ) ⊆ X is the support of

P .

2.2. For each x ∈ X and y ∈ Y we have that if xm → x and yn ⇀ y as n,m→∞ then

lim inf
n,m→∞

d(xm, yn) ≥ d(x, y) and lim
m→∞

d(xm, y) = d(x, y).

2.3. For every y ∈ Y we have that d(·, y) is X -measurable.

2.4. r is weakly lower semi-continuous.

2.5. r is coercive.

We will follow the structure of Section 3.2. We start by showing that under the above

conditions f (ω)
n Γ-converges to f∞. We then show that the regularization term guarantees that

the minimizers to f (ω)
n lie in a bounded set. An application of Theorem 2.2.1 gives the desired

convergence result. Since we were able to restrict our analysis to a weakly compact subset of Y

we are easily able to deduce the existence of a weakly convergent subsequence.

Similarly to the previous section on the product space Y k we use the analogous norm

‖µ‖k := maxj ‖µj‖Y .

Theorem 3.3.4. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be separable and reflexive Banach spaces.

Assume r : Y k → [0,∞), d : X × Y → [0,∞) and the probability measure P on (X,X )

satisfy the conditions in Assumptions 2. For independent samples {ξω)
i }ni=1 from P define P (ω)

n

to be the empirical measure and f (ω)
n : Y k → R and f∞ : Y k → R by (3.13) and (3.14)

respectively and where λ > 0. Then

f∞ = Γ- lim
n

f (ω)
n

for P-almost every ω.

Proof. Define

Ω′ =
{
ω ∈ Ω : P (ω)

n ⇒ P
}
∩
{
ω ∈ Ω : ξ

(ω)
i ∈ supp(P ) ∀i ∈ N

}
.

Then P(Ω′) = 1. For the remainder of the proof we consider an arbitrary ω ∈ Ω′. We start with

the lim inf inequality. Let µ(n) ⇀ µ then

lim inf
n→∞

f (ω)
n (µ(n)) ≥ f∞(µ)

follows (as in the proof of Theorem 3.2.2) by applying Theorem 1.1 in [64] and the fact that r

is weakly lower semi-continuous.

We now establish the existence of a recovery sequence. Let µ ∈ Y k and let µ(n) = µ.

We want to show

lim
n→∞

f (ω)
n (µ) = lim

n→∞
P (ω)
n gµ + λr(µ) = Pgµ + λr(µ) = f∞(µ).
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Clearly this is equivalent to showing that

lim
n→∞

P (ω)
n gµ = Pgµ.

Now gµ are continuous by assumption on d. Let M = supx∈supp(P ) d(x, µ1) <∞ and note that

gµ(x) ≤M for all x ∈ supp(P ) and therefore bounded. Hence P (ω)
n gµ → Pgµ.

Proposition 3.3.5. Assuming the conditions of Theorem 3.3.4, then for P-almost every ω there

exists N <∞ and R > 0 such that

min
µ∈Y k

f (ω)
n (µ) = min

‖µ‖k≤R
f (ω)
n (µ) < inf

‖µ‖k>R
f (ω)
n (µ) ∀n ≥ N.

In particular R is independent of n.

Proof. Let

Ω′′ =
{
ω ∈ Ω′ : P (ω)

n ⇒ P
}
∩
{
ω ∈ Ω′ : P (ω)

n d(·, 0)→ Pd(·, 0)
}
.

Then, for every ω ∈ Ω′′, f (ω)
n (0) → f∞(0) < ∞ where with a slight abuse of notation we

denote the zero element in both Y and Y k by 0. Take N sufficiently large so that

f (ω)
n (0) ≤ f∞(0) + 1 for all n ≥ N.

Then minµ∈Y k f
(ω)
n (µ) ≤ f∞(0) + 1 for all n ≥ N . By coercivity of r there exists R such

that if ‖µ‖k > R then λr(µ) ≥ f∞(0) + 1. Therefore any such µ is not a minimizer and in

particular any minimizer must be contained in the set
{
µ ∈ Y k : ‖µ‖k ≤ R

}
.

The convergence results now follows by applying Theorem 3.3.4 and Proposition 3.3.5

to Theorem 2.2.1.

Theorem 3.3.6. Assuming the conditions of Theorem 3.3.4 and Proposition 3.3.5 the minimiza-

tion problem associated with the k-means method converges in the following sense:

min
µ∈Y k

f∞(µ) = lim
n→∞

min
µ∈Y k

f (ω)
n (µ)

for P-almost every ω. Furthermore any sequence of minimizers µ(n) of f (ω)
n is almost surely

weakly precompact and any weak limit point minimizes f∞.

It was not necessary to assume that cluster centers are in a common space. A trivial

generalization would allow each µj ∈ Y (j) with the cost and regularization terms appropriately

defined; in this setting Theorem 3.3.6 holds.

3.3.3 Application to the Smoothing-Data Association Problem

In this section we give an application to the smoothing-data association problem and show the

assumptions in the previous section are met. For k = 1 the smoothing-data association problem

is the problem of fitting a curve to a data set (no data association). For k > 1 we couple
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the smoothing problem with a data association problem. Each data point is associated with an

unknown member of a collection of k curves. Solving the problem involves simultaneously

estimating both the data partition (i.e. the association of observations to curves) and the curve

which best fits each subset of the data. By treating the curve of best fit as the cluster center we

are able to approach this problem using the k-means methodology. The data points are points in

space-time whilst cluster centers are functions from time to space.

We let the Euclidean norm on Rκ be given by | · |. Let X = R× Rκ be the data space.

We will subsequently assume that the support of P , the common law of our observations, is

contained within X̃ = [0, T ] ×X ′ where X ′ ⊆ [−Ñ , Ñ ]κ. We define the cluster center space

to be Y = H2([0, T ]), the Sobolev space of functions from [0, T ] to Rκ. Clearly X and Y are

separable and reflexive. The cost function d : X × Y → [0,∞) is defined by

d(ξ, µj) = |z − µj(t)|2 (3.15)

where µj ∈ Y and ξ = (t, z) ∈ X . We introduce a regularization term that penalizes the second

derivative. This is a common choice in the smoothing literature, e.g. [132]. The regularization

term r : Y k → [0,∞) is given by

r(µ) =

k∑
j=1

‖∇2µj‖2L2 . (3.16)

The k-means energy fn for data points {ξi = (ti, zi)}ni=1 is therefore written

fn(µ) =
1

n

n∑
i=1

k∧
j=1

d(ξi, µj) + λr(µ) =
1

n

n∑
i=1

k∧
j=1

|zi − µj(ti)|2 + λ
k∑
j=1

‖∇2µj‖2L2 . (3.17)

In most cases it is reasonable to assume that any minimizer of f∞ must be uniformly

bounded, i.e. there exists N (which will in general depend on P ) such that if µ(∞) minimizes

f∞ then |µ(∞)(t)| ≤ N for all t ∈ [0, T ]. Under this assumption we redefine Y to be

Y = {µj ∈ H2([0, T ]) : |µj(t)| ≤ N ∀t ∈ [0, T ]}. (3.18)

Since pointwise evaluation is a bounded linear functional in Hs (for s ≥ 1) this space is weakly

closed. We now minimize fn over Y k. Note that we are not immediately guaranteed that

minimizers of fn over (Hs)k are contained in Y k. However when we apply Theorem 3.3.6 we

can conclude that minimizers µ(n) of fn over Yk are weakly compact in (Hs)k and any limit

point is a minimizer of f∞ in Y k. And therefore any limit point is a minimizer of f∞ over

(Hs)k.

If no such N exists then our results in Theorem 3.3.6 are still valid however the mini-

mum of f∞ over (Hs)k is not necessarily equal to the minimum of f∞ over Y k.
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Our results show that the Γ-limit for P-almost every ω is

f∞(µ) =

∫
X

k∧
j=1

d(x, µj)P (dx) + λr(µ) =

∫
X

k∧
j=1

|z − µj(t)|2P (dx) + λ
k∑
j=1

‖∇2µj‖2L2 .

(3.19)

We start with the key result for this section, that is the existence of a weakly converging subse-

quence of minimizers. Our result relies upon the regularity of Sobolev functions. For our result

to be meaningful we require that the minimizer should at least be continuous. In fact every

g ∈ H2([0, T ]) is in Cs([0, T ]) for any s < 3
2 . The regularity in the space allows us to further

deduce the existence of a strongly converging subsequence.

Theorem 3.3.7. Let X = [0, T ] × Rκ and define Y by (3.18). Define d : X × Y → [0,∞)

by (3.15) and r : Y k → [0,∞) by (3.16). For independent samples {ξi}ni=1 from P which has

compact support X̃ ⊂ X define fn, f∞ : Y k → R by (3.17) and (3.19) respectively.

Then (1) any sequence of minimizers µ(n) ∈ Y k of fn is P-almost surely weakly-

precompact (in H2) with any weak limit point of µ(n) minimizes f∞ and (2) if µ(nm) ⇀ µ

is a weakly converging (in H2) subsequence of minimizers then the convergence is uniform (in

C0).

To prove the first part of Theorem 3.3.7 we are required to check the boundedness

and continuity assumptions on d (Proposition 3.3.8) and show that r is weakly lower semi-

continuous and coercive (Proposition 3.3.9). This statement is then a straightforward appli-

cation of Theorem 3.3.6. Note that we will have shown the result of Theorem 3.3.4 holds:

f∞ = Γ- limn f
(ω)
n .

In what follows we check that properties hold for any x ∈ X̃ , which should be under-

stood as implying that they hold for P -almost any x ∈ X; this is sufficient for our purposes as

the collection of sequences ξ1, . . . for which one or more observations lies in the complement

of X̃ is P-null and the support of Pn is P-almost surely contained within X̃ .

Proposition 3.3.8. Let X̃ = [0, T ] × [−Ñ , Ñ ]κ and define Y by (3.18). Define d : X̃ ×
Y → [0,∞) by (3.15). Then (i) for all y ∈ Y we have supx∈X̃ d(x, y) < ∞ and (ii) for any

x ∈ X and y ∈ Y and any sequences xm → x and yn ⇀ y as m,n → ∞ then we have

lim infn,m→∞ d(xm, yn) = d(x, y).

Proof. We start with (i). Let y ∈ Y and x = (t, z) ∈ [0, T ]× [−Ñ , Ñ ]κ, then

d(x, y) = |z − y(t)|2

≤ 2|z|2 + 2|y(t)|2

≤ 2Ñ2 + 2 sup
t∈[0,T ]

|y(t)|2.

Since y is continuous then supt∈[0,T ] |y(t)|2 <∞ and moreover we can bound d(x, y) indepen-

dently of x which shows (i).
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For (ii) we let (tm, zm) = xm → x = (t, z) in Rκ+1 and yn ⇀ y. Then

d(xm, yn) = |zm − yn(tm)|2

= |zm|2 − 2zm · yn(tm) + |yn(tm)|2. (3.20)

Clearly |zm|2 → |z|2 and we now show that yn(tm)→ y(t) as m,n→∞.

We start by showing that the sequence ‖yn‖Y is bounded. Each yn can be associated

with Λn ∈ Y ∗∗ by Λn(ν) = ν(yn) for ν ∈ Y ∗. As yn is weakly convergent it is weakly

bounded. So,

sup
n∈N
|Λn(ν)| = sup

n∈N
|ν(yn)| ≤Mν

for some Mν <∞. By the uniform boundedness principle [44]

sup
n∈N
‖Λn‖Y ∗∗ <∞.

And so,

sup
n∈N
‖yn‖Y = sup

n∈N
‖Λn‖Y ∗∗ <∞.

Hence there exists M > 0 such that ‖yn‖Y ≤M . Therefore

|yn(r)− yn(s)| =
∣∣∣∣∫ r

s
∇yn(t) dt

∣∣∣∣ ≤ ∫ r

s
|∇yn(t)| dt =

∫ T

0
I[s,r](t) |∇yn(t)| dt

≤ ‖I[s,r]‖L2 ‖∇yn(t)‖L2 ≤M
√
|r − s|.

Since yn is uniformly bounded and equi-continuous then by the Arzelà–Ascoli theorem there

exists a uniformly converging subsequence, say ynm → ŷ. By uniqueness of the weak limit

ŷ = y. But this implies that

yn(t)→ y(t)

uniformly for t ∈ [0, T ]. Now as

|yn(tm)− y(t)| ≤ |yn(tm)− y(tm)|+ |y(tm)− y(t)|

then yn(tm)→ y(t) as m,n→∞. Therefore the second and third terms of (3.20) satisfies

2zm · ym(tm)→ 2z · y(t)

|yn(tm)|2 → |y(t)|2

as m,n→∞. Hence

d(xm, yn)→ |z|2 − 2z · y(t) + |y(t)|2 = |z − y(t)|2 = d(x, y)

which completes the proof.

Proposition 3.3.9. Define Y by (3.18) and r : Y k → [0,∞) by (3.16). Then r is weakly lower

semi-continuous and coercive.
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Proof. We start by showing r is weakly lower semi-continuous. For any weakly converging

sequence µ(n)
1 ⇀ µ1 in H2 we have that ∇2µ

(n)
1 ⇀ ∇2µ1 weakly in L2. Hence it follows that

r is weakly lower semi-continuous.

To show r is coercive let r̂(µ1) = ‖∇2µ1‖2L2 for µ1 ∈ Y . We will show r̂ is coercive.

Let µ1 ∈ Y and note that since µ1 ∈ C1 the first derivative exists (strongly). Clearly we have

‖µ1‖L2 ≤ N
√
T and using a Poincaré inequality∥∥∥∥dµ1

dt
− 1

T

∫ T

0

dµ1

dt
dt
∥∥∥∥
L2

≤ C‖∇2µ1‖L2

for some C independent of µ1. Therefore∥∥∥∥dµ1

dt

∥∥∥∥
L2

≤ C‖∇2µ1‖L2 +

∣∣∣∣ 1

T

∫ T

0

dµ1

dt
dt
∣∣∣∣ ≤ C‖∇2µ1‖L2 +

2N

T
.

It follows that if ‖µ1‖H2 →∞ then ‖∇2µ1‖L2 →∞, hence r̂ is coercive.

Finally, the existence of a strongly convergent subsequence in Theorem 3.3.7 follows

from the fact that H2 is compactly embedded into H1. Hence the convergence is strong in

H1. By Morrey’s inequality H1 is embedded into a Hölder space (C0, 1
2 ) which is a subset of

uniformly continuous functions. This implies the convergence is uniform in C0.

3.4 Examples

In this section we give two exemplar applications of the methodology. In principle any cost

function, d, and regularization, r, (that satisfy the conditions) could be used. For illustrative

purposes we choose d and r to make the minimization simple to implement. In particular, in

Example 1 our choices allow us to use smoothing splines.

3.4.1 Example 1: A Smoothing-Data Association Problem

We use the k-means method to solve a smoothing-data association problem. For each j =

1, 2, . . . , k we take functions xj : [0, T ] × R for j = 1, 2, . . . , k as the “true” cluster centers,

and for sample times tji for i = 1, 2, . . . nj , uniformly distributed over [0, T ], we let

zji = xj(tji ) + εji (3.21)

where εji are iid noise terms.

The observations take the form ξi = (ti, zi) for i = 1, 2, . . . , n =
∑k

j=1 nj where

we have relabeled the observations to remove the (unobserved) target reference. We model the

observations with density (with respect to the Lebesgue measure)

p((t, z)) =
1

T
I[0,T ](t)

k∑
j=1

wjpε(z − xj(t))

on R×R where pε denotes the common density of the εji and wj denotes the probability that an
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observation is generated by trajectory j. We let each cluster center be equally weighted: wj = 1
k .

The cluster centers were fixed and in particular did not vary between numerical experiments.

When the noise is bounded this is precisely the problem described in Section 3.3.2 with

κ = 1, hence the problem converges. We use a truncated Gaussian noise term.

In the theoretical analysis of the algorithm we have considered only the minimization

problem associated with the k-means algorithm; of course minimizing complex functionals of

the form of fn is itself a challenging problem. Practically, we adopt the usual k-means strat-

egy [105] of iteratively assigning data to the closest of a collection of k centers and then re-

estimating each center by finding the center which minimizes the average regularized cost of

the observations currently associated with that center. As the energy function is bounded be-

low and monotonically decreasing over iterations, this algorithm converges to a local (but not

necessarily global) minimum.

More precisely, in the particular example considered here we employ the following iter-

ative procedure:

1. Initialize ϕ(0) : {1, 2, . . . , n} → {1, 2, . . . , k} arbitrarily.

2. For a given data partition ϕ(r) : {1, 2, . . . , n} → {1, 2, . . . , k} we independently find the

cluster centers µ(r) = (µ
(r)
1 , µ

(r)
2 , . . . , µ

(r)
k ) where each µ(r)

j ∈ H2([0, T ]) by

µ
(r)
j = argmin

µj

1

n

∑
i:ϕ(r)(i)=j

|zi − µj(ti)|2 + λ‖∇2µj‖2L2 for j = 1, 2, . . . , k.

This is done using smoothing splines.

3. Data is repartitioned using the cluster centers µ(r)

ϕ(r+1)(i) = argmin
j=1,2,...,k

|zi − µ(r)
j (ti)|.

4. If ϕ(r+1) 6= ϕ(r) then return to Step 2. Else we terminate.

Let µ(n) = (µ
(n)
1 , . . . , µ

(n)
k ) be the output of the k-means algorithm from n data points.

To evaluate the success of the methodology when dealing with a finite sample of n data points

we look at how many iterations are required to reach convergence (defined as an assignment

which is unchanged over the course of an algorithmic iteration), the number of data points

correctly associated, the metric

η(n) =
1

k

√√√√ k∑
j=1

‖µ(n)
j − xj‖2L2

and the energy

θ̂n = fn(µ(n))

where

fn(µ) =
1

n

n∑
i=1

k∧
j=1

|zi − µj(ti)|2 + λ

k∑
j=1

‖∇2µj‖2L2 .
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Figure 3.1: Smoothed data association trajectory results for the k-means method.
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The figure on the left shows the raw data with the data generating model. That on the right
shows the output of the k-means algorithm. The parameters used are: k = 3, T = 10, εji from a
N(0, 5) truncated at ±100, λ = 1, x1(t) = −15− 2t+ 0.2t2, x2(t) = 5 + t and x3(t) = 40.

Figure 3.1 shows the raw data and output of the k-means algorithm for one realization of

the model. We run Monte Carlo trials for increasing numbers of data points; in particular we run

103 numerical trials independently for each n = 300, 600, . . . , 3000 where we generate the data

from (3.21) and cluster using the above algorithm. Each numerical experiment is independent.

Results, shown in Figure 3.2, illustrate that as measured by η the performance of the

k-means method improves with the size of the available data set, as do the proportion of data

points correctly assigned. The minimum energy stabilizes as the size of the data set increases,

although the algorithm does take more iterations for the method to converge. We also note that

the energy of the data generating functions is higher than the minimum energy.

Since the iterative k-means algorithm described above does not necessarily identify

global minima, we tested the algorithm on two targets whose paths intersect as shown in Fig-

ure 3.3. The data association hypotheses corresponding to correct and incorrect associations,

after the crossing point, correspond to two local minima. The observation window [0, T ] was

expanded to investigate the convergence to the correct data association hypothesis. To enable

this to be described in more detail we introduce the crossing and non-crossing energies:

Ec =
1

T
fn(µc)

Enc =
1

T
fn(µnc)

where µc and µnc are the k-means centers for the crossing (correct) and non-crossing (incorrect)

solutions. To allow the association performance to be quantified, we therefore define the relative

energy

∆E = Ec − Enc.

To determine how many numerical trials we should run in order to get a good number of

simulations that produce crossing and non-crossing outputs we first ran the experiment until we

achieved at least 100 tracks that crossed and at least 100 that did not. I.e. let N c
t be the number

of trials that output tracks that crossed and Nnc
t be the number of trials that output tracks that

did not cross. We stop when min{N c
t , N

nc
t } ≥ 100. Let Nt = 10 (N c

t +N c
t ). We then re-ran

the experiment with Nt trials so we expect that we get 1000 tracks that do not cross and 1000

tracks that do cross at each time t.
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Figure 3.2: Monte Carlo convergence results.
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Convergence results for the parameters given in Figure 3.1. In (a) the thick dotted line corre-
sponds to the median number of iterations taken for the method to converge and the thinner
dotted lines are the 25% and 75% quantiles. The thick solid line corresponds to the median
percentage of data points correctly identified and the thinner solid line are the 25% and 75%
quantiles. (b) shows the median value of η(n) (solid), interquartile range (box) and the interval
between the 5% and 95% percentiles (whiskers). (c) shows the mean minimum energy θ̂n (solid)
and the 10% and 90% quantiles (dashed). The energy associated with the data generating model
is also shown (long dashes). In order to increase the chance of finding a global minimum for
each Monte Carlo trial ten different initializations were tried and the one that had the smallest
energy on termination was recorded.

Figure 3.3: Crossing tracks in the k-means method.
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Typical data sets for times up to Tmax with cluster centers, fitted up till time T , exhibiting
crossing and non-crossing behavior. The parameters used are k = 2, Tmin = 9.6 ≤ T ≤ 11 =

Tmax, εji
iid∼ N(0, 5), x1(t) = −20 + t2 and x2(t) = 20 + 4t. There are n = 220 data points

uniformly distributed over [0, 11] with 110 observations for each track. The crossing occurs at
approximately t ≈ 8.6 but we wait a further time unit before investigating the decision making
procedure.
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Figure 3.4: Energy differences in the k-means method.
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Mean results are shown for data obtained using the parameters given in Figure 3.3 for data up to
time T (between Tmin and Tmax). The thick solid line shows the mean ∆E and the thinner lines
one standard deviation either side of the mean. The dashed line shows the percentage of times
we correctly identified the tracks as crossing.

The results in Figure 3.4 show that initially the better solution to the k-means minimiza-

tion problem is the one that incorrectly partitions the tracks after the intersection. However, as

time is run forward the k-means favors the partition that correctly associates tracks to targets.

This is reflected in both an increase in ∆E and the percentage of outputs that correctly identify

the switch. Our results show that for T > 9.7 the energy difference between the two minima

grows linearly with time. However, when we look which minima the k-means algorithm finds

our results suggest that after time T ≈ 10.25 the probability of finding the correct minima

stabilizes at approximately 64%. There is reasonably large variance in the energy difference.

The mean plus standard deviation is positive for all T greater than 9.8, however it takes until

T = 10.8 for the average energy difference to be positive.

3.4.2 Example 2: Passive Electromagnetic Source Tracking

In the previous example the data is simply a linear projection of the trajectories. In contrast,

here we consider the more general case where the measurement X and model Y spaces are

very different; being connected by a complicated mapping that results in a very non-linear cost

function d. While the increased complexity of the cost function does lead to a (linear in data

size) increase in computational cost, the problem is equally amenable to our approach.

In this example we consider the tracking of targets that periodically emit radio pulses as

they travel on a two dimensional surface. These emissions are detected by an array of (three)

sensors that characterize the detected emissions in terms of ‘time of arrival’, ‘signal amplitude’

and the ‘identity of the sensor making the detection’.

Expressed in this way, the problem has a structure which does not fall directly within the

framework which the theoretical results of previous sections cover. In particular, the observa-

tions are not independent (we have exactly one from each target in each measurement interval),

they are not identically distributed and they do not admit an empirical measure which is weakly

convergent in the large data limit.

This formulation could be refined so that the problem did fall precisely within the frame-

work; but only at the expense of losing physical clarity. This is not done but as shall be seen

below, even in the current formulation, good performance is obtained. This gives some confi-
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dence that k-means like strategies in general settings, at least when the qualitatively important

features of the problem are close to those considered theoretically, and gives some heuristic

justification for the lack of rigor.

Three sensors receive amplitude and time of arrival from each target with periodic-

ity τ . Data at each sensor are points in R2 whilst the cluster centers (trajectories) are time-

parameterized curves in a different R2 space.

In the generating model, for clarity we again index the targets in the observed amplitude

and time of arrival. However, we again assume that this identifier is not observed and this

notation is redefined (identities suppressed) when we apply the k-means method.

Let xj(t) ∈ R2 be the position of target j for j = 1, 2, . . . k at time t ∈ [0, T ]. In every

time frame of length τ each target emits a signal which is detected at three sensors. The time

difference from the start of the time frame to when the target emits this signal is called the time

offset. The time offset for each target is a constant which we call oj for j = 1, 2, . . . , k. Target

j therefore emits a signal at times

t̃j(m) = mτ + oj

for m ∈ N such that t̃j(m) ≤ T . Note that this is not the time of arrival and we do not observe

t̃j(m).

Sensor p at position zp detects this signal some time later and measures the time of

arrival tpj (m) ∈ [0, T ] and amplitude apj (m) ∈ R from target j. The time of arrival is

tpj (m) = mτ + oj +
|xj(m)− zp|

c
+ εpj (m) = t̃j(m) +

|xj(m)− zp|
c

+ εpj (m)

where c is the speed of the signal and εpj (m) are iid noise terms with variance σ2. The amplitude

is

apj (m) = log

(
α

|xj(m)− zp|2 + β

)
+ δpj (m)

where α and β are constants and δpj (m) are iid noise terms with variance ν2. We assume the

parameters α, β, c, σ, τ , ν and zp are known.

To simplify the notation Πqx : R2 → R is the projection of x onto it’s qth coordinate for

q = 1, 2. I.e. the position of target j at time t can be written xj(t) = (Π1xj(t),Π2xj(t)).

In practice we do not know to which target each observation corresponds. We use the

k-means method to partition a set {ξi = (ti, ai, pi)}ni=1 into the k targets. Note the relabel-

ing of indices; ξi = (ti, ai, pi) is the time of arrival ti, amplitude ai and sensor pi of the ith

detection. The cluster centers are in a function-parameter product space µj = (x̂j(t), ôj) ∈
C0([0, T ];R2) × [0, τ) ⊂ C0([0, T ];R2) × R that estimates the jth target’s trajectory and time

offset. The k-means minimization problem is

µ(n) = argmin
µ∈(C0×[0,τ))k

1

n

n∑
i=1

k∧
j=1

d(ξi, µj)

for a choice of cost function d. If we look for cluster centers as straight trajectories then we can
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Figure 3.5: Representative data and resulting tracks for the passive tracking example.
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Representative data is shown for the parameters k = 2, τ = 1, T = 1000, c = 100, z1 =

(−10,−10), z2 = (10,−10), z3 = (0, 10), εpj (m)
iid∼ N(0, 0.032), δpj (m)

iid∼ N(0, 0.052),

α = 108, β = 5, x1(t) =
√

2t
400 (1, 1) + (0, 5), x2(t) = (6, 7)− t

125(1, 0), o1 = 0.3 and o2 = 0.6,
given the sensor configuration shown at the top of the figure. The k-means method was run until
it converged, with the trajectory component of the resulting cluster centers plotted with the true
trajectories at the top of the figure. Target one is the dashed line with starred data points, target
two is the solid line and square data points.
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restrict ourselves to functions of the form xj(t) = xj(0) + vjt and consider the cluster centers

as finite dimensional objects. This allows us to redefine our minimization problem as

µ(n) = argmin
µ∈(R4×[0,τ))k

1

n

j∑
i=1

k∧
j=1

d(ξi, µj)

so that now µj = (xj(0), vj , oj) ∈ R2 × R2 × [0, τ). We note that in this finite dimensional

formulation it is not necessary to include a regularization term; a feature already anticipated in

the definition of the minimization problem.

For µj = (xj , vj , oj) we define the cost function

d((t, a, p), µj) = ((t, a)− ψ(µj , p,m))

(
1
σ2 0

0 1
ν2

)((
t

a

)
− ψ(µj , p,m)>

)

where m = max{n ∈ N : nτ ≤ t},

ψ(µj , p,m) =

(
|xj +mτvj − zp|

c
+ oj +mτ, log

(
α

|xj +mτvj − zp|2 + β

))
and superscript > denotes the transpose.

We initialize the partitions by choosing ϕ(0) : {1, 2, . . . , n} → {1, 2, . . . , k} uniformly

randomly. At the rth iteration the k-means minimization problem is then partitioned into k

independent problems

µ
(r)
j = argmin

µj

∑
i∈(ϕ(r−1))−1(j)

d((ti, ai, pi), µj) for 1 ≤ j ≤ k.

A range of initializations for µj are used to increase the chance of the method converging to a

global minimum.

For optimal centers conditioned on partition ϕ(r−1) we can define the partition ϕ(r) to

be the optimal partition of {(ti, ai, pi)}ni=1 conditioned on centers (µ
(r)
j ) by solving

ϕ(r) : {1, 2, . . . , n} → {1, 2, . . . , k}

i 7→ argmin
j=1,2,...,k

d((ti, ai, pi), µ
(r)
j ).

The method has converged when ϕ(r) = ϕ(r−1) for some r. Typical simulated data and resulting

trajectories are shown in Figure 3.5.

To illustrate the convergence result achieved above we performed a test on a set of

data simulated from the same model as shown in Figure 3.5. We sample ns observations from

{(ti, ai, pi)}ni=1 and compare our results as ns → n. Let x̂(ns)(t) = (x̂
(ns)
1 (t), . . . , x̂

(ns)
k (t)) be

the position output by the k-means method described above using ns data points and x(t) =

(x1(t), . . . , xk(t)) be the true values of each cluster center. We use the metric

η(ns) =
1

k

√√√√ k∑
j=1

‖x̂(ns)
j − xj‖2L2
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to measure how close the estimated position is to the exact position. Note we do not use the

estimated time offset given by the first model. The number of iterations required for the method

to converge is also recorded. Results are shown in Figure 3.6.

In this example the data has enough separation that we are always able to recover the

true data partition. We also see improvement in our estimated cluster centers and convergence

of the minimum energy as we increase the size of the data. Finding global minima is difficult

and although we run the k-means method from multiple starting points we sometimes only find

local minima. For ns
n = 0.3 we see the effect of finding local minima. In this case only one

Monte Carlo trial produces a bad result, but the error η is so great (around 28 times greater than

the average) that it can be seen in the mean result shown in Figure 3.6(c).

Figure 3.6: Monte Carlo convergence results.
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Convergence results for 103 Monte Carlo trials with the parameters given in Figure 3.5; ex-
pressed with the notation used in Figure 3.2. In (a) we have also recorded the mean number of
iterations to converge (long dashes). The 25% and 75% quantiles for the number of iterations to
converge is 2 and 4 for all n respectively. The 25% and 75% quantiles for the percentage of data
points correctly identified is 100% in both cases for all n. This is due to large separation in the
data space. To increase the chance of finding a global minimum for each Monte Carlo trial, out
of five different initializations, that which had the smallest energy on terminating was recorded.
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Chapter 4

Rate of Convergence for a Smoothing
Spline with Data Association Model

Abstract

The problem of estimating multiple trajectories from unlabeled data comprises two

coupled problems. The first is a data association problem: how to map data points

onto individual trajectories. The second is, given a solution to the data association

problem, to estimate those trajectories. We construct estimators as a solution to a

variational problem which uses smoothing splines under a k-means like framework

and show that, as the number of data points increases, we have stability. More

precisely, we show that these estimators converge weakly in an appropriate Sobolev

space with probability one. Furthermore, we show that the estimators converge in

probability with rate 1√
n

in the L2 norm (strongly).

4.1 Introduction

Given observations from multiple moving targets we face two (coupled) problems. The first is

associating observations to targets: the data association problem. The second is estimating the

trajectory of each target given the appropriate set of observations. When there is one target then

the data association problem is trivial. However, when the number of targets is greater than

one (even when the number of targets is known) the set of data association hypothesis grows

combinatorially with the number of data points. Very quickly it becomes infeasible to check

every possibility. Hence the value of fast approximate solutions.

In this chapter we interpret the problem of estimating multiple trajectories with unknown

data association (see Figure 4.1) in such a way that the k-means method may be applied to find

a solution. As a special case of the previous chapter this is a non-standard application of the k-

means method where we generalize the notion of a ‘cluster center’ to partition finite dimensional

data using infinite dimensional cluster centers. In this chapter the cluster centers are trajectories

in some function space and the data are space-time observations.
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Figure 4.1: Unlabeled data is generated from three targets and using minimizers of (4.2) we
can find a partitioning of the data set and non-parametrically estimate each trajectory using the
k-means algorithm.

Let Θ ⊂ (Hs)k where Hs is the Sobolev space of degree s. Given a data set

{(ti, yi)}ni=1 ⊂ [0, 1]× Rd

and a model for the observation process

yi = µ†ϕ(i)(ti) + εi (4.1)

where εi
iid∼ φ0 and ti

iid∼ φT for densities φ0 and φT on [0, 1] and Rd respectively. We assume

that the index of the cluster responsible for any given observation is an independent random

variable with a categorical distribution of parameter vector p = (p1, . . . , pk), writing ϕ(i) ∼
Cat(p) to mean P(ϕ(i) = j) = pj . This assumptions allow us to write the density of y given t,

which we denote by φY (y|t), as

φY (y|t) =
k∑
j=1

pjφ0(µ†j(t)− y).

We can summarize the data generating process as follows. A cluster is selected at random:

P(ϕ = j) = pj , the time and observation error are drawn independently from their respective

distributions, t ∼ φT , and ε ∼ φ0; and we observe (t, y = µ†ϕ(t) + ε).

The aim is to estimate µ† = (µ†1, . . . , µ
†
k) ∈ Θ. In particular the data association

ϕ : {1, 2, . . . , n} → {1, 2, . . . , k}

is unknown. With a single trajectory (k = 1) the problem is precisely the spline smoothing

problem, see Chapter 5. For k > 1 trajectories there is an additional data association problem

coupled to the spline smoothing problem. We call this the smoothing-data association (SDA)

problem.

We assume k is fixed and known. The aim of this chapter is to construct a sequence of

estimators µ(n) of µ† from the data {(ti, yi)}ni=1 and study the asymptotic behavior as n→∞.
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For each n our estimate is given as the minimizer of fn : Θ→ R defined by

fn(µ) =
1

n

n∑
i=1

k∧
j=1

|yi − µj(ti)|2 + λ
k∑
j=1

‖∇sµj‖2L2 (4.2)

where | · | is the Euclidean norm onRd,
∧k
j=1 zj = min{z1, . . . , zk} and λ is a positive constant.

Penalizing the sth derivative ensures that the problem is well posed. Optimizing this function

can be interpreted as seeking a hard data association: given µ ∈ Θ each observation (ti, yi) is

associated with the trajectory closest to it so the corresponding data association solution is given

by

ϕµ(i) = argmin
j=1,2,...,k

|µj(ti)− yi|.

Here, we focus upon characterizing the solution of this problem rather than computational meth-

ods to obtain this solution. However, a variant of the k-means method would be readily appli-

cable — for this reason we term the µj cluster centers.

The choice of regularization scheme and, in particular, of λ is not straightforward. For

k = 1 there are many results in the spline literature on the selection of λ = λn and the resulting

asymptotic behavior as n → ∞, see for example Chapter 5 and [3, 45–47, 98, 117, 131, 143,

144, 146, 156–158, 173]. In this case one has λn → 0 and can expect µ(n) to converge to µ†.

Convergence is either with respect to a Hilbert scale, e.g. L2, or in the dual space, i.e. weak

convergence. Using a Hilbert scale in effect measures the convergence in a norm weaker than

Hs.

The approach we take is to penalize the sth derivative where we assume s is known.

Choosing s is also an interesting problem which we don’t address in this thesis. By Taylor’s

Theorem we can write Hs = H0 ⊕H1 where

H0 = span
{
ζi(t) =

ti

i!
: i = 0, 1, . . . , s− 1

}
,

H1 =
{
g ∈ H : ∇ig(0) = 0 for all i = 0, 1, . . . , s− 1

}
.

We use ‖ · ‖1 = ‖∇s · ‖L2 as the norm on H1 and denote the H0 norm by ‖ · ‖0. Since H0 is

finite dimensional we are free to use any norm we choose without changing the topology. We

can view Hs = H0 ⊕ H1 as a multiscale decomposition of Hs. The polynomial component

represents a coarse approximation. The regularization penalizes oscillations on the fine scale,

i.e. inH1.

In the case k = 1, fn is quadratic and one can find an explicit representation of µ(n), i.e.

there exists a random function Gn,λ such that with probability one µ(n) = Gn,λν
(n) for some

function ν(n) which depends on the data. When k > 1 the problem is no longer convex and the

methodology used in the k = 1 case fails. The authors know of no method which would allow

λ → 0 for k > 1 and therefore we treat λ as a constant in this chapter. A consequence of this

regularization is that we cannot expect to recover the true cluster centroids, even in the large

data limit.

The first result of this chapter (Theorem 4.2.1) is to show that there exists µ(∞) ∈ Θ
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such that (up to subsequences) µ(n) ⇀ µ(∞) a.s. in Hs and µ(∞) is a minimizer of f∞ defined

by

f∞(µ) =

∫ 1

0

∫
Rd

k∧
j=1

|y − µj(t)|2 φY (y|t)φT (t) dydt+ λ
k∑
j=1

‖∇sµj‖2L2 (4.3)

Considering the law of large numbers the limit f∞ is natural. The functional f∞ can be seen as

a limit of fn, the nature of which will be made rigorous in Section 4.2.

We recall that the motivation for the minimization problem (4.2) is to embed the problem

into a framework that allows the application of the k-means method. Large data limits for the

k-means have been studied extensively in finite dimensions, see for example [10, 18, 42, 80,

124–126]. There are fewer results for the infinite dimensional case, with Chapter 3 and [21,

95, 96, 103] the only results known to us. Of these, only Chapter 3 can be applied to finite

dimensional data and infinite dimensional cluster centers but this required bounded noise. The

first contribution of this chapter is to extend this convergence result to unbounded noise for the

SDA problem.

By the compact embedding of Hs into L2 we have that (upto subsequences) µ(n) →
µ(∞) a.s. in L2. The second result of this chapter is to show in Theorem 4.3.1 that the rate of

convergence in L2 is of order 1√
n

in probability. I.e.

‖µ(n) − µ(∞)‖L2 = Op

(
1√
n

)
.

This is closely related to the central limit theorem first proved for the k-means method by Pol-

lard [126] for Euclidean data. We extend his methodology to cluster centers in Hs to prove our

rate of convergence result.

Section 4.2 contains the convergence results. The rate of convergence results are in

Section 4.3.

4.2 Convergence

To show convergence we apply Theorem 2.2.1. The following two subsections prove that the

conditions required to apply this theorem, i.e. that f∞ is the Γ-limit of fn and that the minimiz-

ers µ(n) are uniformly bounded, hold with probability one. Using the compact embedding of

Hs into L2 we are able to conclude that upto subsequences convergence is strong in L2.

For a fixed δ > 0 we define the set Θ to be the set of functions in (Hs)k which have

minimum separation distance of δ:

Θ =
{
µ ∈ (Hs)k : |µj(t)− µl(t)| ≥ δ ∀t ∈ [0, 1] and j 6= l

}
. (4.4)

For d = 1 this is a strong assumption as we restrict ourselves to trajectories that do not intersect.

However, for larger d the assumption is much less stringent.

First let us show that Θ is weakly closed in (Hs)k. Take any sequence µ(n) ∈ Θ such

that µ(n) ⇀ µ ∈ (Hs)k. We have to show µ ∈ Θ. Pick t ∈ [0, 1], j 6= l and define F : Θ→ Rd
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by F : ν → νj(t)− νl(t), note that F is in the dual space of (Hs)k. Hence

δ ≤ |µ(n)
j (t)− µ(n)

l (t)| = |F (µ(n))| → |F (µ)| = |µj(t)− µl(t)|.

Therefore µ ∈ Θ. Furthermore we can show that fn, f∞ are weakly lower semi-continuous by

Propositions 3.3.8 and 3.3.9 hence they obtain their minimizers on Θ.

The minimum separation distance implies that f∞ is locally quadratic on Θ. This is a

consequence of being able to define the association

j(t, y) = argmin
j
|y − µj(t)|

uniquely for (Lebesgue) almost every y ∈ R and every t ∈ [0, 1]. Modulo some technical

difficulties at the boundary of each partition (which we address in Lemma 4.3.2) we can write

f∞ as the sum of k quadratic functionals and is therefore quadratic itself. This implies f∞ is

differentiable and in particular allows the application of Taylor’s theorem in Section 4.3.

We now state our assumptions.

Assumptions 3. We use the following assumptions on the data model.

3.1 The data sequence (ti, yi) is independent and identically distributed in accordance with

the model (4.1), with ϕ(i) ∼ Cat(p), εi ∼ φ0, ti ∼ φT and ϕ(i), εj , tk are independent

for all i, j and k. We assume φ0 and φT are densities with respect to the Lebesgue measure

on Rd and [0, 1] respectively and use the same symbols to refer to these densities and to

their associated measures.

3.2 The density φ0 is centered and with finite second moment.

3.3 For all ε ∈ Rd we assume φ0(ε) > 0.

3.4 We can bound φT away from 0, i.e. inft∈[0,1] φT (t) > 0.

Observe that

f∞(µ†) =
1

n

n∑
i=1

k∧
j=1

|µ†j(ti)− yi|
2 + λ

k∑
j=1

‖∇sµ†j‖
2
L2

≤ 1

n

n∑
i=1

|yi − µ†ϕ(i)(ti)|
2 + λ

k∑
j=1

‖∇sµ†j‖
2
L2

=
1

n

n∑
i=1

ε2i + λ

k∑
j=1

‖∇sµ†j‖
2
L2

→ Var(εi) + λ
k∑
j=1

‖∇sµ†j‖
2
L2 =: α <∞

where the convergence is almost surely by the strong law of large numbers. Hence Assump-

tion 3.2 implies that there exists N such that minµ∈Θ fn(µ) < α + 1 for n ≥ N and N < ∞
with probability one (although N could depend on the sequence {(ti, yi)}ni=1 and so we could

have supω∈ΩN =∞).
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To simplify our proofs we use Assumption 3.3 although the results of this chapter can

be proved without it. The assumption is used in bounding the minimizers of fn. Clearly if φ0

has bounded support then each yi is uniformly bounded (a.s.) and one can show that |µ(n)(t)| is
bounded uniformly in n and t (a.s.). When the support is unbounded, but Assumption 3.3 does

not hold, our proofs hold with some trivial but notationally messy modifications.

Assumption 3.4 will be used in the rate of convergence section. This is used to show

that f∞ is positive definite.

We now state the main result for this section. The proof is an application of Theo-

rem 2.2.1 once we have shown the Γ-limit (Theorem 4.2.2) and the uniform bound on the set of

minimizers (Theorem 4.2.4).

Theorem 4.2.1. Define fn, f∞ : Θ → R by (4.2) and (4.3), where Θ ⊂ (Hs)k for s ≥ 1

is given by (4.4), respectively. Under Assumptions 3.1-3.3 any sequence of minimizers µ(n) of

fn are, with probability one, weakly compact and any weak limit µ(∞) is a minimizer of f∞.

Furthermore if µ(nm) ⇀ µ(∞) in Hs then µ(nm) → µ(∞) in L2.

4.2.1 The Γ-Limit

We claim the Γ-limit of (fn) is given by (4.3).

Theorem 4.2.2. Define fn, f∞ : Θ → R by (4.2) and (4.3) respectively where Θ ⊂ (Hs)k for

s ≥ 1 is given by (4.4). Under Assumptions 3.1-3.2

f∞ = Γ- lim
n

fn

for almost every sequence of observations (t1, y1), (t2, y2), . . . .

Proof. We are required to show that the two inequalities in Definition 2.2.1 hold with probability

1. In order to do this we follow Chapter 3 and consider a subset of Ω of full measure, Ω′, and

show that both statements hold for every data sequence obtained from that set.

For clarity let P (d(t, y)) = φY (dy|t)φT (dt). Define gµ(t, y) =
∧k
j=1(y − µ(t))2.

Let P (ω)
n be the associated empirical measure arising from the particular elementary event ω,

which we define via it’s action on any continuous bounded function h : [0, 1] × Rd → R:

P
(ω)
n h = 1

n

∑n
i=1 h

(
t
(ω)
i , y

(ω)
i

)
where

(
t
(ω)
i , y

(ω)
i

)
emphasizes that these are the observations

associated with elementary event ω. To highlight the dependence of fn on ω we write f (ω)
n . We

can write

f (ω)
n (µ) = P (ω)

n gµ + λ
k∑
j=1

‖∇sµj‖2L2 and f∞ = Pgµ + λ
k∑
j=1

‖∇sµj‖2L2 .

We define

Ω′ =
{
ω ∈ Ω : P (ω)

n ⇒ P
}
∩
{
ω ∈ Ω : P (ω)

n (B(0, q))c → P (B(0, q))c ∀q ∈ N
}

∩

{
ω ∈ Ω :

∫
(B(0,q))c

|y|2 P (ω)
n (dt, y)→

∫
(B(0,q))c

|y|2 P (d(t, y)) ∀q ∈ N

}
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then P(Ω′) = 1 by the almost sure weak convergence of the empirical measure [56] and the

strong law of large numbers.

Fix ω ∈ Ω′ and we start with the lim inf inequality. Let µ(n) ⇀ µ. By Theorem 1.1

in [64] we have ∫
[0,1]×Rd

lim inf
n→∞,(t′,y′)→(t,y)

gµ(n)((t
′, y′)) P (d(t, y))

≤ lim inf
n→∞

∫
[0,1]×Rd

gµ(n)(t, y) P (ω)
n (d(t, y)).

By the same argument as in Proposition 3.3.8(ii) we have

lim inf
n→∞,(t′,y′)→(t,y)

(
y′ − µ(n)

j (t′)
)2
≥ (y − µj(t))2 .

Taking the minimum over j we have

lim inf
n→∞,(t′,y′)→(t,y)

gµ(n)(t
′, y′) ≥ gµ(t, y).

And as a consequence of the Hahn-Banach theorem lim infn→∞ ‖∇sµ(n)
j ‖2L2 ≥ ‖∇2µj‖2L2 .

Therefore

lim inf
n→∞

f (ω)
n (µ(n)) ≥ f∞(µ)

as required.

We now establish the existence of a recovery sequence for every ω ∈ Ω′ and every

µ ∈ Θ. Let µ(n) = µ ∈ Θ. Let ζq be a C∞(Rd+1) sequence of functions such that 0 ≤
ζq(t, y) ≤ 1 for all (t, y) ∈ Rd+1, ζq(t, y) = 1 for (t, y) ∈ B(0, q − 1) and ζq(t, y) = 0 for

(t, y) 6∈ B(0, q). Then the function ζq(t, y)gµ(t, y) is continuous for all q. We also have, for

any (t, y) ∈ [0, 1]× Rd,

ζq(t, y)gµ(t, y) ≤ ζq(t, y)|y − µ1(t)|2

≤ 2ζq(t, y)
(
|y|2 + |µ1(t)|2

)
≤ 2ζq(t, y)

(
|y|2 + ‖µ1‖2L∞([0,1])

)
≤ 2|q|2 + 2‖µ1‖2L∞([0,1]) <∞

so ζqgµ is a continuous and bounded function, hence by the weak convergence of P (ω)
n to P we

have

P (ω)
n ζqgµ → Pζqgµ

as n→∞ for all q ∈ N. For all q ∈ N we have

lim sup
n→∞

|P (ω)
n gµ − Pgµ| ≤ lim sup

n→∞
|P (ω)
n gµ − P (ω)

n ζqgµ|+ lim sup
n→∞

|P (ω)
n ζqgµ − Pζqgµ|

+ lim sup
n→∞

|Pζqgµ − Pgµ|

= lim sup
n→∞

|P (ω)
n gµ − P (ω)

n ζqgµ|+ |Pζqgµ − Pgµ|.
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Therefore,

lim sup
n→∞

|P (ω)
n gµ − Pgµ| ≤ lim sup

q→∞
lim sup
n→∞

|P (ω)
n gµ − P (ω)

n ζqgµ|

by the dominated convergence theorem. We now show that the right hand side of the above

expression is equal to zero. We have

|P (ω)
n gµ − P (ω)

n ζqgµ| ≤ P (ω)
n I(B(0,q−1))cgµ

≤
∫

[0,1]×Rd
I(B(0,q−1))c(t, y)|y − µ1(t)|2 P (ω)

n (d(t, y))

≤ 2

∫
[0,1]×Rd

I(B(0,q−1))c(t, y)|y|2 P (ω)
n (d(t, y))

+ 2‖µ1‖2L∞([0,1])

∫
[0,1]×Rd

I(B(0,q−1))c(t, y) P (ω)
n (d(t, y))

n→∞→ 2

∫
[0,1]×Rd

I(B(0,q−1))c(t, y)|y|2 P (d(t, y))

+ 2‖µ1‖2L∞([0,1])

∫
[0,1]×Rd

I(B(0,q−1))c(t, y) P (d(t, y))

q→∞→ 0

where the last limit follows by the monotone convergence theorem and Assumption 3.2. We

have shown

lim
n→∞

|P (ω)
n gµ − Pgµ| = 0.

Hence

f (ω)
n (µ)→ f∞(µ)

as required.

4.2.2 Boundedness

The aim of this subsection is to show that the minimizers of fn are uniformly bounded in n

for almost every sequence of observations. We divide this into two parts; bounding each of the

H0 and H1 norms. The H1 bound follows easily from the regularization. For the H0 bound

we exploit the equivalence of norms on finite-dimensional vector spaces to choose a convenient

norm onH0.

From our assumptions we may infer the existence of a set Ω̂ ⊆ Ω such that for all ω ∈ Ω̂

we have

f (ω)
n (µ†) = P (ω)

n gµ† + λ
k∑
j=1

‖∇sµ†j‖
2
L2 → Pgµ† + λ

k∑
j=1

‖∇sµ†j‖
2
L2 =: α

and P(Ω̂) = 1. Now we let µ(n) be a sequence minimizers and note that for n sufficiently large

we have

λ‖µ(n)‖21 ≤ fn(µ(n)) ≤ fn(µ†) ≤ α+ 1.
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Therefore ‖µ(n)‖1 is bounded almost surely. We are left to show the corresponding result for

‖µ(n)‖0.

The following lemma will be used to establish the main result of this subsection, The-

orem 4.2.4. It shows that, if for some sequence ν(n) ∈ Hs with ‖∇sν(n)‖L2 ≤
√
α and

‖ν(n)‖0 → ∞, then we have that |ν(n)(t)| → ∞ with the exception of at most finitely many

t ∈ [0, 1]. When applied to µ(n)
j this will be used to show that in the limit, if any center is

unbounded, then the minimization can be achieved over k − 1 clusters — and hence to provide

a contradiction.

Lemma 4.2.3. Let ν(n) ∈ Hs satisfy ‖∇sν(n)‖L2 ≤
√
α and ‖ν(n)‖0 → ∞. Then, with the

exception of at most finitely many t ∈ [0, 1] we have |ν(n)(t)| → ∞. Furthermore for each

t ∈ (0, 1) with |ν(n)(t)| → ∞ there exists c > 0 such that |ν(n)(r)| → ∞ uniformly for

r ∈ [t− c, t+ c].

Proof. Let the norm onH0 be given by

‖ν‖0 :=

s−1∑
i=0

|∇iν(0)|
i!

. (4.5)

By Taylor’s theorem and the bound on ‖∇sν(n)‖L2 we have∣∣∣∣∣ν(n)(t)−
s−1∑
i=0

∇iν(n)(0)

i!
ti

∣∣∣∣∣ ≤ √α.
Now letQn(t) =

∑s−1
i=0

∇iν(n)(0)
i! ti. If ‖ν(n)‖0 →∞ then at least one of |∇

iν(n)(0)
i! | → ∞. If all

but one of the terms stay bounded then it is easy to see that for t > 0 we have |Qn(t)| → ∞ and

the convergence is uniform over all intervals [t, 1]. Now if ∇
i1ν(n)(0)
i1! → ∞ and ∇

i2ν(n)(0)
i2! →

−∞ and all other terms are bounded by M , i.e.
∣∣∣∇iν(n)(0)

i! ti
∣∣∣ ≤M for all i 6= i1, i2, then

γn(t) =
∇i1ν(n)(0)

i1!
ti1 +

∇i2ν(n)(0)

i2!
ti2

can remain bounded for at most two values of t. Assume two values exist for which γn is

bounded which we denote by t∗1 = 0 and t∗2 > 0. Without loss of generality we assume that

γn(t)→∞ for t > t∗2 and γn(t)→ −∞ for 0 < t < t∗2 (equivalently we assume that i1 > i2).

One can show (by differentiating γn) that the stationary points τ (n)
i of γn satisfy

τ
(n)
1 = 0 and τ

(n)
2 → i2

i1
t∗2 < t∗2.

Pick t ∈ (t∗2, 1), we immediately have that |ν(n)(t)| → ∞ from

|ν(n)(t)− γn(t)| ≤ (s− 2)M +
√
α.

Furthermore we choose c such that t − c > t∗2 then since γn is eventually increasing on [t∗2, 1]
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for n sufficiently large we have

ν(n)(r) ≥ γn(t− c)− (s− 2)M −
√
α

for all r ∈ [t− c, 1]. Hence ν(n)(r)→∞ uniformly on [t− c, 1].

Now we pick t ∈ (0, t∗2) and find c such that [t− c, t+ c] ⊂ (0, t∗2). The same argument

implies

ν(n)(r) ≤ min{γn(t− c), γn(t+ c)}+ (s− 2)M +
√
α.

And therefore ν(n)(r)→ −∞ uniformly on [t− c, t+ c].

Similar arguments hold if γn has one or zero bounded values.

An analogous argument can be employed if there are three unbounded terms in (4.5), in

which case we consider γn of the form:

γn(t) =
∇i1ν(n)(0)

i1!
ti1 +

∇i2ν(n)(0)

i2!
ti2 +

∇i3ν(n)(0)

i3!
ti3 .

This sequence of functions, can be bounded at at most three values of the argument, t∗1, t
∗
2, t
∗
3

and we repeat the previous argument. Such a process can be continued iteratively until we have

considered the case where γn has s unbounded terms.

We proceed to the main result of this subsection.

Theorem 4.2.4. Define fn, f∞ : Θ→ R, where Θ ⊂ (Hs)k for s ≥ 1 is given by (4.4), by (4.2)

and (4.3), respectively. Let µ(n) be the minimizer of fn then, under Assumptions 3.1-3.3, for

almost every sequence of observations there exists a constantM <∞ such that ‖µ(n)‖Hs ≤M
for all n.

Proof. As in the proof of Theorem 4.2.2 we let ω ∈ Ω′′ where

Ω′′ =

{
ω ∈ Ω′ :

1

n

n∑
i=1

ε2i → Var(ε1)

}

∩
(
∩c∈Q

{
ω ∈ Ω′ : P (ω)

n

(
B(c,

δ

4
)

)
→ P

(
B(x,

δ

4
)

)})
where Ω′ is defined in the proof of Theorem 4.2.2. We have P(Ω′′) = 1. For the remainder of

the proof we assume ω ∈ Ω′′. Then there exists N (ω) <∞ such that f (ω)
n (µ(n)) ≤ α+ 1 for all

n ≥ N (ω). Hence

λ‖µ(n)‖21 ≤ f (ω)
n (µ(n)) ≤ α+ 1.

It remains to show the H0 bound. The structure of the proof is similar to [96, Lemma

2.1]. We will argue by contradiction. In particular we argue that if a cluster center is unbounded

then in the limit the minimum is achieved over the remaining k − 1 cluster centers.

Step 1: The minimization is achieved over k − 1 cluster centers. Assume there exists j∗ such

that ‖µ(n)
j∗ ‖0 → ∞, then by Lemma 4.2.3 |µ(n)

j∗ (t)| → ∞ for all but finitely many t ∈ [0, 1]

and for each t with |µ(n)
j∗ (t)| → ∞ there exists c such that |µ(n)

j∗ (r)| → ∞ uniformly for

r ∈ [t− c, t+ c].
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Pick t such that |µ(n)
j∗ (t)| → ∞ and find c. Let tm → t, then there exists an M > 0 such

that for all m > M we have |tm − t| < c. It follows that

lim
m→∞,n→∞

|µ(n)
j∗ (tm)| =∞.

This easily implies

lim
n→∞,(t′,y′)→(t,y)

∣∣∣µ(n)
j∗ (t′)− y′

∣∣∣2 =∞

for any y ∈ Rd. Therefore

lim inf
n→∞,(t′,y′)→(t,y)

 k∧
j=1

∣∣∣µ(n)
j (t′)− y′

∣∣∣2 − ∧
j 6=j∗

∣∣∣µ(n)
j (t′)− y′

∣∣∣2
 = 0.

Note that the above expression holds for P -almost every (t, y) ∈ [0, 1] × Rd. By Theorem 1.1

in [64] and the above we have

lim inf
n→∞

∫
[0,1]×Rd

k∧
j=1

|µ(n)
j (t)− y|2 −

∧
j 6=j∗
|µ(n)
j (t)− y|2 P (ω)

n (dt, dy)

 ≥ 0.

Hence

lim inf
n→∞

(
f (ω)
n (µ(n))− f (ω)

n ((µ
(n)
j )j 6=j∗)− λ‖∇sµ

(n)
j∗ ‖

2
L2

)
≥ 0

where we interpret f (ω)
n ((µ

(n)
j )j 6=j∗) accordingly. So,

lim inf
n→∞

(
f (ω)
n (µ(n))− f (ω)

n ((µ
(n)
j )j 6=j∗)

)
≥ 0.

Step 2: The contradiction. If we can show that there exists ε > 0 such that the following

holds (i.e. we can do strictly better by fitting k centers than fitting k − 1 centers) then we can

conclude:

lim inf
n→∞

(
f (ω)
n (µ(n))− f (ω)

n ((µ
(n)
j )j 6=j∗)

)
≥ −ε.

Now,

f (ω)
n (µ(n)) ≤ f (ω)

n (µ̂(n)) =
1

n

n∑
i=1

k∧
j=1

|µ̂(n)
j (ti)− yi|2 + λ

∑
j 6=j∗
‖∇sµ̂(n)

j ‖
2
L2 ,

where

µ̂
(n)
j (t) =

{
µ

(n)
j (t) for j 6= j∗

cn for j = j∗

for a constant cn. Now each µ̂(n)
j must have a minimum separation distance of δ. For now we

assume that we can choose cn such that this criterion is fulfilled. So if |yi − cn| ≤ δ
4 then

|yi − cn|+
δ

4
≤ |µ(n)

j (ti)− yi|

60



for all j 6= j∗. And therefore |yi − cn|2 + δ2

16 ≤ |µ
(n)
j (ti)− yi|2 which implies

f (ω)
n ((µ

(n)
j )j 6=j∗) =

1

n

n∑
i=1

∧
j 6=j∗
|µ(n)
j (ti)− yi|2 + λ

∑
j 6=j∗
‖∇sµ(n)

j ‖
2
L2

=
1

n

n∑
i=1

∧
j 6=j∗
|µ(n)
j (ti)− yi|2I(ti,yi)�j∗

+
1

n

n∑
i=1

∧
j 6=j∗
|µ(n)
j (ti)− yi|2I(ti,yi)∼nj∗ + λ

∑
j 6=j∗
‖∇sµ(n)

j ‖
2
L2

≥ 1

n

n∑
i=1

∧
j 6=j∗
|µ(n)
j (ti)− yi|2I(ti,yi)�j∗ +

1

n

n∑
i=1

|cn − yi|2I(ti,yi)∼nj∗

+
δ2

16
P (ω)
n

(
B

(
cn,

δ

4

))
+ λ

∑
j 6=j∗
‖∇sµ(n)

j ‖
2
L2

= f (ω)
n (µ̂(n)) +

δ2

16
P (ω)
n

(
B

(
cn,

δ

4

))
.

Where (ti, yi) ∼n j means coordinate (ti, yi) is associated to center µ̂(n)
j in the sense that

(t, y) ∼n j ⇔ j = argmini=1,...,k |y − µ̂
(n)
i (t)| (and if the minimum is not uniquely achieved

then we take the smallest j such that j ∈ argmini=1,...,k |y − µ̂
(n)
i (t)|). If we can show that

P
(ω)
n

(
B
(
cn,

δ
4

))
is bounded away from zero, then the result follows.

Since we assumed ε1 has unbounded support on R if we can show that |cn| ≤ M for a

constant M and n sufficiently large (a.s.) then

P (ω)
n

(
B

(
cn,

δ

4

))
≥ inf

c∈[−M,M ]∩Q
P (ω)
n

(
B(c,

δ

4

)
→ inf

c∈[−M,M ]
P

(
B(c,

δ

4

)
= inf

c∈[−M,M ]

∫ 1

0

∫
Rd
I|y−c|≤ δ

4
φY (y|t)φT (t) dydt.

By Assumption 3.3, there exists ε′ > 0 such that φY (y|t) ≥ ε′ for all y ∈ [−M,M ] and

t ∈ [0, 1]. Hence we may bound the final expression above by

inf
c∈[−M,M ]

∫ 1

0

∫
Rd
I|y−c|≤ δ

4
φY (y|t)φT (t) dydt ≥ δ

4
ε′.

We are left to show such an M exists. If there exists Mk−1 such that for all j 6= j∗

we have ‖µ(n)
j ‖Hs ≤ Mk−1 then we know each center has size of range at most 2Mk−1. So

k − 1 centers have size of range at most 2Mk−1(k − 1) + δ(k − 2) =: C. Hence there exists

cn ∈ [0, C + δ]d such that µ̂(n)
j∗ (t) = cn and µ̂(n) ∈ Θ.

Now if no such Mk−1 exists then there exists a second cluster such that ‖µ(n)
j∗∗‖Hs →∞

where j∗∗ 6= j∗. By the same argument

lim inf
n→∞

(
f (ω)
n (µ(n))− f (ω)

n ((µ
(n)
j )j 6=j∗,j∗∗)

)
≥ 0

61



and

f (ω)
n (µ(n))− f (ω)

n ((µ
(n)
j )j 6=j∗,j∗∗) ≤ −

δ2

16
P (ω)
n

(
B

(
cn,

δ

4

))
− δ2

16
P (ω)
n

(
B

(
c′n,

δ

4

))
for a constant c′n. By induction it is clear that we can find Mk−l such that k − l cluster centers

are bounded. The result then follows

Remark 4.2.5. Note that in the above theorem we did not need to assume a correct choice of

k. If the true number of cluster centers is k† and we incorrectly use k 6= k†, then the resulting

cluster centers are still bounded. In fact for all the results of this chapter the correct choice

of k is not necessary: although the minimizers of f∞ may no longer make physical sense, the

problem is still robust in that the conclusions of Theorems 4.2.1 and 4.3.1 hold.

4.3 Rate of Convergence

In [126] a Central Limit Theorem was shown to hold for the k-means method in Euclidean

spaces. We extend that argument to show that for converging sequences of minimizers, which

exist by Theorem 4.2.1, the L2 rate of convergence is of order 1
n . We state the main result of

this section now but leave the proof to the end.

Theorem 4.3.1. Define fn, f∞ : Θ → R, where Θ is given by (4.4), by (4.2) and (4.3), re-

spectively. Let {µ(n)}n∈N ⊂ Θ where µ(n) minimizes fn. Let µ(nm) be any subsequence that

converges to some µ(∞) then under Assumptions 3.1-3.4 we have:

‖µ(nm) − µ(∞)‖2L2 = Op

(
1

nm

)
.

For clarity we will assume that the entire sequence µ(n) converges in the remainder of

this chapter and hence we may avoid writing subsequences.

We let Yn(µ) =
√
n(fn(µ) − f∞(µ)) and then, by Taylor expanding around µ(∞), we

have

Yn(µ(n)) = Yn(µ(∞)) + ∂Yn(µ(∞);µ(n) − µ(∞)) + h.o.t.

In Lemma 4.3.5 using Chebyshev’s inequality we bound the Gâteaux derivative of Yn in proba-

bility. Similarly one can Taylor expand f∞ around µ(∞). After some manipulation of the Taylor

expansion one has

1

2
∂2f∞(µ(∞);µ(n) − µ(∞)) = fn(µ(n))− fn(µ(∞)) +Op

(
1√
n
‖µ(n) − µ(∞)‖L2

)
where we leave the details until the proof of Theorem 4.3.1 at the end of the section. We note

that fn(µ(n))− fn(µ(∞)) ≤ 0. Therefore

κ

2
‖µ(n) − µ(∞)‖2L2 ≤ Op(

1√
n
‖µ(n) − µ(∞)‖L2)

where κ > 0 exists as a consequence of f∞ being positive definite (Lemma 4.3.4).
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Lemmata 4.3.2 and 4.3.4 provide the first and second Gâteaux derivatives of f∞. It is

also shown that the second derivative is positive definite.

Lemma 4.3.2. Define f∞ by (4.3) and Θ ⊂ (Hs)k for s ≥ 1 by (4.4). Then for µ ∈ Θ,

ν ∈ (Hs)k we have that f∞ is Gâteaux differentiable at µ in the direction ν with

∂f∞(µ; ν) =− 2

∫ 1

0

∫
R

(
y − µj(t,y)(t)

)
· νj(t,y)(t)φY (y|t)φT (t) dydt

+ 2λ
k∑
j=1

(∇sνj ,∇sµj)

where j(t, y) is chosen arbitrarily from the set

j(t, y) ∈ argmin
j
|y − µj(t)|. (4.6)

Remark 4.3.3. Since µj are continuous the boundary between each element of the resulting

partition is itself continuous and has Lebesgue measure zero. The set on which j(t, y) is not

uniquely defined therefore has measure zero. Hence we will treat j(t, y) as though it was

uniquely defined.

Proof of Lemma 4.3.2: Fix µ ∈ Θ, ν ∈ (Hs)k and r > 0. Define

jr(t, y) = argmin
j
|y − µj(t)− rνj(t)|, j(t, y) = j0(t, y).

Then for (t, y) in the interior of the partition associated with µj we have

jr(t, y) = j(t, y) for r sufficiently small.

More precisely at each twe have jr(t, y) = j(t, y) for all y with dist(y,B(t)) > rmaxi ‖νi‖L∞
where B(t) is the set of boundary points:

B(t) =
{
y ∈ Rd : j(t, y) is not uniquely defined

}
.

Let Y (r, t) = {y : dist(y,B(t)) ≤ rmaxi ‖νi‖L∞} then∫
Rd

∣∣y − µjr(t,y)(t)
∣∣2 − ∣∣y − µj(t,y)(t)

∣∣2 φY (y|t) dy

=

∫
Y (r,t)

(
2y − µj(t,y)(t)− µjr(t,y)(t)

)
·
(
µj(t,y)(t)− µjr(t,y)(t)

)
φY (y|t) dy

≤ 2rmax
i
‖νi‖L∞

∫
Y (r,t)

∣∣µj(t,y)(t)− µjr(t,y)(t)
∣∣ φY (y|t) dy

= O(r2)

where the penultimate line follows from: if j(t, y) 6= jr(t, y) then
µj(t,y)(t)+µjr(t,y)(t)

2 ∈ B(t)
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(for r sufficiently small). Therefore

∂f∞(µ; ν) = lim
r→0

f∞(µ+ rν)− f∞(µ)

r

= lim
r→0

1

r

{∫ 1

0

∫
Rd

(
|y − µjr(t,y)(t)|2 − |y − µj(t,y)(t)|2 + r2|νjr(t,y)(t)|2

− 2r
(
y − µjr(t,y)(t)

)
· νjr(t,y)(t)

)
φY (y|t)φT (t) dydt

+ λ
k∑
j=1

(
2r(∇sνj ,∇sµj) + r2‖∇sνj‖2L2

)}

= −2

∫ 1

0

∫
Rd

(
y − µj(t,y)(t)

)
· νj(t,y)(t)φY (y|t)φT (t) dydt

+ 2λ
k∑
j=1

(∇sνj ,∇sµj)

which proves the result.

Lemma 4.3.4. Under the conditions of Lemma 4.3.2 and additionally Assumption 3.4, we have

that f∞ has a second Gâteaux derivative at µ ∈ Θ with respect to ν, η ∈ (Hs([0, 1]))k given by

∂2f∞(µ; ν, η) = 2

∫ 1

0

∫
R
ηj(t,y)(t) · νj(t,y)(t)φY (y|t)φT (t) dydt+ 2λ

k∑
j=1

(∇sνj ,∇sηj)

where j(t, y) is defined by (4.6). Furthermore, ∂2f∞ is positive definite at µ(∞), the minimizer

of f∞ in Θ. I.e. there exists κ > 0 such that for all ν ∈ (Hs([0, 1]))k we have

∂2f∞(µ(∞); ν) ≥ κ‖ν‖2L2 .

Proof. The proof of the first statement follows the same reasoning as that of Lemma 4.3.2. To

establish the second, observe that:

∂2f∞(µ(∞); ν) = 2
k∑
j=1

∫ 1

0

∫
R
|νj(t)|2I{(t,y)∼j}(t, y)φY (y|t)φT (t) dydt+ 2λ

k∑
j=1

‖∇sνj‖2L2

≥ κ̂
k∑
j=1

∫ 1

0
|νj(t)|2 φT (t) dt

≥ κ
k∑
j=1

‖νj‖2L2

where

κ̂ = 2 inf
t∈[0,1]

min
j=1,2,...,k

∫
R
I{(t,y)∼j}(t, y)φY (y|t) dy

κ = κ̂ inf
t∈[0,1]

φT (t)

64



where we recall (t, y) ∼ j means coordinate (t, y) is associated with center µ(∞)
j . It remains to

show κ̂ > 0. Recall that there exists a uniform bound on µ(∞) so that |µ(∞)(t)| ≤ M for all

t ∈ [0, 1]. Define ε′ by

ε′ = inf
t∈[0,1]

min
|y|≤M

φY (y|t).

By Assumptions 3.1,3.3 and 3.4, we have ε′ > 0. So

κ̂ ≥ 2 inf
t∈[0,1]

min
j=1,2,...,k

Vol(Ajt )ε
′M

whereAjt is the partition of Rd corresponding to center µ(∞)
j at time t. The minimum separation

distance assumptions on Θ imply that Vol(Ajt ) ≥ Vol(B(0, δ2)). Which implies that κ̂ > 0. The

result then follows.

We now consider Yn. In particular we want to bound ∂Yn(µ(∞);µ(n) − µ(∞)).

Lemma 4.3.5. Define fn, f∞ : Θ→ R by (4.2) and (4.3) respectively where Θ is given by (4.4).

Take Assumption 3.1 and define

Yn : Θ→ R, Yn(µ) =
√
n (fn(µ)− f∞(µ)) .

Then for µ ∈ Θ, ν ∈ (Hs)k we have that Yn is Gâteaux differentiable at µ in the direction ν

with

∂Yn(µ; ν) = 2
√
n

(∫ 1

0

∫
R

(
y − µj(t,y)(t)

)
· νj(t,y)(t)φY (y|t)φT (t) dydt

− 1

n

n∑
i=1

(
yi − µj(ti,yi)(ti)

)
· νj(ti,yi)(ti)

)

where j(t, y) is defined by (4.6). Furthermore, for a sequence ν(n) with

‖ν(n)‖L2 = op(1) and ‖ν(n)‖Hs = Op(1)

we have ∂Yn(µ; ν(n)) = Op(‖ν(n)‖L2).

Proof. Calculating the Gâteaux derivative is similar to Lemma 4.3.2 and is omitted. By linearity

and continuity of ∂Yn we can write

∂Yn

(
µ;

ν(n)

‖ν(n)‖L2

)
=
∑
m

(ν(n), em)

‖ν(n)‖L2

∂Yn(µ; em)

where em is the Fourier basis for (L2)k (we assume em = (êm1 , . . . , êmk) where êm is a Fourier
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basis for L2). Let Vm = E (∂Yn(µ; em))2 and Zi = (yi − µj(ti,yi)(ti)) · êm, then

Vm =
4

n
E

(
n∑
i=1

(Zi − EZi)

)2

= 4E (Z1 − EZ1)2

≤ 4E |ε1|2 =: C.

Where C is finite by Assumption 3.2. Therefore, by Chebyshev’s inequality for any M > 0

P (|∂Yn(µ; em)| ≥M) ≤ C

M2
.

Hence

P

(∣∣∣∣∣∂Yn
(
µ;

ν(n)

‖ν(n)‖L2

)∣∣∣∣∣ ≥M
)
≤
∑
m

|(ν(n), em)|
‖ν(n)‖L2

P (|∂Yn(µ; em)| ≥M)

≤
∑
m

|(ν(n), em)|
‖ν(n)‖L2

C

M2

≤ C

M2
.

Which implies ∂Yn
(
µ; ν(n)

‖ν(n)‖L2

)
= Op(1).

We now have the necessary pieces in place to prove Theorem 4.3.1

Proof of Theorem 4.3.1. By Theorem 4.2.1 we have (up to subsequences) ‖µ(n) − µ(∞)‖L2 =

op(1) and ‖µ(n)‖Hs = Op(1).

By Taylor’s Theorem and the fact that f∞ is quadratic we have

f∞(µ(n)) = f∞(µ(∞)) + ∂f∞

(
µ(∞);µ(n) − µ(∞)

)
+

1

2
∂2f∞

(
µ(∞);µ(n) − µ(∞)

)
.

Since µ(∞) minimizes f∞ the linear term above must be zero. Hence

f∞(µ(n)) = f∞(µ(∞)) +
1

2
∂2f∞

(
µ(∞);µ(n) − µ(∞)

)
.

Similarly, and using Lemma 4.3.5

Yn(µ(n)) = Yn(µ(∞)) +Op

(
∂Yn

(
µ(∞);µ(n) − µ(∞)

))
= Yn(µ(∞)) +Op

(
‖µ(n) − µ(∞)‖L2

)
.

From the definition of Yn we also have

fn(µ(n)) = f∞(µ(n)) +
1√
n
Yn(µ(n)).

66



Substituting into the above we obtain

fn(µ(n)) = f∞(µ(∞)) +
1

2
∂2f∞(µ(∞);µ(n) − µ(∞)) +

1√
n
Yn(µ(∞))

+Op

(
1√
n
‖µ(n) − µ(∞)‖L2

)
= fn(µ(∞)) +

1

2
∂2f∞(µ(∞);µ(n) − µ(∞)) +Op

(
1√
n
‖µ(n) − µ(∞)‖L2

)
.

Rearranging for ∂2f∞ and using fn(µ(n)) ≤ fn(µ(∞)) we have

∂2f∞(µ(∞);µ(n) − µ(∞)) = 2
(
fn(µ(n))− fn(µ(∞))

)
+Op(

1√
n
‖µ(n) − µ(∞)‖L2)

≤ Op(
1√
n
‖µ(n) − µ(∞)‖L2).

Recall that by Lemma 4.3.4 we have that ∂2f∞ is positive definite at µ(∞). Therefore:

κ‖µ(n) − µ(∞)‖2L2 ≤ Op(
1√
n
‖µ(n) − µ(∞)‖L2).

Which implies

‖µ(n) − µ(∞)‖L2 = Op(
1√
n

)

which completes the proof.
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Chapter 5

Weak Convergence For Generalized
Spline Smoothing

Abstract

Establishing the convergence of splines can be cast as a variational problem which

is amenable to a Γ-convergence approach. We consider the case in which the reg-

ularization coefficient scales with the number of observations, n, as λn = n−p.

Using standard theorems from the Γ-convergence literature, we prove that general

splines are consistent in the sense that estimators converge weakly in probability if

p ≤ 1
2 . Without further assumptions this rate is sharp. This differs from rates for

strong convergence using Hilbert scales where one can often choose p > 1
2 .

5.1 Introduction

Given a Hilbert space, H, with dual H∗, the general spline problem [90, 171] is to recover

µ† ∈ H from observations, {(Li, yi)}ni=1 ⊆ H∗ × R, and the model

yi = Liµ
† + εi, (5.1)

where εi ∈ R and Li ∈ H∗ are independent random variables. We assume that H can be

decomposed into H = H0 ⊕ H1 where (Hl, ‖ · ‖l) (for l = 0, 1) are themselves both Hilbert

spaces. For example, one may apply the theory to the special spline problem where H =

Hm([0, 1]) (m ≥ 1) is the Sobolev space of degree m and the observation operators are of the

form Liµ = µ(ti) in which ti is sampled from some distribution over [0, 1]. Throughout this

chapter we refer to (5.1) as the general spline model when Li ∈ H∗ andH is any Hilbert space,

and the special spline model when Li is the pointwise evaluation operator andH = Hm.

We assume that dim(H0) = m < ∞ and dim(H1) = ∞. This can be seen as a multi-

scale decomposition ofH. The projection of a function µ ∈ H into the subspaceH0 is a coarse
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approximation of that function. Continuing with the special spline example, one can write

µ(t) =

m−1∑
i=0

∇iµ(0)

i!
ti +

∫ t

0

(t− u)m−1

(m− 1)!
∇mµ(u) du

for any µ ∈ Hm. The space H0 is then the space of polynomials of degree at most m − 1.

Hence dim(H0) = m.

Imposing a penalty on the H1 space, we construct a sequence of estimators µ(n) of µ†

as the minimizers of

fn(µ) =
1

n

n∑
i=1

|yi − Liµ|2 + λn‖χ1µ‖21

where χi : H → Hi (i = 0, 1) is the projection of H onto Hi. This chapter addresses the

asymptotics (as n→∞) of the general spline problem and in particular how one should choose

λn to ensure µ(n) converges (weakly in probability) to µ†.

There are two bodies of literature on the specification of λn. On the one hand there are

methods which define λn as the minimizer of some loss function, for example average square

error. This class of techniques includes cross-validation [172], generalized cross-validation [47]

and penalized likelihood techniques [82, 85, 91, 109, 136, 170]. These methods provide a nu-

merical value of λn for a given n and a given set of data. In the case of special splines there

are many results on the asymptotic behavior of λn and µ(n) for these methods, see for exam-

ple [3, 45, 47, 98, 144, 156, 157, 173]. The alternative approach, and the one we take in this

chapter, is to choose a sequence such that the estimates µ(n) converge to µ† in an appropriate

sense at the fastest possible rate. This strategy gives a scaling regime for λn, but it does not in

general give specific numerical values of λn, i.e. it provides the optimal rate of convergence but

not the associated multiplicative constant.

In considering the convergence of the sequence, µ(n), one can look for convergence with

respect to some norm or in the dual space. Many results in the literature demonstrate the strong

convergence of µ(n) → µ† via the use of Hilbert scales — see, for example, [46, 117, 131, 143,

146, 158]. It is not typically possible to obtain strong convergence with respect to the original

norm and it is common to resort to the use of weaker norms; for example, in the special spline

problem, one starts with the space Hs but looks for convergence in L2. The alternative, which

is pursued in this chapter, is to consider weak convergence in the original space,H.

Note that for special splines strong convergence in a larger space is a weaker result than

weak convergence in the original space: by the Sobolev embedding theorem, weak convergence

in Hs implies strong convergence in L2; however, the converse does not hold.

In this chapter we show that the estimators of the general spline problem weakly con-

verge in probability in the large data limit, µ(n) ⇀ µ†, for regularization λn that scales to zero

no faster than n−
1
2 . In this scaling regime we say that the general spline problem is consistent.

For insufficient regularization the spline estimators may in some sense ‘blow up’. In particular

for scaling outside this regime we construct (uniformly bounded) observation operators Li such

that E
[
‖µ(n)‖2

]
→∞. Hence without further assumptions our results are sharp.

If we are interested in estimating µ† at a point t then we let F (µ) = µ(t) where F ∈ H∗.
In this setting weak convergence is the natural form to consider. However, if one is interested
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in a global approximation of µ†, then convergence of µ(n) − µ† in an appropriate norm is the

appropriate concept. The two formulations imply different scaling results for λn.

There are many results in the ill-posed inverse problems literature that may be applied

to the strong convergence of the general spline problem, for brevity we only mention those

most relevant to this work. In [170] two different methods of estimating λn were compared

as n → ∞ using the general spline formulation. The reproducing kernel Hilbert space setting

was used in [89] which also discussed the probabilistic interpretation behind the estimator µ(n).

In [46, 117] the authors prove the strong convergence and optimal rates for the spline model

using an approximation 1
n

∑n
i=1 L

∗
iLi ≈ U where U is compact, positive definite, self-adjoint

and with dense inverse. See also [35, 108] that consider ill-posed inverse problems without

noise using similar methods. In these papers the scaling regime for λn is given in terms of the

rate of decay of the eigenvalues of the inverse covariance (regularization) operator C−1 (where

‖ · ‖1 = ‖C−1 · ‖L2).

There are many more recent results addressing the asymptotic properties of splines,

including [43, 79, 88, 94, 100, 138, 174, 180, 182, 183]. Many of these recent results concern the

asymptotics of penalized splines where one fixes the number of knot points as apposed to the

smoothing spline case where the number of knots is equal to the number of data points. As

far as we are aware there are no asymptotic results concerning the weak convergence of splines

(either general or special).

It is known that the special spline problem is equivalent to a white noise problem [32].

Strong convergence and rates for the white noise problem have been well studied see, for exam-

ple, [4, 23, 74] and references therein.

One advantage of our approach is that we gain intuition in what happens when λn → 0

too quickly. Our results show a critical rate, with respect to the scaling of λn, at which the

methodology is ill-posed below this rate and well-posed at or above this rate. The second ad-

vantage of our approach is that, by using the Γ-convergence framework, as long as we can show

that minimizers are uniformly bounded the convergence follows easily (we also need to show the

Γ-limit is unique, but for our problem this is not difficult). This is easier than showing, directly,

that µ(n)−µ† converges to zero. We are consequently able to employ simpler assumptions than

those required by more direct arguments.

The outline of this chapter is as follows. In the next section we remind the reader of the

spline methodology and prove a known existence and uniqueness result. Section 5.3 contains

the results for the convergence of the general spline model under appropriate conditions on the

scaling in the regularization using the Γ-convergence framework. We discuss the special spline

model in Section 5.4.

5.2 The Spline Framework

In this section we recap the spline methodology and find an explicit representation for our es-

timators. In particular we construct our estimate as a minimizer of a quadratic functional. We

will show the existence and uniqueness of the minimizer.

We consider the separable Hilbert space H with inner product and norm given by (·, ·)
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and ‖ · ‖ respectively. We assume we can write H = H0 ⊕ H1 where (H0, (·, ·)0, ‖ · ‖0),

(H1, (·, ·)1, ‖ · ‖1) are Hilbert spaces with dim(H0) = m and dim(H1) =∞. We may write

‖µ‖ = ‖µ‖0 + ‖µ‖1.

We wish to estimate µ† ∈ H given observations of the form (Li, yi) and in particular

Li is random. For convenience we summarize the general spline model in the definition below.

One can also see [171] for more details on the general spline model.

The General Spline Model. The general spline model is given by (5.1) where Li ∈ H∗ are

random variables and εi are iid random variables from a centered distribution φ0 with variance

σ2. The Li are assumed to be observed without noise and to be members of a family indexed

by I; we write Lt to mean the operator L which depends upon a parameter t ∈ I. The ‘ran-

domness’ of L is characterized by the distribution, φT , of a random index t ∈ I. For a sample

ti ∼ φT we write Li as shorthand for Lti . The operator Li is therefore interpreted as a realiza-

tion of Lti . We assume that ti, εi are independent and for convenience we define φLtµ† to be the

distribution φ0 shifted by−Ltµ†. By the Riesz Representation Theorem there exists ηi ∈ H such

that Liµ = (ηi, µ) for all µ ∈ H. The sequence of observed data points (t1, y1), (t2, y2), . . . is

a realization of a sequence of random elements on (Ω,F ,P). To mitigate the notational burden,

we suppress the ω-dependence of ti, yi and Li.

For example in the case of special splines Liµ† = µ†(ti) for some ti a random variable

distributed in [0, 1]. Observing Li without noise is equivalent here to observing ti without noise.

It will be convenient to introduce the natural filtration associated with the marginal sequence

(Li) and we define for n ∈ N, Gn = σ(L1, . . . , Ln), a sequence of sub-σ-algebras of F . We

use E[·|Gn] to denote a version of the associated conditional expectation.

We take our sequence of estimators µ(n) of µ† as minimizers, which are subsequently

shown to be unique, of f (ω)
n where

f (ω)
n (µ) =

1

n

n∑
i=1

(yi − Liµ)2 + λn‖µ‖21. (5.2)

By completing the square we can easily show µ(n) is given implicitly by

Gn,λnµ
(n) =

1

n

n∑
i=1

yiηi

where

Gn,λ =
1

n

n∑
i=1

ηiLi + λχ1 (5.3)

and for clarity we also suppress the ω-dependence ofGn,λ from the notation. It will be necessary

in our proofs to bound ‖Gn,λn‖H∗ in terms of λn (for almost every sequence of observations).

We do this by imposing a bound on ‖Lt‖H∗ or equivalently on ‖ηt‖ for almost every t ∈ I.

See Section 5.4 for a discussion of the special spline problem and in particular how one can find

ηi. In order to bound the H0 norm of µ(n) we need conditions on our observation operators Lt.
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In particular we will use the observation operators to define a norm on H0. Hence our proofs

require a uniqueness assumption of Lt in H0 (Assumption 4.3 below). It is not enough that Lt
are unique over H as this would not necessarily contain any information on the H0 projection

of µ(n), e.g. if Ltµ = Ltχ1µ for all µ ∈ H. For clarity and future reference we now summarize

the assumptions described in the previous paragraphs.

Assumptions 4. We make the following assumptions on f (ω)
n : H → R defined by (5.2) andH.

4.1 Let (H, (·, ·), ‖·‖) be a separable Hilbert spaces withH = H0⊕H1 where (H0, (·, ·)0, ‖·
‖0) and (H1, (·, ·)1, ‖ · ‖1) are Hilbert spaces. Assume dim(H) = dim(H1) = ∞ and

dim(H0) = m <∞.

4.2 The distribution of Li := Lti is specified implicitly by that of ti ∈ I and we assume

ti
iid∼ φT .

4.3 We assume |supp(φT )| ≥ m and that the Lt are unique in H0 in the sense that if Ltµ =

Lrµ for all µ ∈ H0 then t = r.

4.4 There exists α > 0 such that ‖ηt‖ = ‖Lt‖H∗ ≤ α for φT -almost every t ∈ I.

We have the following lemma which gives the existence of a unique minimizer to (5.2).

Lemma 5.2.1. Define f (ω)
n : H → R by (5.2) and assume λn > 0. Under Assumptions 4.1-

4.4 the operator Gn,λn : H → H defined by (5.3) has a well defined inverse G−1
n,λn

on

span{η1, . . . , ηn} for almost every ω ∈ Ω. In particular, there almost surely exists N < ∞
such that for all n ≥ N there exists a unique minimizer µ(n) ∈ H to f (ω)

n which is given by

µ(n) =
1

n

n∑
i=1

yiG
−1
n,λn

ηi. (5.4)

Proof. We claim that any minimizer of f (ω)
n lies in the setH0 ⊕ span{χ1η1, . . . , χ1ηn} =: H′n.

If so, and we can show that G−1
n,λn

is well defined on H′n, then we can conclude the minimizer

must be of the form (5.4).

Because H′n is finite dimensional, we arrive at the same topology whichever norm we

choose. We define Ω′ ⊂ Ω by

Ω′ := {ω ∈ Ω : the number of unique tj in {ti}∞i=1 is greater than m and ‖Li‖H∗ ≤ α ∀i} .

By Assumptions 4.3 and 4.4, P(Ω′) = 1. Let ω ∈ Ω′ then there existsN such that for all n ≥ N
we have that {Li}Ni=1 contains m distinct elements. Therefore ‖µ‖2H′n := 1

n

∑n
i=1(Liµ)2 +

λn‖µ‖21 defines a norm onH′n for any n ≥ N .

We first show that any minimizer of f (ω)
n lies inH′n. Let

µ =
m∑
j=1

ajφj +
n∑
j=1

bjχ1ηj + ρ
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where φj are a basis forH0 and ρ ⊥ H′n. Then since Liρ = (ηi, ρ) = 0 we have:

f (ω)
n (µ) =

1

n

n∑
i=1

(
yi − LiχH′nµ

)2
+ λn

∥∥∥∥∥∥
n∑
j=1

bjχ1ηj

∥∥∥∥∥∥
2

1

+ λn‖ρ‖21

where χH′n denotes the projection ontoH′n. Trivially any minimizer of f (ω)
n must have ‖ρ‖1 = 0

and since ρ ∈ H1 this implies ρ = 0. Hence minimizers of f (ω)
n lie inH′n.

We now show that Gn,λn has a well defined inverse on H′n. For any r ∈ H′n the weak

formulation of Gn,λnµ
(n) = r is given by

B(µ(n), ν) = (r, ν) ∀ν ∈ H′n

where

B(µ, ν) =
1

n

n∑
i=1

(Liµ)(Liν) + λn(χ1µ, χ1ν).

Now we apply the Lax-Milgram lemma to imply the existence of a unique weak solution to

Gn,λnµ
(n) = r. Clearly B : H′n ×H′n → R is a bilinear form. We will show it is also bounded

and coercive. As ω ∈ Ω′, ‖Li‖H∗ ≤ α and for µ, ν ∈ H′n we have

|B(µ, ν)| ≤ 1

n

n∑
i=1

|LiµLiν|+ λn‖µ‖1‖ν‖1

≤ α2‖µ‖‖ν‖+ λn‖µ‖1‖ν‖1
≤
(
α2 + λn

)
‖µ‖‖ν‖.

Hence B is bounded. Similarly, for some constant c independent of µ,

B(µ, µ) =
1

n

n∑
i=1

(Liµ)2 + λn‖µ‖21 = ‖µ‖2H′n ≥ c‖µ‖
2

where the inequality follows by the equivalence of norms on finite dimensional spaces. Hence

B is coercive and by the Lax-Milgram Lemma there exists a unique weak solution. A strong

solution follows from the equivalence of the strong and weak topology on finite dimensional

spaces or alternatively from the following short calculation. We have

(r, ν) =

(
1

n

n∑
i=1

(Liµ
(n))ηi, ν

)
+
(
λnχ1µ

(n), ν
)

∀ν ∈ H′n

Hence (
r − 1

n

n∑
i=1

(Liµ
(n))ηi − λnχ1µ

(n), ν

)
= 0 ∀ν ∈ H′n.

So choosing ν = r − 1
n

∑n
i=1(Liµ

(n))ηi − λnχ1µ
(n) implies

‖r − 1

n

n∑
i=1

(Liµ
(n))ηi − λnχ1µ

(n)‖2 = 0
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and therefore

r =
1

n

n∑
i=1

(Liµ
(n))ηi − λnχ1µ

(n) = Gn,λnµ
(n).

As this is true for all r ∈ H′n we can infer the existence of an inverse operatorG−1
n,λn

: H′n → H′n
such thatG−1

n,λn
r = µ(n). One can verify thatG−1

n,λn
is linear. As ω ∈ Ω′ was arbitrary, the result

holds almost surely.

5.3 Consistency

We demonstrate consistency by applying the Γ-convergence framework. This requires us to find

the Γ-limit, and to show that the Γ-limit has a unique minimizer and that the minimizers of f (ω)
n

are uniformly bounded. The next three subsections demonstrate that each of these requirements

is satisfied under the stated assumptions and allow the application of Corollary 2.2.2 to conclude

the consistency of the spline model, as summarized in Theorem 5.3.1. We start by stating the

remainder of the conditions employed.

Assumptions 4. 4.5 We have λn = n−p with 0 < p ≤ 1
2 .

4.6 For ν ∈ H the following relation holds:∫
I
(Ltν)2φT (dt) = 0⇔ ν = 0.

4.7 For each µ ∈ H each Ltµ is continuous in t, i.e ‖Ls − Lt‖H∗ → 0 as s→ t.

Assumption 4.5 gives the admissible scaling regime in λn. Clearly if p ≤ 0 then λn 6→ 0

hence we expect the limit, if it even exists, to be biased. We are required to show that the

minimizers are bounded in probability. To do so we show they are bounded in expectation. We

will show in Theorem 5.3.3 that for p > 1
2 we cannot bound minimizers in expectation; hence it

is not possible to extend our proofs for p 6∈ (0, 1
2 ]. The reason Theorem 5.3.1 holds in probability

and not in expectation is that the Γ-convergence framework requires µ(n) to be a minimizer and

as such we cannot make conclusions about the average minimizer since E[µ(n)|Gn] is not a

minimizer.

We will show that the second derivative of f∞ is given by
∫
I(Ltν)2 φT (dt) for the direc-

tion ν. Assumption 4.6 is used to establish that f∞ is strictly convex, and hence the minimizer

is unique.

It will be necessary to show that

1

n

n∑
i=1

|Liµ| →
∫
I
|Ltµ| φT (dt) (5.5)

for all µ ∈ H with probability one. We impose Assumption 4.7 (together with Assumption 4.4)

to imply that Ltµ is continuous and bounded in t for all µ ∈ H and therefore by the weak con-

vergence of the empirical measure we infer that (5.5) holds for all µ ∈ H and for almost every

sequence {Li}∞i=1. In particular we can define a set Ω′ ⊂ Ω independent of µ, on which (5.5)

holds, such that P(Ω′) = 1.
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Theorem 5.3.1. Define f (ω)
n : H → R by (5.2). Under Assumptions 4.1-4.7 the minimizer µ(n)

of f (ω)
n converges in the following topological sense: for all ε, δ > 0 and F ∈ H∗ there exists

N = N(ε, δ, F ) ∈ N such that

P
(∣∣∣F (µ(n))− F (µ†)

∣∣∣ ≥ ε) ≤ δ for n ≥ N.

Remark 5.3.2. We view the convergence in the above theorem as the natural generalization of

convergence in probability to the context. To fit with standard notation we have been careful not

to say converges weakly in probability which could reasonably mislead the reader into inter-

preting the theorem as the convergence of µ(n) → µ† is uniform over F ∈ H∗ and not pointwise

as we claim in the theorem.

The following theorem shows that if p > 1
2 then without imposing further assumptions

it is always possible to construct observation functionals {Lt}t∈I such that E
[
‖µ(n)‖2

]
→∞.

Theorem 5.3.3. Define f (ω)
n : H → R by (5.2), let µ(n) be the minimizer of f (ω)

n and take any

α > 0 and p > 1
2 . Take Assumptions 4.1-4.2 and assume that λ = n−p. Then there exists a

distribution φT on I such that ‖Lt‖H∗ = ‖ηt‖ ≤ α for almost every ω ∈ Ω (i.e. Assumption 4.4

holds) and E[‖µ(n)‖2]→∞.

Essentially when considering weak convergence, one is restricting to finite dimensional

projections. It is therefore not surprising that n−
1
2 is the best we can do. For p > 1

2 and a

sequence of real valued iid random variables Xi of finite variance (which are not identically

zero) we have n2pE( 1
n

∑n
i=1Xi)

2 →∞. In light of this elementary observation Theorem 5.3.3

is not surprising. The proof is given in Section 5.3.4.

5.3.1 The Γ-Limit

We claim the Γ-limit of f (ω)
n , for almost every ω ∈ Ω, is given by

f∞(µ) =

∫
I

∫ ∞
−∞
|y − Ltµ|2 φLtµ†(dy) φT (dt). (5.6)

Theorem 5.3.4. Define f (ω)
n , f∞ : H → R by (5.2) and (5.6) respectively. Under Assump-

tions 4.1-4.2, 4.5 and 4.7,

f∞ = Γ- lim
n

f (ω)
n

for almost every ω ∈ Ω.

Proof. We are required to show the two inequalities in Definition 2.2.1 hold with probability 1.

In order to do this we consider a subset of Ω of full measure, Ω′, and show that both statements

hold for every data sequence obtained from that set.

Define gµ(t, y) = (y − Ltµ)2. For clarity let P (d(t, y)) = φT (dt)φLtµ†(dy) and Pn be

the empirical measure associated with the observations, i.e. for any measurable h : I ×R→ R
we define Pnh = 1

n

∑n
i=1 h(ti, yi). Further, let P (ω)

n denote the measure arising from the
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particular realization ω. Defining:

Ω′ =
{
ω : P (ω)

n ⇒ P
}
∩

{
ω ∈ Ω :

1

n

n∑
i=1

ε2i (ω)→ σ2 and
1

n

n∑
i=1

εi(ω)→ 0

}
,

then P(Ω′) = 1 by the almost sure weak convergence of the empirical measure [56] and the

strong law of large numbers. Let ω ∈ Ω′.

We start with the lim inf inequality. Pick ν ∈ H and let ν(n) ⇀ ν. By Theorem 1.1

in [64] we have∫
I

∫ ∞
−∞

lim inf
n→∞,(t′,y′)→(t,y)

gν(n)(t
′, y′) P (d(t, y)) ≤ lim inf

n→∞

∫
I

∫ ∞
−∞

gν(n)(t, y) P (ω)
n (d(t, y))

= lim inf
n→∞

f (ω)
n (ν(n)).

Now we show

lim inf
n→∞,(t′,y′)→(t,y)

gν(n)(t
′, y′) ≥ gν(t, y) (5.7)

which proves the lim inf inequality. Let (tm, ym)→ (t, y) then

(gν(n)(tm, ym))
1
2 = |ym − Ltmν(n)|

≥ |Ltmν(n) − y| − |ym − y|

≥ |y − Ltν(n)| − |Ltmν(n) − Ltν(n)| − |ym − y|

≥ |y − Ltν(n)| − ‖Ltm − Lt‖H∗‖ν(n)‖ − |ym − y|.

A consequence of the uniform boundedness principle is that any weakly convergent sequence is

bounded, hence there exists some C > 0 such that ‖ν(n)‖ ≤ C. It follows from the above, and

Assumption 4.7, that

lim inf
n→∞,m→∞

(gν(n)(tm, ym))
1
2 ≥ |y − Ltν| = (gν(t, y))

1
2 .

As our choice of sequence (tm, ym) was arbitrary we can conclude that (5.7) holds.

For the recovery sequence we choose ν ∈ H and let ν(n) = ν. We are required to show

Pgν ≥ lim sup
n→∞

(
P (ω)
n gν + λn‖µ‖21

)
= lim sup

n→∞
P (ω)
n gν .

Since we can write

gν(ti, yi) = (Liµ
†)2 + ε2i + (Liν)2 + 2εiLiµ

† − 2Liµ
†Liν − 2εiLiν

and each term is either a continuous and bounded functional, or its convergence is addressed

directly by the construction of Ω′, we have P (ω)
n gν → Pgν as required. As ω ∈ Ω′ was

arbitrary, the result holds almost surely.

Remark 5.3.5. Note that in the above theorem we did not need a lower bound on the decay of

λn (only that λn ≥ 0). We only used that λn = o(1).
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5.3.2 Uniqueness of the Γ-limit

To show the Γ-limit has a unique minimizer we show it is strictly convex. The following lemma

gives the second Gâteaux derivative of f∞. After which we conclude in Corollary 5.3.7 that the

Γ-limit is unique.

Lemma 5.3.6. Under Assumptions 4.1-4.2 define f∞ : H → R by (5.6). Then the first and

second Gâteaux derivatives of f∞ are given by

∂f∞(µ; ν) = 2

∫
I

∫ ∞
−∞

(Ltµ− y)Lt(ν)φLtµ†(dy)φT (dt)

∂2f∞(µ; ν, ζ) = 2

∫
I
(Ltν)(Ltζ)φT (dt).

Proof. We first compute the first Gâteaux derivative.

∂f∞(µ; ν) = lim
r→0

∫
I

∫ ∞
−∞

(y − Lt(µ+ rν))2 − (y − Ltµ)2

r
φLtµ†(dy)φT (dt)

= 2

∫
I

∫ ∞
−∞

(Ltµ− y)Lt(ν)φLtµ†(dy)φT (dt)

+ lim
r→0

r

∫
I

∫ ∞
−∞

(Ltν)2φLtµ†(dy)φT (dt)

= 2

∫
I

∫ ∞
−∞

(Ltµ− y)Lt(ν)φLtµ†(dy)φT (dt)

The second Gâteaux derivative follows similarly:

∂2f∞(µ; ν, ζ) = lim
r→0

2

∫
I

∫ ∞
−∞

(Lt(µ+ rζ)− y)Ltν − (Ltµ− y)Ltν

r
φLtµ†(dy)φT (dt)

= 2

∫
I

∫ ∞
−∞

(Ltν)(Ltζ)φLtµ†(dy)φT (dt)

= 2

∫
I
(Ltν)(Ltζ)φT (dt)

which complete the proof.

Corollary 5.3.7. Under Assumptions 4.1,4.2 and 4.6, define f∞ : H → R by (5.6). Then f∞
has a unique minimizer which is achieved for µ = µ†.

Proof. It is easy to check that ∂f∞(µ†; ν) = 0 for all ν ∈ H. By Lemma 5.3.6 and Assump-

tion 4.6 the second Gâteaux derivative satisfies ∂2f∞(µ; ν) > 0 for all ν 6= 0. Then by Taylor’s

Theorem (and noting that f∞ is quadratic), for µ 6= µ†,

f∞(µ) = f∞(µ†) +
1

2
∂2f∞(µ†;µ− µ†) > f∞(µ†)

as required.
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5.3.3 Bound on Minimizers

In this subsection we show that ‖µ(n)‖ = Op(1). The bound inH0 can be obtained using fewer

assumptions (than the bound in H), which is natural considering H0 is finite dimensional. We

may choose the norm on H0 without changing the topology (all norms are equivalent on finite

dimensional spaces). We will use

‖µ‖0 =

∫
I
|Ltµ|φT (dt).

Loosely speaking we can then write ‖µ(n)‖0 . f
(ω)
n (µ(n)). The bound in H0 then follows if

min f
(ω)
n is bounded. We make this argument rigorous in Lemma 5.3.8. After this result we

concentrate on bounding µ(n) inH.

Lemma 5.3.8. Define f (ω)
n : H → R by (5.2). Under Assumptions 4.1-4.5 and 4.7 the mini-

mizers µ(n) of f (ω)
n are, with probability one, eventually bounded in H0, i.e. for almost every

ω ∈ Ω there exist constants C,N > 0 such that ‖µ(n)‖0 ≤ C for all n ≥ N .

Proof. We define P and P (ω)
n as in the proof of Theorem 5.3.4, let

Ω′ =
{
ω ∈ Ω : P (ω)

n ⇒ P
}
∩

{
ω ∈ Ω :

1

n

n∑
i=1

ε2i (ω)→ σ2 and
1

n

n∑
i=1

|εi(ω)| → P |ε1|

}

and µ(n) be a minimizer of f (ω)
n . Assume ω ∈ Ω′. As

f (ω)
n (µ(n)) ≤ f (ω)

n (µ†) ≤ 1

n

n∑
i=1

ε2i + λ1‖µ†‖21 → σ2 + λ1‖µ†‖21,

there exists N such that f (ω)
n (µ(n)) ≤ σ2 + λ1‖µ†‖21 + 1 for n ≥ N .

Now

f (ω)
n (µ) =

1

n

n∑
i=1

(yi − Liµ)2 + λn‖µ‖21

≥ 1

n

n∑
i=1

(|Liµ| − |yi| − 1)

=
1

n

n∑
i=1

|Liµ| −
1

n

n∑
i=1

|yi| − 1

≥ 1

n

n∑
i=1

|Liµ| −
1

n

n∑
i=1

|Liµ†| −
1

n

n∑
i=1

|εi| − 1

→
∫
I
|Ltµ|φT (dt)− c

where the convergence follows since |Ltµ| is a continuous and bounded functional in t and c is

given by

lim
n→∞

(
1

n

n∑
i=1

|Liµ†|+
1

n

n∑
i=1

|εi|+ 1

)
≤
∫
I
|Ltµ†|φT (dt) + σ + 1 =: c.
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We now show that
∫
I |Ltµ|φT (dt) is a norm on H0 and hence that the above constant, c, is

finite. This will also show that ‖µ‖0 ≤ f (ω)
n (µ) + c which completes the proof.

The triangle inequality, absolute homogeneity and
∫
I |Ltµ|φT (dt) ≥ 0 are trivial to

establish. If
∫
I |Ltµ|φT (dt) = 0 then, by Assumption 4.3, we have at least m disjoint subsets

of positive measure (with respect to φT ) on I. It follows that on each of these subsets Ltµ = 0.

AsH0 is m-dimensional this determines µ, and hence µ = 0.

As ω ∈ Ω′ was arbitrary and P(Ω′) = 1, the result holds almost surely.

Remark 5.3.9. In the above lemma we did not need the lower bound on λn (only that λn ≥ 0).

The result holds for all λn = O(1).

Continuing with the bound inH we write

µ(n) =
1

n

n∑
i=1

Liµ
†G−1

n,λn
ηi +

1

n

n∑
i=1

εiG
−1
n,λn

ηi = G−1
n,λn

Unµ
† +

1

n

n∑
i=1

εiG
−1
n,λn

ηi (5.8)

where

Un =
1

n

n∑
i=1

ηiLi. (5.9)

We bound ‖G−1
n,λn

Unµ
†‖ in Lemma 5.3.11 and ‖ 1

n

∑n
i=1 εiG

−1
n,λn

ηi‖ in Lemma 5.3.12.

In the proof of Lemma 5.3.11 we show that G−1
n,λn

maps from Ran(Un) to Ran(Un).

Lemma 5.3.10 gives the conditions necessary to infer the existence of a orthonormal basis of

eigenfunctions {ψ(n)
j }∞j=1 of Ran(Un). Hence we can write

‖G−1
n,λn

Unµ‖2 =
∞∑
j=1

(G−1
n,λn

Unµ, ψ
(n)
j ).

From here we exploit the fact that ψ(n)
j are eigenfunctions. We leave the details until the proof

of Lemma 5.3.11.

Lemma 5.3.12 is a consequence of being able to bound ‖G−1
n,λn
‖L(H,H) in terms of λn.

One is then left to show
(

1
n

∑n
i=1 εi

)2
= O( 1

n). We start by showing that Un is compact,

bounded, self-adjoint and positive semi-definite.

Lemma 5.3.10. Define Un by (5.9). Under Assumptions 4.1 and 4.4, Un is almost surely a

bounded, self-adjoint, positive semi-definite and compact operator onH.

Proof. In this proof we consider ω ∈ Ω′ where Ω′ = {ω : ‖ηi(ω)‖ ≤ α for all i}, noting that

P(Ω′) = 1 by Assumption 4.4.

Boundedness of Un follows easily as

‖Unµ‖ ≤
1

n

n∑
i=1

α2‖µ‖ = α2‖µ‖.

Let (·, ·)Rn be the inner product on Rn given by

(x, y)Rn =
1

n

n∑
i=1

xiyi ∀x, y ∈ Rn.
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Now for x ∈ R and ν ∈ H we have

(x, Liν)R1 = xLiν = x(ηi, ν) = (xηi, ν)

which shows L∗i : R→ H is given by L∗ix = xηi. Now if we define Tn = (L1, . . . , Ln) : H →
Rn then for x ∈ Rn, ν ∈ H

(Tnν, x)Rn =
1

n

n∑
i=1

Liνxi = (
1

n

n∑
i=1

xiηi, ν).

Hence T ∗nx = 1
n

∑n
i=1 xiηi. We have shown Un = T ∗nTn, and is therefore self-adjoint.

To show Un is positive semi-definite then we need

(Unν, ν) ≥ 0

for all ν ∈ H. This follows easily as

(Unν, ν) =
1

n

n∑
i=1

(Liν)2 ≥ 0.

For compactness of Un (for n fixed) let ν(m) be a sequence with ‖ν(m)‖ ≤ 1. Since

|Liν(m)| ≤ α for every ω ∈ Ω′, there exists a convergent subsequence mp such that

Liν
(mp) → κi ∀i = 1, 2, . . . , n say.

So Unν(mp) → 1
n

∑n
i=1 ηiκi ∈ H as mp →∞. Therefore each Un is compact.

Using the basis whose existence is implied by the previous lemma, we can bound the

first term on the RHS of (5.8).

Lemma 5.3.11. Under Assumptions 4.1-4.4 defineGn,λn andUn by (5.3) and (5.9) respectively.

Then with probability one we have

‖G−1
n,λn

Un‖L(H,H) ≤ 1

for all n.

Proof. First note that dim(Ran(Un)) = dim(span{η1, . . . , ηn}) ≤ n. Without loss of generality

we will assume dim(Ran(Un)) = n (else we can assume the dimension is mn where mn ≤ n is

an increasing sequence). Clearly χ1 is a self-adjoint, bounded and compact operator on Ran(Un)

as is Un by Lemma 5.3.10. Therefore there exists a simultaneous diagonalisation of Un and χ1

on Ran(Un). I.e. there exists β(n)
j , γ

(n)
j and φ(n)

j such that

Unψ
(n)
j = β

(n)
j ψ

(n)
j and χ1ψ

(n)
j = γ

(n)
j ψ

(n)
j

for all j = 1, 2, . . . , n. Furthermore ψ(n)
j form an orthonormal basis of Ran(Un). Since χ1 and
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Un are both semi-positive definite then β(n)
j , γ

(n)
j ≥ 0. We have

Gn,λnψ
(n)
j = Unψ

(n)
j + λnχ1ψ

(n)
j =

(
β

(n)
j + λnγ

(n)
j

)
ψ

(n)
j .

So,

G−1
n,λn

ψ
(n)
j =

1

β
(n)
j + λnγ

(n)
j

ψ
(n)
j .

In particular this shows that

G−1
n,λn

Un : H → Ran(Un).

Assume µ ∈ H, ν ∈ Ran(Un), then

µ =

n∑
i=1

(µ, ψ
(n)
i )ψ

(n)
i + µ̂ and ν =

n∑
i=1

(ν, ψ
(n)
i )ψ

(n)
i

where µ̂ ∈ Ran(Un)⊥. Therefore,

(Unµ, ψ
(n)
j ) =

n∑
i=1

(µ, ψ
(n)
i )(Unψ

(n)
i , ψ

(n)
j ) = β

(n)
j (µ, ψ

(n)
j )

(G−1
n,λn

ν, ψ
(n)
j ) =

n∑
i=1

(ν, ψ
(n)
i )(G−1

n,λn
ψ

(n)
i , ψ

(n)
j ) =

1

β
(n)
j + λnγ

(n)
j

(ν, ψ
(n)
j ).

Which implies

(G−1
n,λn

Unµ, ψ
(n)
j ) =

1

β
(n)
j + λnγ

(n)
j

(Unµ, ψ
(n)
j ) =

β
(n)
j

β
(n)
j + λnγ

(n)
j

(µ, ψ
(n)
j ).

Hence

‖G−1
n,λn

Unµ‖2 =

n∑
j=1

(G−1
n,λn

Unµ, ψ
(n)
j )2

=
n∑
j=1

(
β

(n)
j

β
(n)
j + λnγ

(n)
j

)2

(µ, ψ
(n)
j )2

≤
n∑
j=1

(µ, ψ
(n)
j )2

≤ ‖µ‖2.

This proves the lemma.

We now focus on bounding ‖G−1
n,λn

ν(n)‖ where ν(n) = 1
n

∑n
i=1 εiηi.

Lemma 5.3.12. Under Assumptions 4.1-4.5 define Gn,λn by (5.3). Then

E

∥∥∥∥∥ 1

n

n∑
i=1

εiG
−1
n,λn

ηi

∥∥∥∥∥
2
∣∣∣∣∣∣Gn

 = O(1) almost surely.
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Proof. Recalling B from the proof of Lemma 5.2.1, we have

(Gn,λnµ, µ) = B(µ, µ) ≥ λn‖µ‖21.

This implies ‖Gn,λnµ‖ ≥ λn‖µ‖1. By Lemma 5.2.1 there exists a well defined inverse ofGn,λn
at ηi, hence we let µ = G−1

n,λn
ηi and we have

‖G−1
n,λn

ηi‖1 ≤
1

λn
‖ηi‖ ≤

α

λn
.

Now, define ν(n) = 1
n

∑n
i=1 εiηi and

E
[∥∥∥G−1

n,λn
ν(n)

∥∥∥2

1

∣∣∣∣Gn] a.s.
=
σ2

n2

n∑
i=1

∥∥∥G−1
n,λn

ηi

∥∥∥2

1

≤ α2σ2

nλ2
n

.

Combined with Lemma 5.3.8 (theH0 bound) this proves the lemma.

Recalling (5.8) and via Lemmas 5.3.11 and 5.3.12 we obtain the following asymptotic

bound on minimizers inH.

Theorem 5.3.13. Under Assumptions 4.1-4.5 we have

E
[
‖µ(n)‖2|Gn

]
= O(1) almost surely. (5.10)

This is a stronger result than we needed; we were only required to show that ‖µ(n)‖ is

bounded in probability. Taking expectation of (5.10) one has

E‖µ(n)‖2 = O(1).

Hence applying Chebyshev’s inequality we may conclude that ‖µ(n)‖ = Op(1).

Corollary 5.3.14. Under Assumptions 4.1-4.5 we have ‖µ(n)‖ = Op(1).

We conclude this section with a brief analysis of the rate of convergence. For any F ∈
H∗, by the Riesz Representation Theorem, there exists ξ ∈ H such that F (µ) = (µ, ξ) for all

µ ∈ H. Hence

F (µ(n))− F (µ†) = ((G−1
n,λn

Un − Id)µ† +G−1
n,λn

ν(n), ξ)

where ν(n) = 1
n

∑n
i=1 εiηi. DecomposingH intoH = Ran(Un)⊕ Ran(Un)⊥ one can write

F (µ(n))− F (µ†) =
((
G−1
n,λn

Un − χRan(Un)

)
µ†, ξ

)
−
(
χRan(Un)⊥µ

†, ξ
)

+
(
G−1
n,λn

ν(n), ξ
)

=

n∑
j=1

−λn
β

(n)
j + λn

(
µ†, ψ

(n)
j

)(
ψ

(n)
j , ξ

)
−
(
χRan(Un)⊥µ

†, ξ
)

+
(
G−1
n,λn

ν(n), ξ
)
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where χRan(Un)
is the projection onto Ran(Un). The first term is of order 1 and the third term,

by the proof of Lemma 5.3.12, is of order 1√
nλn

. The second term is independent of λn.

Theorem 5.3.15. Under Assumptions 4.1-4.6, for F ∈ H∗ take ξ ∈ H such that F (µ) = (µ, ξ)

and assume there exists q > 1
2 such that∣∣∣(ξ, ψ(j)
j

)∣∣∣ . j−q and
∣∣∣(µ†, ψ(j)

j

)∣∣∣ . j−q

where {ψ(n)
j }nj=1 are the set of orthonormal functions that span the range of Un. Then, for all

0 < δ < 1− 1
2q , we have

E
[
|F (µ(n))− F (µ†)| |Gn

]
= O(1) +O

(
n−2qδ

)
+O

(
1

λn
√
n

)
almost surely.

Proof. Let A be such that ∣∣∣(ξ, ψ(j)
j

)∣∣∣ , ∣∣∣(µ†, ψ(j)
j

)∣∣∣ ≤ Aj−q.
We are left to show that (

χRan(Un)⊥µ
†, ξ
)

= O
(
n−2qδ

)
.

Now since dim(Uj) = j we can assume that ψ(j+1)
j+1 is orthogonal to ψ

(j)
j . Hence the set

{ψ(j)
j }∞j=1 forms an orthonormal basis forH.

For any 1 > δ > 0 one has

n2qδ
(
χRan(Un)⊥µ

†, ξ
)

= n2qδ

∣∣∣∣∣∣
∞∑

j=n+1

(
µ†, ψ

(j)
j

)(
ψ

(j)
j , ξ

)∣∣∣∣∣∣ ≤ A2
∞∑
j=1

(
nδ

j + n

)2q

.

A simple maximization argument shows

nδ

j + n
≤
(
δ − 1

δj

)1−δ
for all j.

Hence

n2qδ
(
χRan(Un)⊥µ

†, ξ
)
≤ A2

(
δ − 1

δ

)2q(1−δ) ∞∑
j=1

1

j2q(1−δ)

where the above sum is finite for δ < 1− 1
2q . Which proves∣∣∣(χRan(Un)⊥µ
†, ξ
)∣∣∣ = O

(
n−2qδ

)
for all δ < 1− 1

2q .

Remark 5.3.16. Since µ†, ξ ∈ H and {ψ(j)
j }∞j=1 form an orthonormal set inH,

‖µ†‖2 ≥
∞∑
j=1

(µ†, ψ
(j)
j )2
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and similarly for ξ. It immediately follows that there exists q ≥ 1
2 and A such that∣∣∣(µ†, ψ(j)

j

)∣∣∣ ≤ Aj−q and
∣∣∣(ξ, ψ(j)

j

)∣∣∣ ≤ Aj−q.
The application of the above theorem requires the slightly stronger assumption that q > 1

2 .

5.3.4 Sharpness of the Scaling Regime - Proof of Theorem 5.3.3

Proof of Theorem 5.3.3. Fix any α > 0 and without loss of generality we can choose {ηt}t∈I
such that ‖ηt‖ = α for all t ∈ I. Define Lt ∈ H by Lt = (ηi, ·).

In the proof of Lemma 5.2.1 we showed

|(Gn,λnµ, ν)| ≤ (α2 + λn)‖µ‖‖ν‖.

Letting ν = Gn,λnµ, for µ ∈ span{η1, . . . , ηn}, one has

‖Gn,λnµ‖2 ≤ (α2 + λn)‖µ‖‖Gn,λnµ‖.

And hence

‖Gn,λnµ‖ ≤ (α2 + λn)‖µ‖.

Which implies

‖G−1
n,λn

µ‖ ≥ 1

α2 + λn
‖µ‖.

Now, for ν(n) = 1
n

∑n
i=1 εiηi, we consider

E
[
‖G−1

n,λn
ν(n)‖2

∣∣∣Gn] ≥ 1

(α2 + λn)2
E
[
‖ν(n)‖2|Gn

]
a.s.
=

σ2α2

λ2
nn(α2 + λn)2

→∞

as λ2
nn→∞. Hence by taking expectations:

E
[
‖G−1

n,λn
ν(n)‖2

]
→∞.

By noting

E
[
‖µ(n)‖2

]
= E

[
‖G−1

n,λn
Unµ

†‖2
]

+ E
[
‖G−1

n,λn
ν(n)‖2

]
we conclude the proof.

5.4 Application to the Special Spline Model

Consider the application to the special spline case, Liµ = µ(ti). We let

H = Hm :=
{
g : [0, 1]→ R s.t ∇ig abs. cts. for i = 1, 2, . . . ,m− 1 and ∇mg ∈ L2

}
.
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For m ≥ 1, H is a reproducing kernel Hilbert space and therefore Li as defined are linear and

bounded operators on H. See [25, 171] for more details on reproducing kernel Hilbert spaces.

This section discusses the following points.

1. The decompositionH = H0 ⊕H1 whereH0 is finite dimensional.

2. The function ηt corresponding to (ηt, µ) = Ltµ = µ(t).

The other assumptions needed to apply Theorem 5.3.1 are Assumption 4.3 and Assumption 4.6.

Assumption 4.3 is

µ(t) = µ(r) for all polynomial µ of degree at most m− 1 then t = r

which clearly holds. Assumption 4.6 becomes∫ 1

0
|ν(t)|2φT (dt) = 0⇔ ν = 0

which, for example, is true if φT (dt) = φ̂T (t) dt and φ̂T (t) > 0 for all t ∈ [0, 1].

1. The decomposition H = H0 ⊕ H1. For µ ∈ H by Taylor expanding µ from 0 we can

write:

µ(t) =
m−1∑
i=0

∇iµ(0)

i!
ti +R(t)

where∇iR(0) = 0 for all i = 0, 1, . . . ,m− 1. Hence R ∈ H1 where

H1 =
{
g ∈ Hm : ∇ig(0) = 0 for all i = 0, 1, . . . ,m− 1

}
.

A Poincaré inequality holds on this space so ‖µ‖21 =
∫ 1

0 |∇
mµ(t)|2 dt is a norm onH1.

We defineH0 to be the span of the functions ζi defined by

ζi(t) =
ti

i!
for i = 0, 1, . . . ,m− 1.

The space is coupled with the inner product

(µ, ν)0 =

m−1∑
i=0

∇iµ(0)∇iν(0).

The spaceH0 has dim(H0) = m.

2. The functions ηt. In the above R is given by

R(t) =

∫ 1

0

(t− u)m−1
+

(m− 1)!
∇mµ(u) du =

∫ 1

0
G(t, u)∇mµ(u) du
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where (u)+ = max{0, u} and

G(t, u) =
(t− u)m−1

+

(m− 1)!

is the Green’s function for ∇mµ = ν and boundary conditions ∇jµ(0) = 0 for all 0 ≤ j ≤
m− 1.

We claim that ηt ∈ Hm satisfying (ηt, µ) = µ(t) are given by

ηt(r) =

m−1∑
i=0

ζi(t)ζi(r) +

∫ 1

0
G(t, u)G(r, u) du =: η0

t (r) + η1
t (r).

Furthermore η0
t ∈ H0 and η1

t ∈ H1 for all t ∈ [0, 1]. The proof follows directly from calculating

(ηt, µ) =
m−1∑
i=0

∇iηt(0)∇iµ(0) +

∫ 1

0
∇mηt(u)∇mµ(u) du

and noticing

∇iηt(r) =
m−1∑
j=1

ζj(t)
[
∇iζj(r)

]
r=0

= ζi(t) for i < m

∇mηt(r) = ∇mr
∫ 1

0
G(t, u)G(r, u) du = G(t, r).

One can easily show that ‖ηt‖ ≤ 1 for all t ∈ [0, 1].

Continuity of ηt follows easily. As each polynomial is Lipschitz continuous on the

interval [0, 1], there exists a constant Ci (depending on the order of the polynomial i) such that

|ζi(t)− ζi(s)| ≤ Ci|t− s|. Now for the integral term let m ≥ 2 and s ≥ t then:∣∣∣∣∫ 1

0
(G(s, u)−G(t, u))G(r, u) du

∣∣∣∣
=

∣∣∣∣∫ 1

0

(
Is>u

(s− u)m−1

(m− 1)!
− It>u

(t− u)m−1

(m− 1)!

)
G(r, u) du

∣∣∣∣
≤
∫ s

t

(s− u)m−1

(m− 1)!
G(r, u) du+

1

(m− 2)!

∫ t

0
|s− t| g(r, u) du

≤ m|s− t|
[(m− 1)!]2

.

The case m = 1 is similar. It follows that ‖Ls − Lt‖H∗ = ‖ηs − ηt‖ ≤ C|s − t| for some

C <∞ and hence Lt is continuous.
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Chapter 6

Asymptotic Analysis of the
Ginzburg-Landau Functional on Point
Clouds

Abstract

The Ginzburg-Landau functional is a phase transition model which is suitable for

clustering or classification type problems. We study the asymptotics of a sequence

of Ginzburg-Landau functionals with anisotropic interaction potentials on point

clouds Ψn where n denotes the number data points. In particular we show the

limiting problem, in the sense of Γ-convergence, is related to the total variation

norm restricted to functions taking binary values; which can be understood as a

surface energy. We generalize the result known for isotropic interaction potentials

to the anisotropic case and add a result concerning the rate of convergence.

6.1 Introduction

6.1.1 Finite Dimensional Modeling

Graphical models are used across a very broad spectrum of problems from social science type

problems, such as identifying communities [51, 65, 130, 166, 175], to image segmentation [20,

84], to cell biology [33], to modeling the world wide web [24, 31, 33, 62] and many more.

We use an anisotropic model which, for example, is suitable for cosmological models [83,101],

modeling outbreaks of disease [99] and image recognition [178]. With this type of problem there

is often no data generating model available. For example in [84] the authors use a graphical

model to identify features in a picture. In problems of this type there is no physical model.

For this reason graphical models are a very popular choice of modeling technique. The types

of problems that motivate the graphical modeling methodology can be seen more generally as

clustering or classification problems.

The problem is given data Ψn = {ξi}ni=1 ⊂ X where X ⊂ Rd find µ : Ψn → R that

labels each data point. The labeling is constructed so that µ(ξi) = 0 means that ξi is associated
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Figure 6.1: An example graph. For the classifier estimates see Figure 6.2.

with the cluster labeled 0 and µ(ξi) = 1 means that ξi is associated with the cluster labeled 1.

For a finite number of observations we allow a soft classification however the scaling is chosen

such that in the data rich limit classifiers are binary valued. The motivation for our approach is

to validate approximating the hard classification problem by a soft classification problem. The

soft classification problem is in general numerically easier [68] and therefore more appealing

to the practitioner. However one also wants to be precise in regards to which class a data point

belongs. Minimizers of the Ginzburg-Landau functional are used as a classification tool [163]

in order to allow for phase transitions which allow a soft classification approach whilst also

penalizing states that are not close to a hard classification. A consequence of our proofs is an

insight into the ratio of data points that receive a hard classification, i.e. the asymptotic behavior

of {ξi : µ(ξi) ∈ {0, 1}}.
Another important application for this work is in designing classifiers. By not assuming

that the model is isotropic we allow greater flexibility which allows one to choose some features

as more important than others. The next subsection contains a simple example which shows

how the design choice can affect the classification. In particular one can use the methodology

to map infinite dimensional data onto a finite dimensional space in order to classify the infinite

dimensional data set.

Assessing the validity of such an approach is of high importance. This is especially true

as one cannot intuitively link the model to the data generating process. When one can make

such a connection then the model can be heuristically motivated. Without such connection one

needs to do more in order to justify the approach.

The primary results of this chapter concern showing that µ(n) converges to a minimizer

of a limiting model. We also give some preliminary results into characterizing the rate of con-

vergence in a simplified example. We believe these results will hold under more generality than

stated here and it is the objective of ongoing work to extend them.

Our approach is motivated by [5, 69, 163]. Classifiers are constructed as the solution of

a variational problem which is common in statistical problems, e.g. maximum likelihood and

maximum-a-posterior problems. In particular minimizers of the Ginzburg-Landau funtional, a

phase transition model popular in material science and image segmentation, are used as classi-
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fiers. Classifiers µ(n) : Ψn → R are constructed as follows. Let V : R→ [0,∞) be a potential

such that states taking the value 0 or 1 is favored. For example V (t) = t2(t − 1)2. A graph is

constructed by taking the vertices as the set Ψn and weighting edges

Wij = ηε(ξi − ξj)

for ηε : Rd → [0,∞) and we say that there is an edge between ξi and ξj ifWij > 0, for example

see Figure 6.1. Assume that ηε : Rd → [0,∞) is of the form

ηε(x) =
1

εd
η (x/ε) (6.1)

with scaling parameter ε ∈ (0,∞) and η : Rd → [0,∞). For example one (isotropic) choice

of η is η(x) = 1 if |x| < 1 and η(x) = 0 if |x| ≥ 1. For a function µ on Ψn the graph energy

En(µ(n)) ∈ [0,∞] is defined by

En(µ) =
1

ε

1

n

n∑
i=1

V (µ(ξi)) +
1

ε

1

n2

∑
i,j

Wij |µ(ξi)− µ(ξj)|. (6.2)

Our classifier to the clustering problem is then given as the minimizer of (6.2).

This is similar to the approach taken in [69] where they consider pairwise interactions

only. In particular one can define the graph total variation by

GTVn(µ) :=
1

ε

1

n2

∑
i,j

Wij |µ(ξi)− µ(ξj)|. (6.3)

In the special case that µ(ξi) ∈ {0, 1} this reduces to the graph cut of Ψn, i.e. if µ−1(0) = A0

and µ−1(1) = A1 then

GTVn(µ) =
1

ε

1

n2

∑
ξi∈A0

∑
ξj∈A1

Wij .

We wish to allow for soft clustering however the total variation term is not enough to be able

to do this informatively. The clustering approach is made more robust by including a first

order term which penalizes associating a data point to more than one cluster. See, for example,

Figure 6.2 for a comparison. It is not trivial that the convergence results in [69] will survive

adding a penalty term.

Finding minimizers of En is also an important problem but is not addressed in this thesis.

We instead refer to [29, 30] for numerical methods.

6.1.2 Example: Classification Dependence on the Choice of η

Through a toy problem we demonstrate how the interaction potential can be used to pick out

features of the practitioners choice. Data points are functions fi : [0, 1] → R generated from

four classes. For a fixed α the interaction potential η : L2([0, 1])→ [0,∞) is defined by

η(f) =

 1 if
∣∣∣ (‖f‖L2 , ‖∇f‖L2)

∣∣∣
α
≤ 1

0 otherwise
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Figure 6.2: The top row shows the minimizers of En and the bottom row shows the minimizers
of GTVn for the graph given in Figure 6.1 conditioned on the node closest to each corner taking
either 0 or 1. The left column is conditioned to have 0 in the bottom corners and 1 in the top
corners. The right column has 0 in the bottom left and top right corners and 1 in the top left and
bottom right corners. There is very little difference between the outputs on the left but on the
right the GTVn term fails to pick out the singularity at the center.

where | · |α is a transformed Euclidean norm on R2:

|x|2α = x2
1(1− α) + x2

2α.

For α ≈ 1 the potential favors vertical interactions whilst for α ≈ 0 the potential favors horizon-

tal interactions. As α varies from 1
8 to 7

8 the energy En changes behavior by assigning a lower

energy to a vertical partitioning of the data (compared with a horizontal partitioning). More

precisely, let

µ(1)(fi) =

{
1 if ‖∇fi‖L2 ≤ c1

0 otherwise

µ(2)(fi) =

{
1 if ‖fi‖L2 ≤ c2

0 otherwise.

Then define

∆En = En(µ(1))− En(µ(2)).

The results are given in Figure 6.3. The results show that functions with similar L2 norms are

clustered together for smaller α and as α increases the classification favors functions whose

derivatives have similar L2 norm.

90



5 10 15 20 25
15

20

25

30

35

‖fi‖L2

‖∇
f i
‖ L

2

0 0.2 0.4 0.6 0.8 1

−2

0

2

·10−2

α

∆
E n

Figure 6.3: Random functions are projected onto R2 by fi 7→ (‖fi‖L2 , ‖∇fi‖L2). The distribu-
tion of the functions is chosen so that each random function falls in one of four classes which
can be seen in the figure on the left. The interactions are parameterized by a potential α which
favors horizontal partitions for α ≈ 0 and vertical partitions for α ≈ 1 as shown by the figure
on the right.

6.1.3 The Limiting Model

Rather surprisingly the problem of soft classifications for finite data sets and hard classification

in the limit has received relatively little attention in the literature. However it is well known that

for finite data one can recover the k-means algorithm (hard classification) from the expectation-

maximization algorithm (soft classification) in the zero-variance limit for the Gaussian mixture

model and the Dirichlet process mixture model [92, 106].

The results of this chapter concern the asymptotics of the minimum and minimizers of

En, where ε = εn and εn → 0 as n → ∞. The advantages of scaling εn to zero are two-

fold. The first is that the matrix W = (Wij)ij is sparse and therefore the minimization is

numerically easier. The second is to improve resolution of the boundary. One can think of soft

classification as estimating the probability that a data point belongs to a certain class and the

hard classification problem as estimating the boundaries where one class is more likely than

all others. By scaling εn → 0 it will be shown that the limiting minimization problem is a

hard classification. For example, Figure 6.4 shows (for a fixed number of data points) improved

resolution in the boundary between clusters as ε→ 0. See also [68].

Define E∞ : L1(X)→ [0,∞] by

E∞(µ) =

{ ∫
∂{µ=1} σ(n(x))ρ2(x) dHd−1(x) if µ ∈ L1(X; {0, 1})
∞ otherwise

(6.4)

where n(x) is the outward unit normal for the set ∂{µ = 1}, Hd−1 is the d − 1 dimensional

Hausdorff measure and

σ(ν) =

∫
Rd
η(x)|x · ν| dx. (6.5)

One can also define E∞ by

E∞(µ) =

{
TV (µ; ρ, η) if µ ∈ L1(X; {0, 1})
∞ otherwise

where TV is defined by (2.1-2.3). It will be shown, in the sense of Γ-convergence, that E∞
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Figure 6.4: Both figures were classified using the Ginzburg-Landau functional. The one on the
left used a larger ε than the one on the right. The figure shows that the smaller value of ε gives
a much better resolution in the boundary.

is the limiting problem and any sequence such that supn∈N En(µ(n)) < ∞ is precompact. In

particular this allows one to apply the results of this chapter to infer the consistency of the

constrained minimization problem (see Section 6.2.1 and Chapter 7).

Note that since each µ(n) is defined on a different space (the domain of each µ(n) is

Ψn) that it is not straightforward what is meant by convergence of µ(n) → µ(∞). We use the

results of Section 2.5 to define a map Tn : X → Ψn so that one can compare µ(n) to µ(∞).

Approximately we can say µ(n) → µ(∞) in TL1 if µ(n) ◦ Tn → µ(∞) in L1.

We also include preliminary results towards characterizing the rate of convergence by

considering a simple example when µ = IE for a polyhedral set E ⊂ X and looking at the

convergence in mean square:

E |En(µ)− E∞(µ)|2 = E |GTVn(µ)− TV (µ; ρ, η)|2 .

It is shown that the above convergence is dominated by a bias due to approximating edges of

the set E and is of order O(ε2n). The second largest term corresponds to the convergence along

faces of E and obeys a κ
n decay for a given constant κ. A further overview of these results is

given in Section 6.2.2 and the proofs in Section 6.5.

The outline of the chapter is as follows. In Section 6.2 we state the main result, The-

orem 6.2.2 (the convergence of the unconstrained minimization problem). We also include an

overview of the preliminary rate of convergence results to be found in Section 6.5. In Sec-

tion 6.3 the proof of the first part of Theorem 6.2.2 (the compactness result) is given. And in

Section 6.4 the proof is completed with the Γ-convergence result. Finally in Section 6.5 we

make the preliminary calculation regarding the rate of convergence of “En → E∞”.

6.2 Main Results and Assumptions

Throughout this chapter X ⊂ Rd where d ≥ 2 is open, connected and bounded with Lipschitz

boundary.

The data points ξi are assumed to be independent and identically distributed (iid) from

a probability measure P supported on X which has density (with respect to the Lebesgue mea-

sure) ρ. It is assumed that ρ is continuous on X and bounded above and below by strictly

positive constants, i.e. there exists constants 0 < c ≤ C <∞ such that c ≤ ρ(x) ≤ C for every

x ∈ X , and ρ(x) = 0 for every x ∈ Rd \X .
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To reduce computational expense and increase boundary resolution one should scale the

graph edge weights to zero as quickly as possible. Our proofs require the following lower bound

on εn:

lim
n→∞

nεdn
log n

=∞ if d ≥ 3 (6.6)

lim
n→∞

nε2n

(log n)
3
2

=∞ if d = 2. (6.7)

The lower bound is required to ensure the graph with vertices Ψn and edges weighted by Wij

is (with probability one) connected [121, Theorem 13.2]. Furthermore by application of Theo-

rem 2.5.1 there exists an optimal transport map Tn : X → Ψn that one can use to define the

convergence of µ(n) → µ(∞) where µ(n) ∈ L1(Ψn) and µ(∞) ∈ L1(X) and

‖Tn − Id‖L∞(X)

εn
→ 0.

The assumptions on V and η are given in the following definition.

Definition 6.2.1. We say that the pair (V, η) where V : R → [0,∞) and η : Rd → [0,∞) are

admissible if

1.
∫
Rd η(y)|y| dy <∞,

2. η satisfies the following strengthened Lipschitz condition: there exists L such that for all

x, y ∈ Rd:

|η(x)− η(y)| ≤ Lmax {η(x), η(y)} |x− y|,

3. η(0) > 0,

4. there exists two decreasing functions η−, η+ : [0,∞)→ [0,∞) and constants γ1, γ2 > 0

such that for all x ∈ Rd

η−(|x|) ≤ η(x) ≤ η+(|x|) and η+(|x|) ≤ γ1η
−(|x|/γ2),

5. V (y) = 0 if and only if y ∈ {0, 1},

6. V is continuous,

7. there exists r > 0 and τ > 0 such that if |t| ≥ r then V (t) ≥ τ |t|.

Remark 6.2.1. A sufficient condition for condition 2 in Definition 6.2.1 is that η ∈ C1(Rd)
satisfies the following:

1. there exists L1 such that for all x, y ∈ Rd and t ∈ [0, 1]

|∇η(tx+ (1− t)y)| ≤ L1t |∇η(x)|+ L1(1− t) |∇η(y)| ,

2. there exists L2 such that |∇η(x)| ≤ L2η(x) for all x ∈ Rd.
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When the above holds then so does condition 2 with L = L1L2.

Note that the integrability condition on η implies that σ(ν) < ∞ for all ν ∈ Rd. We

now state the main result.

Theorem 6.2.2. Let X ⊂ Rd for d ≥ 2 be a bounded, open, connected domain with Lipschitz

boundary and P a probability distribution with support on X and density ρ. Assume that ρ

is continuous and bounded above and below by strictly positive constants on X . The data is

distributed ξi
iid∼ P and let Ψn = {ξi}ni=1. Let εn → 0 be a sequence satisfying the bound (6.6)

if d ≥ 3 or (6.7) if d = 2. For any function µ(n) on Ψn define En(µ(n)) ∈ [0,∞] by (6.2)

where the weights Wij are given by Wij = ηεn(ξi − ξj) and ηεn is given by (6.1). Define

E∞ : L1(X) → [0,∞] by (6.4-6.5). Assume (V, η) are admissible functions. Then, with

probability one, the following hold

1. Compactness: Let µ(n) be a sequence of functions on Ψn such that supn∈N En(µ(n)) <

∞ then µ(n) is relatively compact in TL1 and each cluster point is in BV (X; ρ, η) ∩
L1(X; {0, 1}).

2. Γ-limit: we have

Γ- lim
n→∞

En = E∞.

The compactness result is proved in Proposition 6.3.1 and the Γ-convergence result in

Theorem 6.4.1. We apply the above theorem for when η = IE in the following corollary.

Corollary 6.2.3. Let X ⊂ Rd for d ≥ 2 be a bounded, open, connected domain with Lipschitz

boundary and P a probability distribution with support on X and density ρ. Assume that ρ

is continuous and bounded above and below by strictly positive constants on X . The data is

distributed ξi
iid∼ P and let Ψn = {ξi}ni=1. Let εn → 0 be a sequence satisfying the bound (6.6)

if d ≥ 3 or (6.7) if d = 2. For any function µ(n) on Ψn define En(µ(n)) ∈ [0,∞] by (6.2) where

the weights Wij are given by Wij = ηεn(ξi − ξj) and ηεn is given by (6.1) where η = IE for

an open, bounded set E with Lipschitz boundary and 0 ∈ E. Define E∞ : L1(X) → [0,∞]

by (6.4-6.5). Assume V satisfies condition 5 to 7 in Definition 6.2.1. Then, with probability one,

the following hold

1. Compactness: Let µ(n) be a sequence of functions on Ψn such that supn∈N En(µ(n)) <

∞ then µ(n) is relatively compact in TL1 and each cluster point is in BV (X; ρ, η) ∩
L1(X; {0, 1}).

2. Γ-limit: we have

Γ- lim
n→∞

En = E∞.

Proof. The compactness property holds analogously to Proposition 6.3.1 in Section 6.3. For the

Γ-convergence define

η(δ)(x) =

{
α if x ∈ E
α exp

(
−dist(x,∂E)

δ

)
otherwise.
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Note that η(δ) ≥ η and η(δ) satisfies condition 2 in Definition 6.2.1 which in light of Re-

mark 6.2.1 is not difficult to check. Verifying conditions 1 and 3 for η(δ) is trivial and one

can show that for all δ

η−(t) =

{
α if x ∈ B(0, r)

α exp
(
−dist(x,∂B(0,r))

δ

)
otherwise

η+(t) =

{
α if x ∈ B(0, R)

α exp
(
−dist(x,∂B(0,R))

δ

)
otherwise

satisfies

η−(|x|) ≤ η(δ)(x) ≤ η+(|x|) and η+(|x|) ≤ η−
(
r|x|
R

)
,

where r andR are chosen so thatB(0, r) ⊆ E ⊆ B(0, R). Hence η(δ) is an admissible function.

Also observe that η(δ) ≥ η. The liminf inequality then follows from

lim inf
n→∞

GTVn(µ(n); η) ≤ lim inf
n→∞

GTVn(µ(n); η(δ)) for any δ

≤ TV (µ; ρ, η(δ)) by Lemma 6.4.3

→ TV (µ; ρ, η) as δ → 0 by the monotone convergence theorem.

The recovery sequence is similar by redefining the approximation

η(δ)(x) =

{
0 if x ∈ Rd \ E
α exp (−δdist(x, ∂E)) otherwise,

applying Lemma 6.4.4 and the monotone convergence theorem as δ → 0.

6.2.1 Comments on the Main Result

The classical Ginzburg-Landau functional:

Fε(µ) =
1

ε

∫
X
V (µ(x)) dx+

1

ε

∫
X2

ηε(x− y) |µ(x)− µ(y)|2 dx dy

has been well studied and its convergence to a total variation functional

F0(µ) =

∫
{µ=1}

ση(n(x)) dHd−1(x)

known for some time [5,114]. More recent results have studied this functional on a (determinis-

tic) regular graph. In [163] the authors show the Γ-convergence and compactness of two variants

of the Ginzburg-Landau functional where {ξi}ni=1 ⊂ R2 form a 4-regular graph. Let us exploit

the structure of the graph by writing data as {ξi,j}ni,j=1 where ξi,j , ξi,j+1 are neighbors, as are
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ξi,j and ξj+1,i. The two variants of the Ginzburg-Landau functional considered in [163] are

hn,ε(µ) =
1

ε

n∑
i,j=1

V (µ(ξi,j)) +
1

n

n∑
i,j=1

(
|µ(ξi+1,j)− µ(ξi,j)|2 + |µ(ξi,j+1)− µ(ξi,j)|2

)
kn,ε(µ) =

1

εn2

n∑
i,j=1

V (µ(ξi,j)) + ε
n∑

i,j=1

(
|µ(ξi+1,j)− µ(ξi,j)|2 + |µ(ξi,j+1)− µ(ξi,j)|2

)
.

The first functional hn,ε Γ-converges as ε→ 0 (for a fixed n to a total variation function hn,0 in

a discrete setting defined by

hn,0(µ) ={
1
n

∑n
i,j=1

(
|µ(ξi+1,j)− µ(ξi,j)|2 + |µ(ξi,j+1)− µ(ξi,j)|2

)
if µ ∈ L1(Ψn; {0, 1})

∞ otherwise.

As ε → 0 and n → ∞ sequentially or for ε = n−α for α within some range then hn,ε Γ-

converges to an anisotropic total variation in a continuous setting

Γ- lim
n→∞
ε→0

hn,ε =

∫
T2

∣∣∣∣∂µ∂x
∣∣∣∣+

∣∣∣∣∂µ∂y
∣∣∣∣

and kn,ε Γ-converges to an isotropic total variation

Γ- lim
n→∞
ε→0

kn,ε =

∫
T2

|∇µ|

upto renormalization. Also discussed in [163] is the application to the constrained minimization

problem

Convergence of the Graph Total Variation. As a consequence of our proofs a very similar

result holds for GTVn. In particular it is shown:

1. Compactness: Let µ(n) be any sequence of functions on Ψn such that µ(n) is bounded

in TL1 and supn∈NGTVn(µ(n)) < ∞ then µ(n) is relatively compact in TL1 and each

cluster point is in BV (X; ρ, η) ∩ L1(X; {0, 1}).

2. Γ-limit: we have

Γ- lim
n→∞

GTVn = TV (·; ρ, η).

The same result can be found in [69] for the isotropic case. A key contribution of [69], and the

related paper [70], is to identify the scale at which interactions between nodes is important and

define a notion of convergence suitable for comparing functions on different domains.

Convergence of minimizers. The results of the Theorem 6.2.2 can be understood as implying

the convergence of minimizers in the following sense. For a sequence of closed sets Θn ⊆
L1(Ψn) and Θ ⊆ L1(X) which we assume respect the Γ-convergence, that is if ζ ∈ Θ then
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ζ(n) := ζ
∣∣
Ψn
∈ Θn, there exists ζ ∈ Θ such that E∞(ζ) < ∞ and ζ(n) → ζ implies ζ ∈ Θ if

ζ(n) ∈ Θn. Then (with probability one):

1. limn→∞ infΘn En = minΘ E∞, and

2. if µ(n) ∈ L1(Ψn) are a sequence of (almost-)minimizers of En then this sequence is

precompact in TL1 and furthermore any cluster point minimizes E∞.

The proof is a simple consequence of Theorem 6.2.2 and Theorem 2.2.1.

Alternatively one could let gn : L1(Ψn) → [0,∞) be a sequence that continuously

converges to g : L1(X) → [0,∞), i.e. gn(ζ(n)) → g(ζ) whenever ζ(n) → ζ in L1, and

then since the Γ-convergence is stable under continuous perturbations the results of this chapter

imply (with probability one) that

1. limn→∞ infL1(Ψn) (En + gn) = minL1(X) (E∞ + g), and

2. if µ(n) ∈ L1(Ψn) are a sequence of (almost-)minimizers of En + gn then this sequence is

precompact in TL1 and furthermore any cluster point minimizes E∞ + g.

For example one could use this in order to fit data, e.g.

gn(µ; ζ) = λ

∫
X
|µ(Tn(x))− ζ(x)| dx

where ζ is a known function (data) and Tn is a sequence of stagnating transport maps. In this

case g(µ) = λ
∫
X |µ(x)− ζ(x)| dx.

Choice of scaling. The natural choice of scaling in En between the two terms is not a-priori

obvious. One could write

En(µ) =
1

γn

n∑
i=1

V (µ(ξi)) +
1

εn

1

n2

∑
i,j

Wij |µ(ξi)− µ(ξj)|.

The proof of Theorem 6.3.1 requires γn
εn

= O(1). One can show that Theorem 6.2.2 holds for

γn = O(εn). For simplicity it is assumed that γn = εn.

Extension to Lp spaces. One does not have to use L1 type distances for finite data. Define

En(µ) =
1

εn

n∑
i=1

V (µ(ξi)) +
1

εpn

1

n2

∑
i,j

Wij |µ(ξi)− µ(ξj)|p .

Then the results of Theorem 6.2.2 hold for the same limiting energy E∞ assuming∫
Rd
η(y)|y|2p dy <∞.

In particular the convergence of almost minimizers is still in TL1.
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Size of the phase transition. Fix µ = IE ∈ BV (X; ρ, η) and define a sequence of functions

µ(n) = µ
∣∣
Ψn

. Then one has that the rate of convergence of µ(n) to µ in Lp is of order ‖Tn −

Id‖
1
p

L∞(X). In particular there is a phase transition around ∂E of width ‖Tn − Id‖
1
p

L∞(X).

6.2.2 Preliminary Results on the Rate of Convergence

We include some preliminary results concerning the rate of convergence for inf En → min E∞.

The problem is simplified by looking at the convergence GTVn(µ) → TV (µ; ρ, η) for µ = IE
where E is a polyhedral set. To characterize the rate of convergence we look for convergence in

mean square. It is first shown that

EGTVn(µ)→ TV (µ; ρ, η)

as n→∞. Even though (by Lemma 6.4.4) one has GTVn(µ)→ TV (µ; ρ, η) almost surely the

above convergence does not immediately follow. For example one needs to apply the dominated

convergence theorem in order to show almost sure convergence implies convergence in mean.

We state and prove the result in Theorem 6.5.1 in Section 6.5

After this result the statement and proof of convergence in mean square is given. In

particular, in Theorem 6.5.2 it is shown that

E |GTVn(µ)− TV (µ; ρ, η)|2 = O(ε2n) +
κ

n
+O

(
1

n2εd+1
n

)
(6.8)

for some constant κ given by

κ = 2|∂E|
∫
B(0,1)

∫
B(0,1)

min{|zd|, |yd|} dz dy − 4TV (µ; ρ, η)2.

The first term on the RHS of (6.8) corresponds to approximating µ along edges of E. It is

the error in the edges causes a bias in the estimate. For example if one considers the func-

tion µ = IH∩X where H is any half plane then µ is a polyhedral function with no edges

in X and then one can show EGTVn(µ) = TV (µ; ρ, η) and it follows from our proofs that

E |GTVn(µ)− TV (µ; ρ, η)|2 = κ
n +O

(
1

n2εd+1
n

)
.

These results are preliminary and are leading towards characterizing the rate of conver-

gence of the minima and minimum. Let Θn ⊂ L1(Ψn) and Θ ⊂ L1(X) be subsets so that

the minimization infµ∈Θn En and minµ∈Θ E∞ is non-trivial. In future works we aim to find the

convergence of infΘn En → minΘ E∞ and µ(n) → µ(∞) where {µ(n)}∞n=1 is a sequence of

almost minimizers of En over Θn and µ(∞) is a minimizer of E∞ in Θ.

6.3 The Compactness Property

In this section we prove the first part of Theorem 6.2.2 and establish that sequences bounded in

En are precompact in TL1 with cluster points in L1(X; {0, 1}). Our proofs compare En to its
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continuous analogue Cε : L1(X)→ [0,∞] defined by

Cε(µ) =
1

ε

∫
X
V (µ(x))ρ(x) dx+

1

ε

∫
X2

ηε(y − x) |µ(y)− µ(x)| ρ(x)ρ(y) dy dx. (6.9)

The transport map Tn between the measures Pn and P is used to compare a function µ(n) :

Ψn → R to its continuous version µ̃(n) : X → R, i.e. µ̃(n) = µ(n) ◦ Tn. One then uses standard

results to conclude the compactness of µ̃(n) in L1 and show that this implies compactness of

µ(n) in TL1.

Proposition 6.3.1. Under the same conditions as Theorem 6.2.2. If µ(n) ∈ L1(Ψn) is a se-

quence with

sup
n∈N
En(µ(n)) <∞

then, with probability one, there exists a subsequence µ(nm) and µ ∈ L1(X; {0, 1}) such that

µ(nm) → µ in TL1.

Proof. Recall the following preliminary compactness result. If {µ(n)}∞n=1 is a sequence in

L1(X) such that

sup
n∈N
Cεn(µ(n)) <∞, (6.10)

where Cεn : L1(X) → [0,∞] is defined by (6.9), then there exists a subsequence µ(nm) and

µ ∈ L1(X; {0, 1}) such that µ(nm) → µ in L1. A proof can be found, for example, in [5].

For clarity we will denote the dependence of η on En by En(·; η). Since η is continuous

at 0 and η(0) > 0 there exists b > 0 and a > 0 such that η(x) ≥ a for all |x| < b. Define η̃ by

η̃(x) = a for |x| < b and η̃(x) = 0 otherwise. As η̃ ≤ η then En(µ(n); η) ≥ En(µ(n); η̃).

Let Tn be such that Tn#P = Pn and the conclusions of Theorem 2.5.1 hold. We want

to show {µ(n) ◦ Tn}∞n=1 satisfies

sup
n∈N
Cε̃n(µ(n) ◦ Tn; η̃) <∞ (6.11)

for a sequence ε̃n > 0 with ε̃n → 0 and εn
ε̃n
→ 1 that will be chosen shortly. If so then by (6.10)

there exists a subsequence µ(nm) ◦ Tnm and µ ∈ L1(X; {0, 1}) such that µ(nm) ◦ Tnm → µ in

L1 and therefore µ(nm) → µ in TL1. To show (6.11) we write

Cε̃n(µ(n) ◦ Tn; η̃) =
1

ε̃n

∫
X
V (µ(n)(Tn(x))ρ(x) dx

+
1

ε̃n

∫
X2

η̃ε̃n(y − x)
∣∣∣µ(n)(Tn(x))− µ(n)(Tn(y))

∣∣∣ ρ(x)ρ(y) dy dx.

The first term is uniformly bounded, since by (2.9)

1

ε̃n

∫
X
V (µ(n)(Tn(x))ρ(x) dx =

εn
ε̃n

1

εn

n∑
i=1

V (µ(n)(ξi)).
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Assume that
∣∣∣y−xε̃n ∣∣∣ < b then

|Tn(x)− Tn(y)| ≤ |Tn(x)− x|+ |x− y|+ |y − Tn(y)|

≤ 2‖Id− Tn‖L∞(X) + |x− y|

≤ 2‖Id− Tn‖L∞(X) + bε̃n.

Choose ε̃n satisfying

2‖Tn − Id‖L∞(X) + bε̃n = bεn,

i.e. ε̃n = εn −
2‖Tn−Id‖L∞(X)

b . By the decay assumption on εn (6.6-6.7) for n sufficiently large

(with probability one) ε̃n > 0, ε̃n → 0 and ε̃n
εn
→ 1. Also

η̃

(
x− y
ε̃n

)
= a⇒ η̃

(
Tn(x)− Tn(y)

εn

)
= a.

Therefore

η̃ε̃n(y − x) =
1

ε̃dn
η̃

(
x− y
ε̃n

)
≤ 1

ε̃dn
η̃

(
Tn(x)− Tn(y)

εn

)
=
εdn
ε̃dn
η̃εn (Tn(x)− Tn(y)) .

So,

1

ε̃n

∫
X2

η̃ε̃n(y − x)
∣∣∣µ(n)(Tn(x))− µ(n)(Tn(y))

∣∣∣ ρ(x)ρ(y) dy dx

≤ εdn
ε̃d+1
n

∫
X2

η̃εn (Tn(x)− Tn(y))
∣∣∣µ(n)(Tn(x))− µ(n)(Tn(y))

∣∣∣ ρ(x)ρ(y) dy dx

=
εdn
ε̃d+1
n

∑
i,j

η̃εn (ξi − ξj)
∣∣∣µ(n)(ξi)− µ(n)(ξj)

∣∣∣ by (2.9)

=
εd+1
n

ε̃d+1
n

En(µ(n); η̃)

≤ εd+1
n

ε̃d+1
n

En(µ(n); η).

It follows that the second term is also uniformly bounded in n.

6.4 Γ-Convergence

The main result of this section is Theorem 6.4.1, which states that En Γ-converges to E∞ for

almost every sequence ξ1, ξ2, . . . which we state now. The proof is a consequence of Lem-

mas 6.4.3 and 6.4.4. The proofs follow closely from [69] who in turn based their methodology

on [5] and [129]. In particular in [69] the authors show the Γ-convergence of the second term.

Theorem 6.4.1. Under the same conditions as Theorem 6.2.2

E∞ = Γ- lim
n→∞

En

in the TL1 sense and with probability one.

100



We start with an elementary observation on η.

Proposition 6.4.2. Let η : Rd → [0,∞) satisfy

|η(x)− η(y)| ≤ Lmax{|η(x)|, |η(y)|}|x− y|

for any x, y ∈ Rd. If w, z ∈ Rd, Tn : Rd → Rd and ε > 0 then

1

1 +
2L‖Tn−Id‖L∞(X)

ε

η

(
w − z
ε

)
≤ η

(
Tn(w)− Tn(z)

ε

)
≤ 1

1− 2L‖Tn−Id‖L∞(X)

ε

η

(
z − z
ε

)
.

Proof. A short calculation gives

η

(
Tn(w)− Tn(z)

ε

)
≥ η

(
w − z
ε

)
− Lmax

{∣∣∣∣η(w − zε
)∣∣∣∣ , ∣∣∣∣η(Tn(w)− Tn(z)

ε

)∣∣∣∣} 2‖Tn − Id‖L∞(X)

ε

≥ η
(
w − z
ε

)
−

2L‖Tn − Id‖L∞(X)

ε
η

(
w − z
ε

)
+

4L2‖Tn − Id‖2L∞(X)

ε2
max

{∣∣∣∣η(w − zε
)∣∣∣∣ , ∣∣∣∣η(Tn(w)− Tn(z)

ε

)∣∣∣∣} .
By induction we have

η

(
Tn(w)− Tn(z)

ε

)
≥ η

(
w − z
ε

)(
1−

2L‖Tn − Id‖L∞(X)

ε
+

4L2‖Tn − Id‖2L∞(X)

ε2
− . . .

)

=
1

1 +
2L‖Tn−Id‖L∞(X)

ε

η

(
z − z
ε

)
.

Similarly for the other inequality.

We now proceed to the lim inf inequality.

Lemma 6.4.3 (The lim inf inequality). Under the same conditions as Theorem 6.2.2 if µ ∈
L1(X) and µ(n) → µ in TL1 then

E∞(µ) ≤ lim inf
n→∞

En(µ(n))

with probability one.

Proof. Let µ(n) ∈ L1(Ψn), µ ∈ L1(X) with µ(n) → µ in TL1. Let ν(n) = µ(n) ◦ Tn ∈ L1(X)

where Tn : X → Ψn is as in Theorem 2.5.1 (with probability one) so ν(n) → µ in L1(X).

Without loss of generality we assume that

lim inf
n→∞

En(µ(n)) <∞
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else there is nothing to prove. By Theorem 6.3.1 µ ∈ L1(X; {0, 1}) hence the proof is complete

if

lim inf
n→∞

GTVn(µ(n)) ≥ TV (µ; ρ, η) (6.12)

where GTVn is defined by (6.3).

We now show (6.12) in three steps by starting with stronger assumptions than needed

and progressively relaxing the conditions.

Step 1. Assume η is has compact support and ρ is Lipschitz continuous.

Step 2. Remove the compact support condition on η whilst ρ is still assumed Lipschitz.

Step 3. Assume η is any admissible function and ρ is continuous.

Step 1. Let η have compact support in B(0,M) and let X ′ be a compact subset of X . Then

GTVn(µ(n))

=
1

εn

1

n2

∑
i,j

Wij

∣∣∣µ(n)(ξi)− µ(n)(ξj)
∣∣∣

=
1

εn

∫
X2

ηεn(Tn(x)− Tn(y))
∣∣∣ν(n)(x)− ν(n)(y)

∣∣∣ ρ(x)ρ(y) dx dy using (2.9)

≥ 1

εn

∫
X′

∫
X
ηεn(Tn(x)− Tn(y))

∣∣∣ν(n)(x)− ν(n)(y)
∣∣∣ ρ(x)ρ(y) dx dy

=
1

εn

∫
X′

∫
y+εnz∈X

η

(
Tn(y + εnz)− Tn(y)

εn

) ∣∣∣ν(n)(y + εnz)− ν(n)(y)
∣∣∣ ρ2(y) dz dy + an

where

an =
1

εn

∫
X′

∫
y+εnz∈X

η

(
Tn(y + εnz)− Tn(y)

εn

) ∣∣∣ν(n)(y + εnz)− ν(n)(y)
∣∣∣

× ρ(y) (ρ(y + εnz)− ρ(y)) dz dy.

The following shows an = O(εn):

|an| ≤MLip(ρ)

∫
X

∫
y+εnz∈X

η

(
Tn(y + εnz)− Tn(y)

εn

)
×
∣∣∣ν(n)(y + εnz)− ν(n)(y)

∣∣∣ ρ(y) dz dy

≤ MLip(ρ)

infx∈X ρ(x)
εnGTVn(µ(n)).

Returning to GTVn and applying Proposition 6.4.2

GTVn(µ(n))

≥ 1

1 +
2L‖Tn−Id‖L∞(X)

εn

1

εn

∫
X′

∫
y+εnz∈X

η(z)
∣∣∣ν(n)(y + εnz)− ν(n)(y)

∣∣∣ ρ2(y) dz dy + o(1)

=
1

1 +
2L‖Tn−Id‖L∞(X)

εn

∫
Rd
η(z)fn(z) dz − bn + o(1)
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where fn(z) = 1
ε̃n

∫
X′

∣∣ν(n)(y + ε̃nz)− ν(n)(y)
∣∣ ρ2(y) dy and

bn =
1

1 +
2L‖Tn−Id‖L∞(X)

εn

∫
X′

∫
y+ε̃nẑ 6∈X

η(z)
∣∣∣ν(n)(y)

∣∣∣ ρ2(y) dẑ dy.

Since X ′ and Xc are both closed and disjoint then τ := dist(X ′, Xc) > 0 and therefore if

y ∈ X ′ and y + ε̃nẑ 6∈ X then ε̃n|ẑ| ≥ τ . Since η has compact support then for n sufficiently

large η(ẑ) = 0 for all |ẑ| ≥ τ/ε. Therefore bn = 0 for n sufficiently large.

By applying Fatou’s lemma, Proposition 2.4.1 and 1

1+
2L‖Tn−Id‖L∞(X)

εn

→ 1 one has

lim inf
n→∞

GTVn(µ(n)) ≥
∫
Rd
η(z)TVz(µ; ρ,X ′) dz = TV (µ; ρ, η,X ′)

Now take X ′ → X and therefore TV (µ; ρ, η,X ′) → TV (µ; ρ, η,X) := TV (µ; ρ, η) by the

monotone convergence theorem.

Step 2. Let η be an admissible function and define

η(l)(x) = max

{
η(x)− 1

l
, 0

}
.

Note that η(l) is an increasing sequence of functions satisfing the same strengthened Lipschitz

condition as η and converging (Lebesgue) almost everywhere to η as l→∞. We claim that η(l)

has compact support so we may apply step 1. Since η(x) ≤ η+(|x|) and η+(|x|) is decreasing

there exists M such that η(x) ≤ η+(|x|) ≤ 1
l for all |x| ≥M . Hence η(l)(x) = 0 for |x| ≥M .

Now let GTVn(·; η) be the graph total variation using the interaction potential η. By

step 1:

TV (µ; ρ, η(l)) ≤ lim inf
n→∞

GTVn(µ(n); η(l)) ≤ lim inf
n→∞

GTVn(µ(n); η).

By the monotone convergence theorem

σl(ν) =

∫
Rd
η(l)(x)|x · ν| dx→

∫
Rd
η(x)|x · ν| dx = σ(ν).

And therefore in light of Theorem 2.4.2 and the monotone convergence theorem:

TV (µ; ρ, η(l))→ TV (µ; ρ, η) as l→∞

since σl converges monotonically.

Step 3. Denote the dependence of ρ on GTVn by GTVn(·; ρ). Assume ρ : X → [0,∞) is

continuous and let ρk : Rd → [0,∞) be defined by

ρk(x) =

{
infy∈X (ρ(y) + k|x− y|) if x ∈ X
0 otherwise.
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Clearly ρk(x) ≤ ρ(x) for all x ∈ X . Then it follows that

ρk(x) ≥ inf

{
ρ(y) : y ∈ B

(
x,
ρ(x)

k

)}
.

As ρ is continuous on X then ρk(x) → ρ(x) for each x ∈ X . It is also clear that ρk(x) ≥
infx∈X ρ(x) > 0. Furthermore, for x, z ∈ X

ρk(x)− ρk(z) = inf
y1∈X

sup
y2∈X

ρ(y1)− ρ(y2) + k (|x− y1| − |z − y2|)

≤ sup
y2∈X

k (|x− y2| − |z − y2|)

≤ k|x− z|

so ρk is Lipschitz in X . By step 2

lim inf
n→∞

GTVn(µ(n); ρ) ≥ lim inf
n→∞

GTVn(µ(n); ρk) ≥ TV (µ; ρk, η).

By Theorem 2.4.2

TV (µ; ρk, η) =

∫
X
ρ2
k(x)σ(x) λ̂(dx).

And therefore by the monotone convergence theorem one has

lim
k→∞

TV (µ; ρk, η) =

∫
X
ρ(x)2σ(x) λ̂(dx) = TV (µ; ρ, η)

which completes the proof.

For µ 6∈ L1(X; {0, 1}) the recovery sequence is trivial as E∞(µ) = ∞. For µ ∈
L1(X; {0, 1}) we divide the proof into two steps. First assume that µ is a polyhedral function

(defined below) and we show the existence of a recovery sequence. Then we extend the result

for any function of bounded variation in L1(X; {0, 1}). Recall that Hk is the k-dimensional

Hausdorff measure.

Definition 6.4.1. A (d-dimensional) polyhedral set in Rd is an open set F whose boundary

is a Lipschitz manifold contained in the union of finitely many affine hyperplanes. We say

µ ∈ BV (X; {0, 1}) is a polyhedral function if there exists a polyhedral set F such that ∂F

is transversal to ∂X (i.e. Hd−1(∂F ∪ ∂X) = 0) and µ(x) = 1 for x ∈ X ∩ F , µ(x) = 0 for

x ∈ X \ F .

Lemma 6.4.4 (The existence of a recovery sequence for Theorem 6.4.1). Under the same con-

ditions as Theorem 6.2.2 for any µ ∈ L1(X) there exists a sequence µ(n) → µ in TL1 such

that

E∞(µ) ≥ lim sup
n→∞

En(µ(n)) (6.13)

with probability one.

Proof. Without loss of generality assume µ ∈ BV (X; {0, 1}). By the following argument it is

enough to prove the lemma for polyhedral functions. Suppose the lemma holds for polyhedral
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functions and let µ ∈ BV (X; ρ, η)∩L1(X; {0, 1}). There exists a sequence of smooth sets Fn
such that µ(n) := IFn → µ in L1 and TV (µ(n); ρ, η) → TV (µ; ρ, η), for example see [111,

Section 9.1.3]. And therefore by approximating each µ(n) by a polyhedral function (in L1 and

TV ) there exists a sequence of polyhedral functions ζ(n) such that

ζ(n) → µ in L1(X) and TV (ζ(n); ρ, η)→ TV (µ; ρ, η).

By assumption that the lemma holds for polyhedral functions and a diagonalization argument

we can then conclude the existence of a sequence ν(n) such that lim supn→∞GTVn(ν(n)) ≤
TV (µ; ρ, η) as required.

Therefore assume µ ∈ BV (X; {0, 1}) is a polyhedral function corresponding to the

polyhedral set F , i.e. µ = IF . Let µ(n) be the restriction of µ to Ψn. Define Tn as in Theo-

rem 2.5.1 and use it to create a partition of X , X = ∪ni=1T
−1
n (ξi). If x, y ∈ T−1

n (ξi) then

|x− y| ≤ |x− Tn(x)|+ |Tn(x)− Tn(y)|+ |Tn(y)− y| ≤ 2‖Id− Tn‖L∞(X).

Let x ∈ T−1
n (ξi) and assume dist(∂F, x) > 2‖Id− Tn‖L∞ . If y ∈ T−1

n (ξi) then µ(y) = µ(x)

(since T−1
n (ξi) ⊂ B(x, 2‖Id− Tn‖L∞(X)) and B(x, 2‖Id− Tn‖L∞(X)) ∩ ∂F = ∅). Therefore∫

T−1
n (ξi)

∣∣∣µ(n)(Tn(y))− µ(y)
∣∣∣ P (dy) = 0.

In particular∫
X

∣∣∣µ(n)(Tn(y))− µ(y)
∣∣∣ P (dy) =

∫
Xn

∣∣∣µ(n)(Tn(y))− µ(y)
∣∣∣ P (dy) ≤ ‖ρ‖L∞(X)Vol(Xn)

where

Xn =
{
y ∈ X : dist(∂F, y) ≤ 2‖Id− Tn‖L∞(X)

}
. (6.14)

Clearly Vol(Xn) = O(‖Id − Tn‖L∞(X)) = o(1) and therefore µ(n) → µ in TL1. Define

ν(n) = µ(n) ◦ Tn then since ν(n), µ ∈ L1(X; {0, 1}) we have that (6.13) is equivalent to

TV (µ; ρ, η) ≥ lim sup
n→∞

GTVn(µ(n)).

We complete the proof in three steps.

Step 1. Assume that η is has compact support and ρ is Lipschitz continuous.

Step 2. Now let η be any admissible function with ρ still Lipschitz continuous.

Step 3. Finally let η be any admissible functions and ρ any continuous function satisfying the

criteria in the lemma.
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Step 1. By application of Proposition 6.4.2

GTVn(µ(n))

=
1

εn

∫
X2

ηεn(Tn(x)− Tn(y))
∣∣∣ν(n)(x)− ν(n)(y)

∣∣∣ ρ(x)ρ(y) dx dy

≤ 1

1− 2L‖Tn−Id‖L∞(X)

εn

1

εd+1
n

∫
X2

η

(
x− y
εn

) ∣∣∣ν(n)(x)− ν(n)(y)
∣∣∣ ρ(x)ρ(y) dx dy

=
1

1− 2L‖Tn−Id‖L∞(X)

εn

CTVn(ν(n))

with CTVn defined below. Let us approximate µ by a sequence ζ(n) ∈ C∞(Rd)∩BV (X) such

that ζ(n) → µ in L1(X) and TV (ζ(n); ρ, η)→ TV (µ; ρ, η). Without loss of generality assume

that ζ(n)(x) = 0 for all x ∈ Rd \X and ‖µ− ζ(n)‖L1(X) = o(εn). Then

CTVn(ζ(n)) :=
1

εn

∫
X2

ηεn(x− y)
∣∣∣ζ(n)(x)− ζ(n)(y)

∣∣∣ ρ(x)ρ(y) dx dy

=
1

εn

∫
X2

ηεn(x− y)

∣∣∣∣∫ 1

0
∇ζ(n)(y + ξ(x− y)) · (x− y) dξ

∣∣∣∣ ρ(x)ρ(y) dx dy

≤ 1

εn

∫
X

∫ 1

0

∫
X
ηεn(x− y)

∣∣∣∇ζ(n)(y + ξ(x− y)) · (x− y)
∣∣∣ ρ(x)ρ(y) dx dξ dy

=

∫
X

∫ 1

0

∫
Znhξ

η(z)
∣∣∣∇ζ(n)(h) · z

∣∣∣ ρ(h+ (1− ξ)εnz)ρ(h− εnξz) dz dξ dh

≤ TV (ζ(n); ρ, η) + cn

where

Znhξ =
{
z ∈ Rd : h+ (1− ξ)εnz ∈ X and h− εnξz ∈ X

}
cn =

∫
X

∫ 1

0

∫
Znhξ

η(z)
∣∣∣∇ζ(n)(h) · z

∣∣∣ (ρ(h+ (1− ξ)εnz)ρ(h− εnξz)− ρ2(h)
)

dz dξ dh.

If

lim
n→∞

cn = 0 (6.15)

and lim
n→∞

∣∣∣CTVn(ν(n))− CTVn(ζ(n))
∣∣∣ = 0 (6.16)

then

lim sup
n→∞

CTVn(ν(n)) = lim sup
n→∞

CTVn(ζ(n)) ≤ lim sup
n→∞

TV (ζ(n); ρ, η) = TV (µ; ρ, η).

We now show (6.15). It is an easy exercise to show

∣∣ρ2(h)− ρ(h+ (1− ξ)εnz)ρ(h+ εnξz)
∣∣ ≤ ‖ρ‖L∞(X)Lip(ρ) (|(1− ξ)εnz|+ |εnξz|)

≤ 2εn‖ρ‖L∞(X)Lip(ρ)M
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where spt(η) ⊆ B(0,M). Then

|cn| ≤ 2‖ρ‖L∞(X)Lip(ρ)εnM

∫
X

∫
Rd
η(z)

∣∣∣∇ζ(n)(h) · z
∣∣∣ dz dh

≤
2‖ρ‖L∞(X)Lip(ρ)εnM

infx∈X ρ2(x)

∫
X

∫
Rd
η(z)

∣∣∣∇ζ(n)(h) · z
∣∣∣ ρ2(h) dz dh

=
2‖ρ‖L∞(X)Lip(ρ)εnM

infx∈X ρ2(x)
TV (ζ(n); ρ, η).

To complete step 1 we show (6.16). This follows by:∣∣∣CTVn(ν(n))− CTVn(ζ(n))
∣∣∣

≤
‖ρ‖2L∞(X)

εn

∫
X2

ηεn(y − x)
(∣∣∣ν(n)(x)− ζ(n)(x)

∣∣∣+
∣∣∣ν(n)(y)− ζ(n)(y)

∣∣∣) dx dy

≤
2‖η‖L∞(Rd)Vol(X)‖ρ‖2L∞(X)

εn

∫
X

∣∣∣ν(n)(x)− ζ(n)(x)
∣∣∣ dy

≤
2‖η‖L∞(Rd)Vol(X)‖ρ‖2L∞(X)

εn

(
‖ν(n) − µ‖L1(X) + ‖µ− ζ(n)‖L1(X)

)
→ 0

where the last line follows as ‖µ − ζ(n)‖L1(X) = o(εn) and ‖ν(n) − µ‖L1(X) = O(‖Tn −
Id‖L∞(X)) = o(εn).

Step 2. Let η be an admissible function and define η(i) by

η(i)(x) =


η(x) if x ∈ B(0, i)

max
{
η(y)− |x−y|L , 0

}
if x ∈ B(0, i+ 1

L) \B(0, i)

0 otherwise

for y = argminz∈B(0,i) |x − z| where η(i) has been constructed so that it satisfies η(i) ≤ η,

η(i) = η on B(0, i), η(i) satisfies the same strengthened Lipschitz condition as η and η has

compact support.

By step 1

TV (µ; ρ, η) ≥ TV (µ; ρ, η(i)) ≥ lim sup
n→∞

GTVn(µ(n); η(i)).

We can write

GTVn(µ(n); η) ≤ GTVn(µ(n); η(i)) + dn,i

where

dn,i =
1

εn

∫
Xn,i

ηεn(Tn(x)− Tn(y))
∣∣∣ν(n)(x)− ν(n)(y)

∣∣∣ ρ(x)ρ(y) dx dy,

Xn,i =

{
(x, y) ∈ X2 :

∣∣∣∣Tn(x)− Tn(y)

εn

∣∣∣∣ ≥ i}
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and ν(n) = µ(n) ◦ Tn = µ ◦ Tn. We will show lim supi→∞ lim supn→∞ dn,i ≥ 0. Assume n is

sufficiently large so that
2‖Tn−Id‖L∞(X)

εn
≤ 1

2 ≤
i
2 . Then for (x, y) ∈ Xn,i∣∣∣∣x− yεn

∣∣∣∣ ≤ ∣∣∣∣Tn(x)− Tn(y)

εn

∣∣∣∣+
2‖Tn − Id‖L∞(X)

εn
≤ 2

∣∣∣∣Tn(x)− Tn(y)

εn

∣∣∣∣ .
In particular

η

(
Tn(x)− Tn(y)

εn

)
≤ η+

(∣∣∣∣Tn(x)− Tn(y)

εn

∣∣∣∣) ≤ η+

(∣∣∣∣x− y2εn

∣∣∣∣)
≤ γ1η

−
(∣∣∣∣x− y2γ2εn

∣∣∣∣) ≤ γ1η

(
x− y
2γ2εn

)
.

Similarly if (x, y) ∈ Xn,i then∣∣∣∣x− yεn

∣∣∣∣ ≥ ∣∣∣∣Tn(x)− Tn(y)

εn

∣∣∣∣− 2‖Tn − Id‖L∞(X)

εn
≥ i

2
.

Hence

Xn,i ⊆ X̂n,i :=

{
(x, y) ∈ X2 :

∣∣∣∣x− yεn

∣∣∣∣ ≥ i

2

}
.

Therefore

dn,i ≤
γ1

εd+1
n

∫
X̂n,i

η

(
x− y
2γ2εn

) ∣∣∣ν(n)(x)− ν(n)(y)
∣∣∣ ρ(x)ρ(y) dx dy

≤ γ1

εd+1
n

∫
X̂n,i

η

(
x− y
2γ2εn

)
|µ(x)− µ(y)| ρ(x)ρ(y) dx dy

+
γ1‖ρ‖2L∞(X)

εd+1
n

∫
X̂n,i

η

(
x− y
2γ2εn

)(∣∣∣ν(n)(x)− ν(n)(y)
∣∣∣− |µ(x)− µ(y)|

)
dx dy.

Let

en,i =
γ1

εd+1
n

∫
X̂n,i

η

(
x− y
2γ2εn

)
|µ(x)− µ(y)| ρ(x)ρ(y) dx dy

fn,i =
γ1‖ρ‖2L∞(X)

εd+1
n

∫
X̂n,i

η

(
x− y
2γ2εn

)(∣∣∣ν(n)(x)− ν(n)(y)
∣∣∣− |µ(x)− µ(y)|

)
dx dy.

By changing coordinates one has

fn,i ≤
2(2γ2)dγ1‖ρ‖2L∞(X)

εn

∫
Rd
η(z) dz

∫
Xn

∣∣∣ν(n)(x)− µ(x)
∣∣∣ dx

where Xn is defined by (6.14) and since
∫
Xn

∣∣ν(n)(x)− µ(x)
∣∣ dx = O(Vol(Xn)) = O(‖Tn −

Id‖L∞(X)) = o(εn) then lim supn→∞ fn,i = 0.
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For en,i we have

en,i ≤
(2γ2)dγ1‖ρ‖L∞(X)

εn infx∈X ρ(x)

∫
|z|≥γ2i

∫
X
η(z) |µ(y + 2γ2εnz)− µ(y)| ρ2(y) dy dz

≤
(2γ2)d+1γ1‖ρ‖L∞(X)

infx∈X ρ2(x)

∫
|z|≥γ2i

η(z)TVz(µ; ρ) dz

where the above follows from∫
X
|µ(x+ εz)− µ(x)| ρ2(x) dx ≤ εTVz(µ; ρ) for Lebesque-a.e. z ∈ X

and TVz is defined by (2.4). The proof is analogous to the well known result: if µ ∈ B̂V (Rd)
then

∫
Rd |µ(x+ h)− µ(x)| dx ≤ |h| ˆTV (µ), see for example [97, Lemma 13.33]. Hence

lim sup
i→∞

lim sup
n→∞

en,i = 0

which completes step 2.

Step 3. Let GTV (·; ρ) be the graph total variation defined using ρ. Let ρ be continuous but

not necessarily Lipschitz and define ρk : Rd → [0,∞) by

ρk(x) =

{
supy∈X ρ(y)− k|x− y| if x ∈ X
0 otherwise.

Similarly to Lemma 6.4.3 step 3 we can check that ρk is bounded above and below by positive

constants, Lipschitz continuous on X and converges pointwise to ρ from above. We have

lim sup
n→∞

GTVn(µ(n); ρ) ≤ lim sup
n→∞

GTVn(µ(n); ρk) ≤ TV (µ; ρk, η).

By the monotone convergence theorem and Theorem 2.4.2 we have

lim
k→∞

TV (µ; ρk, η) = TV (µ; ρ, η)

which completes the proof.

6.5 Preliminary Results for the Rate of Convergence

In this section we fix µ = IE where E is a polyhedral set and look at the convergence

E |En(µ)− E∞(µ)|2 = E |GTVn(µ)− TV (µ; ρ, η)|2 → 0.

For convenience (and to reduce bias) let us redefine the normalization on GTVn so that

GTVn(µ) =
1

εn

1

n(n− 1)

∑
i,j

ηεn(ξi − ξj) |µ(ξi)− µ(ξj)| . (6.17)
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For simplicity we make the following simplifications. Assume X = (0, 1)d where d ≥ 2 and

that ρ ≡ 1 onX . We use an isotropic interaction potential η = IB(0,1). These assumptions allow

us to greatly simplify the calculations without losing the important features of the problem. We

start with the convergence of the expectation.

Theorem 6.5.1. Let X = (0, 1)d with d ≥ 2, ρ ≡ 1 and εn be any sequence converging to

zero. The data is distributed ξi
iid∼ ρ and let Ψn = {ξi}ni=1. Define GTVn : L1(Ψn) → [0,∞]

by (6.17) where the weights are given by Wij = ηεn(ξi − ξj) and ηεn(x) = 1
εdn
I|x|≤εn . Define

TV (·; ρ, η) : L1(X)→ [0,∞] by (2.1-2.3). Let µ = IE be a polyhedral function. Then

|EGTVn(µ)− TV (µ; ρ, η)| = O(εn).

Note that we do not need a lower bound on the decay of εn. By taking the expectation

we are immediately in the continuous setting and therefore lose all the graphical structure. Our

proof shows that along faces of E and sufficiently far from edges in some sense the expected

graph total variation is equal to the total variation. To be more precise let Y ⊂ X be a strip

centered around one of the faces of E with non-zero width. Then one can show for the graph

total variation and total variation of µ = IE on Y that GTVn(µ;Y ) = TV (µ; ρ, η, Y ). The

discrepancy between EGTVn(µ) and TV (µ; ρ, η) is a consequence of having to approximate

corners. In our proof we approximate the corners at a cost of O(εn). In particular GTVn(µ) is

a biased estimator of TV (µ; ρ, η).

Proof of Theorem 6.5.1. Let ∂E =
∑N

i=1 ∂Ei. We first calculate TV (µ; ρ, η),

TV (µ; ρ, η) =

∫
∂{µ=1}

σ(n(x)) dHd−1(x) =
N∑
i=1

|∂Ei|σ(ni)

where ni is the outward unit normal for side ∂Ei and we use | · | to denote the Hd−1 measure.

Observe

σ(ni) =

∫
B(0,1)

|x · ni| dx =

∫
B(0,1)

|xd| dx =: σ.

So TV (µ; ρ, η) = σ|∂E|.
Now consider EGTVn(µ),

EGTVn(µ) =
1

εn

∫
(0,1)d

∫
(0,1)d

ηεn(x− y) |µ(x)− µ(y)| dy dx

=
2

εd+1
n

N∑
i=1

∫
S
(n)
i ∩E

∫
S
(n)
i ∩Ec

I|x−y|≤εn dy dx+O(εn)

where S(n)
i is the strip of width 2εn centered around ∂Ei. Consider S(n)

i then after rotation we
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may assume

2

εd+1
n

∫
S
(n)
i ∩E

∫
S
(n)
i ∩Ec

I|x−y|≤εn dy dx

=
2

εd+1
n

∫
⊗d−1
j=1 [εn,Lj−εn]

∫ 0

−εn

∫
⊗d−1
j=1 [0,Lj ]

∫ εn

0
I|x−y|≤εn dyd dy1:d−1dxd dx1:d−1 +O(εn)

where ∂Ei = ⊗d−1
j=1 [0, Lj ]×{0}. Fix x1:d−1 ∈ ⊗d−1

j=1 [εn, Lj − εn] and yd ∈ [0, εn] then elemen-

tary geometry reveals that the integral
∫ 0
−εn

∫
⊗d−1
j=1 [0,Lj ]

I|x−y|≤εn dy1:d−1dxd is the volume of a

segment of the d-dimensional ball. More precisely∫ 0

−εn

∫
⊗d−1
j=1 [0,Lj ]

I|x−y|≤εn dy1:d−1dxd =

∫
B(0,εn)

Izd≥yd dz.

Integrating the above over yd and exchanging the order of integration one has∫ 0

−εn

∫
⊗d−1
j=1 [0,Lj ]

∫ εn

0
I|x−y|≤εn dyd dy1:d−1dxd =

∫
B(0,εn)

∫ εn

0
Izd≥yd dyd dz

=

∫
B(0,εn)

zdIzd≥0 dz

=
εd+1
n

2

∫
B(0,1)

|zd| dz

=
εd+1
n σ

2
.

Therefore

2

εd+1
n

∫
S
(n)
i ∩E

∫
S
(n)
i ∩Ec

I|x−y|≤εn dy dx =

d−1∏
j=1

(Lj − 2εn)

σ = |∂Ei|σ +O(εn).

And in particular

EGTVn(µ) = TV (µ; ρ, η) +O(εn)

which completes the proof.

The above theorem can be developed by looking at higher order expansions. The the-

orem below gives the two leading terms in E |GTVn(µ)− TV (µ; ρ, η)|2. As previously dis-

cussed the approximation of the corners leads to an error of O(εn). The multiplicative con-

stant of this approximation will depend on the angles between faces of E and therefore will

be difficult and not particularly interesting to characterize. The next dominant term gives the

convergence (in mean square) of GTVn(µ) to TV (µ; ρ, η) along face of E and is therefore of

more interest. For this reason we keep track of the constants in order to better understand the

convergence of GTVn(µ) to TV (µ; ρ, η).
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Theorem 6.5.2. Under the same conditions as Theorem 6.5.1

E |GTVn(µ)− TV (µ; ρ, η)|2 =
(n− 2)(n− 3)

n(n− 1)
α2
n

+
4

n(n− 1)

(
(n− 2)|∂E|V −

(
n− 3

2

)
TV (µ; ρ, η)2

)
+O

(
1

n2εd+1
n

)
where αn = EGTVn(µ)− TV (µ; ρ, η) = O(εn) is the error in the edge terms and

V =
1

2

∫
B(0,1)

∫
B(0,1)

min{|zd|, |yd|} dz dy.

Proof. We can write

E |GTVn(µ)− TV (µ; ρ, η)|2 = EGTVn(µ)2 + TV (µ; ρ, η)2 − 2TV (µ; ρ, η)EGTVn(µ)

= EGTVn(µ)2 − TV (µ; ρ, η)2 − 2TV (µ; ρ, η)αn.

Let Xij = 1
εn
ηεn(ξi − ξj) |µ(ξi)− µ(ξj)| then

GTVn(µ) =
1

n(n− 1)

∑
i,j

Xij and GTVn(µ)2 =
1

n2(n− 1)2

∑
i,j,k,l

XijXkl.

Let i, j, k, l be distinct, then GTVn(µ)2 has the following contributions:

1. 2n(n− 1) terms consisting of X2
ij ,

2. 4n(n− 1)(n− 2) terms consisting of XijXik and

3. n(n− 1)(n− 2)(n− 3) terms consisting of XijXkl.

By independence we have (3): EXijXkl = TV (µ; ρ, η)2 + 2αnTV (µ; ρ, η) + α2
n. For (1):

EX2
ij =

1

ε2d+2
n

∫
(0,1)d

∫
(0,1)d

I|x−y|≤εn |µ(x)− µ(y)| dx dy

=
1

εd+1
n

EGTVn(µ)

=
1

εd+1
n

TV (µ; ρ, η) +O

(
1

εdn

)
by Theorem 6.5.1.

Now consider (2). We have

EXijXik =
1

ε2d+2
n

∫
(0,1)d

∫
(0,1)d

∫
(0,1)d

I|x−y|≤εnI|x−w|≤εn

× |µ(x)− µ(y)| |µ(x)− µ(w)| dx dy dw

=
2

ε2d+2
n

N∑
l=1

∫
S
(n)
l ∩Ec

∫
S
(n)
l ∩Ec

∫
S
(n)
l ∩E

I|x−y|≤εnI|x−w|≤εn dx dy dw +O(εn)

=
2

ε2d+2
n

N∑
l=1

∫
S
(n)
l ∩E

(∫
S
(n)
l ∩Ec

I|x−y|≤εn dy

)2

dx+O(εn)
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where S(n)
l is as in the proof of Theorem 6.5.1. Considering one S(n)

l , after rotating,

2

ε2d+2
n

∫
S
(n)
l ∩E

(∫
S
(n)
l ∩Ec

I|x−y|≤εn dy

)2

dx

=
2

ε2d+2
n

∫
⊗d−1
r=1 [εn,L−εn]

∫ 0

−εn

(∫
B(0,εn)

Izd≥−xd dz

)2

dxd dx1:d−1 +O(εn)

= 2

(
d−1∏
r=1

(Lr − 2εn)

)∫ 0

−1

(∫
B(0,1)

Izd≥−xd dz

)2

dxd +O(εn)

= 2

(
d−1∏
r=1

(Lr − 2εn)

)∫ 0

−1

∫
B(0,1)

∫
B(0,1)

Imin{zd,yd}≥−xd dz dy dxd +O(εn)

= 2

(
d−1∏
r=1

(Lr − 2εn)

)∫
B(0,1)

∫
B(0,1)

Imin{zd,yd}≥0 min{zd, yd} dz dy +O(εn)

=
1

2

(
d−1∏
r=1

(Lr − 2εn)

)∫
B(0,1)

∫
B(0,1)

min{|zd|, |yd|} dz dy

= |∂El|V +O(εn)

where the second line follows from noticing that the inner integral is the volume of a segment

formed by the intersection of a d-dimensional ball centered at the origin with the half plane

{zd ≥ −xd}. Collecting terms we have

E |GTVn(µ)− TV (µ; ρ, η)|2

=
2n(n− 1)

n2(n− 1)2

1

εd+1
n

TV (µ; ρ, η) +O

(
1

n2εd+1
n

)
+

4n(n− 1)(n− 2)

n2(n− 1)2
|∂E|V

+O
(εn
n

)
+
n(n− 1)(n− 2)(n− 3)

n2(n− 1)2
TV (µ; ρ, η)2

+ 2αn
n(n− 1)(n− 2)(n− 3)

n2(n− 1)2
TV (µ; ρ, η) + α2

n

n(n− 1)(n− 2)(n− 3)

n2(n− 1)2

− TV (µ; ρ, η)2 − 2αnTV (µ; ρ, η)

= α2
n

(n− 2)(n− 3)

n(n− 1)
+

6− 4n

n(n− 1)
TV (µ; ρ, η)2 +

4(n− 2)

n(n− 1)
|∂E|V

+ 2αnTV (µ; ρ, η)
6− 4n

n(n− 1)
+O

(
1

n2εd+1
n

)
which completes the proof.
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Chapter 7

The Constrained Ginzburg-Landau
Functional on Point Clouds

Abstract

We use minimizers of the Ginzburg-Landau functional as a classification tool for

data sets Ψn where n denotes the number of data points. To obtain non-trivial mini-

mizers it is necessary to impose conditions. In this chapter we study the asymptotics

of the minimization problem with a mass constraint. We show that, with probabil-

ity one, both the minimum and minimizers converge in the data rich limit to the

minimum and minimizers of a limiting functional which is closely related to a to-

tal variation norm restricted to functions taking binary values and respecting the

constraints. We produce similar results for the graph total variation minimization

problem. Another approach we consider is to add a data term to the Ginzburg-

Landau functional (respectively the graph total variation functional). We give the

corresponding convergence results.

7.1 Introduction

In the previous chapter the asymptotics of the unconstrained Ginzburg-Landau functional in

a discrete setting were studied (see also [69, 163]). To make these results useful one should

impose constraints in order to obtain non-trivial minimizers. A common choice is to impose a

mass conservation constraint. Given data Ψn = {ξi}ni=1 ⊂ X where X ⊂ Rd we construct our

classifier µ : Ψn → R as the minimizer to En (defined in the previous chapter). We assume

there are two classes and interpret µ(ξi) = 0 as data point ξi belongs to class 0 and µ(ξi) = 1

as data point ξi belongs to class 1. We do not (for finite data sets) impose a hard classification.

This means we allow µ(ξi) 6∈ {0, 1}.
For mass conservation we impose the condition that 1

n

∑n
i=1 µ(ξi) = m where m ∈

[0, 1] is a fixed constant. The main results of this chapter are to show that as n → ∞ the mini-

mizers and minimum of the constrained problem converge, with probability one, to minimizers

and minimum of a limiting functional E∞. One can also define the graph total variation (GTV)

on point clouds and ask the same questions.
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Recall that we construct the Ginzburg-Landau functional on the point cloud Ψn =

{ξi}ni=1 as follows. We use an anisotropic interaction potential between nodes ξi by weight-

ing edges

Wij = ηε(ξi − ξj)

where ηε : Rd → [0,∞) and say there is an edge between ξi and ξj if Wij > 0. We assume that

ηε is of the form

ηε(x) =
1

εd
η(x/ε) (7.1)

with scaling parameter ε and η : Rd → [0,∞). One motivational example is η(x) = 1 for

|x| < 1 and η(x) = 0 for |x| ≥ 1. We scale ε = εn to zero as n → ∞ in order to reduce the

computational expense and increase the boundary resolution. We define the GTV by

GTVn(µ) :=
1

εn

1

n2

∑
i,j

Wij |µ(ξi)− µ(ξj)| . (7.2)

Now we let V : R → [0,∞) be a potential such that states taking the value 0 or 1 are favored,

e.g. V (t) = t2(t− 1)2, and we define the Ginzburg-Landau functional by

En(µ) :=
1

εn

1

n

n∑
i=1

V (µ(ξi)) +
1

εn

1

n2

∑
i,j

Wij |µ(ξi)− µ(ξj)| . (7.3)

As n → ∞ our estimators converge in the TL1 sense (see Section 2.5) to functions on

X . We will show that the limiting functional (in the sense of Γ-convergence) is given by E∞
which is defined by

E∞(µ) =

{ ∫
∂{µ=1} σ(n(x))ρ2(x) dHd−1(x) if µ ∈ L1(X; {0, 1})
∞ otherwise

(7.4)

where n(x) is the outward unit normal for the set ∂{µ = 1}, Hd−1 is the d − 1 dimensional

Hausdorff measure and

σ(ν) =

∫
Rd
η(x)|x · ν| dx. (7.5)

We let Θn,Θ be the set of functions on Ψn, X respectively that satisfy the mass con-

straint. Then the results of this chapter show that for any sequence µ(n) of almost minimizers of

En in Θn with probability one

lim
n→∞

inf
Θn
En = min

Θ
E∞

µ(n) → µ(∞)

for some µ(∞) that minimizes E∞ in Θ. We define TV (·; ρ, η) to be a weighted total variation

distance (defined in Section 2.4). If µ(n) are a sequence of almost minimizers of GTVn in Θn
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then, with probability one,

lim
n→∞

inf
Θn

GTVn = min
Θ
TV (·; ρ, η)

µ(n) → µ(∞)

where µ(∞) minimizes TV in Θ. As is common we use the Γ-convergence framework. Since

Γ-convergence is stable under continuous perturbations one could also impose any constraint so

that the minimization problem can be written in the form

minimize: En(µ) + g(µ)

where g is continuous and g ≥ 0. More generally if gn : L1(Ψn) → [0,∞] is continuously

convergent to g : L1(X) → [0,∞], see [50], then one can also imply the convergence of

minimizers of En + gn. For example this could be used to fit data, i.e. gn(µ) = gn(µ, ζ(n))

where ζ(n) is known data, see Section 7.4.

Asymptotic results for the Ginzburg-Landau functional in a continuous setting are well

known, see for example [5,114], which also discuss the constrained optimization problem. More

recent results use a square lattice in R2 and isotropic interaction potentials [163] (who also

discuss the constrained optimization problem). The unconstrained GTVn problem for random

graphs when the interaction potential is isotropic was studied in [69]. The unconstrained En
problem for random graphs and anisotropic potentials was studied in the previous chapter. In

particular we can use the results of the previous chapter and [69] to infer the convergence of the

constrained problem.

The chapter is organized as follows. Section 7.2 reviews the unconstrained minimization

problems. Then in Section 7.3 we give the convergence results for the En and GTVn optimiza-

tion problems with the mass constraint. The following section gives the convergence results for

En and GTVn with the addition of a data term. We briefly discuss the generalization to more

than two classes in Section 7.5.

7.2 Convergence of the Unconstrained Optimization Problem

We start by recapping the assumptions for both the unconstrained and constrained optimization

problems given in the previous chapter.

Definition 7.2.1. We say that the pair (V, η) where V : R → [0,∞) and η : Rd → [0,∞) are

admissible if V satisfies conditions 6 to 8 and η satisfies either conditions 1 to 4 or condition 5,

where

1.
∫
Rd η(y)|y| dy <∞,

2. η satisfies the following strengthened Lipschitz condition: there exists L such that for all

x, y ∈ Rd we have

|η(x)− η(y)| ≤ Lmax {|η(x)|, |η(y)|} |x− y|,
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3. η(0) > 0,

4. there exists two decreasing functions η−, η+ : [0,∞)→ [0,∞) and constants γ1, γ2 > 0

such that for all x ∈ Rd

η−(|x|) ≤ η(x) ≤ η+(|x|) and η+(|x|) ≤ γ1η
−(|x|/γ2),

5. η = IF where F is open, bounded, with Lipschitz boundary and 0 ∈ F ,

6. V (y) = 0 if and only if y ∈ {0, 1},

7. V is continuous,

8. there exists r > 0 and τ > 0 such that for all |t| ≥ r we have V (t) ≥ τ |t|.

We will assume the following rate of decay in εn,

lim
n→∞

(log n)
3
4

εnn
1
2

= 0 if d = 2, (7.6)

lim
n→∞

(log n)
1
d

εnn
1
d

= 0 if d ≥ 3. (7.7)

The scaling in εn implies that the geometric random graph defined by connecting all nodes ξi
that are within εn is, with probability one, eventually connected [121]. The bound is constructed

so that
‖Tn − Id‖L∞(X)

εn
→ 0 as n→∞

where Tn is as in Theorem 2.5.1.

Recall the following convergence result for En in the unconstrained case (given in the

previous chapter).

Theorem 7.2.1. Let X ⊂ Rd for d ≥ 2 be a bounded, open, connected domain with Lipschitz

boundary and P a probability distribution with support on X and density ρ. We assume that

ρ is continuous and bounded above and below by strictly positive constants on X . The data

is distributed ξi
iid∼ P and we let Ψn = {ξi}ni=1. Let εn → 0 be a sequence satisfying the

bound (7.6) if d = 2 or (7.7) if d ≥ 3. For any function µ(n) on Ψn define En : L1(Ψn)→ [0,∞]

by (7.3) where the weights Wij are given by Wij = ηεn(ξi − ξj) and ηεn is given by (7.1).

Define E∞ : L1(X)→ [0,∞] by (7.4-7.5). Assume (V, η) are admissible functions. Then, with

probability one, the following hold

1. Compactness: Let µ(n) be a sequence of functions on Ψn such that supn∈N En(µ(n)) <

∞ then µ(n) is relatively compact in TL1 and each cluster point is in BV (X; ρ, η) ∩
L1(X; {0, 1}).

2. Γ-limit: we have

Γ- lim
n→∞

En = E∞.
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Similarly we have the following convergence result for the GTVn unconstrained opti-

mization problem. The proof is a consequence of results in the previous chapter and can also be

found in [69] for isotropic interaction potentials η.

Theorem 7.2.2. Let X ⊂ Rd for d ≥ 2 be a bounded, open, connected domain with Lipschitz

boundary and P a probability distribution with support on X and density ρ. We assume that

ρ is continuous and bounded above and below by strictly positive constants on X . The data

is distributed ξi
iid∼ P and we let Ψn = {ξi}ni=1. Let εn → 0 be a sequence satisfying the

bound (7.6) if d = 2 or (7.7) if d ≥ 3. For any function µ(n) on Ψn define GTVn : L1(Ψn) →
[0,∞] by (7.2) where the weightsWij are given byWij = ηεn(ξi−ξj) and ηεn is given by (7.1).

Define TV : L1(X) → [0,∞] by (2.1-2.3). Assume η is an admissible functions. Then, with

probability one, the following hold

1. Compactness: Let µ(n) be a sequence of functions on Ψn that are uniformly bounded in

TL1 and supn∈NGTVn(µ(n)) <∞. Then µ(n) is relatively compact in TL1.

2. Γ-limit: we have

Γ- lim
n→∞

GTVn = TV (·; ρ, η).

Remark 7.2.3. Note that we require that µ(n) be bounded in GTVn and L1 in the compact-

ness property in Theorem 7.2.2. In the proof it is shown that boundedness in GTVn implies

boundedness in TV hence if any sequence is bounded in GTVn and in L1 then, by the Rellich-

Kondrachov theorem, the sequence is precompact in L1. When considering En the growth

condition on first term implies boundedness in L1. As a consequence, when we consider the

constrained GTVn in Section 7.3.2 we will also have to show that minimizers are bounded in

L1.

Remark 7.2.4. One can construct the recovery sequence for µ ∈ L1(X) by choosing µ(n) ∈
L1(Ψn) to be the restriction of µ onto Ψn. Therefore it is a simple consequence that if one

chooses sets

Θn =
{
µ ∈ L1(Ψn) : µ(ξi) = 0 for ξi ∈ E0 and µ(ξi) = 1 for ξi ∈ E1

}
(7.8)

Θ =
{
µ ∈ L1(X) : µ(x) = 0 for x ∈ E0 and µ(x) = 1 for x ∈ E1

}
(7.9)

for any open sets E0, E1 then as long as there exists ζ ∈ L1(X) with E∞(ζ) < ∞ then

(En, E∞,Θn,Θ) is compatible with respect to Γ-convergence. The closure of Θ is immedi-

ate once one notices that it is weakly closed. Hence the minimum and minimizers of En in Θn

converge to the minimum and minimizers of E∞ in Θ. Similarly for (GTVn, TV,Θn,Θ) if the

minimizers are uniformly bounded in L1, see Remark 7.3.6.
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7.3 Convergence of the Mass Constrained Optimization Problem

7.3.1 The Ginzburg-Landau Functional

Let m ∈ [0, 1] and define

Θn =

{
ν ∈ L1(Ψn) :

1

n

n∑
i=1

ν(ξi) = m

}
(7.10)

Θ =

{
ν ∈ L1(X) :

∫
X
ν(x)ρ(x) dx = m

}
. (7.11)

We start by proving that (Θn,Θ, En, E∞) are compatible with respect to Γ-convergence before

concluding the convergence of the constrained optimization problem.

Lemma 7.3.1. Let m ∈ [0, 1] and define Θn and Θ by (7.10) and (7.11) respectively. Then

under the same conditions as Theorem 7.2.1 (En, E∞,Θn,Θ) are compatible with respect to

Γ-convergence in the sense of Definition 2.2.2.

Proof. Clearly Θ is closed and there exists ζ ∈ Θ such that E∞(ζ) < ∞. Let ζ(n) → ζ with

ζ(n) ∈ Θn. Then since ζ(n) also converges weakly to ζ and
∫
X ·ρ(x) dx is a bounded linear

operator we have ζ ∈ Θ.

Let µ ∈ Θ and we may assume that µ ∈ L1(X; {0, 1}). Define µ(n) to be the restriction

of µ to Ψn \ {ξi}ni=2 and µ(n)(ξ1) = µ(ξ1) + δn where δn = m − 1
n

∑n
i=1 µ(ξi). Therefore

µ(n) ∈ Θn. Now we can write∫
X

∣∣∣µ(n)(Tn(x))− µ(x)
∣∣∣ P (dx) ≤

∫
X
|µ(Tn(x))− µ(x)| P (dx) +

∫
T−1
n (ξ1)

|δn| P (dx)

where Tn is as in Theorem 2.5.1. By Lemma 6.4.4 the first term converges to zero. And since

|δn| ≤ max{m, 1−m} then we can bound the second term:∫
T−1
n (ξ1)

|δn| P (dx) ≤ max{m, 1−m}
n

→ 0 as n→∞.

Therefore µ(n) → µ in TL1.

The rest of the proof then follows from 6.4.4 once we show, as n→∞,

1

εn

1

n

n∑
i=1

V (µ(n)(ξi)→ 0 (7.12)

1

εn

1

n2

n∑
i=2

(Wi1 +W1i) |µ(ξi)− δn| → 0. (7.13)

For (7.12) using the continuity assumption on V and boundedness of δn we have that V (µ(ξ1)+

δn) is bounded. Hence

1

εn

1

n

n∑
i=1

V (µ(n)(ξi)) =
1

εn

1

n
V (µ(ξ1) + δn)→ 0
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since 1
εnn
→ 0. We show (7.13) by controlling η in the ball B(ξ1, εn) and on X \ B(ξ1, εn) as

follows. We assume n is sufficiently large so that
‖Tn−Id‖L∞(X)

εn
≤ 1 and we define

Xn =

{
x ∈ X :

|Tn(x)− ξ1|
εn

≥ 1

}
.

Then for x ∈ Xn we have

|x− ξ1|
εn

≤ |Tn(x)− ξ1|
εn

+
‖Tn − Id‖L∞(X)

εn
≤ 2|Tn(x)− ξ1|

εn
.

And hence for x ∈ Xn

η

(
Tn(x)− ξ1

εn

)
≤ η+

(∣∣∣∣Tn(x)− ξ1

εn

∣∣∣∣)
≤ η+

(∣∣∣∣x− ξ1

2εn

∣∣∣∣)
≤ γ1η

−
(∣∣∣∣x− ξ1

2γ2εn

∣∣∣∣)
≤ γ1η

(
x− ξ1

2γ2εn

)
.

We let Yn = X \Xn then we note that

Yn ⊆ Ŷn :=

{
x ∈ X :

|x− ξ1|
εn

≤ 2

}
.

By application of (2.9) we may write

1

n

n∑
i=2

Wi1 |µ(ξi)− δn|

=

∫
X
ηεn(Tn(x)− ξ1) |µ(ξi)− δn| ρ(x) dx

≤ ‖ρ‖L∞(X) max{m, 2−m}
(∫

Xn

ηεn(Tn(x)− ξ1) dx+

∫
Ŷn

ηεn(Tn(x)− ξ1) dx

)
≤ ‖ρ‖L∞(X) max{m, 2−m}

(
γ1

εdn

∫
Xn

η

(
x− ξ1

2γ2εn

)
dx+

η(0)

εdn
Vol(B(ξ1, 2εn))

)
≤ ‖ρ‖L∞(X) max{m, 2−m}

(
2dγ1γ

d
2

∫
Rd
η(x) dx+

η(0)

εdn
Vol(B(ξ1, 2εn))

)
.

Which shows (7.13).

We may now conclude the convergence of the En mass constrained optimization prob-

lem. The proof is a simple consequence of Corollary 2.2.3 and Theorem 7.2.1.

Corollary 7.3.2. Under the same conditions as Theorem 7.2.1 and Lemma 7.3.1 with probability

one we have the following.

1. infΘn En → minΘ E∞ as n→∞
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2. If µ(n) is a sequence of almost minimizers of En in Θn then the sequence is precompact.

Furthermore, any cluster point of µ(n) is a minimizer of E∞ in Θ.

7.3.2 The Graph Total Variation Functional

We now give the analogous result for the graph total variation term.

Lemma 7.3.3. Let m ∈ R and define Θn and Θ by (7.10) and (7.11) respectively. Then under

the same conditions as Theorem 7.2.2 (GTVn, TV,Θn,Θ) are compatible with respect to Γ-

convergence in the sense of Definition 2.2.2.

Proof. Clearly Θ is closed, there exists ζ ∈ Θ such that TV (ζ; ρ, η) < ∞ and any convergent

sequence in Θn has a limit in Θ.

Let µ ∈ Θ and Tn be as in Theorem 2.5.1. One could prove the lemma in the same way

as Lemma 7.3.1, i.e. by defining µ(n) to be the restriction of µ onto Ψn and adding δn to one

coordinate in order to preserve the mass constraint. This is not the strategy we use here. Instead

we construct our recovery sequence by defining µ(n) ∈ L1(Ψn) by

µ(n)(ξi) = n

∫
X
IT−1
n (ξi)

(x)µ(x)ρ(x) dx.

I.e. µ(n) is the average of µ over each partition given by∪ni=1Tn(ξi) = X . In the authors opinion

this second proof is more aesthetically pleasing than adapting the proof of Lemma 7.3.1.

Since we can infer the existence of a sequence ν(m) ∈ Θ∩C∞c (Rd) such that ν(m) → µ

in L1(X) and TV (ν(m); ρ, η) → TV (µ; ρ, η) then by a diagonalization argument it is enough

to prove the statement for µ that are Lipschitz.

We therefore assume µ is Lipschitz and first show that µ(n) ∈ Θn and µ(n) → µ in TL1.

We have that

1

n

n∑
i=1

µ(n)(ξi) =
n∑
i=1

∫
T−1
n (ξi)

µ(x)ρ(x) dx =

∫
X
µ(x)ρ(x) dx = m

since T−1
n (ξi) is a partition of X . Therefore µ(n) ∈ Θn. We also have

‖µ− µ(n) ◦ Tn‖L1(X;ρ) =

n∑
i=1

∫
T−1
n (ξi)

∣∣∣µ(x)− µ(n)(Tn(x))
∣∣∣ ρ(x) dx

=

n∑
i=1

∫
T−1
n (ξi)

∣∣∣∣∣µ(x)− n
∫
T−1
n (ξi)

µ(y)ρ(y) dy

∣∣∣∣∣ ρ(x) dx

≤ n
n∑
i=1

∫
(T−1
n (ξi))2

|µ(x)− µ(y)| ρ(y)ρ(x) dy dx

≤ nLip(µ)

n∑
i=1

∫
(T−1
n (ξi))2

|x− y| ρ(y)ρ(x) dy dx.

Now for x, y ∈ T−1
n (ξi) we have Tn(x) = Tn(y) = ξi and therefore

|x− y| ≤ |x− Tn(x)|+ |Tn(x)− Tn(y)|+ |Tn(y)− y| ≤ 2‖Tn − Id‖L∞(X).
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Hence

‖µ− µ(n) ◦ Tn‖L1(X;ρ) ≤ 2Lip(µ)‖Tn − Id‖L∞(X)

since
∫
T−1
n (ξi)

ρ(x) dx = 1
n . As ‖Tn − Id‖L∞(X) → 0 we have µ(n) → µ in TL1 as required.

To complete the lemma we need to show

TV (µ; ρ, η) ≥ lim sup
n→∞

GTVn(µ(n))

which follows from 6.4.4 (see also [69, Theorem 4.1]) with the following minor modification to

step 2 (numbered as in 6.4.4). We can show lim supi→∞ lim supn→∞ dn,i ≤ 0 from

dn,i ≤
γ1‖ρ‖2L∞(X)

εd+1
n

∫
X̂n,i

η

(
x− y
2γ2εn

) ∣∣∣ν(n)(x)− ν(n)(y)
∣∣∣ dx dy

≤
γ1‖ρ‖2L∞(X)Lip(µ)

εd+1
n

∫
X̂n,i

η

(
x− y
2γ2εn

)(
2‖Tn − Id‖L∞(X) + |x− y|

)
dx dy

=
γ12dγd2‖ρ‖2L∞(X)Lip(µ)Vol(X)

εn

∫
4γ2|z|≥i

η(z)
(
2‖Tn − Id‖L∞(X) + 2γ2εn|z|

)
dz

= γ12d+1γd2‖ρ‖2L∞(X)Lip(µ)Vol(X)
‖Tn − Id‖L∞(X)

εn

∫
4γ2|z|≥i

η(z) dz

+ γ12d+1γd+1
2 ‖ρ‖2L∞(X)Lip(µ)Vol(X)

∫
4γ2|z|≥i

η(z)|z| dz.

All other details remain unchanged.

We can now prove the convergence of the GTVn mass constrained optimization prob-

lem. The proof is an application of Corollary 2.2.3 and Lemma 7.3.3 once we have shown that

almost minimizers are uniformly bounded.

Corollary 7.3.4. Under the same conditions as Theorem 7.2.2 and Lemma 7.3.3 with probability

one we have the following.

1. infΘn GTVn → minΘ TV (·; ρ, η) as n→∞

2. If µ(n) is a sequence of almost minimizers of GTVn in Θn then the sequence is precom-

pact. Furthermore, any cluster point of µ(n) is a minimizer of TV (·; ρ, η) in Θ.

Proof. We have to show that almost minimizers are bounded in L1. Let µ(n) ∈ L1(Ψn) satisfy

GTVn(µ(n)) ≤ inf
Θn

GTVn + δn and
1

n

n∑
i=1

µ(n)(ξi) = m

for some sequence δn → 0, i.e. µ(n) is a sequence of almost minimizers of GTVn in Θn. Since,

by Lemma 7.3.3, (GTVn, TV,Θn,Θ) are compatible with respect to Γ-convergence then there

exists ζ ∈ Θ and a sequence ζ(n) ∈ Θn such that lim supn→∞GTVn(ζ(n)) ≤ TV (ζ; ρ, η) =:

κ <∞. Therefore we may assume that GTVn(µ(n)) ≤ κ+ 1 for all n.

We want to show there exists M such that 1
n

∑n
i=1 |µ(n)(ξi)| ≤ M for all n. Suppose

not. Then for all M there exists a subsequence nm such that 1
nm

∑nm
i=1 |µ(nm)(ξi)| > M . By

122



relabeling the data points we may assume that |µ(nm)(ξ1)| ≥ M for all m. Without loss of

generality suppose µ(nm)(ξ1) ≥M .

Since η is continuous at 0 and η(0) > 0 there exists r > 0 and α > 0 such that

η(x) > αIB(0,r)(x) for all x ∈ Rd. Also note, by [121, Theorem 13.2], the graph defined by

connecting all edges with distance less than rεn is connected with probability one. Hence there

exists i with IB(0,r)

(
ξ1−ξi
ε

)
> 0. In particular this implies

∣∣∣µ(nm)(ξ1)− µ(nm)(ξi)
∣∣∣ ≤ GTVnm(µ(nm))

W1i
≤ εdn(κ+ 1)

α
.

By [58, Theorem 8] for any k there exists a constant C (independent of k and n) such that the

number of edges connecting ξ1 to ξk is less than C
εnr

. Hence for any k we have

∣∣∣µ(nm)(ξ1)− µ(nm)(ξk)
∣∣∣ ≤ εd−1

n C(κ+ 1)

αr
.

In particular this implies that µ(nm)(ξk) ≥M − εd−1
n C(κ+1)

αr . Hence by choosing M sufficiently

large we have that µ(nm)(ξk) ≥ m and therefore µ(nm) 6∈ Θnm . A contradiction.

Remark 7.3.5. The bound on the number of the minimal number of edges between two nodes

in [58] was proved when X is the unit ball and data points are uniformly iid. It is immediately

clear that these results will generalize to any connected and bounded domain X and for any

probability density ρ bounded above and below by strictly positive constants.

Remark 7.3.6. From the proof of Corollary 7.3.4 one can also see that if Θn and Θ were

defined by (7.8) and (7.9) respectively then almost minimizers are uniformly bounded in L1.

Hence Corollary 7.3.4 also holds for constraints of this form.

7.4 Convergence with Data

In this section we are interested in using data to obtain non-trivial minimizers to both the

Ginzburg-Landau functional and the graph total variation functional. We use a data term of

the form:

gn(µ(n), ζ(n)) =
1

n

n∑
i=1

∣∣∣µ(n)(ξi)− ζ(n)(ξi)
∣∣∣ (7.14)

where ζ(n) ∈ L1(Ψn) is the data and we assume that ζ(n) → ζ in TL1. Both these results are

(almost) immediate once we have shown that gn(·, ζ(n)) converges continuously to g(·, ζ).

Lemma 7.4.1. Define gn by (7.14) and g : L1(X)→ [0,∞) by

g(µ, ζ) =

∫
X
|µ(x)− ζ(x)| ρ(x) dx.

Assume ζ(n) → ζ in TL1 then gn converges continuously to g.
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Proof. Assume µ(n) → µ in TL1 then∣∣∣gn(µ(n), ζ(n))− g(µ, ζ)
∣∣∣ =

∣∣∣∣∫
X

(∣∣∣µ(n)(Tn(x))− ζ(n)(Tn(x))
∣∣∣− |µ(x)− ζ(x)|

)
ρ(x) dx

∣∣∣∣
≤
∫
X

(∣∣∣µ(n)(Tn(x))− µ(x)
∣∣∣+
∣∣∣ζ(n)(Tn(x))− ζ(x)

∣∣∣) ρ(x) dx

→ 0.

Which proves the lemma.

Corollary 7.4.2. Under the same conditions as Theorem 7.2.1 and Lemma 7.4.1 with probability

one we have the following.

1. infL1(Ψn) En + gn(·, ζ(n))→ minL1(X) E∞ + g(·, ζ) as n→∞

2. If µ(n) is a sequence of almost minimizers of En+gn(·, ζ(n)) in L1(Ψn) then the sequence

is precompact. Furthermore, any cluster point of µ(n) is a minimizer of E∞ + g(·, ζ) in

L1(X).

Remark 7.4.3. One should note that the TL1 notion of convergence is random. In particular

the stagnating transport map between Pn and P is random. If we consider the sequence ζ(n) to

be the restriction of ζ onto Ψn then it is not immediate that ζ(n) → ζ in TL1. However if one

assumes that ζ is Lipschitz then with probability one we have ζ(n) → ζ which follows from the

almost sure weak convergence of the empirical measure (see also the proof of Lemma 7.3.3).

The proof of the above is immediate from Proposition 2.2.4, Lemma 7.4.1 and Theo-

rems 2.2.1 and 7.2.1. We have the corresponding result for the graph total variation functional.

Corollary 7.4.4. Under the same conditions as Theorem 7.2.2 and Lemma 7.4.1 with probability

one we have the following.

1. infL1(Ψn)GTVn + gn(·, ζ(n))→ minL1(X) TV (·; ρ, η) + g(·, ζ) as n→∞

2. If µ(n) is a sequence of almost minimizers of GTVn + gn(·, ζ(n)) in L1(Ψn) then the

sequence is precompact. Furthermore, any cluster point of µ(n) is a minimizer of

TV (·; ρ, η) + g(·, ζ)

in L1(X).

Proof. From Proposition 2.2.4, Lemma 7.4.1 and Theorem 7.2.2 we have that

Γ- lim
n→∞

(
GTVn + gn(·, ζ(n))

)
= TV (·; ρ, η) + g(·, ζ).

We are left to show the compactness property. This is a simple case of showing that if

GTVn(µ(n)) + gn(µ(n), ζ(n)) ≤M for all n
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then supn∈N ‖µ(n) ◦ Tn‖L1(X) <∞. But this is trivial since

1

n

n∑
i=1

∣∣∣µ(n)(ξi)
∣∣∣ ≤M +

1

n

n∑
i=1

∣∣∣ζ(n)(ξi)
∣∣∣

and the RHS converges.

7.5 Multiple Classes

Let there be k classes at points {p1, . . . , pk} where pi ∈ Rm are affinely independent and

therefore k ≤ m + 1. We then consider µ(n) ∈ L1(Ψn;Rm) and µ ∈ L1(X;Rm) where

we write µ = (µ1, . . . , µm). We assume V : Rm → [0,∞) has zeros at {p1, . . . , pk} only

and by interpreting | · | as the Euclidean norm on Rm then En : L1(Ψn;Rm) → [0,∞] and

GTVn : L1(Ψn;Rm)→ [0,∞] remain unchanged. The limiting potential becomes

E∞ =

{
TV (µ; ρ, η) if µ ∈ L1(X; {pi}ki=1)

∞ otherwise

where TV is defined by

TV (µ; ρ, η) := sup

{∫
X

m∑
i=1

µi(x)div(φi(x)) dx : φi ∈ C∞c (X;Rd),

sup
x∈X

σ∗
(
−φi(x)

ρ2(x)

)
<∞

}
.

With these minor modifications all the results stated in this chapter (and the previous chapter)

hold. One should note that E∞ written in the form (7.4) is not well defined as the outward

surface normal in more than one dimension is not unique.
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Chapter 8

Closing Remarks

In this thesis we have looked at two approaches to problems based in statistical inference which

include a data association component. These were the k-means approach (Chapter 3 and Chap-

ter 4) and a graphical approach (Chapter 6 and Chapter 7). We devote the final part of this thesis

to suggesting problems for future work.

8.1 Further Problems in the k-Means Method

In the smoothing data association problem we used a constant regularizationterm, i.e. cluster

centers were, by definition, minimizers µ(n) of fn defined by

fn(µ) =
1

n

n∑
i=1

k∧
j=1

|µj(ti)− yi|2 + λn‖∇sµ‖2L2

where λn = λ is constant. In the spline problem (k = 1) in Chapter 5 we showed that one could

take λn � 1√
n

in order for weak convergence of minimizers and the minimum of fn. It seems

reasonable that this will also hold for k > 1 however the proofs in the k = 1 case relied upon

an explicit formula for the minimizer. In particular for k = 1 we could write

µ(n) = G−1
n,λn

ν(n)

for a linear operator G−1
n,λn

and some ν(n) depending on the data. We were able to study the

properties of G−1
n,λn

which lead to the bound

∥∥∥G−1
n,λn

ν(n)
∥∥∥ = O

(
1 +

1

nλ2
n

)
.

For k > 1 the minimization problem is no longer quadratic and therefore one cannot

expect the existence of G−1
n,λn

with such ‘nice’ properties. However in some sense the problem

is still locally quadratic so one would expect similar results to the k = 1 case.

In the general case where µj ∈ Y for some Banach space Y and data is in another

Banach space X then one could also ask whether it is possible to take λn → 0. It is not clear

what we would expect in this case. When one looks at weak convergence one is taking a finite
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dimensional projection of the random variable and therefore the 1√
n

drops out naturally as a

‘central limit theorem’ type result. However, it also seems reasonable that the rate will depend

on the interplay between the regularization r(µ) and the data term Pn
∧k
j=1 d(ξi, µj). When

d(ξi, µj) = |Liµj − yi|2 (for ξi = (Li, yi) ∈ (Y ∗,R)) then this becomes the general spline

coupled with data association problem and we expect λn � 1√
n

. Whether this is true in greater

generality is not clear and an interesting problem for future works.

8.2 Further Problems in the Graphical Approach

An interesting extension of Chapter 6 and Chapter 7 would be the application to infinite dimen-

sional data. In order to further develop the problem we consider a simple example. We assume P

is a centered measure on L2([a, b]) with continuous covariance operator K : [a, b]× [a, b]→ R.

We define the operator TK : L2([a, b])→ L2([a, b]) by

TK(f) =

∫ b

a
K(s, ·)f(s) ds.

By the Karhunen-Loéve theorem there exists an orthonormal basis of eigenfunctions of TK
which we will call φi with corresponding eigenvalues λ2

i . Any ξ ∼ P can be written

ξ(t) =

∞∑
k=1

ξ̂(k)φk(t)

where the convergence is in L2 and uniform in t and the random variables ξ̂(k) are given by

ξ̂(k) = (ξ, φk) :=

∫ b

a
ξ(t)φk(t) dt.

Furthermore ξ̂(k) satisfy

E(ξ̂(k)) = 0 and E(ξ̂(j)ξ̂(k)) = δjkλ
2
k.

We assume that ξ̂(k)
λk

are distributed with density ρk on R.

For data points x, y ∈ L2([a, b]) we define the interaction potential ηε : L2([a, b]) ×
L2([a, b])→ [0,∞) by

ηε(x, y) =
∞∑
k=1

Ψ

(
α(k)(x̂(k)− ŷ(k))

ε

)
. (8.1)

The function Ψ : R→ R is used to compare coefficients and for example

Ψ(t) =

{
1 if |t| < 1

0 otherwise.

The weights α act as a filter and we will show that by taking α(k)→∞ as k →∞ sufficiently

quickly will ensure that only finitely many terms of the sum in (8.1) are positive which in
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particular implies that the sum is finite. For a data set {ξi}ni=1 we define the graph total variation

by:

GTVn(µ) =
1

ε2n

1

n(n− 1)

n∑
i,j=1
i 6=j

ηεn(ξi, ξj) |µ(i)− µ(j)|

for binary functions µ : {1, . . . , n} → {0, 1} and for some constant p > 0.

This problem arises naturally in image classification. For example the problem of classi-

fying images using a rotationally invariant distance function [119,141,186] could be approached

using the formulation we express here. The objective is to classify images I1, . . . , In via a dis-

tance dRID of the form

dRID(Ii, Ij) = min
O∈SO(d)

‖Ii −O ◦ Ij‖

where SO(d) is the set of rotations on Rd. By using a radial basis φi one should be able to use

ηε as an alternative to dRID. This problem has applications in cryo-Electron Microscopy which

concerns determining 3D macromolecular structures from noisy images at random orientations.

This is a very active area of research and indeed the 2003 and 2009 Nobel prizes in Chemistry

were awarded for determining the structure of various molecules.

For GTVn to converge as n → ∞ it is necessary (but not sufficient) that the scalar Fn
defined by

Fn =
1

εn

1

n(n− 1)

n∑
i,j=1
i 6=j

ηεn(ξi, ξj) (8.2)

also converges as n → ∞. One would expect that if Fn is bounded then so is GTVn (for

simplicity we will consider only Fn here). First we show that ηε is bounded for each ε and

therefore Fn is finite for each n (Lemma 8.2.1). Next we show that Fn can be bounded uniformly

in n. For simplicity we bound in expectation and more precisely we show

sup
n∈N

EFn <∞.

Taking expectations has the advantage of putting the problem into the continuous setting which

greatly simplifies the proofs. The disadvantages are that we do not see the graphical structure

and in particular we gain no intuition in what the natural scaling of εn → 0 should be.

Lemma 8.2.1. Let P be a centered measure on L2([a, b]) with continuous covariance oper-

ator K : [a, b]2 → R. Let {(λ2
k, φk)}∞k=1 be the Karhunen-Loéve basis of eigenfunctions

where the Karhunen-Loéve coefficients are distributed (x,φk)
λk

∼ ρk for a density ρk. Assume

λk � kr with r < 0 and let α(k) � kq with q + r > 1 and there exists C < ∞ such that

supk∈N ‖ρk‖L∞ ≤ C. Then for x, y ∼ P independently there almost surely exists K <∞ such

that α(k) |(x− y, φk)| ≥ ε for all k ≥ K.
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Proof. By our assumptions we can write

P
(
|(x− y, φk)| ≤

ε

α(k)

)
=

∫
R

∫ s+ ε
α(k)λk

s− ε
α(k)λk

ρk(t) dt ρk(s) ds

≤ 2Cε

α(k)λk

∫
R
ρk(s) ds

≤ 2Cε

α(k)λk
.

Therefore
∞∑
k=1

P
(∣∣∣∣α(k)(x− y, φk)

ε

∣∣∣∣ ≤ 1

)
≤
∞∑
k=1

2Cε

α(k)λk
.
∞∑
k=1

1

kq+r

where the above summation is finite for q + r > 1. By the Borel-Cantelli lemma the event

{|α(k)(x− y, φk)| ≤ ε}

almost surely occurs finitely many times.

The above lemma shows that ηε(x, y) is finite for almost every x, y iid∼ P . We now show

that Fn is bounded in expectation.

Lemma 8.2.2. Under the same conditions as Lemma 8.2.1 where data is distributed ξi
iid∼ P we

define Fn by (8.2) with ηε by (8.1) and Ψ(t) = I|t|<1. Then Fn is bounded in expectation, i.e.

there exists a constant M <∞ such that

sup
n∈N

EFn ≤M.

Proof. One has

EFn =
1

εn

∞∑
k=1

EΨ

(
α(k)(x̂(k)− ŷ(k))

εn

)
=

1

εn

∞∑
k=1

P (α(k) |(x− y, φk)| ≤ εn) .

By the calculation in the proof of Lemma 8.2.1 we have

EFn .
∞∑
k=1

1

kq+r
.

For q + r > 1 the above converges.

To test the methodology we perform the following numerical experiment. Let ξi be

independent samples from the following stochastic differential equation on [0, T ],

dξ = −σ(ξ) dt+ ρ dW, ξ(0) = −1 (8.3)

where W is a Brownian motion, ρ > 0 a fixed constant and σ(ξ) = ξ3 − ξ. Realizations

of (8.3) have the behavior that ξ(t) is close to ±1. In particular we choose constants so that

approximately half of the realizations have a jump from −1 to 1. We define a classifier µ of
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{ξi}ni=1 by minimizing GTVn over binary functions (conditioned on
∑n

i=1 µ(i) = m for some

m ∈ N). In Figure 8.1 we see that classifiers are able to correctly identify which paths have a

jump.

Figure 8.1: Infinite dimensional classifiers
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Minimizers of GTVn partition the data as shown above. The figure on the left contains all the
data points that have at least one jump. The figure on the right contains all the data points with
no jumps.

An important point which we have so far not touched upon is the Γ-limit. As motivation

we discuss ratio and Cheeger graph cuts for which, to a limited extent, have been considered in

infinite dimensional settings and are closely related to the graph total variation. The ratio and

Cheeger graph cuts for a data set {ξi}ni=1 ⊂ X (with graph weights Wij) are minimizers of En
defined by

En(F ) :=
Cutn(F )

Baln(F )

over sets F ⊂ X and where Cutn(F ) is the graph cut of F defined by

Cutn(F ) =
∑
ξi∈F

∑
ξj∈F c

Wij

and Baln(F ) is a defined by either:

Baln(F ) = 2|F ||F c| for ratio cuts

Baln(F ) = min{|F |, |F c|} for Cheeger cuts

which, with an abuse of notation, we let |F | = 1
n

∑n
i=1 Iξi∈F . The results of [71] imply that

when X ⊂ Rd then minimizers of En converge to a minimizer of E∞, the ratio or Cheeger cut

on X , defined by

E∞(F ) :=
CutP (F )

BalP (F )

where

CutP (F ) =

∫
∂F
ρ2(x) dHd−1(x)

BalP (F ) = P (F )P (F c) for ratio cuts

BalP (F ) = min{P (F ), P (F c)} for Cheeger cuts,
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ξi
iid∼ P and ρ is the density of P . When X is infinite dimensional (and more precisely a Gauss

space) one has that

CutP (F ) = TV (IF ;P )

where TV (µ;P ) is the total variation defined with respect to the measure P , see [36].

There already exists some results in the literature towards understanding E∞. We call a

set a Cheeger set if it is a minimizer of

Ê∞(F ) :=
CutP (F )

P (F )
.

One can see that this is very closely related to the Cheeger and ratio cuts. When X is finite

dimensional the existence and uniqueness of a minimizer of Ê∞ (under suitable conditions) has

been proven in, for example, [6]. This result was successfully extended to infinite dimensions

when X is a subset of the Wiener space [36]. It is most likely a straightforward generalization

to show that these results on Ê∞ carry through to E∞.

The results of the finite dimensional case suggest a candidate Γ-limit for the infinite

dimensional case, that is

E∞(F ) =
TV (IF ;P )

BalP (F, F )
.

This would also suggest that a candidate Γ-limit for GTVn is TV (·;P ).
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